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Abstract In computer forensics, carving is an important trick in the digital in-
vestigator’s sleeve. Since files are typically stored as sequences of data
blocks, the retrieval process basically consists of locating and appro-
priately collating together the original blocks of each file. Traditional
file carving solutions, generally based on signatures of file headers and
footers, could be improved by performing a classification of each data
block in the storage media as belonging to a given file type. Unfortu-
nately file block classification techniques tend to be far from perfect in
terms of accuracy. For an improvement of the classification results the
presence of compound files, i.e. files containing sub-portions that are
encoded similarly to a different data type, must be taken into account
during the classifier preparation. In this work, we demonstrate that
this impacts heavily on the performance of file block classifiers. In ad-
dition, to generally improve the accuracy of classification, we propose a
context-based classification architecture to improve block-by-block clas-
sification schemes, by exploiting the contiguity of file blocks belonging
to the same file on storage media. The approach is completely general
and can be easily applied to any content-based file block classification
algorithm.
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1. Introduction

Forensic applications of computer science are growing in importance,
in parallel with the growth of the prevalence of cybercrime and of digital
evidence in traditional crime. Within the toolkit of the digital forensic
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analyst, a fundamental role is played by tools for the retrieval of deleted
files from storage media. Since files are typically stored as sequences
of data blocks, the retrieval process basically consists of locating and
appropriately collating together the original blocks of each file.

While, due to persistence of file system metadata, this is often per-
formed by using file system structures that still point at the content of
deleted data, in case of retrieval of older data, or in case of extensive file
system damage, this can be performed with a set of techniques known as
“carving”, i.e. approaches to reconstruct files based on their contents.
This is usually performed by relying on signatures of known headers and
footers of files [1], to detect the beginning and the end of each file on the
storage media. Of course, this creates obvious challenges when reassem-
bling fragmented files, where blocks belonging to different files may be
interleaved; this has been shown [2] to be important for digital forensic.

In order to perform carving without relying only on headers and conti-
guity, or more in general to assist carving and improve resilience against
fragmentation and intermission of files on disks, it may be useful to be
able to classify blocks according to the file types they originally belong
to, relying exclusively on their content. Other possible applications of
file block classification are contrasting anti-forensic techniques based on
manipulation or disruption of file system metadata and file headers, as
well as detection of data hidden in locations not pointed to by the file
system or residual data, for instance in memory dumps or in swap and
temporary files. A recent review of file carving techniques can be found
in [3], where also a recent file carver which makes use of block classi-
fication techniques is presented. This remarks the importance of block
classification in novel file carving solutions.

In [4], for instance, we showed how to perform file block classification
by using Support Vector Machines (SVMs). In particular, we computed
a classification model for each considered file type, and then exploited
them for the identification of the corresponding file blocks. Computed
classifiers should present a high detection rate, since missing some blocks
may compromise the reconstruction of files, while a low false positive
rate may help in keeping the recovery computational complexity low.
However, the classifiers presented in the aforementioned work, in spite of
offering a remarkable accuracy, exhibit two challenging problems, which
are similarly present in many other approaches in literature.

First, classification performance, even if pretty good, is far from per-
fect: false positives and false negatives are present, and they may hinder
or block altogether the reconstruction process, since a large amount of
blocks may need to be analyzed. Thus, a further improvement in block-
by-block classification processes is needed. Additionally, some file types
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(e.g, doc, pdf) are inherently compound, meaning that they may contain
data encoded according to other file type formats (e.g., an image em-
bedded in a pdf file), and this should be taken into consideration during
the classifier preparation.

In this work, using our own previous work as a running example, we
first demonstrate the impact of compound files on a statistical block clas-
sification approach, showing that this aspect has to be taken in careful
consideration both when designing and when testing such approaches.
Then, we propose a new and general architecture to improve block-by-
block classification schemes by exploiting the contiguity of file blocks
belonging to the same file on storage media. We will call this approach
a “context-based classification” in the following. It is important to note
that, while the present paper builds on our own proposed classifier as a
working example, the approach we propose is completely general and can
be easily applied to any content-based file block classification algorithm.

The rest of the paper is structured as follows: Section 1.2 summarizes
related work in the area, helping to place our work in context. In Sec-
tion 1.3 we present our approach for the computation of SVM-based file
block classifiers and its impact against the problem of compound files.
In Section 1.4 we propose our context-based approach and validate its
effectiveness by a comprehensive experimental evaluation. Finally, Sec-
tion 1.5 allows us to draw some conclusions and outline future research
perspectives.

