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ABSTRACT
The upgrade of the electricity network to the “smart grid”
has been intensified in the last years. The new automated
devices being deployed gather large quantities of data that
offer promises of a more resilient grid but also raise privacy
concerns among customers and energy distributors.

In this paper, we focus on the energy consumption traces
that smart meters generate and especially on the risk of
being able to identify individual customers given a large
dataset of these traces. This is a question raised in the re-
lated literature and an important privacy research topic. We
present an overview of the current research regarding privacy
in the Advanced Metering Infrastructure. We make a for-
malization of the problem of de-anonymization by matching
low-frequency and high-frequency smart metering datasets
and we also build a threat model related to this problem. Fi-
nally, we investigate the characteristics of these datasets in
order to make them more resilient to the de-anonymization
process.

Our methodology can be used by electricity companies
to better understand the properties of their smart metering
datasets and the conditions under which such datasets can
be released to third parties.

Keywords
Smart grid data privacy; Advanced Metering Infrastructure
(AMI) data characteristics; Smart meter privacy; Smart me-
tering data
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1. INTRODUCTION
In any new domain where significantly more data starts

being produced, the privacy of the customer who produces
these data may be at risk. This is also the case in the new
smart grid which is the name used for the modern electrical
grid. One of the main differences between the traditional
electrical grid and the new smart grid is the large number
of computing and communication devices being installed in
different parts of the grid and that are connected through
an overlay communication network; their main purpose is
to make the grid monitoring and operational processes more
accurate and more efficient.

These computing and communication devices are deployed
in all of the three main sections of the electrical network:
the generation section, the transmission section and the dis-
tribution section. Specifically, in the distribution section,
the traditional electro-mechanical meters that used to mon-
itor the electrical energy consumed by the end customers
are replaced by the new so-called smart meters. The smart
meters, together with other devices that monitor, gather
and send their data to the energy distributor’s central lo-
cation form the Advanced Metering Infrastructure (AMI ).
The AMI offers two-way communication between the cen-
tral control system and the smart meters, resulting in bet-
ter remote functionality of the smart meters, such as remote
shut-off commands and control of demand-side electricity
load and generation. Figure 1 presents an overview of the
AMI, together with an exemplification of the different types
of communication media (radio, wired, fiber-optics) and pro-
tocols used (Ethernet, Power Line Communication, ZigBee,
GPRS) in suggested deployments.

As a consequence of the upgrade to the smart grid, signif-
icantly more data is collected and analyzed, for example in
the AMI where more parameters than just the the electri-
cal energy consumed by customers are recorded, at a higher
frequency than before. It is estimated that the size of the
smart grid will be larger than the size of the Internet1 and
the quantity of data produced will be considerable. These
data are expected to play a key role in the development of
the smart grid and will improve the balance between energy
production and energy consumption by making a significant
contribution in improving electrical grid stability and energy
efficiency.

1http://news.cnet.com/8301-11128_3-10241102-54.
html
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Figure 1: The Advanced Metering Infrastructure (AMI)

However, there are concerns that these benefits may come
at the cost of privacy: the large quantity of data produced
and the granularity with which individual items are collected
raise privacy concerns regarding the information that can
be inferred about the lifestyle of the customers. In some
countries, the debate regarding customer’s privacy has even
slowed down the deployment of smart meters [8].

Therefore, the main question is whether data can be col-
lected in such a way as to keep an adequate privacy level
and still be useful for billing and grid operational purposes.
Using the terminology from [17], any solution should offer
anonymity (the state of being not identifiable in a set of sub-
jects) and also temporary unlinkability (the relation of two
items based on the adversary’s observations) of the customer
with the quantity of electrical energy used in that specific
unit of time. However, in the smart grid full unlinkability
is almost impossible to be attained because the customer
needs to be billed at some point for the resources used. The
same goes for the unobservability (usage of a resource with-
out someone to be able to observe that the resource is being
used); the aggregated consumption is known at all times as
the energy used for a group of customers is monitored at the
substation level.

In this paper we first provide an overview of the current
research regarding privacy in the AMI where we present
some of the current privacy problems and privacy enhanc-
ing technologies proposed in the literature, motivating also
the contributions presented subsequently in the paper. We
construct a formalization of the de-anonynimization prob-
lem present in the AMI. The problem is caused by match-
ing two types of datasets collected in the AMI, the low-
frequency dataset (mainly used for billing of customers) and
the high-frequency dataset (mainly used for grid operation).
We build a theoretical model that describes this problem and
also a threat model presenting a possible de-anonymization
scenario performed by an adversary. We perform an inves-
tigation of the characteristics of these datasets in order to
make them more resilient to the de-anonymization process.
In our investigation, we concentrate on the data collected
in the distribution network from the AMI where we focus
mainly on the data granularity and timespan.

