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Smartphones are Ubiquitous

If not yet they are certainly on the way to get there:

365 million iDevices in total 400 million Android devices in total
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Mobile Platforms

• Smartphones and tablets are ubiquitous

• Have access to (sensitive) user/company data
– Addressbook
– Calendar
– etc.

• Sensors (e.g., GPS, camera, microphone) provide data 

that is available to third-party application developers

• App Stores drive the economy behind mobile 

applications
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App Stores - Economy

Apple AppStore
– 650,000 Apps
– 400 million store accounts
– 30 billion downloads
– $5 billion to developers / $2.5 billion in 2011 alone

Google Play
– 490,000 Apps
– Top 200 Apps in Google Play $679,000 per day in Jan. 2012
– ~ $247 million / year
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Where There's Money, … 
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Malware Reached Mobile Platforms

• Smartphones are targets b/c they store personal/sensitive 
information

– Address books, GPS coordinates

– Weakly protected online banking credentials

– Zitmo intercepts mobile transaction numbers (mTAN)

– Monetization through premium SMS and calls

• Different ecosystem than commodity computers

(e.g., different level of control of the user over the device)

– Root exploits against iOS and Android
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Current State of Affairs

• Millions of users (potential victims)

• Easy access to data stored on their devices

• Existing mechanisms to monetize this data

• Bad guys that combine the above

• We need better security solutions
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Overview

• Ubiquity of mobile systems
• Why mobile systems security
• Different security/protection approaches

– iOS – Apple AppStore
– Android – Google Play Store

• Static vs. Dynamic analysis for protection
• Challenges on Android systems
• Static analysis of iOS apps to detect privacy violations
• Recent developments / Lessons learned
• Summary
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Security Models (iOS – AppStore)

• Developer pays $99/year for iPhone developer program

• Apple App Store – 650k apps available, 30bn downloaded

• Non-public vetting process for each submitted application
– Probably a combination of static and dynamic analysis techniques

• Code signing and encryption

• Once the app is approved it is available on the AppStore



Computer Security Group at
UCSB

12

Security Models (iOS – Device)

• On app start-up OS loader decrypts the application and 
places the decrypted contents in memory (only!)

• Mandatory code signing:
– No unsigned code will execute
– Prevents self modifying code

– Safari et al. have dynamic­codesigning entitlement

• Applications have unfettered access to most information 
on the device (noteworthy exceptions: GPS, SMS, Phone)

• Since iOS 4.3 ASLR

• All apps run as one user (i.e., mobile)

• Application sandboxing through MAC policy hooks
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Security Models (Android – Google Play)

• 25$ registration fee – keeps spammers away

• Google Bouncer
– Screens submitted applications for malicious code
– Was circumvented (e.g., malicious apps on the Play store for 

weeks, download & execute of additional malicious code)
– Was hacked (e.g., Oberheide and Miller got a shell on Bouncer, 

could inspect the analysis enviroment)

• Mandatory application signing
– Self signed certificates accepted
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Security Models (Android – Device)

• Each application is run as separate Linux user
• Install-time permissions for applications

– Access address book or GPS location
– Open network connections
– Send & receive/intercept SMS
– Permissions enforced at the kernel level  to circumvent them, 

the attacker needs to exploit the kernel

• Common defensive techniques:
– ProPolice (stack buffer overrun protection), Android 1.5+
– Format string vulnerability protection, Android 2.3+
– Address space layout randomization, Android 4.0+
– Position independent executables, Android 4.1+
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Security Models (Android – Device)

• CyanogenMod – aftermarket Android firmware

– Revocation of install-time permissions

– Apps might crash if they do not handle the changes gracefully

– Faking data patch gives apps fake data from address book, 

location, etc. 
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Known Malicious Apps (iOS)

Apps that have been retracted from Apple AppStore
– Torch – Flashlight app that enables tethering (good for user, bad 

for network operators)
– Path, Gowalla et al. upload address book to remote servers
– Storm8 apps leaked phone numbers
– Find & Call – steals address book, sends text messages to 

contacts with spoofed sender number
– POC by Charlie Miller to circumvent mandatory code signing  

arbitrary code execution
– jailbreakme.com performs root exploit  Drive-by download
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Known Malicious Apps (Android)

Malicious apps on Google Play and third party markets

– Repackaged popular titles including malicious functionality often 

appear in third party markets

– If User needs to enable installation from untrusted sources and 

agree to the permissions at install time  not a drive-by download

– Find & Call – steals address book, sends text messages to 

contacts (yes this is truly multi-platform!)
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Find and Call

© AppleInsider.ru

Re: Application work

July 5, 2012. 12:10

Good day!