2. Related Work

Type classification of a given file relying on its content has been de-
veloped in [5–7]. In this paper, we do not address the classification of a
file as a whole, but rather we focus on the classification of single blocks
according to the file type of the original file they belong to. In the last
few years, different solutions have been experimented for the classifica-
tion of file blocks into their original file type, and in particular two main
approaches have been explored to solve the problem: computing a dis-
tance between a given input block and some reference models/samples,
or adopting machine learning techniques to create appropriate classifiers.

Focusing on the first class of solutions, the authors of [8, 9] propose
to perform the classification by relying on the frequencies of byte values
and on the differences between values of consecutive bytes in a block.
A set of files of each given file type is used to compute the frequency
model. If the distance between the frequencies of an unclassified block
and one of the models is below a predefined threshold, the block is
associated to that file type. The work presented in [10, 11] measures the
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distance between a pair of blocks by comparing the compression of the
two separate blocks with the compression of their concatenation: the
better the compression of the concatenation, compared with the distinct
ones, the more similar the blocks. Also in this case the block is classified
by computing its distance from sample blocks representing different file
types and associating it to the closest one.

With regard to the machine learning-based approaches, the authors
of [12, 13] adopt a Fisher classifier, using several statistical values as a
set of input features for representing the file blocks. Blocks of known file
type are used as examples to compute the Fisher classifiers, which are
then exploited to classify unknown blocks. The author of [12] propose
two kinds of classifiers, one to directly assign a file type to a given input
block, and the other to discern specific file type blocks in a block set. Dif-
ferently, in [13] a pairwise classification problem is addressed, computing
classifiers able to discern only between two specific file types. In [4] we
proposed a block classification based on Support Vector Machines. For
each considered file type, we generated a SVM classifier to discern its
blocks against those of other file types. For each SVM, we showed how
to properly select the best classifier parameters, and explored the feature
selection problem for block representation.

3. File Block Classifiers

The purpose of file block classification is to assign a file type to a file
block relying only on its content. This is a typical classification task,
since a category has to be assigned to a given input item, and different
solutions are available in the literature for it. In particular, we approach
the classification problem using supervised learning, i.e., we exploit a
labeled training set of data samples to construct models able to predict
the category of unlabeled data samples.

In this work we address the problem of detecting all blocks belonging
to a specified target file type in a block set (e.g., in a disk image).
Formulated in this way, this is a binary classification problem, where we
build a classifier per each target file type, training each of them with
blocks from files of the target type and blocks from other kinds of files:
the computed models have to be able to discern blocks of the target type
against the others.

We adopt Support Vector Machines (SVMs) [14] as binary classifiers.
In SVMs, on the base of a training set (xi, yi), i = 1, . . . , l, with each
example xi represented by n attributes (features) in the space Rn and
labeled to a category yi ∈ {1,−1}, a hyperplane of the form w ·x+b = 0
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is computed by solving the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0

Such a hyperplane linearly separates the space Rn in two regions repre-
senting the two categories {1,−1}. A new data example is assigned
to either category according to which side of the hyperplane it lies.
Since the training examples xi may not be linearly separable in Rn,
to improve the classification they are mapped into a higher dimensional
space by the function φ, and the linear separation is achieved in the
higher space, resulting in a non-linear separation in the original space
Rn. For such a mapping the user needs to select a suitable kernel func-
tion K(xi,xj) ≡ φ(xi)

Tφ(xj). We adopted the RBF kernel function

K(x, y) = eγ‖x−y‖
2
, γ > 0, a very common choice since it is suitable in

most cases [15]. Therefore, the parameters of our classifiers are: γ, a
parameter of the kernel function; and C, a parameter which sets the
penalty for misclassification.

In any classification process, it is particularly important to represent
the samples using an appropriate set of features, suitable to highlight
the differences among items of different categories. Feature selection is
therefore a particularly delicate step. In this paper, we use the same set
of features, and their combinations, presented in [4], in order to be able
to compare the results. In particular, the features in use are:

Byte Frequency Distribution (BFD), the frequencies fv of each
possible byte value v = [0, 255] in the block;

Rate of Change (RoC), the frequencies of the differences between
two consecutive bytes bi and bi+1 in the block (i.e. the distribution
of bi − bi+1);

Word Frequency Distribution (WFD), similar to BFD but consid-
ering a block as a sequence of 16 bit words and computing their
frequency values;

Mean Byte Value of the block, interpreted as a byte sequence

Entropy of the block, interpreted as a byte sequence

Lempel-Ziv complexity reading the block as a binary stream.