The rest of the paper is structured as follows: in Sec-
tion 2 we present the general considerations of data privacy
in the AMI as well as the different data types that can be col-
lected. We give an overview of the current literature, present
the main questions regarding the privacy concerns raised by
AMI data and describe the characteristics of the two types of
datasets mentioned earlier. Section 3 formally describes the
de-anonymization problem, followed by the development of
the theoretical framework and the threat model. Section 4
describes the investigation conducted and a discussion of the
results obtained. This paper concludes with Section 5 which
summarizes our results and their implications.

2. DATA PRIVACY IN THE ADVANCED ME-
TERING INFRASTRUCTURE

As mentioned in the previous section, the main improve-
ment introduced by the smart grid in the distribution sec-
tion is the replacement of the traditional electromechanical
meters with the new smart electrical meters which are the
main producers of data from the AMI. Before the smart me-
ters, energy consumption readings were usually made every
month or even less frequently, usually by a human operator
visiting each customer individually, so the quantity of data
gathered was not even comparable with the one today.

2.1 Data from the Advanced Metering Infras-
tructure

Data from the Advanced Metering Infrastructure are pri-
marily used for billing purposes and consist of the index of
energy consumption in kWh. The modern smart meters offer
the possibility to extract much more information about the
well-being of the electrical distribution network. For billing
of residential customers, only the quantity of the so-called
active energy consumed is required. For high industrial con-
sumers the quantity of reactive energy used may also be
billed; grid operation may require information about instan-
taneous values of voltage, current, active/reactive power,
power outage logs, errors in the metering equipment, and
much more. Table 1 shows a short list of useful data types
that can be gathered from the AMI.

Billing data Operational Data
Active energy Power (active, reactive, power factor)

Reactive energy Voltage (value, phase angle)
Current (value, phase angle)
Power outage logs, Alarms

Table 1: Data from the AMI

Efthymiou et al. [7] use the term high-frequency data for
data used for grid operational purposes and low-frequency
data for data used for billing purposes. We will keep the
same definitions throughout this paper. Low-frequency data
need to be collected seldomly (every month or every few
months) but the law dictates that such data need to be iden-
tifiable to a specific customer for correct billing and to pre-
vent fraud, both from the customer side and from the utility
provider side. High-frequency data, used for grid operations,
need to be collected very often (every few minutes) in order
to give an accurate overview of the electrical distribution
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network. Previous research [1, 16] shows that fine-grained
data can infer information about the lifestyle of the inhab-
itants such as electrical device usage patterns and presence
or absence from the premises. Although the utility of these
data for grid operation is evident, the privacy concerns that
may be raised cannot be ignored. In an ideal case, these
data should not be identifiable with a specific customer [7],
but with a group of customers served by the same electrical
transformer or distribution station.

2.2 Data usage in the Advanced Metering In-
frastructure

As mentioned in the previous section, there are several
different types of data that can be collected in large quanti-
ties from the Advanced Metering Infrastructure. The main
consumer of these data is the Distributor System Operator
(DSO), followed by other third parties, each of them hav-
ing different purposes. Data can be used by the DSO for
billing, processed for fraud detection, operational purposes
(grid stability and security) or marketing. Third parties (re-
searchers, other companies, malicious entities) may also be
interested in these data for benign activities (research, mar-
keting) or for malign ones (fraud, invasion of privacy or even
attacks against the critical infrastructures).

The privacy preserving techniques (PPTs) are usually im-
plemented at a large scale by the DSO, or a legal trusted
third party and at a small scale by the customers. When
thinking about a specific privacy preserving technique it is
important to remember the complexity of the parties that
may have access and use the data produced. For example,
we should be able to answer the following (not exhaustive)
list of questions:

• does the PPT offer privacy protection against DSOs?

• does it offer privacy protection against third parties?

• does it provide availability of billing data?

If interested in providing privacy for its customers, the
DSO may prefer to employ a solution that offers privacy pro-
tection against third parties but which first provides avail-
ability of the billing data.

The customer may prefer a solution that offers privacy
protection against both the DSO and other third parties,
while availability of billing data might come in a later po-
sition in the customer’s priority list. Thus, the DSO’s and
the customer’s visions of privacy might be different and even
conflicting. In an ideal case, the customer’s data privacy
should be protected against both the DSO and other third
parties.

