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ABSTRACT
Solid-state drives (SSDs) are inherently different from traditional
drives, as they incorporate data-optimization mechanisms to over-
come their limitations (such as a limited number of program-erase
cycles, or the need of blanking a block before writing). The most
common optimizations are wear leveling, trimming, compression,
and garbage collection, which operate transparently to the host OS
and, in certain cases, even when the disks are disconnected from a
computer (but still powered up). In simple words, SSD controllers
are designed to hide these internals completely, rendering them
inaccessible if not through direct acquisition of the memory cells.

These optimizations have a significant impact on the forensic
analysis of SSDs. The main cause is that memory cells could be pre-
emptively blanked, whereas a traditional drive sector would need to
be explicitly rewritten to physically wipe off the data. Unfortunately,
the existing literature on this subject is sparse and the conclusions
are seemingly contradictory.

In this paper we propose a generic, practical, test-driven method-
ology that guides researchers and forensics analysts through a series
of steps that assess the “forensic friendliness” of a SSD. Given a
drive of the same brand and model of the one under analysis, our
methodology produces a decision that helps an analyst to determine
whether or not an expensive direct acquisition of the memory cells
is worth the effort, because the extreme optimizations may have
rendered the data unreadable or useless. We apply our methodology
to three SSDs produced by top vendors (Samsung, Corsair, and
Crucial), and provide a detailed description of how each step should
be conducted.

1. INTRODUCTION
Solid-state drives (SSDs) have reached remarkable popularity nowa-
days, as their increasing capacity and affordable prices made them a
good alternative to standard, platter-based hard drives (HDD, from
hereinafter) [10]. SSDs offer the flexibility and compatibility of
traditional drives, long with the shock-resistance ensured by the lack
of mechanical components typical of flash drives, and the speed
offered by flash memories.
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SSD have a shorter lifespan than HDDs. NAND-based flash chips,
in fact, have a physical limit of around 10,000 program-erase cycles.
When approaching and surpassing this limit, NAND floating gates
exhibit problems in retaining their charge and, if not constantly
refreshed, they lose their content. This means that keeping an SSD
without power for a couple of days may lead to data loss. While
10,000 cycles may seem a very high number, it is a rather low lifes-
pan for hard drives. Another limitation is that if blocks need to
be rewritten, they must be blanked first, causing an extra overhead.
This issue is further exacerbated in SSD drives, where the smallest
addressable unit is a 16 to 512k block. SSD vendors have developed
specific techniques such as write caching, trimming, garbage col-
lection and compression, which aim at reducing the actual number
of physical program-erase cycles. With these optimizations, SSD
controllers are much more active than HDDs controllers, which let
write and read requests pass through.

As a consequence, existing and widely-adopted forensic data-
acquisition and analysis procedures may not be completely suitable
for SSDs (e.g., the hash of an SSD may not be “stable” over time, as
obsolete data may be automatically wiped by internal optimizations).
The only viable option is a white-box acquisition that bypasses the
controller and reads the content of the NAND chips. Unfortunately,
as explained in §2.1, a white-box acquisition is expensive, not al-
ways feasible, can possibly disrupt the drive, and may lead to the
conclusion that data is lost or damaged. In this regard, it would be
useful to have a simple and affordable (black-box) triage procedure
to decide whether a white-box analysis may produce some usable
outcome on given the SSD brand, model and release, and OS.

In this paper we propose a generalized, practical analysis method-
ology to selectively address the peculiarities of SSDs that may
impact forensic acquisition and reconstruction. Our methodology
is a test-driven workflow that guides the forensic analyst through a
series of experiments. The goal of each experiment is to assess how
the controller logic behaves under different conditions and provide
the analyst with useful insights on how the SSD under examina-
tion works and what are the optimizations adopted. Given the SSD
model, brand and release, and the OS (if any) used on that SSD,
our workflow provides (i) insights on the potential impacts of such
optimizations on the results of standard forensic tools, and (ii) a
practical decision framework to determine the expected success rate
of retrieving lost data through white-box analysis.

As our methodology is black-box, it is transparently applicable to
any SSD brand and model without any modification. Throughout
the paper, we show this by applying our workflow on three SSDs of
different vendors, each with a different controller, chosen because
they are the most used ones: we cover this way a very vast variety
of devices on the market and can analyze their peculiar behaviors,
directly tied to the controller they are built with. Regardless of



the specific experiments that we carry out for the sole purpose of
demonstrating the practicality of our workflow, we show that a
forensic analyst can use our tests to assess whether a certain feature
is implemented in an arbitrary SSD. Based on the result of each
assessment, for which we provide real-world results, the analyst can
consider the possibility of proceeding with a white-box analysis (for
instance, if the TRIM or wear leveling are implemented).

In summary, this paper makes the following contributions:

• We propose a test-driven, black-box methodology to deter-
mine whether a SSD implements trimming, garbage collec-
tion, compression and wear leveling.

• We show how our the outcome of our methodology guides the
practitioners in understanding how they impact their chances
of data retrieval using traditional black-box, or expensive
white-box analysis techniques.

• We show our methodology by applying it on three popular
SSD brands and models, and detail precisely how each step is
conducted and how the results of each step are interpreted.

2. BACKGROUND AND MOTIVATION
SSDs employ a complex architecture, with many hardware and soft-
ware layers between the physical memory packs and the external
interface to the computer. These layers, merged in the flash trans-
lation layer (FTL) [12], are in charge of reading and writing data
on the ATA channel on one side and on the memory chips on the
other side, as well as to compress, encrypt or move data blocks to
perform optimizations. In HDDs the OS has direct access to the
data contained on platters, and the controller is limited to moving
the magnetic head and read or write data. Instead the FTL of SSDs
performs much more complex functions: It translates logical block
addresses (LBA) as requested by the OS into the respective physical
block addresses (PBA) on memory chips. The underlying mapping
is completely transparent and can be modified by the FTL at any
time for any reason. The need for mechanisms such as the FTL
has been studied extensively by Templeman and Kapadia [16], who
show that the likelihood of a cell wearing (i.e., losing its ability
of retaining data) and its maximum lifespan. They show that the
endurance of memories greatly varies among the vendors and chip
models, and that premature decay is caused by stressing cells with
continuous writes.