Different combinations of such features are tested in our classification
process, and the ones providing the best classification results are used.
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3.1 The Compound File Problem

In a storage media a wide range of file types may be present, each
characterized by the type of data contained and by the way in which such
data are organized. In particular, many file types present a peculiar and
quite uniform way to encode the relative data along the whole file length:
good examples are image and video files. These can be considered as
a sort of primitive files. This means that the blocks composing such
file types tend to present common features, which can be exploited to
identify blocks belonging to them.

On the other hand, compound files also exist. They tend to present
a basic and distinctive file structure, in which other data encoded in a
different way (e.g. in a primitive type) may be embedded. This is for
instance the case when an image is embedded in a document file by some
word processor, or when a video is included in a presentation. In such
cases, the file blocks belonging to the whole file do not present uniform
properties anymore, because the blocks related to the embedded data
look very different from the other blocks composing the file.

Compound files create issues for file block classification. In fact, blocks
related to embedded data may completely look like blocks of other file
types, and not resemble at all the blocks of the compound file they are
contained in. In such a case, as suggested also in [16], it is advisable to
classify such blocks as primitive types according to their encoding. Then,
during a compound file recovery, relying on its internal structures, when
the beginning of an embedded section is detected, blocks classified as
the correct embedded type will be expected to appear. Thus, it could
be useful to distinguish blocks that constitute the basic structure of a
compound file against the data blocks of other formats.

Compound file issues have to be taken in particular consideration
during computation of models for block classification. In particular,
with regard to the supervised learning approach that we adopt, the
training sets should be properly prepared. To understand why, it is
sufficient to consider the training set for a given primitive file type. Such
a training set comprises examples and counterexamples. What happens
if we mistakenly include, among the counterexamples, blocks from a
compound file embedding data which is actually encoded according to
the target type format? Obviously, the training set will be misleading for
the classifier. In fact, it will comprise blocks of the target file type data
labeled as both target and non-target, inducing a worse classification
performance. For this reason, when compound files are included in the
preparation of a training set, we suggest to consider compound files but
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ensuring to exclude any embedded data, as we do in the experiment
presented below.

3.2 Experimental Setup

We proceed to compute the classifiers according to the methodology
presented in [4], except for some key differences in the data set prepara-
tion, because as noted above we specifically take into consideration the
compound file problems. We collected bmp, doc, exe, gif, jpg, mp3, odt
and pdf files. For bmp, gif, jpg and mp3, we used the very same dataset
of randomly downloaded files we used in [4]. Differently, for doc, exe,
odt and pdf, we consider the embedded data issues. doc, odt and pdf

are common document files with the possibility to embed multimedia
data, but images and mouse cursors may also be found embedded in
executable files. For such file types, we have modified the dataset used
in [4] by discarding all those files containing embedded data, and by
adding new files (without embedded data) randomly downloaded from
the Internet with the same approach originally used to create the dataset.
The files have been inspected to detect the possible presence of embed-
ded data: document files have been manually inspected, and in the case
of pdf files the pdfimages Linux tool has been also used. For executa-
bles, the ResourcesExtract tool [17] has been used. We simply excluded
ppt files from our test, as it is basically impossible to find presentations
without embedded data (e.g., pictures are almost always present).

The collected files are decomposed in 512 byte blocks, getting roughly
28000 blocks per each file type. Note that we select a 512 bytes length
since it is the smallest block size commonly used to manage storage me-
dia, and we showed in [4] that smaller block size makes the classification
task harder, so our results can be considered very conservative.

