Experiments with Malware
Visualization

Yongzheng Wu and Roland H.C. Yap

Singapore U. of Tech. Natl. U. of Singapore
& Design

Why Malware Visualization

 Malware comparison, classification and clustering
is not well defined

— Sharing & Evolution: Reusable components and
complex co-evolution history

— No definite answers: Different anti-virus software give
different classifications

e Can visualization show relationships between
malware?
— Not automatic analysis
— Complementary to analysis

Motivating Applications

ldentify common components of two malware
sample

ldentify new code in a new malware variant

ldentify changes made on benign software
from virus

Study relation between malware families

ldentify the family of an unknown malware
sample

Visualization Preview

Background on DotPlot
— Sequence X

E| A | C B E E E D | C

Aaauanbag@——
m| O @| m| O O ®| O| >

Background on DotPlot
— Sequence X

>

C B E E E D | C

A DUBNDIS e

m| O| @[m| Ol ol ®m| o| >
m

Background on DotPlot (self-

comparisonz
— Seqlience X

B C| D E F | G| H I

X 9Juanbag

g jueLien

An example
Comparing two variants of Bagle

Variant A

>

Many small sectjons.

that are similar

A smaller sectiop

The two sections in two
variants are similar
respectively

L
NSN—

| LI TSI T LT T I Il LA | 11

\

u01103s adJe| y

Sequence: Content & Sections

e Sequence coresponds to content of memory
— Subset of “memory dump”
— Executable pages (focus on the code)
— Obtained after unpacking

e Sequence is divided into many sections, e.g.
exe, DLL, anonymous

Processing The Instruction Sequence

* Problem 1: Direct dotplot of the raw
instruction sequence yelds too much similarity

— Because of common instructions such as
* ret
* nop
e XOr eax, eax

Processing The Instruction Sequence

e Solution: use n-gram

— Compares n consecutive bytes rather than
individual bytes

* What is n-gram?
— OriginakABCACDB

— 2-gram: AB BC CA AC CD DB
— 3-gram: ABC BCA CAC ACD CDB

Processing The Instruction Sequence

Raw Instructions 16-gram

Processing The Instruction Sequence
(cont.)

 Problem 2: Sequence is too large for visualization
— The size of memory dump is typically 10 to 100MB

— Comparing two 10M sequences yelds 10Mx10M
image, i.e. 100T pixels!

— QOur interactive visualizer handles sequences up to
~500K (Gigapixel images)
— Note: n-gram only reduce the size by n-1
e Solution: hash-based sampling
— Reduce a sequence of size N to N/k
— Sample an n-gram if its hash modulo k is O

Processing The Instruction Sequence
(cont.)

No sampling After 1:500 sampling

Application 1: Two Variants from Same
Family

e Objective

— Visualize similarity and difference of two variants
from same family

e Data set used

— Two Bagle variants

Application 1: Visualization

broken into many tiny segments

Application 1: Information Learned

address Bagle 1 Bagle 2

opcode instruction opcode instruction
004013c1[68c0204500 |push 0x4520c0 [68c0204500 |[push 0x4520c0
004013c¢6(90 nop e8c6055402 |call 0x2941991
004013c7|e8f1045402 |call 0x29418bd |90 nop
004013cc [ff15c0204500|call [0x4520c0] [ff15c0204500|call [0x4520c0]
004013e9 {7505 jnz 0x4013f0 7505 jnz 0x4013f0
004013eb|e8af9a0100 |call Oz4lae9f [e821a60100 |call Oz41ball
004013£0 |50 push eax 50 push eax
00401311 [e8337a0300 |[call 0z438e29 [e8a5850300 [call 0x43999b
00401316 |cc int3 cc int3

* Trivial polymorphic code
* About 5000 different fragments (6%) like this
* 94% code is same in both variants

Application 2: Discover APl Hooking by
Comparing System DLL
* API hooking is usually done by patching the
APl function entry

* Without hooking, sections of a system DLL are
same in different dumps

 We can compare sections, which are different,
of a system DLL.

Application 2: Visualization

Two different sections of kernel32.dll
from Hupigon

Secthmttion 2 Section 11

Self-comparison of 11 different sections
of ntdll.dll (10 Conficker variants
and 1 benign software)

Z UOIPaY(13S

TT UoI13S

Application 2: Information Learned

benign Hupigon
address |opcode instruction opcode instruction
7c801d7a|90 nop 90 nop
7c801d7b|8bff mov edt,ed? e9dd22c483| gmp 0x44405d
7c801d7d |55 push ebp
7c801d7e|8bec mov ebp,esp
7c801d80(837d0800 |cmp [ebp+0x8],0(837d0800 |cmp [ebp+0x8],0
7c8197at |90 nop 90 nop
7c8197b0|68080a0000|push 0zal8 e9079dc283 | gmp 0x4434bc
7c8197b5|68889a817c|push 0x7c819a88|68889a817c|push 0x7c819a88

* APl hooking in Hupigon. 0x7c801d7b is the entry of

LoadLibraryA()
* 0x7c8197b0 is the entry of CreateProcessInternallW()

Application 3: Visualizing Malware
Families

 Comparing 60 malware instances: 5 instances
x 12 malware families

— Total size 142M
* Try to visualize malware clustering

Application 3: Visualizing Malware

Families (self comparlson only exe sectlons)

Three Barcodes.
Inner: Sections
Middle: Variants
Outer: Family

} Bagel

Bifrose or Hupigon? — Bifrose

' .“‘\ e ’

ERNCINCR .

— Hupigon

e -

i Turkojan

}- Turkojan

Application 4: Identify Unknown
Malware

e Given a few known samples.

 We want to compare against existing known
families

— Can we identify family of a new sample?

Application 4: Identify Unknown
Malware

%® om Y W

Unknown 1

Ground Truth: Conficker
® ® L Unknown 2

I Ground Truth: Bagle
_g B A | Unknown 3
® = 1| Ground Truth: Turkojan
i| dnknown s o

& % M W round Truth: Bifrose
ivﬁ 1 Iaﬁ'lllllll-lllllI ||%ﬁ1 !}% | -1___

Alureon Bagle Conficker Hupigon

Limitations & Conclusion

* Limitations
— Sophisticated obsfucated code
— Scalability: meant to work with selected samples

* Conclusion

— Effective in showing the similarity in the internal structure
of malware.

— Show similarities between families.
— ldentify unknown malware sample

— Can visualize other properties of sequence
* Instruction/basic block/function sequence
e System call sequence
* Memory access

