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ABSTRACT
Smartphone usage has been continuously increasing in re-
cent years. Moreover, smartphones are often used for privacy-
sensitive tasks, becoming highly valuable targets for attack-
ers. They are also quite different from PCs, so that PC-
oriented solutions are not always applicable, or do not offer
comprehensive security. We propose an alternative solution,
where security checks are applied on remote security servers
that host exact replicas of the phones in virtual environ-
ments. The servers are not subject to the same constraints,
allowing us to apply multiple detection techniques simulta-
neously. We implemented a prototype of this security model
for Android phones, and show that it is both practical and
scalable: we generate no more than 2KiB/s and 64B/s of
trace data for high-loads and idle operation respectively, and
are able to support more than a hundred replicas running
on a single server.

Categories and Subject Descriptors
D.2.0 [General]: Protection mechanisms

General Terms
Design, Security, Reliability

Keywords
Decoupled security; Smartphones; Android

1. INTRODUCTION
Smartphones have come to resemble general-purpose com-

puters: in addition to traditional telephony stacks, calen-
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dars, games and address books, we use them for browsing,
reading email, watching videos, and many other activities
that we used to perform on PCs. As software complexity
increases, so does the number of bugs and exploitable vul-
nerabilities [17, 32, 20, 31]. Vulnerabilities in the past have
allowed attackers to exploit bugs in the Bluetooth network
stack to take over various mobile phones. More recently, Ap-
ple’s iPhone and Google’s Android platform have also shown
to be susceptible to remote exploits [28, 24, 25] .

Moreover, as phones are used more and more for privacy
sensitive and commercial transactions, there is a growing
incentive for attackers to target them. For instance, smart-
phones can be used to perform online purchases, control
bank accounts, store passwords and other sensitive infor-
mation like social security numbers, etc. Phone-based pay-
ment for physical goods, services, mass transit, and parking
is also provided by various companies like Upaid Systems,
Black Lab Mobile, and others. Compromised smartphones
can also be used to spy upon users, as they include a GPS
sensor and a microphone that can be used to obtain a user’s
location or eavesdrop.

Smartphones will most likely become targets in the fu-
ture, and while average users may not be willing – for the
time being – to pay the cost (both in financial and perfor-
mance terms) of securing their devices, this is not the case
for senior officials in industry, government, law enforce-
ment, banks, health care, and the military1. Smartphones
are already an integral tool in many such organisations, but
due to security and privacy concerns, and due to the lack
of security mechanisms, administrators often resolve in lim-
iting the functionality of employees’ devices (like disabling
WiFi connectivity and reception of SMS messages). In this
paper, we address the problem of security for smartphones
for organisations and individuals that care deeply about the
detection of attacks. Our goal is to provide versatile secu-
rity for smartphones, offering detection of a wide range of
attacks including zero-day ones.

Deploying security mechanisms on already severely resource-
constrained smartphones can be problematic. For instance,
running a simple file scanner like ClamAV on the Android

1A famous case in point was president Obama’s 2008 strug-
gle to keep his Blackberry phone after being told this was
not possible due to security concerns. Eventually, he was
allowed to keep an extra-secure smartphone.



HTC G1’s data and application folders took approximately
30 minutes, and reduced battery capacity by 2%. Other
work [6] has also shown that running a naive file scanning
application on an HTC G1 is 11.8x slower than running it
on single-core virtual machine (VM) running on a desktop
PC. We argue for a different security model that completely
devolves attack detection from the phone.

At a high level, we envision that security (in terms of at-
tack detection) will be just another service hosted in the
cloud, much like storage and email. Whether this is practi-
cal, or even feasible at the granularity needed for thwarting
today’s attacks has been an open research question, which
we attempt to answer in this paper. More specifically, we
propose running a synchronised replica of the phone on a
security server in the cloud. As the server does not have
the tight resource constraints of a phone, we can perform
security checks that would be too expensive to run on the
phone itself. To achieve this, we record a minimal trace of
the phone’s execution (enough to permit replaying and no
more) which we then transmit to the server. The implemen-
tation of our security model is known as Paranoid Android
(PA).

Our approach is consistent with the current trend to host
activities in the cloud, including security-related functions.
Oberheide et al. have explored AV file scanning in the cloud
with [29] and [30], but file scans are not able to detect zero-
days, remote exploits, or memory-resident attacks (all of
which have targeted mobile phones in the past [20, 14, 31,
25]). One could argue that smartphone components are fre-
quently coded in languages like Java that do no suffer from
such attacks. But the runtime environments (JREs) used
on smartphones are usually smaller, optimized versions of
the original JRE (e.g., Android uses the DEX Dalvik VM),
which do not necessarily provide the same security and iso-
lation guarantees , and can be themselves vulnerable to at-
tacks. Furthermore, most platforms (including Android) of-
fer native APIs for high performance applications that are
vulnerable to a wider range of attacks.

