
An Architecture For Enforcing JavaScript

Randomization in Web2.0 Applications
(Short Paper)

Elias Athanasopoulos, Antonis Krithinakis, and Evangelos P. Markatos

Institute of Computer Science,
Foundation for Research and Technology - Hellas

email: {elathan, krithin, markatos}@ics.forth.gr

Abstract. Instruction Set Randomization (ISR) is a promising tech-
nique for preventing code-injection attacks. In this paper we present
a complete randomization framework for JavaScript aiming at detect-
ing and preventing Cross-Site Scripting (XSS) attacks. RaJa randomizes
JavaScript source without changing the code structure. Only JavaScript
identifiers are carefully modified and the randomized code can be mixed
with many other programming languages. Thus, RaJa can be practi-
cally deployed in existing web applications, which intermix server-side,
client-side and markup languages.

1 Introduction

Cross-Site Scripting (XSS) extends the traditional code-injection attack in native
applications to web applications. It is considered as one of the most severe secu-
rity threats over the last few years [14]. One promising approach for dealing with
code-injection attacks in general is Instruction Set Randomization (ISR) [8]. The
fundamental idea behind ISR is that the trusted code is transformed in random-
ized instances. Thus, the injected code, when plugged to the trusted base cannot

speak the language of the environment [9]. So far, the technique has been applied
in native code [8] and SQL [4]. Architectures inspired by ISR for countering XSS
attacks has been also proposed, like Noncespaces [6] and xJS [3]. To the best of
our knowledge there has been no systematic effort for applying a randomization
scheme directly to a client-side programming language, like JavaScript.

In this paper we present RaJa, which applies randomization directly to
JavaScript. We modify a popular JavaScript engine, Mozilla SpiderMonkey [2],
to carefully modify all JavaScript identifiers and leave all JavaScript literals, ex-
pressions, reserved words and JavaScript specific constructs intact. We further
augment the engine to recognize tokens identifying the existence of a third-party
programming language. This is driven by two observations:

– JavaScript usually mixes with one server-side scripting language, like PHP,
with well defined starting and ending delimiters.

– Server-side scripting elements when mixed up with JavaScript source act as
JavaScript identifiers or literals in the majority of the cases.

1 <!-- Original Document . -->

2 <html >

3 <script >

4 var s = "Hello World!";

5 if (true)

6 document .getElementByName ("welcome "). text = s;

7 </script >

8 <div id="welcome" ></div >

9 </html >

10

11 <!-- Randomized Document . -->

12 <html >

13 <script >

14 var s0x78 = "Hello World!";

15 if (true)

16 document0x78 .getElementByName0x78 ("welcome").

17 text0x78 = s0x78;

18 </script >

19 <div id="welcome" ></div >

20 </html >

Fig. 1. A typical RaJa example.

To verify these speculations we deploy RaJa in four popular web applications.
RaJa fails to randomize 9.5% of identified JavaScript in approximately half a
million lines of code, mixed up with JavaScript, PHP and markup. A carefully
manual inspection of the failed cases suggests that failures are due to coding
idioms that can be grouped in five specific practices. Moreover, these coding
practices can be substituted with alternative ones.

2 Architecture

RaJa is based on the idea of Instruction Set Randomization (ISR) to counter
code injections in the web environment. XSS is the most popular code-injection
attack in web applications and is usually carried out in JavaScript. Thus, RaJa
aims on applying ISR to JavaScript. However, the basic corpus of the architecture
can be used in a similar fashion for other client-side technologies.

In a nutshell, RaJa takes as input a web page and produces a new one with
all JavaScript randomized. A simple example is shown in Figure 1. Notice that
in the randomized web page all JavaScript variables (emphasized in the Figure)
are concatenated with the random token 0x78. All other HTML elements and
JavaScript reserved tokens (like var and if) as well as JavaScript literals (like
"Hello World", "welcome" and true) have been kept intact. The randomized
web page can be rendered in a web browser that can de-randomize the JavaScript
source using the random token. RaJa needs modifications both in the web server

Apache

RaJa Module

PHP Filter

RaJa randomizer

RaJa web browser

(8) Randomized Response

(2) Request

(4) open() interceptor

Shared Memory
Key Storage

(1) index.php

(3)