System is in process of beta­testing. In result of failure of one 
of the components there is a spontaneous sending of inviting SMS 
messages. This bug is in process of fixing. SMS are sent by the 
system, that is why it won't affect your mobile account.

© http://www.securelist.com
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When is Data Transmission Legitimate?

• Find & Call: “The Find and Call app has been removed 
from the App Store due to its unauthorized use of users’ 
address book data, a violation of App Store guidelines,” 
Apple spokesperson Trudy Muller told Wired.

• Text messages sent from backend server (iOS does not 
expose APIs to send text messages)

• Find & Call only caught b/c the app was advertising itself
• Path et al. do not use the address book information in 

similar obviously nefarious ways 
Q: How can we tell such cases apart?
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Malware Growth on Commodity Systems

Let's take a step back and take a look at the past 

development of malicious software on commodity systems
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Malware Growth on Commodity Systems
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Motivation for Mobile Malware Analysis

• Why don't we implement virus scanners on mobile devices?
– Sandboxing prevents access to other applications

• Potentially huge number of malware samples

– Generating signatures manually is slow and does not scale
– Sophisticated targeted attacks  no sample to create a signature

• Efficient and scalable way to answer:

Q: Is an unknown piece of code malicious or benign?
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Static vs. Dynamic Security Measures

• Static measures can be applied pre-launch

– One time effort

– All users benefit immediately

– No performance overhead at runtime

– Challenges for static analysis (obfuscation, dynamically loaded 

code, etc.)
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Static vs. Dynamic Security Measures

• Dynamic security measures

– Can be more precise than static measures

– Incomplete path coverage  pre-launch analysis is incomplete

– Mobile apps are inherently user driven to increase coverage 

interaction with the application is required

– Often each device has to perform its own analysis during 

execution
– Performance overhead during execution
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Why Bother with Static Analysis

• Apps on smartphones run in restricted environments

– Sandboxed in Android and iOS

– Permission model in Android

– No side loading on iOS

– No self modifying or dynamically loaded code in iOS

– No self modifying code in Dalvik

 less freedom for attackers
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Static Analysis Prerequisits

Many static analysis approaches require access to control 

flow graphs (CFG) and call graphs (CG):

• How can we extract CGs and CFGs for Android apps?

• How can we extract CGs and CFGs for iOS apps?
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Overview
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• Why mobile systems security
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– iOS – Apple AppStore
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• Static analysis of iOS apps to detect privacy violations
• Recent developments / Lessons learned
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CFG for Android

Easy case:
.class final Lcom/admob/android/ads/c;

.method public constructor <init>(Ljava/lang/String;...)V

    new­instance v0, Ljava/net/URL;

    invoke­direct {v0, p1}, Ljava/net/URL;­><init>(Ljava/lang/String;)V
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Challenges for CFG (Android)
Interfaces and inheritance:

.class public interface abstract Lcom/admob/android/ads/n;

.method public abstract d()Ljava/lang/String;

…

.class public final Lcom/admob/android/ads/m;

.method public final a(Lcom/admob/android/ads/n;)V

    invoke­interface {p1}, Lcom/admob/android/ads/n;­>d()Ljava/lang/String;

To determine what methods might be called by the invoke, we need to 

understand the possible types of a's argument. To determine these 

types, we have to find all call-sites to m.a().

Want more challenges? Reflective calls
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More Fun Analyzing Android Apps

Junk byte injection

© dexlabs.org
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More Fun Analyzing Android Apps cont.