Our solution builds on work on VM recording and replay-
ing [11, 42, 26, 5, 12, 19, 37, 38, 23]. Previous work on
PC systems, makes use of tailored VMs, and assumes ample
and cheap communication bandwidth. Rather than record-
ing and replaying at the VM level, we record the trace of a
set of processes (running everything in a VM on the phone
is not realistic on any current phone). In addition, we tai-
lor the solution to smartphones, and compress and transmit
the trace in a way that minimises computational and battery
overhead. We also ensure that an attacker compromising a
device cannot bypass the security measures applied at the
server, and elude detection.

The main contributions of this paper are:

• A scalable smartphone security architecture that is
able to apply multiple security checks simultaneously
without overburdening the device.

• A prototype implementation of an execution recording
and replaying framework for Android.

• Transparent backup of all user data in the cloud.

• A replication mechanism that guarantees the detection
of an attack.

• Application transparent recording and replaying.

The remainder of the paper is organised as follows. The
architecture of PA is discussed in Section 2, while implemen-
tation details of our prototype are given in Section 3. We
evaluate the system in Section 4, and review related work in
Section 5. Conclusions are in Section 6.

2. PARANOID ANDROID ARCHITECTURE
A high-level overview of PA’s architecture is illustrated

in Figure 1. On the phone, a tracer records all information
needed to accurately replay its execution. The recorded ex-
ecution trace is transmitted to the cloud over an encrypted
channel, where a replica of the phone is running on an emula-
tor. On the cloud, a replayer receives the trace and faithfully
replays the execution within the emulator. We can apply se-
curity checks externally, as well as from within the emulator,
as long as they do not interfere with the replayed applica-
tions (i.e., they do not perform IPC with replayed processes,
modify user files, etc.). Provided we observe this rule of non-
interference, we may even run additional processes or instru-
ment the kernel. Furthermore, we use a network proxy to
connect to the Internet, which allows us to intercept and
temporarily store inbound traffic. The replayer can access
the proxy to retrieve the data needed for replaying. This way
the tracer does not have to retransmit the data received over
the network to the replica.

2.1 Recording And Replaying
Recording and replaying a set of processes and entire sys-

tems has been broadly investigated by previous work [11,
42, 26, 5, 12, 19, 37, 38, 23, 16]. We will only briefly dis-
cuss how execution replaying is performed, while implemen-
tation specifics and various optimisations are discussed in
Section 3.1. Readers interested in recording and replaying
in general are referred to the above cited papers, and our
technical report on PA [34].

A computer program is by nature deterministic, but it re-
ceives nondeterministic inputs and events that influence its
execution flow. To replay a program, we need to record all
these nondeterministic inputs and events. Such inputs usu-
ally come from the underlying hardware (e.g., time comes
from the HW clock, network data from the WiFi adaptor,
location data from the GPS sensor, etc.), which a process
receives mostly through system calls to the kernel. Thus, to
replay execution the tracer records all data transferred from
kernel to user space through system calls. The replayer then
uses the recorded values when replaying the system calls on
the replica. Note that we only replay process and not kernel
execution. While this implies that PA may not be able to
detect an attack against the kernel, most kernel vulnerabil-
ities are only exploitable locally, which would require that
the attacker first compromises a user process.

Beside system calls, operating systems (OSs) can also al-
ter a process’ control flow by using synchronous and asyn-
chronous notification mechanisms such as signals. For in-
stance, a signal may be sent to a process when a certain
event occurs (e.g., a timer expires). Signals that notify of
serious errors (e.g., a segmentation fault, or a floating point
exception) are delivered synchronously, when the instruction
that caused the error is executed. Consequently, they will
be also generated by the OS on the replica. On the other
hand, asynchronous signals can be delivered arbitrarily, and
in fact most OSs (except real-time ones) do not even guaran-
tee their delivery. To ensure that such signals are delivered
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Figure 1: Paranoid Android architecture overview

at exactly the same time during replay, we defer their deliv-
ery until the target process performs a system call.

Concurrency and inter-process communication (IPC) can
also be a source of nondeterminism. Two processes can ex-
change data using various mechanisms such as pipes, mes-
sage queues, files, sockets, shared memory, and memory
mapped files. Most of these mechanisms are implemented
using system calls to send and receive data, therefore we im-
plicitly support them by accurately replaying system calls.

This is not the case for shared memory and memory mapped
files, since they can be accessed directly. When two or
more processes use such objects to exchange data, they may
affect one another in unpredictable ways, producing non-
reproducible behaviour. In the case of threads, almost all
process memory is shared. In the presence of shared ob-
jects, accesses on these objects need to be serialised to en-
able deterministic replay [19]. In past work, Courtois et
al. [9] solve the serialisation problem using a concurrent-
read-exclusive-write (CREW) protocol for shared objects,
while Russinovich et al. [38] propose a repeatable determin-
istic task scheduler. He have adopted the latter for PA, as it
outperforms CREW protocols on uniprocessor architectures.