Generate key

and open()
(5) Retrieve Key

(6) Randomize
(7)

Attach X-RAJA-KEY

and pass

randomized

buffer

Fig. 2. Schematic diagram of the RaJa architecture.

and the web client, as is the case of many anti-XSS frameworks [7, 11, 6, 3]. In
order to perform the randomization, RaJa needs to run as a pre-processor before
any other server-side language (like PHP) takes place. RaJa assumes that only
the JavaScript stored in files1 in the server is trusted. Randomizing all trusted
JavaScript ensures that any code injections will not be able to execute in a web
browser that supports the framework.

A sample work-flow of a RaJa request-response communication is as follows.
The RaJa-compliant web browser announces that it supports the framework us-
ing an HTTP Accept2 header. The web server in turn opens all files needed for
serving the requests and randomizes each one with a unique per-request key.
Typically, a request involves several files that potentially host JavaScript, which
are included in the final document through a server-side language. For example
PHP uses require and similar functions to paste the source of a document in
the final web response. RaJa makes sure that all JavaScript involved is random-
ized. Finally, the web server attaches an HTTP X-RAJA-KEY header field which
contains the randomization key. The RaJa-compliant web browser can then de-
randomize and execute all trusted JavaScript. Any JavaScript source code that
is not randomized can be detected and prevented for executing. The potential
code injection is logged in a file. In order to enable RaJa in a web server we use
two basic components: (a) an Apache module (mod rjs.so), which operates as
content generator and (b) a library interceptor which handles all open() calls
issued by Apache. Although RaJa can be used with any server-side technology,
for the purposes of this paper we use PHP. Thus, we have configured the RaJa-

1 This assumption can be augmented to support JavaScript stored in a database if we
introduce read-only tables.

2 For the definition of the HTTP Accept field, see: http://www.w3.org/Protocols/

HTTP/HTRQ Headers.html#z3

1 <!-- Original Source. -->

2 <?php if (user_exists ($user)) { ?>

3 var message = <?php echo "Welcome " ?>;

4 <?php } else { ?>

5 var message = "Registration Needed.";

6 <?php } ?>

7

8 <!-- Randomized Source. -->

9 <?php if (user_exists ($user)) { }?>

10 var message0x78 = <?php echo "Welcome " ?>;

11 <?php } else { ?>

12 var message0x78 = "Registration Needed.";

13 <?php } ?>

Fig. 3. Code mixing of JavaScript with alien languages. In this example PHP is used
as an alien language example. In line 3, Rule 1 is applied, while in lines 2, 4 and 6,
Rule 2 is applied.

enabled web server to use PHP as an output filter. For all experiments in this
paper we use PHP acting as an output filter, but if someone prefers to use PHP
as a module and not as a filter, two Apache web servers can be used with the
RaJa-enabled Apache acting as a proxy to the PHP-enabled one.

The RaJa Apache module handles initially all incoming requests for files
having an extension of .html, .js and .php. This can be configured to support
many other file types (see below the configuration details). For each request it
generates a random key and places it to a shared memory placeholder. It then
opens the file in order to fulfill the request. The call to open() is intercepted
using the LD PRELOAD [1] functionality, available in most modern operating sys-
tems, by the RaJa randomizer. The latter acts as follows. It opens the file and
tries to identify all possible JavaScript occurrences. That is, all code inside a
<script> tag, as well as all code in HTML events such as onclick, onload, etc.
For every JavaScript occurrence a parser, based on the Mozilla SpiderMonkey [2]
JavaScript engine is invoked to produce the randomized source. All code is ran-
domized using the token which is retrieved from the shared memory placeholder.
We analyze in more detail the internals of the SpiderMonkey-based parser below.