2.3 Overview of smart grid privacy mech-
anisms in the literature

As a concept, Warren and Brandeis [21] give in 1890 the
definition of “privacy”as the“right to be let alone”. More re-
cently, Pfitzmann and Hansen [17] define the terminology to
be used when talking about privacy by data minimization.2

2The terminology includes: anonymity, unlinkability, linka-
bility, undetectability, unobservability, pseudonymity, iden-
tifiability, identity, partial identity, digital identity and iden-
tity management.

From a legal point of view, to the best of our knowledge,
there is no specific European Directive which covers smart
metering data privacy. Thus, only the general European Di-
rective, EU Data Protection Directive 95/46/EC [6], would
cover these types of data. However, the German Federal Of-
fice for Information Security developed the Protection Pro-
file for the Gateway of a Smart Metering System; closely
related to this, Stegelmann and Kesdogan [19] propose an
architecture called GridPriv that includes a non-trusted k-
anonymity service for pseudonymised meter data.

Siddiqui et al. [18] make an overview of some of the pro-
posed solutions towards preserving privacy in the smart grid
and divide these into the following categories: anonymous
credentials, third party escrow mechanisms, load signature
moderation, smart energy gateway and privacy-preserving
authentication.

Anonymous credentials are based on blind signatures (sim-
ilar to the ones used in the e-cash payment systems) and
have the advantage to offer privacy protection against both
DSO and third parties. The disadvantage of this solution
is that it does not provide availability of billing data and it
can only be used for pre-paid energy.

Third party escrow mechanisms [1, 7, 20] require the pres-
ence of a trusted third party entity whose role is to anonymize
the data collected from the customers and then present it
to the DSO or to aggregate the data and present it in an
anonymized form. As mentioned in Section 2.1, Efthymiou
and Kalogridis [7] present a solution based on separation of
data into attributable low-frequency data, collected seldom
and mainly used for billing, and anonymized high-frequency
data, collected very often and used for grid operation. Each
of these will be reported using a different pseudonym (one
public and one private) and only the trusted third party is
supposed to know the connection between the anonymous
pseudonym and the public one. Their solution offers pri-
vacy protection against other third parties and also provides
availability for billing data. The open question that remains
is if the DSO can later recreate low-frequency data from the
high-frequency and match it with the already available low-
frequency data and so breaking the privacy. We will return
to this question in Section 3.

Load signature moderation [10, 11] is a good privacy pre-
serving method that can be used by customers. It requires
the presence of an energy storage facility at the customer
premises, such as an old battery from an electrical vehicle.
The customer can then even out her external load signature
by drawing energy from the battery in the high-load peri-
ods or by charging it during the low consumption periods or
when energy is cheaper. This method offers protection both
against DSOs and other third parties and also provides avail-
ability of billing data, because the Smart Meter will register
only the energy used from the electricity network. However,
the method has the disadvantage of requiring extra hard-
ware.

The last two categories proposed by Siddiqui et al. [18]
are smart energy gateway and privacy-preserving authenti-
cation. In the same way as load signature moderation, these
also require the presence at the customer premises of a ded-
icated system. In the first case the system is responsible to
manage data released from the smart meter on some inter-
nal rules based on the data requester, while in the second
case its role is to create trusted pseudo-identities that are
used in requesting different energy amounts. In the first case
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privacy protection and availability of billing data can be en-
forced by setting up proper rules; the second one can only
be used in a pre-paid energy scenario.

Hiding in the crowd is another method used to preserve
privacy. Borges et al. [2] present a solution based on anony-
mity networks in which a customer uses two different identi-
ties to send his billing data and grid-operational data. While
the billing data is directly attributable to him, the grid-
operational data is forwarded to the DSO through an anony-
mity network, so the customer cannot be directly identified
in a group of customers from the same network.

Data aggregation can also be used as a privacy-preserving
solution. Before data is aggregated, one initial step in order
to prevent unlawful disclosure of information is to perform
mutual authentication [22, 23] between the entities involved
in the process. Following this, privacy against the DSO and
third parties can be obtained by using homomorphic cryp-
tography [2, 12, 13, 23], or by adding random noise from a
known distribution of zero mean [12, 13], but unfortunately
aggregating methods do not provide availability of billing
data and techniques based on homomorphic cryptography
can be expensive on devices with reduced processing power
and low resources such as the currently deployed smart me-
ters.