2.2 Synchronisation
Smartphone users enjoy plentiful wireless connectivity over

3G, WiFi, GPRS, etc.PA can use any of these networks
to synchronise with the replica by transmitting the execu-
tion trace. However, wireless connectivity can be costly in
terms of energy consumption, and detrimental to battery
life. Therefore, we assume that network connectivity may
not be always available (e.g., because the device is low on
power), and safeguard the execution trace to ensure that at-
tacks which occured while disconnected are eventually dis-
covered.

2.2.1 Loose Synchronisation
We adopt a loose synchronisation strategy between the

phone and the cloud to minimise its effects on battery life.
Particularly, we do not activate or keep any of the network
adaptors from sleeping, but rather attempt to transmit the
trace only when the device is awake and connected to the
Internet. This can be due to the user performing an action
like reading email or surfing the web, when he is also most
likely to be attacked (e.g., by receiving a malicious email, or

accessing a malicious web site). Alternatively, we also sup-
port an extremely loose synchronisation model, where the
device synchronises with its replica only when it is recharg-
ing. Such a model may be suitable for users with more re-
laxed security requirements, as attacks can only be detected
after synchronising with the server.

2.2.2 Tamper-Evident Secure Storage
Loose synchronisation with the server is ideal for preserv-

ing power, but unless we protect the execution trace, an at-
tacker may compromise the phone and disable the synchro-
nisation procedure. Even worse, a capable attacker could
modify the execution trace to remove the entries that ex-
pose the attack (e.g., a specific read from the network), while
keeping the system operational to make it appear as if ev-
erything is still running properly.

We defend against such attacks by employing a secure
storage to detect if someone has tampered with the execu-
tion trace. Every block of data written to secure storage
is associated with an HMAC code [2], that simultaneously
verifies the block’s authenticity and integrity. HMAC is a
specific type of message authentication code (MAC) that
involves a cryptographic hash function in combination with
a secret key. We achieve tamper-evidency by continuously
“rolling” the key used with the HMAC, as we explain below.

Each time an entry along with its HMAC code is writ-
ten to secure storage, we generate a new key by applying a
second cryptographic hash function on the old key (which
is completely overwritten). This way an attacker compro-
mising the device, cannot alter old entries already in the
execution trace to hide an attack. At worst, attackers can
delete entries or block synchronisation, which both count as
synchronisation errors.

STORE(message + HMAC(key, message))
key′ = HASH(key)
key = key′

Writes to secure storage occur regularly during the oper-
ation of PA, or can be triggered by a specific event. While
the system is running, the data produced by the tracer are
initially buffered and compressed in the manner described
in Section 3.2. When data can no longer be buffered (e.g.,
because the buffer has been exhausted), or when it is de-
termined that they cannot be further compressed, they are



written to secure storage and a new key is generated. Al-
ternatively, writes to secure storage may be “forced” when
certain events occurs, even if additional buffering is possi-
ble. For instance, when a network read occurs that could
potentially introduce malicious data, we request that the
entry describing the network read (as well as the previously
buffered entries) are written into secure storage. Different
algorithms and strategies that determine the frequency of
writes to secure storage can be explored in future work.

Using HMAC is more lightweight than digital signatures,
as it requires less processing cycles (and consequently power)
and storage. The only requisite is that a secret key is initially
shared between the device and the server. Such a key can
be established when setting up the device for use with PA.
The replayer authenticates the received data by calculating
their HMAC code, and comparing it with the one received.

2.2.3 Synchronisation Errors
An error during synchronisation can be the result of a

software bug, or a failed attempt by an attacker to cover his
tracks. It can manifest itself as a mismatch in the HMAC
code, a corrupted execution trace, or failure to communi-
cate for a long period of time. The true cause of such an
error cannot be determined with confidence by the security
server, and in any case we lose the ability to further replay
execution. Consequently, devices exhibiting such errors are
treated as potentially compromised, and the user needs to be
notified and his device restored to a clean state (Section 2.5).

2.3 Security Methods
The real power of PA lies in the scalability and flexibility

in security methods. By replicating smartphone execution
in the cloud, we have ample resources for running a combina-
tion of security tasks. Moreover, we can apply any detection
method that obeys the rule of noninterference For instance,
all of the following detection methods are compatible with
PA’s security model. As a proof of concept, we implemented
the first two in the list (Section 3.3) and are currently work-
ing on the others.

1. Dynamic analysis in the emulator. We instrument the
emulator to perform runtime analysis to detect certain
types of zero-day attacks such as buffer-overflows and
code-injection attacks [18, 41, 10, 8].

2. AV products in the cloud. We modified a popular open
source AV to run in the emulator, and perform peri-
odical file scans. Additionally, on access file scanning
can be applied with few modifications to the replayer.
On access scanning AV intercept file handling system
calls and scan the target file before allowing a pro-
cess to access it. As we already intercept system calls,
the replayer could be transformed to an on access AV
scanner.

