
1 of 15

CUHK CSE

ADAM:

An Automatic & Extensible Platform

To
Stress Test Android Anti-Virus Systems

Spark
ZHENG Min

John
C.S. Lui

Patrick
P.C. Lee

1 of 15

CUHK CSE

Android Malware
Up 3,325% in 2011

1. This past year, we saw a significant increase

in mobile malware.

 A. Juniper Networks Mobile Threat Center:

400 to 13,302.

 B. Antiy: 12,000.

 C. Tencent: 10,000.

2. Spyware and premium rate SMS Trojans are

the most popular Android malware.

Motivation
Of ADAM System

2 of 15
Spark
ZHENG Min

CUHK CSE

 Both academic community and commercial anti-virus

companies proposed many methodologies and products.

 how to assess the effectiveness of these defense

mechanisms?

 Especially malware mutation.

Related Work
Of ADAM System

3 of 15
Spark
ZHENG Min

CUHK CSE

1. No byte code level obfuscation research on Android

malware before.
 e.g. Jha, Testing Malware Detectors, 04; Moser, Limits of Static Analysis for Malware

Detection. ACSAC 07

2. No large-scale evaluation on 40+ anti-virus and 200*8+

malware on Android before.
 e.g. Felt. A survey of mobile malware in the wild, SPSM 11

3. No automatic Anti-virus test system on Android before.
 e.g. Jiang, Dissecting Android Malware, Oakland12.

Our Work
Of ADAM System

4 of 15
Spark
ZHENG Min

CUHK CSE

 We propose:

 ADAM which can automatically transform

an original sample to different variants via

repackaging and obfuscation techniques.

Then stress test anti-virus products.

Introduction
To Apk and Disassemble

5 of 15
Spark
ZHENG Min

CUHK CSE

1. The .apk file contains all of the information

necessary to run the application on a device

or emulator, such as compiled .dex file, a

binary version of the AndroidManifest.xml

file, compiled resources (resources.arsc) and

uncompiled resource files for your
application.

2. The disassemble process takes the Dalvik
opcodes of a .dex file and converts them into
low-level and human readable instructions.
Typically, the decoded .smali files can be
rebuilt again back to a .dex file.

.apk

.smali

.dex

.apk

.smali

.dex

.apk

.java

.dex

System Design
Of ADAM

1. Security analysis.

 For original sample and variants.

2. Automated transformation.

 no source code need.

3. Extensibility.

 Plug-in new detection systems or

obfuscation techniques.

6 of 15
Spark
ZHENG Min

CUHK CSE

Obfuscation Technique
Of Repackaging

 Repackaging methods that work directly on an input .apk file and

regenerate a different .apk file without modifying the source code of

the input .apk file.

 <1>. Alignment.

 The process only changes the cryptographic hash of the .apk file.

 <2>. Re-sign.

 An .apk file can be re-signed multiple times with different certificates.

 <3>. Rebuild.
 Disassembles an .apk file and rebuilds the assembly code (without

being modified) into another .apk file.

7 of 15

Spark
ZHENG Min

CUHK CSE

Evaluation
Of Repackaging

 1. We collect a total of 222 distinct

Android malware samples.

 2. Online Engine: VirusTotal.

 3. Note that VirusTotal hosts over

40 anti-virus products, and our

study only focuses on the top 10

products.

8 of 15
Spark
ZHENG Min

CUHK CSE

Repackaging, October 2011

Analysis
Of Rebuild Technique

9 of 15
Spark
ZHENG Min

CUHK CSE

Class 0: public final mars.testbc.R$attr

Class 1: public final mars.testbc.R$drawable

Class 2: public final mars.testbc.R$id

Class 3: public final mars.testbc.R$layout

Class 4: public final mars.testbc.R$string

Class 5: public final mars.testbc.R

Class 6: mars.testbc.TestActivity$Broadcast

Class 7: public mars.testbc.TestActivity

Class 8: public mars.testbc.TestReceiver

public final mars.testbc.R$attr

public mars.testbc.TestActivity

public final mars.testbc.R$id

public final mars.testbc.R$drawable

public mars.testbc.TestReceiver

public final mars.testbc.R$layout

mars.testbc.TestActivity$Broadcast

public final mars.testbc.R$string

public final mars.testbc.R

Original Rebuild

Obfuscation Technique
Of Code Obfuscation

 Code obfuscation changes the size and content of the .apk file by

rebuilding the assemble code, but without modifying the logical

behavior.

 <1>. Inserting defunct methods.

 The rationale of this obfuscation technique is to modify the method

table in the Dalvik bytecode.

 <2>. Renaming methods.

 We obfuscate the method name with a different string, and hence

change the signature that is generated by the method name.

10 of 15
Spark
ZHENG Min

CUHK CSE

Obfuscation Technique
Of Code Obfuscation

 <3>. Changing control flow graphs.

 we modify the CFG without changing the logic behavior of a .smali

file and so as to change its CFG signature.

 <4>. Encrypting constant strings.

 We encrypt all constant strings that we find in a .smali file, and

decrypt them when they are being processed by modifying the

invoking instructions.

11 of 15
Spark
ZHENG Min

CUHK CSE

Analysis
Of Encrypt Technique

12 of 15
Spark
ZHENG Min

CUHK CSE

We can encrypt a string “DecryptString”

in a TextView control by subtracting all

bytes by 10. The encrypted string will

become “:[YhofjIjh_d]”.

We then add the decryption method

decrypt (i.e., by adding all bytes by 10)

before the TextView control is called.

Evaluation
Of Repackaging and Code Obfuscation

13 of 15
Spark
ZHENG Min

CUHK CSE

November 2011
repackaging code obfuscation

Discussion
Of ADAM System

1. Signature coverage.

 We cannot verify if all anti-virus systems that we tested on

VirusTotal apply the same detection logic as in their mobile

versions.

2. Distribution model.

 It is generally difficult to distribute malicious applications through

the official AndroidMarket. However, we believe that hackers can

upload any malware to the third-party markets.

14 of 15
Spark
ZHENG Min

CUHK CSE

Future Work
Of ADAM System

1. We try to extend our system to support mobile version anti-

virus products and dynamic analysis system.

2. We try to add a new function that explore the logic of anti-

virus engine.

3. Source code:

 http://ansrlab.cse.cuhk.edu.hk/software/adam/

15 of 15
Spark
ZHENG Min

CUHK CSE