Privacy enhancing techniques should also be resistant to
attacks. Jawurek et al. [9] present the problem of breaking
smart meter privacy by using de-pseudonymization. They
propose a framework based on machine learning with sup-
port vector machines for the analysis of consumption traces
and tracking consumption traces across different pseudonyms
by using two linking procedures. Linking by Behaviour
Anomaly (LA) tries to link a real ID to a consumption trace
or two consumption traces together by correlating anoma-
lies that happen in the same time, for example consumption
spikes or blackouts. Linking by Behaviour Pattern (LB)
tries to link different pseudonyms for one consumer and their
method can be applied even if the consumption profiles do
not overlap in time. In this paper we show that even simpler
functions may also work quite well in identifying customers.

Buchmann et al. [3] show that identification of individual
houses based on their energy-consumption records is possible
even by using simple statistical tools such as means and
standard deviations on a reduced number of data features.
They show that 68% of the records coming from a set of 180
houses can be re-identified by using these simple methods.

So far we presented an overview of the current literature
regarding privacy in the smart grid context. Next we will
present the research papers that are close connected to our
work.

Related work especially relevant to this paper:
Out of the presented papers above, the ones that are most
closely related to ours are [3, 4, 7, 9]. Efthymiou and Kalo-
gridis [7] set up the terminology on which we build our
framework. Their solution is based on a trusted third party
that takes care of the private IDs used in the process of
high-frequency data anonymization and also of the connec-
tions between the high-frequency ID and the low-frequency
one. Jawurek et al. [9] present a de-pseudonymization frame-
work based on machine learning and are focusing mainly on
anomalies in data consumption that happen in the same
time. For their solution, fine-grained data is required, be-
cause such anomalies can be missed if aggregated daily or

monthly values are used. Compared with their solution, we
are focusing mainly on aggregated consumption where we
try to identify uniqueness. Buchmann et al. [3] use sim-
ple statistical tools on a reduced number of consumption
features and also on external information sources such as
physical observation of people habits. Focusing on demand-
response schemes, Cárdenas et al. [4] present the problem
of appropriate sampling intervals in AMI as a trade-off be-
tween keeping a good level of customer privacy and gains
in the demand-response scheme properties. They focus on
the economics behind this problem as a parameter into the
proper sampling scheme.

2.4 Advanced Metering Infrastructure data
characteristics and problem formulation

Summarising regarding the AMI data characteristics on
the two types of active energy consumption data reported
by the smart meters in AMI, high-frequency (HF) data and
low-frequency (LF) data, the question that arises is how
these data should be reported and gathered in order to keep
an adequate level of privacy against both the DSO and third
parties? The level of privacy is measured as a reduced num-
ber of uniquely identifiable customers based on these two
types of reported data.

There are a number of questions to which the research
community tries to find the answers:

• Can customers be identified based on their energy con-
sumption reported by the smart meters?

• How similar are customers with each other based on
their energy consumption trace?

There are three characteristics of these data that were
identified in the literature that determine the privacy level:
number of pseudonyms for the same customer used in re-
porting/storing data, the timespan of data stored by the
utility provider and the granularity of reported/stored data.
The investigation presented in Section 4 focuses on the last
two of these characteristics and on their role in making the
datasets more resilient to the de-anonymization process.

Reporting high-frequency data under different pseudonyms
and making sure that connections between pseudonyms are
extremely hard to find and/or known by only a trusted third
party [2, 7, 12] have been proposed earlier in the research
literature. Using one pseudonym can be useful, if the con-
nection between this pseudonym and the real customer ID
is secret, but reporting or storing data from the same smart
meter under different pseudonyms for shorter timespans can
be very efficient [2]. Although useful, generating multiple
pseudonyms can be expensive for the smart meter device, be-
cause they need to create them through the use of a crypto-
graphic algorithm, or they need to be provided when shipped
from the factory.

The timespan of data stored is also very important, be-
cause longer periods of stored data for a smart meter (un-
der the same pseudonym) can infer much more information
about the energy consumption that took place. The ques-
tion here is what the window for stored data that is useful
for billing/grid operation is but which is also, at the same
time, privacy preserving?

The last characteristic taken into consideration is the gran-
ularity of reported and stored data. Low-frequency data

64



must be reported in fine-grained detail for accurate billing
and to prevent fraud. Customers want, naturally, only to
be billed for what they consumed, and the utility company
wants to know exactly how much is consumed in order to
level production and to better operate the grid. Unfortu-
nately, loss occurs in the distribution grid due to transform-
ers and old equipment, and are taken into consideration [5].
The question is whether the reported high-frequency data
can be altered in a minor way such that the modification will
not affect the grid operation, but making it hard to identify
each customer uniquely by, for example, making the data
from different customers more uniform? Figure 2 presents
these three characteristics in relation to the adequate pri-
vacy level that is desired.