Using a framework built in Matlab, for each file type we compute a
SVM classifier able to detect its blocks. For each classifier, it is necessary
to set the relative values for parameters γ and C as explained in [4],
as well as to select the features for the block representation. For the
identification of the best feature/parameter combination for each file
type we proceed as follows. For each file type we start from the collection
of blocks we have obtained, and prepare 7 datasets split in a training
and a test set, respectively containing 2000 and 8000 blocks. In each
training set, half of the blocks are of the target file type, while the
remaining blocks uniformly represent the other file types. In test sets,
all file types are uniformly represented. For each file type we train and
test a series of classifiers varying γ = {2−15, 2−13, 2−11, . . . , 25, 27}, C =
{2−5, 2−3, 2−1, . . . , 213, 215} and trying combinations of all of the features
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Feature Description

Entropy File block entropy
Complexity File block Lempel-Ziv complexity
BFD Frequency of the byte values in the file block
Entropy-Complexity-BFD Concatenation of Entropy, Complexity and BFD
RoC Frequency of the differences between two consecutive

byte values in the file block

Table 1. Feature set used to represent file blocks in the classification process.

mentioned at the beginning of this Section, as well some reduced versions
(e.g., BFD related only to ASCII byte values) and concatenations (e.g.,
Entropy-Complexity-BFD). We refer the reader to [4] for the details. We
test all of the possible feature/parameter combinations on each of the
7 datasets, and select the best combination using as a target function
to maximize 0.5 · TP + 0.5 · (1 − FP ), with TP and FP respectively
“true positive“ and “false positive” rates. Once the best combinations
for each file type are identified, they are used to compute a final set of
classifiers relying on the full block collection, with training sets of 28000
blocks and test sets of 112000 blocks.

3.3 Experimental Results

With regard to the first step, for the classifier feature/parameter ex-
ploration, the best set of features resulting for our block representation
is summarized in Table 1. In particular their specific combinations,
along with the associated SVM parameters, per each file type are pre-
sented in Table 2, where also the final classification results are shown.
The concatenation Entropy-Complexity-BFD appears to be an effective
representation for almost all the file types, except for bmp, for which
RoC is marginally better. So, confirming the results of [4], file block
representation can actually be the same for most different file types.

Classification results are quite good, and as expected they show an
improvement compared to [4]. In fact, the average TP rate increased
by 4%, but in particular the average FP rate is halved (from 12% to
6%). This is evidently the result of proper dataset preparation, and in
particular of avoiding blocks from compound files with embedded data.
This is particularly evident by observing the doc classifier FP rate,
which decreases from 19.8% in the reference work to the current 2.4%,
and in particular its specific FP rates against gif and jpg (two common
types of embedded data in doc files) have been respectively pulled down
by 6% and 28%. Symmetrically and for the same reason, the new dataset
preparation improved also gif and jpg classifiers, with their specific
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Feature (γ,C) TP FP

bmp RoC 21, 29 99.6 1.7
doc Entropy-Complexity-BFD 23, 23 91.0 2.4
exe Entropy-Complexity-BFD 21, 25 87.1 0.1
gif Entropy-Complexity-BFD 25, 21 95.5 3.9
jpg Entropy-Complexity-BFD 25, 21 96.4 3.9
mp3 Entropy-Complexity-BFD 25, 21 96.9 2.8
odt Entropy-Complexity-BFD 25, 21 96.8 16.7
pdf Entropy-Complexity-BFD 23, 21 94.4 19.8

Average - - 94.7 6.4

FP per file type
bmp doc exe gif jpg mp3 odt pdf

bmp - 8.0 3.0 0.1 0.2 0.2 0.1 0.3
doc 10.4 - 5.2 0.2 0.2 0.7 0.1 0.3
exe 1.3 3.6 - 0.3 0.2 0.1 0.0 0.3
gif 0.7 5.3 1.7 - 3.2 2.7 6.8 6.9
jpg 0.4 0.5 1.2 2.1 - 6.0 10.7 6.2
mp3 0.9 0.6 2.9 2.6 5.3 - 4.8 2.5
odt 0.4 6.6 8.5 12.3 20.4 10.6 - 57.7
pdf 0.5 6.2 7.7 16.1 16.9 7.2 84.0 -

Table 2. File block classification by SVMs (no embedded data in compound files).

FP rates against doc files decreased respectively by 3% and 15%. As
a further example, during file collection we found and discarded several
exe files embedding bmp images, and this contributed in reducing by 4%
the number of exe blocks erroneously identified as bmp and by 10% the
misclassification of bmp blocks as exe. So a first key finding is that the
avoiding compound files embedding data in the preparation of file block
training datasets appears to dramatically improve block classification
precision when supervised learning approaches are adopted.