The randomized code is placed in a temporary file and the actual libc open()

is called with the pathname of the randomized source. Execution is transferred
back to the Apache RaJa module. The module takes care for two things. First, it
attaches the correct Content-Length header field, since the size of the initial file
has possibly changed (due to the extra tokens attached to JavaScript source).
Second, it attaches the X-RAJA-KEY header field to the HTTP response, which
contains the token for the de-randomization process. The key is refreshed per
request. All randomized code is contained in an internal memory buffer. This
buffer is pushed to the next operating element in the Apache module chain. If
the original request is for a PHP file, then the buffer will be pushed to the PHP

output filter. It is possible that PHP will subsequently open several files while
processing require() or similar functions. Each open() issued by the PHP filter
is also intercepted by the RaJa randomizer and the procedure is repeated again
until all PHP work has been completed. The size of the final response has pos-
sibly changed again, due to the PHP processing. PHP takes care for updating
the Content-Length header field.

We present the control flow of the RaJa architecture in Figure 2 with all eight
steps enumerated. We now proceed and present a step-by-step explanation of a
RaJa-enabled request-response communication. In Step (1) the RaJa-enabled
web client requests index.php from a RaJa-enabled web server. In Step (2) the
request is forwarded to the RaJa module which in turn in Step (3) generates a
key, stores the key in a shared memory fragment and opens the file index.php.
In Step (4) the RaJa randomizer intercepts open() and in Step (5) it retrieves
the key from the shared memory fragment. In Step (6) index.php is opened,
randomized, saved to the disk in a temporary file and the actual libc open() is
called with the pathname of the just created file. In Step (7) control is transferred
to the RaJa module which adds the correct Content-Length and X-RAJA-KEY

header fields. If the file is to be processed by PHP the buffer containing the
randomized source is passed to the PHP filter. All open() calls issued from
PHP will be further intercepted by the randomizer but we have omitted this in
Figure 2 to make the graph more clear to the reader. Finally, in Step (8) the
final document is served to the RaJa-enabled web browser.

Randomization. All JavaScript randomization is handled through a custom
parser based on the SpiderMonkey [2] JavaScript engine. The RaJa parser takes
as input JavaScript source code and it produces an output with all code random-
ized. For an example refer to Figure 1. The original SpiderMonkey interpreter
parses and evaluates JavaScript code. In RaJa execution is disabled. Instead, all
source is printed randomized with all JavaScript identifiers concatenated with
a random token. Special care must be taken for various cases. We enumerate a
few of them.

1. Literals. All literals, like strings and numbers, are parsed and directly pasted
in the output in their original form.

2. Keywords. All keywords, like if, while, etc., are parsed and directly pasted
in the output in their original form.

3. HTML comments. The original SpiderMonkey removes all comments before
evaluation. The RaJa parser pastes all HTML comments in their original
form.

4. Language mixing. Typically a web page has a mixture of languages such as
HTML, PHP, XML and JavaScript. The RaJa parser can be configured to
handle extra delimiters as it does with HTML comments and thus identify
other languages, such as PHP, which heavily intermix with JavaScript. We
further refer to these languages as alien languages.

We augment the RaJa parser to treat occurrences of alien languages inside
JavaScript according to the following rules.

– Rule 1. An alien language occurrence is treated as a JavaScript identifier if
it occurs inside a JavaScript expression.

– Rule 2. An alien language occurrence is treated as a JavaScript comment
and is left intact if Rule 1 is not applied.

We conclude to these basic two rules after investigating four popular and large,
in terms of lines of code (LoCs), web applications [10]. By manually checking
how PHP is mixing with JavaScript, we observed that in the majority of the
cases PHP serves as an identifier or literal inside a JavaScript expression (see
line 3 in Figure 3). For a short example of how these two rules are applied refer
to Figure 3.

De-randomization. The de-randomization process takes place inside a RaJa-
compliant browser. In our case this is Firefox with an altered SpiderMonkey en-
gine. The modified JavaScript interpreter is initialized with the random token,
taken from the X-RAJA-KEY header field. During the parse phase it checks ev-
ery identifier it scans for the random token. If the token is found, the internal
structure of the interpreter that holds the particular identifier is changed so as
to hold the identifier de-randomized (i.e. the random token is removed). If the
token is not found, the execution of the script is suspended and its source is
logged as suspicious.