3. Memory scanners. We can scan emulator memory for
patterns of malicious code directly. Memory scanners
are able to detect memory-resident attacks that leave
no files behind for AV scanners to detect.

4. System call anomaly detection. Detection methods
based solely on the system calls [36, 15], can even be
applied directly to the execution trace, without any
need for replaying. As a result, system call detection
methods are extremely fast.

While, all the techniques we have referred to in this sec-
tion have been around for some time, execution replay offers
great flexibility, even enabling future runtime security solu-
tions to be applied retrospectively. Furthermore, the execu-
tion trace can be retained and used for auditing purposes.

2.4 Proxy And Server Location
The location of the security server and the proxy, and who

controls them is a policy decision beyond the scope of this
paper. For instance, institutions running their own cloud
could deploy the proxy and replica in-house. Alternatively,
PA could be offered as a service by wireless providers, host-
ing the server on their own cloud. While privacy is impor-
tant both for companies and individuals, smaller companies
and individuals frequently place their data on cloud services
offered by providers such as Amazon and Google.

In an extreme scenario, users with strong privacy consid-
erations could run their own replicas on their desktop or
notebook, and not use a proxy at all. Doing so gives them
full control over their data, but implies a very loose syn-
chronisation model, where the device synchronises with the
server only when the device is plugged to the computer, or
when they are on the same network (e.g., similarly to Ap-
ple’s Time Capsule).

2.5 User Notification And Recovery
When an attack is detected, PA needs to warn the user,

so that recovery procedures can be initiated. This is not
trivial. Sending an SMS or email message may not work, as
a skilled attacker could block such messages. As such, a sig-
nalling channel beyond the control of the attacker is needed.
The nature of this channel is not very important for this pa-
per, but various options are already available. For instance,
we could use special hardware on the phone to have it de-
stroy all data, when it receives a privileged message by the
owner or provider (e.g., the “kill pill” message on Black-
berry phones [39]). If hardware support is not available, the
provider could also simply deny service to the device, which
would (hopefully) inform the user that something is wrong.

Compromised devices can be restored to a pristine state
using the data held at the replica. Data-loss can be kept at
a minimum, as an exact copy of all user data exists in the
cloud. Furthermore, using multiple intrusion detection tech-
niques we can accurately detect the moment of the attack,
to restore the really last clean state of the system. Unfor-
tunately, recovery over the network cannot be guaranteed,
so we adopt an approach similar to current systems such as
the iPhone, where the device needs to be plugged-in a PC
to be recovered.

2.6 Handling Data Generated On The Device
While we can proxy the data that is already available ‘in

the network’, we cannot do so for data that is generated
locally. Examples include key presses, speech, downloads
over Bluetooth (and other local connections), and pictures
and videos taken with the built-in camera. Keystroke data
is typically limited in size. Speech is not very bulky either,
but generates a constant stream. We will show in Section 4
that PA is able to cope with such data quite well.

Downloads over Bluetooth and other local connections fall
into two categories: (a) bulk downloads (e.g., a play list of
music files), typically from a user’s PC, and (b) incremental
downloads (exchange of smaller files, such as ringtones, of-



ten from other mobile devices). Incremental downloads are
relatively easy to handle. For bulk downloads, we can save
on transmitting the data if we duplicate the transmission
from the PC such that it mirrors the data on the replica.
However, this is an optimisation that we have not yet ap-
plied.

Pictures and videos taken using the device may incur sig-
nificant overhead in transmission. PA caters more to se-
curity sensitive environments like corporations and govern-
ment institutions, where such data are encountered less fre-
quently. Nevertheless, in application domains where such ac-
tivities are common, users will probably have to disconnect
from the server, and only resynchronise when their device is
recharging to avoid draining the battery. In the future, we
could exploit the increasing trend of users uploading their
content to the Internet directly from their devices, to also
proxy the uploaded data and make them available to the
replica.

3. IMPLEMENTATION
In this section, we discuss a prototype implementation of

PA for Google’s Android system. While it is possible to im-
plement the tracer and replayer in different ways, the most
efficient way is to intercept system calls and signals in the
kernel. It is also the most convenient way to influence the
scheduling to serialise accesses to shared objects (discussed
in 2.1). However, it is hard to maintain such an implemen-
tation, as it requires frequent updates to keep it operational
with new kernels, and it requires that a new boot image is in-
stalled on the device every time the tracer is updated. This
motivated us to implement PA’s prototype in user space.

Our implementation is transparent to applications and the
OS, and only requires process tracing functionality, compa-
rable to the one offered by Linux’s ptrace, which enables us
to attach to arbitrary processes, and intercept system calls
and signals. Similar interfaces are also support by BSD-
and Windows-style OSs used on other devices, such as the
iPhone OS and Windows Mobile.