2.1 White-box Forensics Analysis
The action of the FTL is transparent to software and to the host
OS: To the best of current knowledge, there is no way to bypass
the FTL via software, and explore the raw content of the memory
chips. Hardware intervention, also known as white-box acquisition,
is required. Breeuwsma et al. [7] showed that it is possible to
acquire data from a flash memory chip in several ways. One option
is to use flasher tools that interact with the chip directly via the pins
of the board; other ways are the use of a JTAG port usually left by
vendors on devices to bypass the controller or, in extreme cases, the
physical extraction of the chip for dumping via standard readers.

Although a complete white-box analysis of a SSD is theoretically
possible and in some cases feasible, it is also very difficult, time
consuming and expensive, because it requires custom hardware.
Creating custom hardware requires the forensics analyst to acquire
specific skills, buy expensive equipment, and, once a successful ac-
quisition is finally carried out, spend a significant amount of time to
reverse the implementation of the SSD’s controller policies. We at-
tempted to read directly from the memory chips using non-expensive

(i.e, tenths of US dollars) clips1 but we obtained a fragmented, in-
complete raw file. The techniques developed for small memories
could be ported to SSDs, but results are not guaranteed. As a matter
of fact, the applicability of white-box techniques highly depends
on the disks architecture and hardware design. We performed an
exploratory experiment with three drives (Samsung, Corsair, and
Crucial) and limited hardware resources and found it very hard even
to access the chips on the board, without disrupting them, or find
accessible JTAG ports: Understandably, vendors tend to protect
their intellectual property (i.e., the FTL algorithms) by not allowing
this kind of access to the hardware. Last, but not least, white-box
approaches must deal with data-compression features: The sole
knowledge of the compression algorithm is not sufficient. Indeed,
the analyst would need to know the compression algorithm and

the data allocation policy (i.e., how bytes are spread over the mem-
ory chips), which is definitely a protected (or at least, not public)
information.

2.2 Black-box Forensics Analysis
Differently from white-box approaches, black-box approaches read
data as presented to the ATA interface by the SSD controller.

Bell and Boddington [5] analyzed the file recovery rate on SSDs
versus HDDs during a standard, black-box forensic acquisition.
When issued a quick format command, the SSD used in the exper-
iment wiped the entire content (i.e., text files) irrecoverably in a
matter of minutes. They confirmed this result with a write blocker
(i.e., re-attaching the SSD to a write blocker after the quick format),
showing that this deletion did not happen as a result of commands
issued by the host or its OS: SSDs can indeed schedule and per-
form their own write operations. This work provided one of the
first hypothesis on how garbage-collection algorithms work, stating
that some of them (primarily Samsung) are capable of “looking at
the used/unused aspects of an NTFS filesystem by examining the
free space bitmap”. The authors hypothesized that these controllers
may be file-system aware, and need no OS intervention to blank
unused blocks. This poses major issues, rendering traditional foren-
sic methodologies (such as the use of write blockers) insufficient
to preserve the digital evidence. However, as we report in §4.2
we were unable to replicate their experiment, even using the same
OS, scripts, drive (including firmwares and versions) and working
conditions. Even with the authors’ help, we were unable to find the
reason for this difference.

From the one hand, treating SSDs just like HDDs with black-box
tools ensures partial observability over the controller’s behavior. On
the other hand, black-box approaches are more practical and conve-
nient than white-box approaches. Notably, they are less obtrusive
and expensive. Unfortunately, to the best of our knowledge, there
is no SSD alternative, scientifically-tested black-box methodology
that supports the forensic analyst in evaluating the soundness of the
results produced by existing tools.

2.3 Challenges and Goals
When applied to SSDs, black-box and white-box approaches have
symmetric advantages and drawbacks: the former fails when a drive
performs internal optimizations silently, whereas the latter fails on
proprietary hardware, which is difficult to manipulate and access, or
when data is compressed or encrypted. Indeed, no single hardware
tool or methodology can help with every SSD drive, since each of
them has a different architecture, different chips positioning, and
many other details that make “generic” hardware tools impossible
to build. In addition, SSDs use different flash memory chips; these

1We used the TSOP NAND clip socket, available online for 29USD.



have very different working parameters. In some cases, it may be
physically impossible to connect to the memory chips because of
the way they are soldered to the board; as a consequence the chip
often needs to be removed, thus potentially damaging the drive
or destroying the evidence. SSD controllers are specifically built
to reach high throughputs by leveraging parallel reads and writes;
custom forensic hardware is much slower and can read only one
chip at a time, making the dump (and the reconstruction) of an entire
drive a very long process. Moreover, data compression or proprietary
encryption may easily disrupt the entire white-box analysis, and
also to the capabilities of certain controllers to wipe obsolete blocks
and make it impossible to recover deleted files.

On the other hand, black-box approaches are less precise. How-
ever, being independent from the proprietary hardware, they can be
easily generalized. Our key observation is that a black-box triage is
a mandatory prerequisite before committing resources to a challeng-
ing, costly and potentially fruitless white-box analysis.

In summary, as every drive and every controller behave differently
one from the other, we focus on providing a general methodology
to perform forensically sound tests and determine how the FTL of a
given SSD affects the results that standard forensic techniques may
yield. Therefore, the main goal of our work is to devise an analysis
methodology that advances the state of the art for its generality,
and hopefully offers a useful reference for forensic practitioners and
researchers. The second goal is to provide pure black-box techniques
to “estimate” the likelihood of retrieving additional data through a
white-box effort, allowing forensic experts to triage evidence and
avoid wasting resources. Last, we strive to replicate and validate
the experiments described in the literature to take into account the
previous conclusions in our methodology.

