
Computer Security Group at
UCSB

1

The State of
Mobile Security

Manuel Egele

maeg@cs.ucsb.edu
Computer Security Group at

University of California Santa Barbara

DIMVA 2012, Thu. July 26th 2012

Computer Security Group at
UCSB

2

Computer Security Group at
UCSB

3

UCSB Seclab

Computer Security Group at
UCSB

4

Smartphones are Ubiquitous

If not yet they are certainly on the way to get there:

365 million iDevices in total 400 million Android devices in total

Computer Security Group at
UCSB

5

Mobile Platforms

• Smartphones and tablets are ubiquitous

• Have access to (sensitive) user/company data
– Addressbook
– Calendar
– etc.

• Sensors (e.g., GPS, camera, microphone) provide data

that is available to third-party application developers

• App Stores drive the economy behind mobile

applications

Computer Security Group at
UCSB

6

App Stores - Economy

Apple AppStore
– 650,000 Apps
– 400 million store accounts
– 30 billion downloads
– $5 billion to developers / $2.5 billion in 2011 alone

Google Play
– 490,000 Apps
– Top 200 Apps in Google Play $679,000 per day in Jan. 2012
– ~ $247 million / year

Computer Security Group at
UCSB

7

Where There's Money, …

Computer Security Group at
UCSB

8

Malware Reached Mobile Platforms

• Smartphones are targets b/c they store personal/sensitive
information

– Address books, GPS coordinates

– Weakly protected online banking credentials

– Zitmo intercepts mobile transaction numbers (mTAN)

– Monetization through premium SMS and calls

• Different ecosystem than commodity computers

(e.g., different level of control of the user over the device)

– Root exploits against iOS and Android

Computer Security Group at
UCSB

9

Current State of Affairs

• Millions of users (potential victims)

• Easy access to data stored on their devices

• Existing mechanisms to monetize this data

• Bad guys that combine the above

• We need better security solutions

Computer Security Group at
UCSB

10

Overview

• Ubiquity of mobile systems
• Why mobile systems security
• Different security/protection approaches

– iOS – Apple AppStore
– Android – Google Play Store

• Static vs. Dynamic analysis for protection
• Challenges on Android systems
• Static analysis of iOS apps to detect privacy violations
• Recent developments / Lessons learned
• Summary

Computer Security Group at
UCSB

11

Security Models (iOS – AppStore)

• Developer pays $99/year for iPhone developer program

• Apple App Store – 650k apps available, 30bn downloaded

• Non-public vetting process for each submitted application
– Probably a combination of static and dynamic analysis techniques

• Code signing and encryption

• Once the app is approved it is available on the AppStore

Computer Security Group at
UCSB

12

Security Models (iOS – Device)

• On app start-up OS loader decrypts the application and
places the decrypted contents in memory (only!)

• Mandatory code signing:
– No unsigned code will execute
– Prevents self modifying code

– Safari et al. have dynamic­codesigning entitlement

• Applications have unfettered access to most information
on the device (noteworthy exceptions: GPS, SMS, Phone)

• Since iOS 4.3 ASLR

• All apps run as one user (i.e., mobile)

• Application sandboxing through MAC policy hooks

Computer Security Group at
UCSB

13

Security Models (Android – Google Play)

• 25$ registration fee – keeps spammers away

• Google Bouncer
– Screens submitted applications for malicious code
– Was circumvented (e.g., malicious apps on the Play store for

weeks, download & execute of additional malicious code)
– Was hacked (e.g., Oberheide and Miller got a shell on Bouncer,

could inspect the analysis enviroment)

• Mandatory application signing
– Self signed certificates accepted

Computer Security Group at
UCSB

14

Security Models (Android – Device)

• Each application is run as separate Linux user
• Install-time permissions for applications

– Access address book or GPS location
– Open network connections
– Send & receive/intercept SMS
– Permissions enforced at the kernel level  to circumvent them,

the attacker needs to exploit the kernel

• Common defensive techniques:
– ProPolice (stack buffer overrun protection), Android 1.5+
– Format string vulnerability protection, Android 2.3+
– Address space layout randomization, Android 4.0+
– Position independent executables, Android 4.1+

Computer Security Group at
UCSB

15

Security Models (Android – Device)

• CyanogenMod – aftermarket Android firmware

– Revocation of install-time permissions

– Apps might crash if they do not handle the changes gracefully

– Faking data patch gives apps fake data from address book,

location, etc.