We take special care in order to assist in coding practices that involve dy-
namic code generation and explicit execution using the JavaScript’s built-in func-
tion eval(). Each time a correctly randomized eval() is invoked in a script,
the argument of eval() is not de-randomized. Notice that this is consistent
with the security guarantees of the RaJa framework, since the eval() function
is randomized in the first place and cannot be called explicitly by a malicious
script unless the random token is somehow revealed. However, this approach is
vulnerable to injections through malicious data that can be injected in careless
use of eval(). For the latter case the RaJa framework can be augmented with
tainting [15, 12, 13].

Self-Correctness. In order to prove that the RaJa parser does not produce
invalid JavaScript source we use the built-in test-suite of the SpiderMonkey
engine. We first run the test-suite with the original SpiderMonkey interpreter
and record all failures. These failures are produced by JavaScript features which
are now considered obsolete. We subsequently randomize all tests, remove all
E4X [5] tests because we do not support this dialect, re-run the test-suite with
the raja-eval (a tool capable in executing randomized source) and record all
failures. The failures are exactly the same. Thus, the modified SpiderMonkey
behaves exactly as the original one in terms of JavaScript semantics.

Acknowledgements. Elias Athanasopoulos, Antonis Krithinakis and Evan-
gelos P. Markatos are also with the University of Crete. Elias Athanasopoulos
is funded by the Microsoft Research PhD Scholarship project, which is pro-
vided by Microsoft Research Cambridge. The research leading to these results
has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 257007.

References

1. LD PRELOAD Feature. See man page of LD.SO(8).
2. SpiderMonkey (JavaScript-C) Engine. http://www.mozilla.org/js/

spidermonkey/.
3. Elias Athanasopoulos, Vasilis Pappas, Antonis Krithinakis, Spyros Ligouras, and

Evangelos P. Markatos. xJS: Practical XSS Prevention for Web Application De-
velopment. In Proceedings of the 1st USENIX WebApps Conference, Boston, US,
June 2010.

4. Stephen W. Boyd and Angelos D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Proceedings of the 2nd Applied Cryptography and Network Security
(ACNS) Conference, pages 292–302, 2004.

5. E. ECMA. 357: ECMAScript for XML (E4X) Specification. ECMA (European
Association for Standardizing Information and Communication Systems), Geneva,
Switzerland, 2004.

6. Matthew Van Gundy and Hao Chen. Noncespaces: Using Randomization to En-
force Information Flow Tracking and Thwart Cross-Site Scripting Attacks. In Pro-
ceedings of the 16th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 8-11, 2009.

7. Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script Injection Attacks
with Browser-Enforced Embedded Policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 601–610, New York, NY, USA,
2007. ACM.

8. G.S. Kc, A.D. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks
with Instruction-Set Randomization. In Proceedings of the 10th ACM conference
on Computer and Communications Security, pages 272–280. ACM New York, NY,
USA, 2003.

9. Angelos D. Keromytis. Randomized Instruction Sets and Runtime Environments
Past Research and Future Directions. Number 1, pages 18–25, Piscataway, NJ,
USA, 2009. IEEE Educational Activities Department.

10. Antonis Krithinakis, Elias Athanasopoulos, and Evangelos P. Markatos. Isolating
JavaScript in Dynamic Code Environments. In Proceedings of the 1st Workshop
on Analysis and Programming Languages for Web Applications and Cloud Appli-
cations (APLWACA), co-located with PLDI, Toronto, Canada, June 2010.

11. Y. Nadji, P. Saxena, and D. Song. Document Structure Integrity: A Robust Basis
for Cross-site Scripting Defense. In Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, February 8-11,
2009.

12. S. Nanda, L.C. Lam, and T. Chiueh. Dynamic Multi-Process Information Flow
Tracking for Web Application Security. In Proceedings of the 8th ACM/I-
FIP/USENIX international conference on Middleware. ACM New York, NY, USA,
2007.

13. Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically Hardening Web Applications Using Precise Tainting. In
Proceedings of the 20th IFIP International Information Security Conference, pages
372–382, 2005.

14. SANS Insitute. The Top Cyber Security Risks. September 2009. http://www.

sans.org/top-cyber-security-risks/.
15. R. Sekar. An Efficient Black-box Technique for Defeating Web Application At-

tacks. In Proceedings of the 16th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 8-11, 2009.