3.1 Recording And Replaying
In this section, we explain the novel aspects of implement-

ing execution recording and replaying on Android.

3.1.1 Starting The Tracer And Everything Else
In UNIX tradition, Android uses the init process to start

all other processes, including the supporting framework and
user applications. The tracer itself is also launched by init,
before launching any of the processes we wish to trace. Init
launches the processes that are to be traced using an execu-
tion stub. This process serves a twofold purpose: it allows
the tracer to start tracing the target processes from the first
instruction, and it enables us to run processes without trac-
ing them (e.g., debugging and monitoring applications).

Init brings up the tracer process first. The tracer ini-
tialises a FIFO to allow processes that need tracing to con-
tact it. Next, init starts the other processes. Rather than
starting them directly, we add a level of indirection, which
we call the exec stub. So, instead of forking a new thread and
using the exec system call directly to start the new binary,
we fork and run a short stub. The stub writes its process
identifier (pid) to the tracer’s FIFO (effectively requesting
the tracer to trace it) and then pauses. Upon reading the
pid, the tracer attaches to the process to trace it. Finally,

the tracer removes the pause in the traced process, mak-
ing the stub resume execution. The stub immediately calls
exec to start the appropriate binary with the corresponding
parameters.

3.1.2 Scheduling And Shared Memory
In Section 2.1, we briefly mentioned that we serialise ac-

cesses to shared objects using a modified task scheduler that
operates in a deterministic way. Unfortunately, we can only
do so with coarse granularity, as we operate entirely in user
space. Our scheduling algorithm is quite simple and far from
optimal, but sufficient for our purpose, as it is reproducible.
Furthermore, it does not require us to log any additional
information in the execution trace. It operates by ensuring
that no two threads that share a memory object can ever
run concurrently. Because the scheduler is triggered by sys-
tem calls, it can be unfair, and it may theoretically deadlock
in the presence of spinlocks. To avoid the latter, we created
a spinlock detector that is activated when a task keeps run-
ning for more than a predefined period of time. In practice,
Android does not use spinlocks as they are wasteful in terms
of CPU cycles. Instead, locking is performed using mutexes,
which results in a system call in case of contention, and are
handled by PA in a straightforward way. While the spin-
lock detector provides the robustness that is required for a
production system, so far we have only seen it triggered for
contrived test cases.

Modern operating systems also allow processes to directly
memory map HW memory. If such memory was to be used
for directly reading data from hardware, neither repeatable
scheduling nor a traditional CREW protocol could ensure
proper serialisation of accesses to that memory. To the best
of our knowledge, Android does not use memory in this way.
However, it could be a problem in the future in a different
hardware/software combination. In that case, we need a
modified CREW protocol that will track all reads from such
memory to keep execution deterministic. This can be ac-
complished by making the area inaccessible to the reader,
and intercepting all read attempts using the generated page
faults. Doing so would be expensive, especially if done from
user space. Fortunately, we have had no need for this in our
implementation.

3.1.3 Ioctls
I/O control, mostly performed using the ioctl system call,

is part of the interface between user and kernel space. Pro-
grams typically use ioctls to allow userland code to commu-
nicate with device drivers. Each request uses a command
number which identifies the operation to be performed and
in certain cases the receiver. Attempts have been made to
apply a formula on this number that would indicate the di-
rection of an operation, as well as the size of the data being
transferred. Unfortunately, due to backward compatibility
issues and programmer errors actual ioctl numbers do not
always follow this convention. Furthermore, Android per-
forms most of its IPC through the kernel using the binder
framework [33]. Many of the binder operations actually re-
sult in one or more ioctls on the “/dev/binder” device. Thus,
it is important that we can access the Android kernel source
code to check the semantics of the various ioctls being used.
Fortunately, smartphones make use of fewer ioctls than PCs,
but the procedure is still a tedious one. Our prototype han-
dles about two hundred ioctl commands.



3.2 Execution Trace Compression
One of our primary goals is to minimise transmission costs,

which requires minimising the size of the execution trace.
Here we discuss the rules we applied to reduce the size of
the trace:

• Record only system calls that introduce nondetermin-
ism. Phone and replica execute the same instruction
stream, so there is no need to record system calls that
have identical effects in both (e.g., creating a socket,
opening a file, reading from local storage, etc.). We
also do not record the results of systems call used for
IPC between processes, as the mirror processes on the
replica will generate the same data.

• Use a network proxy so that inbound data are not logged
in the trace. The data received by the phone over the
network are not directly seen by the replica (e.g., a re-
ceived email). We introduce a transparent proxy that
logs all Internet traffic towards the phone, and makes
it available to the security server upon request. This
way the phone does not need to waste precious energy
to log and transmit them to the replica.