3. METHODOLOGY OVERVIEW
The input of our methodology is an SSD of the same brand and
model of the one under examination. The first step is to conduct
a series of tests that determines whether that SSD implements cer-
tain features (regardless of what the vendors state), how fast and
aggressive they are with respect to stored data and how they would
influence forensic data reconstruction. The first step covers the
following aspects:

TRIM This functionality mitigates the known limitation of SSDs
that requires any block to be blanked before it can be rewrit-
ten. The trimming function erases data blocks that have been
marked as “deleted” by the OS. Trimming has a negative im-
pact on forensic analysis. Indeed, on-disk data persistence
after deletion is no longer guaranteed: Once a block is marked
as free by the OS, the controller decides when to blank it ac-
cording to its policies. As noted in [5], this can occur regard-
less of data connection between the SSD and a host computer
(e.g., during an acquisition, even when write blockers are
used). Our methodology can determine the percentage of
blocks that get erased and how fast this happens (§4.1).

Garbage collection (GC) This is a functionality that SSD vendors
often list as one of the most useful and interesting feature,
capable of greatly improving the drive’s performance. How-
ever, as explained in §3.1 and 4.2, from our investigation we

SSD WL TRIM GC Compression

Corsair F60 X X X X

Samsung S470 X X X

Crucial M4 X X

Table 1: SSD features as reported by vendors.

conclude that it is very hard even to define the concept of
garbage collection. Bell and Boddington [5] hypothesize that
GC works by making the controller somehow aware of the
filesystem, and able to infer on its own which blocks are ob-
solete by monitoring the file-allocation table. If this were the
case, GC would bias forensic acquisitions significantly. GC
is not triggered by the OS; consequently, data could be erased
whenever the disk is powered on, even if no write commands
are issued, thus rendering write blockers and other precautions
useless. Therefore, it is important to know whether a SSD
implements GC. Our methodology can determine whether
GC is active.

Erasing patterns Some SSDs show peculiar behaviors when using
TRIM: They do not erase all the marked blocks but rather a
subset of them based on some drive’s internals. Our methodol-
ogy explores this behavior to characterize the erasing patterns
(§4.3).

Compression Some drives transparently compress data to use less
blocks and reduce cell wearing. Compression poses no direct
challenges in black-box forensics acquisitions, whereas it
makes white-box analysis useless, as the data read directly
from the chips would be unusable, unless the compression
algorithm were known or reverse engineered. Therefore, in
our methodology we included a step that can verify whether
compression is active.

Wear leveling (WL) This functionality reduces the usage of flash
cells by spreading their consumption as evenly as possible
across the drive. To do so, the FTL may activate wear lev-
eling if certain blocks have reached an excessive number of
writes compared to the rest of the disk. The easiest and least
expensive wear-leveling implementation allows the FTL to
write the new block on another, less-used portion of the disk,
and updates the internal file mapping table that the FTL main-
tains [2]. Alternatively, vendors could provide the disk with
extra physical space, so that new blocks can be written on
brand new memory cells. This second technique is used, for
example, by the Corsair F60 SSD, which has a total of 64GB
flash memory but allows to address only 60GB at a time;
the drive itself is more expensive for the vendor, but if the
wear leveling functionality is correctly implemented it grants
a much longer lifespan. Although wear leveling is quite stan-
dard in modern drives, it is very useful to know whether the
SSD implementation masks the effect of the so-called “write
amplification” (see §4.5), which is a direct consequence of
the wear leveling.

Files recoverability Even though blocks may not be erased, they
might be changed or partially moved, making it impossible
to retrieve them through carving. This test checks how many
deleted files can be retrieved from the drive (§4.6).

Given the outcome of these tests, the second step is to interpret the
results and provide a ranking of a drive in terms of its “forensic
friendliness”, as detailed in §5. Our methodology covers all known
combinations of factors that may trigger each feature. In addition,
our methodology is designed to avoid redundant tests, which would
certainly not trigger any of the features. When feasible, we compare
our results with the outcome of previous studies. In particular, we
validate the experiments of Bell and Boddington [5] on garbage
collection, which is a particularly controversial and ill-defined topic
as detailed in §3.1.



3.1 Garbage Collector vs. Garbage Collection
The difference between garbage collector and garbage collection is a
controversial concept that needs to be clarified before explaining our
methodology. Many works in the literature treat these two features
as being substantially the same and propose methods to trigger and
reverse-engineer this functionality. They are, however, two different
(logical) components of an SSD controller, which unfortunately
share a very similar name causing considerable confusion.

For the purpose of our work, the garbage collector is the process

that deals with unused blocks—as a garbage collector does with
unused variables in modern memory managers. The internals of
SSD garbage collectors are not disclosed, and they may vary from
drive to drive. However, it is known that the garbage collector is
tightly tied to the TRIM functionality: among other capabilities, it
has access to the “preemptive-erase table” (§4.1) filled by TRIM
and takes care of physically wiping trimmed flocks. Additionally,
the garbage collector helps wear leveling by moving around blocks
whenever the wear factor of a cell is beyond a certain threshold.

On the other hand, vendors never disclosed any details about the
garbage collection functionality, although there were some specu-
lations about how it is supposed to work. The only known work is
by Bell and Boddington [5], who—partially supported by Samsung—
hinted that the garbage collection functionality allows the drive con-
troller to introspect the file allocation table of known file systems
(i.e., NTFS, ext3 and ext4) to autonomously decide which blocks
can be safely wiped, without the OS intervention or the implementa-
tion of TRIM. As a matter of fact, in §4.2 we document our tests on
the garbage collection functionality under these hypotheses to see
whether the results from various drives could confirm its presence
and behavior. Our experiment lead to results that contradict Bell
and Boddington’s work.