Computer Security Group at
UCSB

16

Known Malicious Apps (iOS)

Apps that have been retracted from Apple AppStore
– Torch – Flashlight app that enables tethering (good for user, bad

for network operators)
– Path, Gowalla et al. upload address book to remote servers
– Storm8 apps leaked phone numbers
– Find & Call – steals address book, sends text messages to

contacts with spoofed sender number
– POC by Charlie Miller to circumvent mandatory code signing 

arbitrary code execution
– jailbreakme.com performs root exploit  Drive-by download

Computer Security Group at
UCSB

17

Known Malicious Apps (Android)

Malicious apps on Google Play and third party markets

– Repackaged popular titles including malicious functionality often

appear in third party markets

– If User needs to enable installation from untrusted sources and

agree to the permissions at install time  not a drive-by download

– Find & Call – steals address book, sends text messages to

contacts (yes this is truly multi-platform!)

Computer Security Group at
UCSB

18

Find and Call

© AppleInsider.ru

Re: Application work

July 5, 2012. 12:10

Good day!

System is in process of beta­testing. In result of failure of one
of the components there is a spontaneous sending of inviting SMS
messages. This bug is in process of fixing. SMS are sent by the
system, that is why it won't affect your mobile account.

© http://www.securelist.com

Computer Security Group at
UCSB

19

When is Data Transmission Legitimate?

• Find & Call: “The Find and Call app has been removed
from the App Store due to its unauthorized use of users’
address book data, a violation of App Store guidelines,”
Apple spokesperson Trudy Muller told Wired.

• Text messages sent from backend server (iOS does not
expose APIs to send text messages)

• Find & Call only caught b/c the app was advertising itself
• Path et al. do not use the address book information in

similar obviously nefarious ways
Q: How can we tell such cases apart?

Computer Security Group at
UCSB

20

Malware Growth on Commodity Systems

Let's take a step back and take a look at the past

development of malicious software on commodity systems

Computer Security Group at
UCSB

21

Malware Growth on Commodity Systems

Computer Security Group at
UCSB

22

Motivation for Mobile Malware Analysis

• Why don't we implement virus scanners on mobile devices?
– Sandboxing prevents access to other applications

• Potentially huge number of malware samples

– Generating signatures manually is slow and does not scale
– Sophisticated targeted attacks  no sample to create a signature

• Efficient and scalable way to answer:

Q: Is an unknown piece of code malicious or benign?

Computer Security Group at
UCSB

23

Static vs. Dynamic Security Measures

• Static measures can be applied pre-launch

– One time effort

– All users benefit immediately

– No performance overhead at runtime

– Challenges for static analysis (obfuscation, dynamically loaded

code, etc.)

Computer Security Group at
UCSB

24

Static vs. Dynamic Security Measures

• Dynamic security measures

– Can be more precise than static measures

– Incomplete path coverage  pre-launch analysis is incomplete

– Mobile apps are inherently user driven to increase coverage

interaction with the application is required

– Often each device has to perform its own analysis during

execution
– Performance overhead during execution

Computer Security Group at
UCSB

25

Why Bother with Static Analysis

• Apps on smartphones run in restricted environments

– Sandboxed in Android and iOS

– Permission model in Android

– No side loading on iOS

– No self modifying or dynamically loaded code in iOS

– No self modifying code in Dalvik

 less freedom for attackers

Computer Security Group at
UCSB

26

Static Analysis Prerequisits

Many static analysis approaches require access to control

flow graphs (CFG) and call graphs (CG):

• How can we extract CGs and CFGs for Android apps?