• Compress data using three algorithms. First, we en-
code time related data returned by calls such as get-
timeofday and clock gettime using delta encoding, re-
placing the actual time data in the trace with the
differences of consecutive values. Second, we employ
Huffman encoding to represent frequent values in the
trace. For instance, we use a bit to represent a system
call that returned zero, another one to indicate that
a log entry has been produced by the same thread as
the previous entry, etc. Finally, we employ general
purpose compression using the DEFLATE algorithm
(also used by the gzip utility).

3.3 Attack Detection Mechanisms
We demonstrate the detection capabilities of the security

server by developing two very different detection mecha-
nisms: an anti-virus scanner, and an emulator-based detec-
tor that uses dynamic taint analysis.

3.3.1 Virus Scanner
One of the security measures we apply at the server is anti-

virus scanning. For this purpose, we modified the popular
open source anti-virus ClamAV to run in the Android em-
ulator. ClamAV contains more than 500000 signatures for
viruses that a user would have to store locally on his phone
and update daily. Using PA, we perform file scanning on the
server where both storage and processing is much cheaper.
Moreover, if we wish to further increase detection coverage
we may employ multiple scanners at the same time, as sug-
gested by Oberheide et al. [30].

3.3.2 Dynamic Taint Analysis
PA can go a lot further than just running multiple anti-

virus software in the cloud. We modified the Android em-
ulator to apply dynamic taint analysis (DTA) on the re-
plica [10, 27]. DTA is a powerful, but expensive method to
detect intrusions. The technique flags all data that arrive
from a suspect source (like the network) as tainted. Tainted
data are tracked throughout the execution of the system, so
that all data the depend on tainted data are also flagged
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Figure 2: Data generated by PA on a user operated
HTC G1 for a day.

as tainted. For instance, when tainted values are used as
source operands in ALU operations or copied, the destina-
tion is also tainted. When an attacker exploits a vulnera-
bility (e.g., a buffer overflow, a format string attack, a dan-
gling pointer, etc.) to inject and execute arbitrary code, or
simply arbitrarily redirect the execution flow of the vulner-
able program (e.g., using return-to-libc, or return oriented
shellcode), DTA identifies the illegal use of tainted data and
raises an alert. For instance, an alert is raised when tainted
data are executed, or used as an operand of a CALL instruc-
tion.

DTA works against a host of exploits, including zero-day
attacks, and incurs practically no false positives. Unfor-
tunately, the overhead imposed is very high, making it an
impractical solution to deploy on production systems (both
PCs and phones). By applying DTA on a smartphone’s re-
plica, we manage to hide its overhead from the end user,
and concurrently exploit the more powerful hardware in the
cloud to accelerate it.

4. EVALUATION
We evaluate our implementation of PA along three axes:

the amount of trace data generated during recording, the
overhead imposed by the tracer on the device, and finally the
performance and scalability of the server hosting the repli-
cas. We run the tracer on the HTC G1 developer phone,
while the replayer is hosted on the modified QEMU [1] em-
ulator that comes with the official SDK. We do not perform
a security evaluation of our taint analysis implemention on
QEMU, as it has been sufficiently demonstrated by [35].

4.1 Data Volume
The volume of data generated by the tracer constitutes

an important metric, as it directly affects the amount of en-
ergy required to transmit the trace log to the server, and the
storage space needed to store it on the device when discon-
nected from the server. Additionally, the upload bandwidth
available to smartphone users (usually a few hundred Kbps)
is a scarce resource, as it is frequently much less than the
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Figure 3: Average data generation rate, when per-
forming various tasks.

available download bandwidth.
Our traces collected from actual users using their phones

show, not surprisingly perhaps, that mobile devices are mostly
idle, or used for voice calls. A plot of the amount of data
generated by PA over time is shown in Figure 2. Mean-
while, Figure 3 shows that the data generated when the
device is idle or the user is making a call is negligible, with
an average of 64B/s and 121B/s respectively. Even when
performing more intensive tasks, such as browsing or listen-
ing to music, the tracer generates less than 2KiB/s. For
instance, 5 hours2 of audio playback would generate about
22.5MB of trace data. Transmitting such an amount of data
solely over 3G may burden users with excessive costs, spe-
cially when operators cap their bandwidth and charge extra
for data transfers over the cap, but it can be easily stored
locally on the smartphone (devices already offer relatively
large amounts of storage; e.g., the iPhone 4 offers 32GB of
storage) until a WiFi connection is available. Taking into
account that many users spend most of their time at home
or at the office, it is very likely that WiFi connectivity will
be frequently available to synchronize with the server.

4.2 Overhead
PA imposes two types of overhead on the phone. First,

it consumes additional CPU cycles and thus incurs a per-
formance overhead. Second, it consumes more power be-
cause of the increased CPU usage and the transmission of
the execution trace to the server. To quantify these costs, we
monitored the device’s CPU load average, and battery level,
while randomly browsing URLs from [7]. We performed this
task natively as well as under PA, and show the results in
Figure 4.