The classifiers, as they are, can support data recovery of primitive
file types (e.g, bmp, jpg), since they can discern a large portion of their
blocks; then the identified blocks could be concatenated in several ways
to attempt file reconstruction. Differently, the recovery of compound files
(e.g., doc, pdf) will require to deal with embedded data at some points,
so the classifiers may provide only a limited support for their recovery.
For instance, they could be useful to identify blocks not embedding any
data, and could be used concurrently with primitive file type classifiers
which would instead detect the embedded sections. They could also
support the recovery of those compound files not containing any external
data (e.g., a fully text-based doc). Anyway, for such file types, in the end
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Figure 1. Context-based file block classification.

it will still be advisable to consider internal file structures as suggested
in [16].

4. Context-Based Block Classification

Most of the files of interest in forensic recovery (e.g., documents, im-
ages, videos) are typically not small in size, and thus span multiple blocks
(some statistics are presented in [2]). Usually, modern file systems tend
to reduce fragmentation of files, meaning that blocks belonging to a same
file are stored in contiguous locations as much as possible, while in case
of fragmentation the most common scenario is bi-fragmentation, where
a file is stored as two series of contiguous blocks far each other on the
media [2]. It follows that blocks are typically surrounded by other blocks
of the same file (and the same file type), except for those at the begin-
ning and at the end of a file or of its fragments. This is, fundamentally,
the reason why basic file carving works most of time.

Block classifiers are typically not perfect (this is evident in all the
literature reviewed in Section 1.2), and even in case of low error rates
(as it happens for our classifiers working on primitive files), when han-
dling terabytes of data, misclassification may have a considerable impact
on final results. So an improvement in block classification precision is
needed. Moreover, when there is not enough information for a correct
decision, it is preferable to have a not-classified information instead of a
wrong classification [16], to avoid inducing errors in those processes that
exploit the classification information.

Our idea is to exploit file block contiguity: for the classification of
a block Bi we rely on the classifications of its neighbouring blocks, be-
cause they tend to belong to the same file. We call such blocks the
Context of Bi (Fig. 1). We set a ContextSize representing the num-
ber of neighbour blocks to consider on each side of Bi, and then we
combine the classifications of the those blocks, along with the classifi-
cation Ci of the block itself, to compute a Context-Based classification
CCi = f(Ci−ContextSize, ..., Ci−1, [Ci], Ci+1, ..., Ci+ContextSize). The idea
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Algorithm 1 Context-Based Classification CCi of a block Bi
LeftClassifications={Ci−1, Ci−2, ..., Ci−ContextSize}
RightClassifications={Ci+1, Ci+2, ..., Ci+ContextSize}
LeftEvaluation=ContextEvaluation(LeftClassifications)
RightEvaluation=ContextEvaluation(RightClassifications)
if LeftEvaluation>0 && RightEvaluation>0 then

if Ignore Ci then
CCi = 1

else if Consider Ci then
if Ci>0 then

CCi = 1
else

CCi = NC [Not-Classified]
end if

end if
else if LeftEvaluation<0 && RightEvaluation<0 then

if Ignore Ci then
CCi = −1

else if Consider Ci then
if Ci<0 then

CCi = −1
else

CCi = NC [Not-Classified]
end if

end if
else if LeftEvaluation==0 && RightEvaluation!=0 then

if Ci>0 && RightEvaluation>0 then
CCi = 1

else if Ci<0 && RightEvaluation<0 then
CCi = −1

else
CCi = NC [Not-Classified]

end if
else if LeftEvaluation!=0 && RightEvaluation==0 then

if LeftEvaluation>0 && Ci>0 then
CCi = 1

else if LeftEvaluation<0 && Ci<0 then
CCi = −1

else
CCi = NC [Not-Classified]

end if
else

CCi = NC [Not-Classified]
end if

is that if a good, but not perfect, classifier is available, relying on a series
of classifications (context) a more robust evaluation may be achieved.

4.1 Block Context Evaluation

Our classification model is binary: for a given target file type, for each
generic block Bi we obtain a classification Ci ∈ {−1, 1}, where 1 means
the block is of the target type, and −1 means vice-versa.

Our Context-Based classification CCi for a block Bi is achieved ac-
cording to Algorithm 1. The classifications of the context blocks preced-
ing Bi (i.e. the “left” context) are processed through a ContextEvalu-
ation function, whose returned value over the interval [−1, 1] expresses
how many of the considered blocks are target or non-target, respec-
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tively with a positive or negative value. The context blocks following Bi
(“right” context) are evaluated in the same way.