3.2 Write Caching in SSD Experiments
SSDs are equipped with a small amount of DRAM-based cache
memory, which functions is to reduce the number of physical writes.
This feature must be taken into account when performing experi-
ments on SSDs, because its obvious side effects. Caching can be
ignored in tests that use large files, as it is negligible with respect to
the drive capacity and is therefore bypassed. However, it must be
taken into account when performing fine-grained tests.

Biases introduced by caching were not addressed by Antonellis
[4], who performed experiments by writing everyday-use graphic
and text files on the SSD and then verified that they were completely
unrecoverable after deleting them. Although in [4] there is no clear
statement about th OS used, in 2008 no OS had TRIM support
for SSD drives [3] and therefore the file deletion could not be a
consequence of TRIM. The only explanation is that the files the
author used were not big enough to completely fill the drive cache
(usually around 512MB to 1GB) and were therefore never actually
written on disk: they were simply erased from cache and no trace
was left to allow a full or partial recovery. Also in [13] this effect
is noticed: The percentage of recoverable blocks when using small
files is considerably lower than the same percentage with big files,
even under the same conditions and usage patterns. This can be
explained by the fact that small files get usually stored in cache and
not written to disk.

Our methodology requires that cache is disabled either from the
OS (e.g., via the hdparm -W 0 command) or by using very large
files for write operations whenever possible, to fill up the cache and
force the drive to physically write on flash cells.

Disk formatting

Disk filling at
different percentages 25%, 50%, 75%, 100%

NTFS or ext4

Start real-time analysis
of disk zeroed space

Single files
deletion

Quick format in OS
with TRIM support

Win7 for NTFS
Ubuntu for ext4

Zeroing percentage
verification

Check state
of deleted

file's sectors

hdparm --fibmap
<filename>

hdparm --read-sector
<address> /dev/sdx

Figure 1: TRIM test flow.
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Figure 2: The amount of blocks erased by TRIM in our Cor-
sair F60 disk depends on the amount of used space.

4. IMPLEMENTATION DETAILS
We apply the methodology described in this section on three SSDs,
each with a different controller and combination of features, namely
Corsair F60 (controller: SandForce SF-1200), a Samsung S470
MZ-5PA064A (controller: Samsung ARM base 3-core MAX) and
a Crucial M4 (controller: Marvell 88SS9174-BLD2). As stated by
the vendors, these drives implement wear leveling. Furthermore,
the Corsair F60 performs data compression, whereas both Samsung
S470 and Corsair F60 are said to implement garbage collection.
Table 1 summarizes the functionalities according to the official
specifications. Instead of presenting the results of our tests in a
separate section, for the sake of practicality we explain the results
immediately after the description of each step.

4.1 TRIM
Using trimming, whenever blocks are erased or moved on an SSD,
they are added to a queue of blocks that should be blanked. This
operation is lazily performed by the garbage collector process as
soon as the disk is idle, making trimmed blocks ready to be written
and ensuring balanced read-write speeds. Trimming is triggered by
the OS, which informs the controller when certain blocks can be
trimmed. We focused on Windows and Linux: Windows 7 and 8
(and Server 2008R2), and Linux from 2.6.28 on support trimming.

Methodology. Fig. 1 shows the steps required to determine whether
and how an SSD implements trimming. Before start, the disk is
wiped completely and the write cache is disabled or filled, as detailed
in §3.2. Then, a stub filesystem is created and filled with random
content (i.e., files) up to different percentages of their capacity:
25, 50, 75 and 100%. This is because certain controllers exhibit
different trimming strategies depending on the available space. The
tests described below are repeated for each percentage.

As both [13] and our experiments show that some TRIM imple-
mentations behave differently when dealing with (1) quick formats
or (2) file deletions, we analyze both cases independently. When
a (1) quick format command is issued, the OS will supposedly no-
tify the SSD that the whole drive can be trimmed. The disk is left
idle and the filesystem is checked for zeroed blocks. If the SSD



implements TRIM procedures, we expect to observe changes in the
number of zeroed blocks; otherwise, no changes will happen. To
check for zeroing, we use a sampling tool—as Bell and Boddington
[5] did—which loops over the entire disk and samples 10Kb of data
out of every 10MB. It then checks whether the sample is completely
zeroed. Whenever a non-zeroed sample is encountered, the tool
checks whether it is zeroed in subsequent loops. The sampling
size was chosen empirically to find a good trade-off in terms of
overhead and accuracy. The choice of the sampling size depends
on the time that the analyst wants to spend on this test, and only
affects the final decision. The test ends when the situation does not
change within a timeout, which can be sometimes obtained by the
vendor’s documentation (i.e., the time between cycles of running of
the garbage collector). If no documentation is available, we set a
very long timeout (i.e., 24 hours, based on several trials that we run
on all our disks). During our experiments, we found out that if the
TRIM functionality is present and active, it triggers within 1 to 10
seconds. Similarly, (2) our workflow deletes single files from the
filesystem and monitors their respective blocks. Depending on the
file size, sampling may not be necessary in this case. The test ends,
as before, when all the (remaining) portions of the erased file do not
change within a timeout.

Results. We run this test on Windows and Linux, which both
included stable support for TRIM.

On NTFS (Windows 7), Samsung S470 and Crucial M4’s trim-
ming was very aggressive in both quick format and file deletion:
The disk was wiped in 10 seconds by the Samsung S470 controller;
on the Crucial M4, wiping occurred even before notifying the OS.
Similar results were obtained with file deletion: the sectors were
completely wiped in 5 and 10 seconds respectively. The Corsair
F60, instead, behaved differently. After issuing a quick format,
only a small percentage of data was erased; when we repeated the
test at different filling levels, we surprisingly found out that the
fraction of erased blocks is someway proportional to the total used
space, as shown in Fig. 2: There are some thresholds that define
how much space must be trimmed depending on the used space. In
particular, there are 5 ranges in which the amount of zeroed space
increases linearly, whereas it remains constant at all the other filling
values. The Corsair F60 behaved unexpectedly also when dealing
with file deletions: Some files were wiped in at most 3 seconds
after deletion, whereas some other files were not wiped at all and
could be recovered easily, depending on their allocation. This dis-
covery spurred an interesting study of the erasing patterns, which is
explained separately in §4.3.