Figure 4 confirms that PA increases the CPU load on the
device. In particular, the mean CPU load during this ex-
periment was about 15% higher when using PA. The use of
compression and encryption is somewhat costly in terms of

2Typical battery life when browsing or reproducing audio
can range from 3 to 8 hours depending on the device.
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Figure 4: Battery level and CPU load average
while browsing on the HTC G1 developer phone.
We draw two independent experiments, where we
browse URLs from [7] natively and under PA.

processing, but the amount of data we generate does not
seem to justify for such a divergence. The figure also shows
how battery capacity drops in time while browsing. As ex-
pected power is consumed faster when using PA. When idle
or in light use, the additional battery consumption is mini-
mal, but heavyweight tasks, such as browsing may consume
up to 30% more energy.

However, most of this overhead seems to be due to the
additional CPU cycles consumed by the user space tracer.
We confirmed this by way of an experiment where we only
transmit the trace data corresponding to the browsing ac-
tivity (using SSL as the tracer would do), and found that
the device did not report any drop in battery level. We in-
vestigate the cause behind this increase in CPU load and
battery consumption, and discuss our findings in 4.4.

4.3 Server Scalability
Chun et al. [6] has shown that simply moving computation

from a smartphone to faster hardware such as a PC, even
when running on an emulator, can increase performance up
to 11.8 times. While we cannot replay execution faster than
it is recorded, the significant difference in processing power
between smartphones and PCs enables us to host multiple
replicas on each security server.

We corroborate our assumption by measuring the number
of phone replicas that can be run concurrently on various
hardware configurations. Each replica was run on the An-
droid Qemu-based emulator, executing the same task as the
original. It is also in-sync with the replayed device, i.e., the
replica has to wait for trace data from the device. While
running the replicas, we did not introduce any detection
mechanism or instrumentation, which represents an opti-
mal scenario for this experiment. The results are shown in
Figure 5, where we draw the number of replicas that can
be run under these conditions using different hardware con-
figurations. Particularly, we used a dual-core (x2 2.26GHz
P8400) HP HDX18 notebook with 4GB of RAM, a four-
core (x4 2.40GHz Q6600) desktop PC with 8GB of RAM,
and a high-memory extra-large instance on Amazon’s Elastic
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Cloud (EC2) service with 68.4GB or RAM. When running
in the EC2 cloud, we were able to concurrently run more
than 100 replicas of devices exhibiting an average 25% CPU
utilisation. Utilisation is a key factor, since it determines
the number of replicas that can be run without delays, as
computation is relatively expensive when running under the
emulator.

Determining the average CPU utilisation of smartphones
in a realistic scenario is not a trivial task, and we are not
aware of any preexisting studies on the subject. Neverthe-
less, we can look at the intensity of different tasks com-
monly performed on these devices. For instance, on the
HTC G1 developer phone we measured 90%-100% CPU util-
isation when running a game, 20%-25% when reproducing
audio, 30%-100% when browsing, and finally 0%-5% when
the phone is idle. We can intuitively argue that smartphones
remain idle or run non-interactive tasks like listening to mu-
sic most of the time. In the opposite case, battery is drained
quickly by the CPU (when running intensive tasks such as
browsing or gaming), the display, and various device sensors
(GPS, accelerometer, etc.).

We already mentioned that the results presented in Fig-
ure 5 present an optimal scenario, as no security mechanism
is applied. PA’s scalability actually depends on the type
and number of mechanisms introduced at the server. For
instance, previous work that implemented DTA for the x86
architecture using the Qemu emulator reported a x2-x2.5
slowdown compared with execution under Qemu alone. We
obtained similar results implementing DTA for the ARM ar-
chitecture using Android’s Qemu-based emulator. As such,
we estimate that if DTA is applied on every replica, we would
be able to run roughly half of the instances reported in Fig-
ure 5 without any delay. Finally, we have tested our scheme
on Amazon’s EC2 cloud service to demonstrate the scala-
bility of our approach. In practice, organisations that are
willing to invest in smartphone security, will most probably
host their own security servers as well as proxies to ensure
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Figure 6: The time it takes to read 4Kbytes of data
from /dev/urandom natively, and when tracing.

Function Time Spent %
ptrace() % 33.63
waitpid() % 32.68
deflate slow() % 7.62
pread64() % 6.78
mcount interval() % 2.84
event handler run() % 2.15

Table 1: Top executing functions in the tracer.

that privacy sensitive data remain within the organisation,
and to reduce costs3.