We propose two variants of the algorithm. In the first variant, the
classification Ci of Bi itself is ignored, relying only on the context. In
the second variant, we take into account Ci. In the first variant, the
final classification CCi is “target” if both the evaluations of the context
express a positive value (this is interpreted as Bi being in the middle of
a target file). Vice-versa, if the two evaluations present a negative value,
the block is considered non-target. In the second variant, where Ci is
taken into account, if its value agrees with the two context evaluations,
the final classification is the same as in the first variant; otherwise, the
output is “not classified”, given the mismatch in the available informa-
tion.

Some particular cases are taken into account. If one of the two context
evaluations returns 0 (e.g., maybe because the context is placed over the
blocks of two different contiguous files), the block classification Ci is
compared with the non-null evaluation and if they agree the block is
classified accordingly, otherwise not-classified is returned. Finally, if the
two evaluations disagree or are both equal to 0 the block is labeled as
not-classified, since a non consistent information is available on it.

We point out that, for the first block of a generic disk image, since the
left context is null, LeftEvaluation = 0 by default; then for the follow-
ing blocks the left context grows in size, up to the defined ContextSize,
and it is considered for the final classification. Obviously there is a sym-
metric behavior at the end of the disk image, with RightEvaluation = 0
for the last block.

The ContextEvaluation functions that we test in our experiments are
presented in Table 3. Using the Uniform function, we compute the av-
erage of the classifications of all of the blocks in a given context, without
weights. The returned value directly expresses whether most of the con-
text blocks are target or not. For the Exponential function, and even
more so for the Linear one, the weights for the classifications of the
blocks closer to Bi are higher: the idea is that such blocks are more
likely to be part of the same file as Bi, and so their support for the final
decision is increased.

We remark that, although in the next sections we experiment this
solution relying on the SVM classifier we developed and trained in Sec-
tion 1.3.2, the proposed approach is general, and can be applied to any
content-based file block classifier, regardless of the specific underlying
algorithm.
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ContextEvaluation(C1, C2, ..., Cn)

Uniform 1
n

∑n
i=1 Ci

Exponential
∑n

i=1
Cie

−(i− 1
2
)/n

weight
, with weight =

∑n
i=1 e

−(i− 1
2
)/n

Linear
∑n

i=1

Ci(1− 1
n
(i− 1

2
))

weight
, with weight =

∑n
i=1 1 − 1

n
(i− 1

2
)

Table 3. Context evaluation functions.

4.2 Experimental Setup

We focus on improving the detection of gif files through the Context-
Based classification. We choose them since they are a primitive file type
whose classifier, as shown in Table 2, performs well. We want to show
that a good classifier can be used as base in our context-based algorithm
to achieve an enhanced classification.

For this experiment we collect a new data set, different from the one
used for training and testing our classifiers. For each considered file type
presented in Section 1.3.2 we downloaded from the Internet 1.5 MB of
files, each roughly 100 KB in size. All such collected files are considered
as 512 byte block sequences, and are used to compose 4 different “disk
image” scenarios:

1 the files are randomly concatenated together forming a disk image
“without fragmentation”;

2 all files are split in two equal fragments that are then randomly
concatenated together achieving a bi-fragmented disk scenario;

3 as above, but the fragmentation ratio is increased by splitting the
files into 3 equal fragments;

4 as above, but the fragmentation is further increased by splitting
the files into 10 equal fragments.

The idea is to test the context-based solution on common situations,
represented by the first three cases [2], providing also a test in a possible,
albeit unlikely, high fragmentation scenario, provided by the last case.

The experiment is made up of two stages: first, we use our gif classi-
fier on all blocks of a generated disk image getting their basic classifica-
tion and then, relying on such results, the Context-Based classification
for each of them is computed. We use both the variants of Algorithm 1
as described in Section 1.4.1 (i.e. both considering and ignoring the
classification Ci of the block itself), and we explore different Context-
Size parameters (3, 5, 8 and 10). We do this for all of the 4 scenarios
above.
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Figure 2. Context-based file block classification: no fragmentation and bi-fragmented
file scenarios.
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Figure 3. Context-based file block classification: 3 fragment-split file and 10
fragment-split file scenarios.
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4.3 Experimental Results

The results of our experiments are presented in Figure 2 and Figure 3.
Differently from the standard classification results (Table 2), for the
Context-Based classification it is necessary to show both true negatives
and false negatives rates (TN and FN respectively, in the following),
along with the not-classified (NC) rates, since TP + FN < 100% and
TN + FP < 100%, due to the presence of NC blocks. We use the
graphs to show also the basic classification results, achieved with the
non-contextual gif classifier (“No-Context”), as a baseline.