Baksmali
Error occured while disassembling class Lorg.dexlabs.poc.dexdropper.DropActivity; 
­ skipping class

java.lang.RuntimeException: Invalid code offset 83 for the try block end address

at org.jf.baksmali.Adaptors.MethodDefinition.addTries(MethodDefinition.java:478)

at org.jf.baksmali.Adaptors.MethodDefinition.writeTo(MethodDefinition.java:132)

at org.jf.baksmali.Adaptors.ClassDefinition.writeMethods(ClassDefinition.java:338)

at org.jf.baksmali.Adaptors.ClassDefinition.writeTo(ClassDefinition.java:116)

at org.jf.baksmali.baksmali.disassembleDexFile(baksmali.java:205)

at org.jf.baksmali.main.main(main.java:297)

© dexlabs.org

Androguard
2 0xa fill­array­data­payload

\x22\x05\xc3\x01\x70\x10\xe4\x0b\x05\x00

© dexlabs.org

IDA Pro 6.3
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Android Intents & Activities

“An intent is an abstract description of an operation to be 

performed.”

“An activity is a single, focused thing that the user can do. 

Almost all activities interact with the user,...” often a 

screen/view

Use startActivity(Intent) upon a click event to switch to 

a new activity
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Android Intents & Activities cont.
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Enough of Android (For Now)

Let's look under the hood of iOS
– Signatures do not scale

– Behavior-based detection of apps that access 

privacy sensitive information and transmit this 

information over the Internet without user 

intervention or consent

– Model this functionality as a data-flow problem
Challenges

– Apps are binary only  binary analysis

– Object-oriented concepts of Obj-C
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iOS – App Analysis

1. Extract control flow graph (CFG) from binary application
2. Identify sources of sensitive information and network 

communication sinks
– Perform reachability analysis between sources and sinks

3. Data flow analysis on detected paths

Start from 
Application Binary

Step 1:
Extract CFG

Step 2: Identify 
Sources and Sinks

Step 3:
Data-Flow Analysis
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Static Analysis – IDA Pro
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Background (iOS & DRM)

• App Store apps are encrypted and digitally signed by Apple

• Loader verifies signature and performs decryption in memory

• Decrypting App Store apps:

– Attach with debugger while app is running

– Dump decrypted memory regions

– Reassemble binary, toggle encrypted flag
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Static Analysis (Call Graph)

IDA Pro state of the art disassembler for binary analysis
call graph for “Bomberman“

objc_msgSend
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iOS – App Analysis (CFG)

• Most iOS apps are written in Objective-C

• Cornerstone: objc_msgSend dispatch function

• Task: Resolve type of receiver and value of selector for 

objc_msgSend calls
– Backwards slicing
– Forward propagation of constants and types

• Result: Inter and intra procedural CFG is constructed 

from successfully resolved objc_msgSend calls



Computer Security Group at
UCSB

40

Background (objc_msgSend)

• objc_msgSend dynamic dispatch function

• Arguments:
– Receiver (Object)
– Selector (Name of method, string)
– Arguments (vararg)

• Method look-up:
– Dynamically traverses class hierarchy
– Calls the method denoted by selector
 All information readily available at runtime, but 
challenging to do statically

• Similar to reflection in Java, Obj-C uses only reflection
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iOS – App Analysis (Class Hierarchy)

• Problem: Multiple candidate types for receiver

• Class hierarchy is extracted from application and libraries

• All possible candidate types are inspected whether they 

implement a method

• If only one candidate implements the method that type is 

chosen for the receiver
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iOS – App Analysis (CFG)

Novel object-oriented analysis approach for Obj-C binaries 

based on two key techniques:

(1) Resolve type of receiver and value of selector for 

objc_msgSend calls

(a) Backwards slicing

(b) Forward propagation of constants and types

(2) Multiple candidate types for receiver class hierarchy

Result: Inter and intra procedural CFG is constructed from 

successfully resolved objc_msgSend calls
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Example ObjC to ASM

1  LDR     R0, =off_24C58
2  LDR     R1, =off_247F4
3  LDR     R0, [R0]
4  LDR     R1, [R1]
5  BLX     _objc_msgSend   
6  LDR     R1, =off_247F0
7  LDR     R1, [R1]
8  BLX     _objc_msgSend
9  ADDS    R4, R0, #0
…
10 LDR     R3, [R6,R3]
11 STR     R3, [SP,#0x40+var_40] 
12 ADDS    R3, R4, #0
…
13 BLX     _objc_msgSend     

… 
14 BLX     _objc_msgSend  

r0? r1?