• How can we extract CGs and CFGs for iOS apps?

Computer Security Group at
UCSB

27

Overview

• Ubiquity of mobile systems
• Why mobile systems security
• Different security/protection approaches

– iOS – Apple AppStore
– Android – Google Play Store

• Static vs. Dynamic analysis for protection
• Challenges on Android systems
• Static analysis of iOS apps to detect privacy violations
• Recent developments / Lessons learned
• Summary

Computer Security Group at
UCSB

28

CFG for Android

Easy case:
.class final Lcom/admob/android/ads/c;

.method public constructor <init>(Ljava/lang/String;...)V

 new­instance v0, Ljava/net/URL;

 invoke­direct {v0, p1}, Ljava/net/URL;­><init>(Ljava/lang/String;)V

Computer Security Group at
UCSB

29

Challenges for CFG (Android)
Interfaces and inheritance:

.class public interface abstract Lcom/admob/android/ads/n;

.method public abstract d()Ljava/lang/String;

…

.class public final Lcom/admob/android/ads/m;

.method public final a(Lcom/admob/android/ads/n;)V

 invoke­interface {p1}, Lcom/admob/android/ads/n;­>d()Ljava/lang/String;

To determine what methods might be called by the invoke, we need to

understand the possible types of a's argument. To determine these

types, we have to find all call-sites to m.a().

Want more challenges? Reflective calls

Computer Security Group at
UCSB

30

More Fun Analyzing Android Apps

Junk byte injection

© dexlabs.org

Computer Security Group at
UCSB

31

More Fun Analyzing Android Apps cont.

Baksmali
Error occured while disassembling class Lorg.dexlabs.poc.dexdropper.DropActivity;
­ skipping class

java.lang.RuntimeException: Invalid code offset 83 for the try block end address

at org.jf.baksmali.Adaptors.MethodDefinition.addTries(MethodDefinition.java:478)

at org.jf.baksmali.Adaptors.MethodDefinition.writeTo(MethodDefinition.java:132)

at org.jf.baksmali.Adaptors.ClassDefinition.writeMethods(ClassDefinition.java:338)

at org.jf.baksmali.Adaptors.ClassDefinition.writeTo(ClassDefinition.java:116)

at org.jf.baksmali.baksmali.disassembleDexFile(baksmali.java:205)

at org.jf.baksmali.main.main(main.java:297)

© dexlabs.org

Androguard
2 0xa fill­array­data­payload

\x22\x05\xc3\x01\x70\x10\xe4\x0b\x05\x00

© dexlabs.org

IDA Pro 6.3

Computer Security Group at
UCSB

32

Android Intents & Activities

“An intent is an abstract description of an operation to be

performed.”

“An activity is a single, focused thing that the user can do.

Almost all activities interact with the user,...” often a

screen/view

Use startActivity(Intent) upon a click event to switch to

a new activity

Computer Security Group at
UCSB

33

Android Intents & Activities cont.

Computer Security Group at
UCSB

34

Enough of Android (For Now)

Let's look under the hood of iOS
– Signatures do not scale

– Behavior-based detection of apps that access

privacy sensitive information and transmit this

information over the Internet without user

intervention or consent

– Model this functionality as a data-flow problem
Challenges

– Apps are binary only  binary analysis

– Object-oriented concepts of Obj-C

Computer Security Group at
UCSB

35

iOS – App Analysis

1. Extract control flow graph (CFG) from binary application
2. Identify sources of sensitive information and network

communication sinks
– Perform reachability analysis between sources and sinks

3. Data flow analysis on detected paths

Start from
Application Binary

Step 1:
Extract CFG

Step 2: Identify
Sources and Sinks

Step 3:
Data-Flow Analysis

Computer Security Group at
UCSB

36

Static Analysis – IDA Pro

Computer Security Group at
UCSB

37

Background (iOS & DRM)

• App Store apps are encrypted and digitally signed by Apple

• Loader verifies signature and performs decryption in memory

• Decrypting App Store apps:

– Attach with debugger while app is running

– Dump decrypted memory regions

– Reassemble binary, toggle encrypted flag

Computer Security Group at
UCSB

38

Static Analysis (Call Graph)

IDA Pro state of the art disassembler for binary analysis
call graph for “Bomberman“

objc_msgSend

Computer Security Group at
UCSB

39

iOS – App Analysis (CFG)

• Most iOS apps are written in Objective-C

• Cornerstone: objc_msgSend dispatch function

• Task: Resolve type of receiver and value of selector for

objc_msgSend calls
– Backwards slicing
– Forward propagation of constants and types

• Result: Inter and intra procedural CFG is constructed

from successfully resolved objc_msgSend calls

Computer Security Group at
UCSB

40

Background (objc_msgSend)

• objc_msgSend dynamic dispatch function

• Arguments:
– Receiver (Object)
– Selector (Name of method, string)
– Arguments (vararg)

• Method look-up:
– Dynamically traverses class hierarchy
– Calls the method denoted by selector
 All information readily available at runtime, but
challenging to do statically

• Similar to reflection in Java, Obj-C uses only reflection

Computer Security Group at
UCSB

41

iOS – App Analysis (Class Hierarchy)

• Problem: Multiple candidate types for receiver

• Class hierarchy is extracted from application and libraries

• All possible candidate types are inspected whether they

implement a method

• If only one candidate implements the method that type is

chosen for the receiver

Computer Security Group at
UCSB

42

iOS – App Analysis (CFG)

Novel object-oriented analysis approach for Obj-C binaries

based on two key techniques:

(1) Resolve type of receiver and value of selector for

objc_msgSend calls

(a) Backwards slicing

(b) Forward propagation of constants and types

(2) Multiple candidate types for receiver class hierarchy

Result: Inter and intra procedural CFG is constructed from

successfully resolved objc_msgSend calls

Computer Security Group at
UCSB

43

Example ObjC to ASM

1 LDR R0, =off_24C58
2 LDR R1, =off_247F4
3 LDR R0, [R0]
4 LDR R1, [R1]
5 BLX _objc_msgSend
6 LDR R1, =off_247F0
7 LDR R1, [R1]
8 BLX _objc_msgSend
9 ADDS R4, R0, #0
…
10 LDR R3, [R6,R3]
11 STR R3, [SP,#0x40+var_40]
12 ADDS R3, R4, #0
…
13 BLX _objc_msgSend

…
14 BLX _objc_msgSend

r0? r1?

UIDevice ::currentDevice

UIDevice

r1?
uniqueIdentifier

::uniqueIdentifier

this

NSString ::initWithFormat:

(fmt: "uniqueid=%@&scores=%d")

POSTScore ::startPostingData:toURL:

r0?

currentDevice
UIDevice

.score

Computer Security Group at
UCSB

44

Example CFG

Computer Security Group at
UCSB

45

iOS Apps – Finding Privacy Leaks

• Based on inter and intra procedural CFG

• Reachability Analysis (find paths)

– From interesting sources

– To network sinks

• Data-flow analysis from source to sink

Computer Security Group at
UCSB

46

iOS Apps – Evaluation

• 1,407 Applications (825 from App Store, 582 from Cydia)

• Pervasive ad and statistic libraries:

– 772 Apps (55%) contain at least one such library

– Leak UDIDs, GPS coordinates, etc.

Computer Security Group at
UCSB

47

Ad and Statistic Libraries

• 82% use AdMob (Google)

• Transmit UDID and AppID on start-up and ad request

• Ad company can build detailed usage profiles

– Gets info from all Apps using the ad library

• Problem: Location-based Apps
– Access to GPS is granted per App
– Libraries linked into location based apps have access

to GPS too

• UDIDs cannot be linked to a person directly, but...

Computer Security Group at
UCSB

48

Is Leaking UDIDs a Problem?