The first evident and significant result concerns FP and FN rates:
both are strongly improved (i.e., decreased) compared to the basic classi-
fication, in any given fragmentation scenario or parameter configuration.
For the first three scenarios, in the variant ignoring the classification of
the block itself, also the TN rates are improved, whereas the TP rate
decreases for growing fragmentation rates, but it is increased on scenario
1 (and we remind the reader that non-fragmentation is the most likely
condition for a file). Such results can be explained by the presence of
long series of contiguous non-gif blocks representing a wide base for the
Context-Based classification of non-target blocks, while smaller block
series related to gif files and their fragments are present to be exploited
for target block identification. At the same time some non-classified
blocks are present (roughly 3% of all blocks for the first three scenar-
ios), mainly due to gif blocks not correctly classified as target; this is
more evident looking at the graphs of the last fragmentation case, where
some losses in the TP rate are correlated with the increased NC rate.
In other words, with our proposed scheme we are reducing the classifi-
cation errors (a desired result), at the expense of increasing the number
of non-classified blocks.

As expected, classification performance gets worse increasing the frag-
mentation rate, but we observe that thanks to our methodology TP and
TN rates tend to be converted to NC, rather than to FP and FN ,
keeping such rates low, therefore preserving a reduced classification er-
ror.

Increasing the ContextSize helps to reduce FP and FN rates, TN
rate is also slightly increased, except that for the last high fragmented
scenario; however, the TP rate does not seem to be positively affected,
probably due to the absence of target block series long enough to be
exploited by the enlarged context. A ContextSize = 5 appears to rep-
resent a good trade-off in our experiments.

Our results suggest that it is better to use the variant which ignores
the classification of the block itself. In fact, taking Ci into account
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only affects negatively TP and TN , leaving FP and FN substantially
similar, due to an increased NC rate.

With regard to the different proposed ContextEvaluation functions
we observe that they appear to perform comparably well. The Linear
one is worse than the others for ContextSize = 3, probably because
it does not exploit effectively the short context focusing mainly on the
two contiguous blocks of Bi. On the other hand, the Linear function
outperforms the others in case of high fragmentation; in such cases, it
seems effective in reducing the effect of non-target blocks in the context,
a typical situation in proximity of fragment boundaries, relying on the
context blocks closer to the block currently under classification.

With the proposed classification approach NC blocks will be concen-
trated mostly at the boundaries of files/fragments. As a potential ap-
plication, a modern file carver can also exploit this classification scheme
to identify block regions belonging to a specific file type, related to a
file/fragment on the storage media, but with “faded” boundaries: cor-
rect classification in the middle of fragments withNC values in proximity
of their ends. Then the carving system could attempt to collate together
such block regions, varying their length in the range identified by the
relative NC areas, until a complete file is recovered (the different com-
binations may be for instance checked out by using file validators [2]).

5. Conclusions and Future Work

In this paper we proposed and validated two approaches to overcome
two challenging problems typically associated with file block classifica-
tion in forensic data carving, namely the existence of compound file types
and the errors induced by false positives and negatives in classification
and in the following reconstruction attempt.

We firstly presented comparative experiments that demonstrate the
issue of compound files in file block classification. We showed how the
composition of different file types impacts classification performance,
and suggested to exploit only compound files without embedded data in
classifier training set preparation.

Then, we introduced a methodology to generally improve the perfor-
mance of file block classifiers. Our approach works by exploiting the
spatial coherence of data, i.e. the contiguity of blocks related to the
same file. We call this approach a “context-based” classification. We
showed by experimentation that it improves block classification perfor-
mance, in particular by keeping misclassification low, with a limited cost
in terms of non-classified blocks.
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While the present paper builds on a specific classifier as a working
example, the approach we proposed is completely general, and can be
easily applied to any content-based file block classification algorithm. In
a future extension of this work, we will try to assess the impact of this
approach on other block classification strategies.
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