UIDevice ::currentDevice

UIDevice

r1?
uniqueIdentifier

::uniqueIdentifier

this

NSString ::initWithFormat:

(fmt: "uniqueid=%@&scores=%d")

POSTScore ::startPostingData:toURL:

r0?

currentDevice
UIDevice

.score
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Example CFG
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iOS Apps – Finding Privacy Leaks

• Based on inter and  intra procedural CFG

• Reachability Analysis (find paths)

– From interesting sources

– To network sinks

• Data-flow analysis from source to sink
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iOS Apps – Evaluation

• 1,407 Applications (825 from App Store, 582 from Cydia)

• Pervasive ad and statistic libraries:

– 772 Apps (55%) contain at least one such library

– Leak UDIDs, GPS coordinates, etc. 
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Ad and Statistic Libraries

• 82% use AdMob (Google)

• Transmit UDID and AppID on start-up and ad request

• Ad company can build detailed usage profiles

– Gets info from all Apps using the ad library

• Problem: Location-based Apps
– Access to GPS is granted per App
– Libraries linked into location based apps have access 

to GPS too

• UDIDs cannot be linked to a person directly, but...
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Is Leaking UDIDs a Problem?

• UDIDs cannot be linked to a person directly

• But: Combine UDID with additional information e.g.,
– Google App can link UDID to a Google account
– Social networking app get user's profile (often name)

• Linking ICC-ID with UDID is trivial
– 114,000 iPad 3G users
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Is Leaking UDIDs a Problem?

June 2010
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PiOS – Evaluation: Leaked Data

Source #App Store
825

#Cydia
582

Total
1407

DeviceID 170 (21%) 25(4%) 195(14%)

Location 35(4%) 1(0.2%) 36(3%)

Address book 4(0.5%) 1(0.2%) 5(0.4%)

Phone number 1(0.1%) 0(0%) 1(0.1%)

Safari history 0(0%) 1(0.2%) 1(0.1%)

Photos 0(0%) 1(0.2%) 1(0.1%)
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PiOS – Evaluation: Case Studies

Address book contents:
– Apps have unrestricted access to the address book
– Facebook and Gowalla transmit the complete AB
– Feb. 2012: Mainstream media picks up this and similar cases 

 Apple is changing policies and implements restrictions

Phone numbers:
– Nov. 2009 Apple removed all Storm8 titles from App Store
– Apps transmitted phone numbers (SBFormattedPhoneNumber)

– New versions don't have that code anymore
– Old version of “Vampires“ PiOS detected the privacy leak
– MogoRoad – Free version users get calls from telemarketers
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Media Coverage
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Lessons Learned

• Communicating privacy issues and raising awareness 

can be challenging

• Jailbroken iPhones are not necessarily less secure:

– See PrivaCy application to opt out of ad tracking

– Security patches for legacy systems

– Experimental or research apps almost always require Jailbreak

• Would more fine grained permissions be helpful?
– Users get tired of reading permission screens
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Recent Developments

• Apple announced permissions for address book access 

for iOS 6
– Will Apple come up with a working solution for permissions?

• Obfuscated Dalvik applications
– Google advocates the use of ProGuard to protect IP – renaming 

class and method names to a.a.b() etc.

– Recently: applications storing bytecode in arrays and jumping 
there – throws off linear sweep disassembler
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Recent Developments cont.

Get in-app purchase for free on iOS and Apple Mac Store
– No Jailbreak required
– Install a trusted CA
– Install a trusted certificate for Apple's AppStore server
– Make DNS resolve the AppStore name to the fake AppStore
– Done
– Similar attack exists for the Mac Store on OS X

Interestingly, Apple immediately reacted and promised a fix 
with the next iOS update.

Developers + revenue vs. Privacy 
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Summary

• Mobile systems are ubiquitous

• Mobile systems implement new paradigms 

and security mechanisms

– AppStores

– Mandatory code signing

– Permissions

• Static and dynamic analysis methods can be 

used to detect malware in mobile applications
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Thanks for your attention

QUESTIONS?