On ext4 (Ubuntu Linux 12.04) we obtained significantly different
results. In the quick-format branch the outcome are similar across
different disks: The entire content of the SSD was erased in about
15 seconds. This can be explained by the fact that for all the SSDs
Linux used the same AHCI device driver. The single file deletion,
instead, showed a different behavior. The Samsung S470 did not
erase any block and all the files were completely recoverable. The
Crucial M4 apparently did not erase any file, at least until the device
was unmounted; at that point the blocks were erased. Apparently,
the driver notifies a file deletion only when it becomes absolutely
necessary to write data on disk (i.e., when the disk is unmounted
or when the system is in idle state long enough to flush data on
the non-volatile storage). The Corsair F60 showed none of the
behaviors exhibited with NTFS: All the files were erased correctly.
Supposedly, Windows drivers implement a different trimming policy,
or the SandForce controller used by this SSD features NTFS-specific
optimizations.
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Quick format
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a long time
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free space percentage

and zeroing time
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Figure 3: Garbage collection test flow.
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Figure 4: Erasing patterns test flow.

4.2 Garbage Collection

Methodology. The entire test must carried out on an OS and drivers
that do not support TRIM, to avoid interferences between TRIM and
GC, which effects are indistinguishable from a black-box viewpoint.
Fig. 3 summarizes our test to determine whether GC is implemented
and when it starts.

After the usual preliminary steps, the dummy filesystem is cre-
ated and filled with random files. The content is not important, yet
the size is, as small files are not physically written on disk. This
is particularly important when write caching cannot be disabled
reliably. Then, the same sampling procedure described in §4.1 is
started, and a quick format is issued. As there is no reliable informa-
tion regarding the triggering context and timeout, our methodology
explores two different paths. First, the disk is kept idle to allow
the triggering of the GC. Alternatively, the SSD is kept active by
continuously overwriting existing files, adding no new content. Bell
and Boddington found out that GC triggers in almost 3 minutes.
Some non-authoritative sources, however, state that a reasonable
timeout ranges between 3 to 12 hours. Our methodology proposes
to wait up to 16 hours before concluding the experiment.

Results. Even hours after the default timeout, none of the SSDs per-
formed GC. Since Samsung S470 and Corsair F60 were advertised
as having GC capabilities, we devised a simple additional test to
validate this result. This goal was to determine what percentage of
non-random files can be recovered after a quick format. We filled
each disk with the same JPEG image until there was no space left
on the device, and formatted it on a TRIM-incompatible OS and let
it idle. As shown in Table 5, even with simple tools (e.g., Scalpel),
we recovered 100% of the files from both drives, confirming that no
GC occurred. Note that we used a carver merely as a baseline for re-
coverability: Our approach is not meant to evaluate the performance
of carvers in general.



(a) 10%. (b) 50% (c) 75% (d) 100%

Figure 5: Test results for erasing patterns test performed
on Corsair F60 SSD: at different filling levels an increasing
number of evenly-spaced stripes are visible. Green areas are
zeroed by the controller, while blue areas remain unchanged.
The non-erased blocks in the first stripe (a) contain the copy
of the master file table and are therefore not zeroed.

4.3 Erasing patterns
As showed in §4.1, certain SSD controllers (e.g., Corsair F60 with
NTFS) may exhibit unexpected trimming patterns. Therefore, we
devised a workflow to further explore these cases and assess to what
extent a forensic acquisition is affected by TRIM or GC.

Methodology. As shown in Fig. 4, after the preliminary steps the
disk is filled with a dummy filesystem containing files with random
data (the content is irrelevant as we are focusing on how the con-
troller handles deletion). Then, a raw image of the disk is acquired
with dd before issuing a quick format instruction. A second raw
image is then acquired after a while (see the considerations in §4.1
on timeouts). Clearly, “raw” here refers to what the controller ex-
poses to the OS. The obtained images are compared block-wise to
highlight erased sections. This test must be ran at different disk
filling levels, in case the controller behaves differently based on the
amount of free space.

Results. We applied this test on the Corsair F60 SSD, which exhib-
ited odd behavior in the TRIM test. We analyzed it at 10, 50, 75 and
100% of space used. At each level we analyzed the entire disk as
explained above and created the maps shown in Fig. 5. Interestingly,
we notice four stripes in predictable areas (green) where the files are
surely going to be erased, whereas the rest of the disk (blue) is not
modified even after file deletion. The small difference in the first
stripe is due to the fact that the master file table is allocated within
it, and this portion is not erased (Fig. 5(a)).

This result is consistent with the results described in §4.1. In
particular, the first four linearly-increasing portions that appear in
the TRIM test result of Fig. 1 correspond to the very same green
areas highlighted with this erasing-pattern experiment. Therefore,
the reaction of the controller when dealing with file deletion on
NTFS is explainable by the very same green areas: If a file is
allocated within the green stripes, it will surely be erased by TRIM,
whereas files that fall outside the green areas are not trimmed.

We validated this result as follows. We formatted the drive and
filled it with easily-recoverable files (i.e., JPEG image files, as the
JPEG header is easy to match with carvers). Then, we selectively
deleted the files allocated inside or outside the green stripes and,
after acquiring the entire disk image, tried to recover them, and to
map their (known) position against the stripes position. Table 2
shows that only 0.34% of the files within the erased stripes are
recovered, whereas this percentage reaches 99% for files allocated
entirely outside the green areas, thus confirming the results of Fig. 5.