• UDIDs cannot be linked to a person directly

• But: Combine UDID with additional information e.g.,
– Google App can link UDID to a Google account
– Social networking app get user's profile (often name)

• Linking ICC-ID with UDID is trivial
– 114,000 iPad 3G users

Computer Security Group at
UCSB

49

Is Leaking UDIDs a Problem?

June 2010

Computer Security Group at
UCSB

50

PiOS – Evaluation: Leaked Data

Source #App Store
825

#Cydia
582

Total
1407

DeviceID 170 (21%) 25(4%) 195(14%)

Location 35(4%) 1(0.2%) 36(3%)

Address book 4(0.5%) 1(0.2%) 5(0.4%)

Phone number 1(0.1%) 0(0%) 1(0.1%)

Safari history 0(0%) 1(0.2%) 1(0.1%)

Photos 0(0%) 1(0.2%) 1(0.1%)

Computer Security Group at
UCSB

51

PiOS – Evaluation: Case Studies

Address book contents:
– Apps have unrestricted access to the address book
– Facebook and Gowalla transmit the complete AB
– Feb. 2012: Mainstream media picks up this and similar cases

 Apple is changing policies and implements restrictions

Phone numbers:
– Nov. 2009 Apple removed all Storm8 titles from App Store
– Apps transmitted phone numbers (SBFormattedPhoneNumber)

– New versions don't have that code anymore
– Old version of “Vampires“ PiOS detected the privacy leak
– MogoRoad – Free version users get calls from telemarketers

Computer Security Group at
UCSB

52

Media Coverage

Computer Security Group at
UCSB

53

PiOS – Evaluation: Case Studies

Address book contents:
– Apps have unrestricted access to the address book
– Facebook and Gowalla transmit the complete AB
– Feb. 2012: Mainstream media picks up this and similar cases

 Apple is changing policies and implements restrictions

Phone numbers:
– Nov. 2009 Apple removed all Storm8 titles from App Store
– Apps transmitted phone numbers (SBFormattedPhoneNumber)

– New versions don't have that code anymore
– Old version of “Vampires“ PiOS detected the privacy leak
– MogoRoad – Free version users get calls from telemarketers

Computer Security Group at
UCSB

54

Overview

• Ubiquity of mobile systems
• Why mobile systems security
• Different security/protection approaches

– iOS – Apple AppStore
– Android – Google Play Store

• Static vs. Dynamic analysis for protection
• Challenges on Android systems
• Static analysis of iOS apps to detect privacy violations
• Recent developments / Lessons learned
• Summary

Computer Security Group at
UCSB

55

Lessons Learned

• Communicating privacy issues and raising awareness

can be challenging

• Jailbroken iPhones are not necessarily less secure:

– See PrivaCy application to opt out of ad tracking

– Security patches for legacy systems

– Experimental or research apps almost always require Jailbreak

• Would more fine grained permissions be helpful?
– Users get tired of reading permission screens

Computer Security Group at
UCSB

56

Recent Developments

• Apple announced permissions for address book access

for iOS 6
– Will Apple come up with a working solution for permissions?

• Obfuscated Dalvik applications
– Google advocates the use of ProGuard to protect IP – renaming

class and method names to a.a.b() etc.

– Recently: applications storing bytecode in arrays and jumping
there – throws off linear sweep disassembler

Computer Security Group at
UCSB

57

Recent Developments cont.

Get in-app purchase for free on iOS and Apple Mac Store
– No Jailbreak required
– Install a trusted CA
– Install a trusted certificate for Apple's AppStore server
– Make DNS resolve the AppStore name to the fake AppStore
– Done
– Similar attack exists for the Mac Store on OS X

Interestingly, Apple immediately reacted and promised a fix
with the next iOS update.

Developers + revenue vs. Privacy

Computer Security Group at
UCSB

58

Summary

• Mobile systems are ubiquitous

• Mobile systems implement new paradigms

and security mechanisms

– AppStores

– Mandatory code signing

– Permissions

• Static and dynamic analysis methods can be

used to detect malware in mobile applications

Computer Security Group at
UCSB

59

Thanks for your attention

QUESTIONS?