4.4 Overhead Imposed By Ptrace
We mentioned earlier that we observed an increase in CPU

load and consequently battery consumption under PA that
was unexpected. We investigated further by profiling the
tracer to identify its “expensive” functions, and list the top
five functions in Table 1. We see that compression (per-
formed by deflate slow) consumes only 7.62% of the tracer’s
execution time, and no cryptographic function is even re-
ported in the top results. On the other hand, a bit more
than 65% is spent in ptrace and waitpid. The latter is called
continuously to retrieve events from the kernel. Every time a
traced process enters or exits a system call, it is blocked and
such an event is delivered to the tracer through waitpid. Ad-
ditionally, we use ptrace at least once for every event to re-
trieve additional information (e.g., the system call number).
These two calls cause a large number of context switches
between the tracer, traced processes, and the kernel, and
incur the larger part of the overhead we observe. Similarly,
pread64 is used to copy data from the memory of traced
processes (such as data returned by a system call).

We are confident that moving event reception and the ini-
tial part of event handling of PA in the kernel, would greatly
improve performance. This is supported by what we see in
Figure 6. Even when tracing a single system call like read,
using ptrace incurs a huge overhead when compared with

3Products that offer data proxying are already available for
devices like BlackBerry smartphones [3].



native execution. On the contrary, tracing the same system
call, including copying the returned data, within the kernel
imposes no observable overhead. Future work on PA will
focus on moving part of the implementation in the kernel.

5. RELATED WORK
The idea of decoupling security from execution has been

explored previously in a different context. Malkhi et al. [22]
explored the execution of Java applets on a remote server
as a way to protect end hosts. The code is executed at the
remote server instead of the end host, and the design fo-
cuses on transparently linking the end host browser to the
remotely executing applet. Although similar at the con-
ceptual level, one major difference is that PA is replicating
rather than moving the actual execution, and the interaction
with the operating environment is more intense and requires
additional engineering.

Ripley [40] is another system that proposes the replication
of an application in a server to automatically preserve its in-
tegrity. Unlike PA, it focuses on distributed web 2.0 appli-
cations, and particularly AJAX based applications. Attacks
are detected by comparing the results of the replica with the
client’s. A discrepancy indicates an attack, so Ripley is in
fact investing on the two executions deviating. Furthermore,
it does not apply to a broad range attacks like PA, and it is
not transparent to the application.

The idea of off-loading execution from smartphones to the
cloud was first proposed in CloneCloud [6]. The main focus
of this work is the acceleration of CPU intensive and low
interaction applications. While the authors recognize its po-
tential use for decoupling security from phones, they do not
investigate the effects of disconnected operation on security
(i.e., the need for secure storage), nor do they investigate
the cost of replication for the phone and the server. Finally,
CloneCloud is not always transparent to applications.

Decoupling security from smartphones was first explored
in SmartSiren [4], albeit with a more traditional anti-virus
file-scanning security model in mind. As such, synchronisa-
tion and replay is less of an issue compared to PA. Oberheide
et al. [30] explore a design that is similar to SmartSiren, fo-
cusing more on the scale and complexity of the cloud back-
end for supporting mobile phone file scanning, and sketching
out some of the design challenges in terms of synchronisa-
tion. Some of these challenges are common in the design of
PA, and we show that such a design is feasible and useful.
However, both these approaches can only protect against a
limited set of attack vectors.

Other work on smartphone security includes VirusMeter
by Liu et al. [21]. This work also identifies that traditional
defences do not perform as well on smartphones due their
limited resources. They propose using power consumption
levels to identify potentially malicious software operating on
a smartphone. Their solution uses very little resources, but
it may incur false positives. Enck et al. address the issue
of malicious applications downloaded on smartphones with
Kirin [13]. They propose a system that can automatically
analyse applications submitted to application stores (e.g.,
Google’s Marketplace and Apple’s Apple Store) for poten-
tially malicious behaviour. Kirin is orthogonal to our sys-
tem, and could in fact be used in combination.

Our architecture also bears some similarities to BugNet [26]
which consists of a memory-backed FIFO queue effectively
decoupled from the monitored applications, but with data

periodically flushed to the replica rather than to disk. We
store significantly less information than BugNet, as the iden-
tical replica contains most of the necessary state.

6. CONCLUSION
In this paper, we have discussed a new model for protect-

ing mobile phones. These devices are increasingly complex,
increasingly vulnerable, and increasingly attractive targets
for attackers because of their broad application domain. The
need for strong protection is apparent, preferably using mul-
tiple and diverse attack detection measures. Our security
model performs attack detection on a remote server in the
cloud where the execution of the software on the phone is
mirrored in a virtual machine. In principle, there is no limit
on the number of attack detection techniques that we can
apply in parallel. Rather than running the security mea-
sures locally, the phone records a minimal execution trace,
and transmits it to the security server, which faithfully re-
plays the original execution.

The evaluation of a user space implementation of our ar-
chitecture Paranoid Android, shows that transmission over-
head can be kept well below 2.5KiBps even during periods
of high activity (browsing, audio playback), and to virtually
nothing during idle periods. Battery life is reduced by about
30%, but we show that it can be significantly improved by
implementing the tracer within the kernel. We conclude that
our architecture is suitable for protection of mobile phones.
Moreover, it offers more comprehensive security than possi-
ble with alternative models.
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