Position Written Recovered %

Within erased stripes 29,545 1 0.34 %
Outside erased stripes 71,610 71,607 99 %

Table 2: File-recoverability test for Corsair F60 SSD: Only
one of the files that were written within the erased areas
could be recovered, whereas 99% of those outside those
bounds could be retrieved with standard tools.
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Figure 6: Compression test flow.

4.4 Compression

Methodology. The key intuition behind our test is that the overhead
due to hardware compression is negligible in terms of time. Thus,
it will take considerably less time to physically write a compressed
file with respect to an uncompressed one. However, this could not
be the case if the controller actually goes back and compresses the
files afterward as a background task.

As shown in Table 3, compression algorithms yield the best re-
sults with low-entropy files, whereas are not very effective on high-
entropy data. We therefore created two different files with very
different levels of entropy: /dev/zero and /dev/urandom. The
methodology is summarized in Fig. 6. After creating the two files
(10Gb each, to bypass write caching), we monitor via iostat the
time spent in transfer and the throughput: A high throughput indi-
cates compression, as less data is physically written on disk.

Results. As Fig. 7(a) shows, both file transfers in the Samsung S470
took almost the same time, showing no sign of compression.

The Crucial M4 test showed in Fig. 7(b) yielded the same results,
even if with different values. This drive exhibits systematic per-
formance glitches at the same points in time for each run. This
happens almost every 25 seconds, regardless of the file’s size and
transfer time, and does not happen with other drives under the same
conditions. We transferred files of different sizes and under differ-
ent conditions (i.e., computer, source, OS) but obtained consistent
results. We can speculate that these glitches are due to some compu-
tations performed by the controller at regular time intervals.

The Corsair F60 is the only one advertised as having compression
capabilities. Indeed, as shown in Fig. 7(c), it behaves in a very dif-
ferent fashion: The transfer time for compressible files is about one
third files than for incompressible files. Therefore, we can infer that
the actual amount of data physically written on disk is considerably
lower, meaning that the controller compresses it transparently.

File gzip 7zip bz2 Entropy

/dev/zero 1,030 7,086 1,420,763 0.0
/dev/urandom 1.0 0.99 0.99 0.99

Table 3: Compression ratio of the files used for compression
test: files with high (Shannon’s) entropy are difficult to com-
press and therefore result in more data to be written on disk.
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(c) Corsair
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Figure 7: Mean and variance of the sampled throughput among 15 repeated transfers of 10GB low and high-entropy files (top and
bottom row, respectively). For (a) and (b) low and high-entropy file transfers have almost the same shape and duration, showing
that the controller does not perform any kind of optimization (i.e., compression) on data before writing it. On the other hand,
in (c) throughput with low-entropy files is considerably higher and the entire file transfer takes less than 1/3 than the high-entropy
files transfer. This result confirms that less data had to be physically written on disk, which means that compression was indeed
performed by Corsair drives.

All graphs show an initial transitory phase with a very high transfer
rate. However, this is the effect of write caching on the very first
megabytes of the file being sent to the disk. Disabling write caching
via software drivers, as explained in §3.2, does not always succeed.
The only reliable way to bypass caching was to use large files.
Nevertheless, the effect of caching does not affect our results.

4.5 Wear Leveling
Wear leveling is quite common, although none of the examined
vendors clearly states what happens to the old versions of the same
file (i.e., how write amplification [11] is treated). From a black-box
viewpoint there are two possible situations. One alternative is that
old blocks are not erased and remain where they were: in this case a
carver may be able to extract many different versions of the same
file, representing a clear snapshot of the data at a given point in
time. Alternatively, the old data may be erased, moved out of the
addressable space or simply masked by the controller, which in this
case would tell the OS that no data is present (virtually zeroed block)
where obsolete data actually is. Unfortunately, if we get no data
from the disk, there is no way (with a black-box approach such as
ours) to determine which of these is the case.

Another detail to take into account when dealing with wear lev-
eling is that vendors do not explicitly reveal the conditions under
which the functionality is triggered. From the available information
and previous work ([1, 2, 9]) it appears that two conditions must
hold: there should be enough free blocks with a lower write count
than the one that is being overwritten, and there must be a certain
difference between the writes of the used block and the ones of the
new destination block. Since the precise values depend on the ven-
dors and are not publicly available, we erred on the side of caution
and left, in our experiments, at least 25% of the disk capacity free
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Figure 8: Wear leveling test flow.

and overwrote the same blocks more than 10,000 times to cover
whatever write cycles gap may be present.

Methodology. Our test is not aimed at determining if an SSD im-
plements a wear leveling feature, since this is pretty much standard
nowadays. From the forensic viewpoint, what matters is if wear
leveling can be leveraged via black-box analysis to recover data. If
a drive has no wear leveling capabilities, or if write amplification is
completely masked by the FTL, the end result is that nothing is lost
and nothing is gained because of wear leveling.

Our test flow is shown in Fig. 8. An important preliminary step
is to disable the OS and disk write caching, as it poses problems:
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Figure 9: Files recoverability test flow.

The entire test flow requires the continuous re-writing of the same
files, and it is extremely important that these write operations are
physically sent to the disk.

Then disk is filled up to 75% with a dummy filesystem. Since
wear leveling is internal, the file or filesystem type has no impact,
so we choose files with known patterns (to ease carving operations
afterward), and an ext4 filesystem under Ubuntu Linux.

At this point files are overwritten with new data (of exactly the
same size) a total of 10,000 times while keeping zeroed space on
disk monitored. If, at any time, zeroed space diminishes, it means
that the controller wrote new data somewhere else, using less used
blocks but leaving the old ones intact. Notice that remnant data
could be garbage or unusable. For this reason, and only if the zeroed-
space check gives positive results, it is advisable to perform a full
disk acquisition with subsequent carving to determine if different
versions of the same files are effectively recoverable. As said, in the
very likely case that both checks yield negative results, we cannot
know what the controller is really doing; what we know is just that a
standard forensic procedure will not be impacted by wear leveling.

Results. We ran our test on all the disks in our possession. As
expected, it is very unlikely to find a drive exposing multiple copies
of the same files for a black-box analysis. Our results confirmed our
expectation: both checks yield negative results. We know, however,
that all of the drives actually implement wear leveling capabilities,
as stated by their vendors. We can therefore only assume that the
effect of write amplification are completely masked by the controller,
which does not expose any internals.

SSD FS Written Recovered %

Samsung
NTFS 112,790 0 0 %
ext4 110,322 0 0 %

Corsair
NTFS 101,155 71,607 70.79 %
ext4 99,475 0 0 %

Crucial
NTFS 112,192 0 0 %
ext4 110,124 0 0 %

Table 4: Files recoverability test results: the drives imple-
menting an aggressive version of TRIM (Samsung S470 on
NTFS and Crucial M4), did not allow the recovery of any
file after a format procedure. The Corsair F60 on NTFS, as
expected, has a non-null recovery rate due to the erasing pat-
tern its TRIM implementation exposes. On ext4, however,
this same disk allowed the recovery of 0 out of 99,475 files.
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Figure 10: Use case workflow for assessing the forensic
friendliness of a SSD.

4.6 Files Recoverability
The tests described so far are all aimed at determining if some func-
tionalities implemented by a given SSD are forensically disruptive,
to ultimately allow a forensic analyst to assess whether some data
is still retrievable. What usually interests the forensic analyst most,
however, is being able to access and retrieve files on an SSD much
in the same way as on a traditional HDD.

The tests that we propose in this section determines how much
an SSD behaves similarly to a HDD from a data-recoverability
viewpoint. In HDDs, recoverability is affected by the filesystem
policies on overwriting previous data. In SSDs, in addition to this,
trimming, garbage collection, and the other unexpected controller
behavior described so far negatively impact the recoverability.

Methodology. The test flow is shown in Fig. 9. The drive is first
initialized with a dummy filesystem and filled with “carver-friendly”
files: In our case, we wrote JPEG files of around 500k each, and
then quick formatted the drive. After the usual 24 hours timeout, we
used Scalpel to attempt a file recovery.

Results. We ran our experiment on all our disks with a NTFS
filesystem with enough copies of the same JPEG image to fill the
entire drive. As summarized in Table 4, both the Crucial M4 and
the Samsung S470 have a zero recovery rate, which means that the
TRIM functionality tested in §4.1 actually works and erases all of
the deleted files.

The Corsair F60 behaves differently, as shown in §4.3: 71,607 files
out of the 101,155 were recovered, totaling a 70.79% recovery rate
on NTFS. Curiously, all the files that were only partially recovered—
or not recovered at all—were all contiguous in small chunks. On
Ext4, instead, TRIM did not allow the recovery of any file.

SSD Written Recovered %

Samsung 112,790 112,790 100 %
Corsair 101,155 101,155 100 %

Table 5: Files recoverability without TRIM on Samsung
S470 and Corsair F60 drives.



5. USE CASE: RANKING DRIVES
Although proposing a comprehensive and accurate classification of
SSDs goes beyond the scope of this paper, we show how our method-
ology can be applied to indicate “forensic friendliness” of an SSD.
We consider the outtput of the TRIM, GC and File Recoverability
tests. We follow the workflow exemplified in Fig. 10.

• A. Platter-disk Equivalent. The SSD behaves as a HDD.
Standard forensics tools are expected to work as usual. SSDs
in this class present no disruptive behaviors (e.g., TRIM, GC).

• B. High Recoverability. TRIM and other wiping function-
alities are implemented but they are not very aggressive: an
HDD-equivalent recovery is expected.

• C. Low Recoverability. SSD’s functionalities are quite ag-
gressive and succeed in deleting or masking most of the
deleted data that could have been recovered from a HDD.
It is, however, still possible to achieve some results with stan-
dard tools.

• D. Complete Wiping. No deleted data can be recovered
using standard black-box tools. White-box analysis may be
a solution but it is not guaranteed to yield acceptable results.
This is the worst possible case when performing a forensic
analysis on a SSD.

Applying this method to our drives we obtained the following clas-
sification. Our Crucial M4 implements a very effective TRIM func-
tionality with any filesystem which directly makes the recoverability
test yield a 0% rate so, even though the garbage collector does not
trigger, the associated class is D. Complete wiping: this drive is
very likely to make recovery of deleted files impossible. The same
happens on the Samsung S470 with both NTFS and ext4 filesystems
and on the Corsair F60 with ext4. Corsair F60 SSD with NTFS,
instead, present only a partially working TRIM implementation,
which allows the recovery of almost 71% of deleted files; this com-
bination between drive and filesystem is therefore associated to a B.

High recoverability class.

6. LIMITATIONS
Although our blackbox workflow and experimental results are far
more complete than what has been proposed in previous work, there
are some limitations that is important to be aware of.

First, each SSD comes with its own firmware version, which
basically embeds (part of) the FTL logic. As such, it determines the
SSD characteristics and, therefore, its forensics “friendliness” with
respect to the features tested by our workflow. We do not consider
changing the firmware during our tests for several reasons. First,
not all SSD vendors release firmware upgrades. Secondly, and most
importantly, firmware upgrades are often one-way procedures; this
affects the repeatability of the experiments in a scalable way (i.e.,
the only way to downgrade a firmware to a previous version would
consist in buying another SSD, provided that the old version of the
firmware is still on the market).

Second, the triggering of the TRIM depends on the specific com-
bination of OS, filesystem type, device driver, and AHCI commands
implemented. The current version of our workflow explores the OS
and filesystem type. For instance we have shown in our experiments
how the Corsair behaves differently under Windows (NTFS) and
Linux (ext4). In a similar vein, other variables such as the device
driver and AHCI commands can be considered. The reason why we
have not included these variables into our methodology is because
they vary significantly from product to product, whereas our main
goal was to provide a generalized testing workflow.

Last, an intrinsic limitation of our approach is that the forensics
examiner needs to know the OS version before performing an in-
vestigation. The availability of is this contextual information varies
from case to case and it is hard to find previous data about this
(due to the nature of the forensic investigations). Therefore we
cannot make any strong statement on how likely it is to have such
an information available.

7. RELATED WORK
In this section, we overview other relevant researches in the area of
SSD forensics, in addition to the works presented in §2.

7.1 White-box Forensics Analysis
Similarly to Breeuwsma et al. [7], Skorobogatov [15] also addressed
data acquisition from flash memory chips, but at a lower level. His
technique, however, is not suitable for forensic purposes because of
the non-optimal recovery rate.

The state of the art in white-box analysis is the work by Bunker
et al. [8] and [17], who built a complete custom setup to interact
with flash memory chips using an FPGA and several custom wing
boards to enhance its compatibility. Although their goal is to enable
easy development and prototyping of FTL algorithms, compression,
cryptography and sanitization protocols, the same setup can be
theoretically used to re-implement part of the FTL functionalities
to ease white-box acquisition of SSDs. However, the internals
of a controller are usually undocumented; therefore, it may be
very difficult to reconstruct files directly from the acquired data,
and traditional file carvers are likely to fail. Although Billard and
Hauri [6] showed how is possible to analyze a raw flash dump
and reconstruct files without prior knowledge of the disposition of
blocks performed by the FTL, their technique works only with small
capacity chips (in the order of hundreds of megabytes).

Luck and Stokes [14] concentrated on FAT structure and demon-
strated how to rebuild audio and video files from dumped NAND
memories; their work suffers from the very same shortcoming: It
is tailored for small amounts of data (e.g., cellphone memories).
Also, data reconstruction is made even more difficult by SSD con-
trollers because they often make use of data parallelism over the
flash memory chips on the board.

Differently from white-box techniques, our proposed methodology
is extremely convenient, practical and, most importantly, guarantees
that the SSD is never damaged.

7.2 Black-box Forensics Analysis
Similarly to Bell and Boddington [5], King and Vidas [13] per-
formed experiments on 16 different SSDs: They simulated real
usage scenarios and tested the block-level recoverability. Each sce-
nario was replicated under three OSs (Windows XP, Windows 7 and
Ubuntu Linux 9.04). Their conclusion is that different combinations
of usage, OS and file size influence the forensic recoverability of the
SSD. Although this is by far the most exhaustive test on SSDs, the
authors focus solely on data deletion as effect of TRIM and garbage
collection, without generalizing their findings. What is missing is
an in-depth study of the correlation between the environment condi-
tions (e.g., OS, filesystem, file size), the internal state of a disk (e.g.,
amount of free space, wear) and the corresponding behavior of the
SSD. Our work goes beyond [13] because we designed and evalu-
ated a comprehensive, test-driven methodology to fully understand
the reasons behind each specific behavior.

Antonellis [4] analyzed the behavior of one of the first SSDs
with respect to file deletion. He wrote some typical files such as
documents and images on an NTFS-formatted SSD, and then erased
them to see how much data was recoverable afterward. Surprisingly,



none of the files was recoverable via carving. These experiments,
however, were narrowed to a single scenario and did not take into
account all the possible factors that our methodology accounts for.
For instance, as detailed in §3.2 and §4, thanks to our methodology
we can explain why caching is the most reasonable explanation
of Antonellis [4]’s odd results. Last, [4] focused on TRIM, whereas
our methodology considers the features implemented in most of the
SSDs currently on the market.

8. CONCLUSIONS
In order to overcome the intrinsic limitations of SSDs, onboard
controllers adopt a number of advanced strategies, preemptively
erasing blocks of deleted files (possibly even if not solicited by
the OS) and even performing compression or encryption on the
data. Each vendor implements a different controller, and therefore
each SSD acts differently. Consequently, SSDs cannot be treated
as standard HDDs when performing a forensic analysis: Standard
tools and well-known techniques are based on the assumption that
the hard drive does not modify or move data in any way, that every
block can be read if it was not previously wiped, and that reading a
block will yield the data physically contained by that block.

We proposed a complete testing methodology and applied it to
three drives of leading vendors. For each test we interpreted the
results to provide the forensic analyst a practical way to fine tune
their approaches to the acquisition of SSD drives, which can be very
similar to acquisition of HDDs, or completely different. Indeed,
we showed that the combination of controller, OS, filesystem and
even disk usage can deeply influence the amount of information
that can be retrieved from a disk using forensic procedures. We
advanced the state of the art by showing further, previously-unknown
findings, such as the one described in §4.1: even though all the
drives expose the TRIM functionality to the OS, our methodology
allowed us to investigate the peculiarities of each implementation
(e.g., a drive selectively wiping blocks only in specific portions of
it). We also proposed a test aimed at verifying the implementation
of a compression feature on the SSD. We showed that our test can
indeed devise whether the drive uses compression or not; this is
useful to determine the feasibility of a deeper white-box approach.
We also investigated the controversial topic of garbage collection to
see under what conditions it triggers.

Each of the proposed experiments is tailored to inspect how each
functionality works and how “aggressive” it is. They allow the
analyst to know, for example, if the SSD has a disruptive TRIM im-
plementation or if GC does not work under particular conditions. All
these information can be of great help when performing a forensic
acquisition on such drives, since they can change the expectations or
even suggest some particular techniques to adopt in order not to al-
low the controller to delete possible useful data. Also, the result can
help the forensic expert to estimate the success of costly procedures
such as a memory white-box analysis.

Besides addressing the aforementioned limitations, future work
can focus on running our methodology on a wide range of OSs, SSD
brands and models, in order to create a reference catalog useful for
forensic investigations.
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