Data
Granularity

Data
Timespan

Pseudonyms

Safe
Zone

Unsafe
Zone

Figure 2: Characteristics of AMI data

3. METHODOLOGY
We will now formally describe the de-anonymization pro-

cess by linking a low-frequency dataset with a high-frequency
dataset. We will also present a threat scenario featuring an
adversary which attempts to uniquely identify as many cus-
tomers as possible and learn as much as possible, for example
about their habits and living conditions, using the informa-
tion from the high-frequency dataset.

Based on this scenario, in Section 4 we will conduct an in-
vestigation using a large real dataset on which we will study
the influence of data timespan and granularity in the de-
anonymization process. Our methodology can be used to
better understand the limits of what is safe and what is not
with regard to releasing datasets to third parties.

3.1 Formal framework
Assume that there exists a dataset, C = {(identifier,

timestamp, value)}, collected from the smart meters in an
advanced metering infrastructure. This dataset contains
identifiers (identifier) that can be used to identify individ-
ual customers, as well as high-frequency data (value) of the
form described in Section 2.1, each marked with a specific
timestamp. As mentioned, the high-frequency data can be
used to infer habits of households.

There are two functions, fH(·) and fL(·) such that we can
derive two new datasets by letting{

H = fH(C)
L = fL(C)

where H and L are related but have slightly different prop-
erties. In a scenario within the smart grid, H would be

a dataset with, for example, the originally collected high-
frequency data but where all customer identification would
be replaced with untraceable labels (one simple way to ob-
tain untraceable labels is to use a random label generator
and check for possible collisions). This dataset could then
be used for grid operation and optimization as it would not
be possible to use it to identify individual customers. The
set L, on the other hand, would retain the original identi-
fiers making it possible to identify customers but instead the
data in this dataset would be aggregated (under the origi-
nal identifier) so as to be less privacy invasive. This dataset
could then be used for billing of monthly consumption, for
example. The complete dataset, C is then discarded.3

We further assume that finding f−1
H and f−1

L is intractable,
as information is deliberately discarded in each transform.
Thus, if an adversary obtained either H or L it would be
difficult to recreate C and each dataset in isolation would
not be interesting. This is similar in vein to the indirect
assumptions for the solution presented by Efthymiou and
Kalogridis [7].

However, as H and L originate from the same dataset, we
assume that there exists another function, g(·), such that
H′L′ = g(H).4 The data in H′L′ would retain the identi-
fying labels from H and be aggregated in a similar fashion
to L. If we could then link any entries between these two
datasets, H′L′ ∼ L, we might partially be able to recreate C
by relabeling the entries in H. The problem, though, is that
many of the aggregated values in L may not be unique but
would be the same across a number of customers meaning
that we cannot easily infer which labels should be linked as
there will be a set of possible matches. Intuitively, we would
expect customers with a very uncommon behavior to maybe
be re-identified but that a majority of customers would be-
long to clusters that behave in a similar nature and thus not
be uniquely identified.

Formally, the question we would like to answer is whether
it is at all possible to link these two datasets, given a large
realistic scenario. If so, we want to measure how well C can
be recreated and provide boundaries on what an adversary
can achieve if she has access to both H and L. Can we limit
the information gained by the adversary by changing the
properties of either of these datasets, for example by using
more pseudonyms or storing less data as discussed in Sec-
tion 2.4?

3.2 Adversarial strategy
A possible adversarial strategy algorithm, that is also im-

plied by the previous literature, is presented in Algorithm 1,
and it is used to derive the associated adversary model. The
adversary gets hold of two sets of data, one containing high-
frequency (H) data and one containing low-frequency data
(L) with the properties described in Section 3.1. The indi-
vidual smart meters that produced these data are labeled
differently in these two datasets; to simplify the presen-
tation, we assume each smart meter has only one identi-
fier in each of the sets, being equivalent to using only one

3The complete dataset, C, might not ever exist if the trans-
forms are run continuously in the smart meters.
4The existance of g(·) would depend on how fH(·) and fL(·)
were constructed. Based on our survey of existing methods,
we say that it is likely g(·) exists.
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pseudonym. The algorithm can easily be extended with sets
of more pseudonyms.

Algorithm 1: Adversarial strategy algorithm

Requirement: adversary has obtained H and L
Goal: recreate as much as possible of C
begin algorithm

create H′L′ = g(H);
while IDlink = findLink(H′L′,L) do

recreate one entry in C;
remove identified trace from H′L′ and L

end

end
begin function findLink

/* Version 1: find *unique* consumption

traces in a time period in L */

foreach timeperiod j in L do
if any unique consumption traces exists then

extract identifying ID from L;
find corresponding entry in H′L′;
extract identifying ID’ from H′L′;
return <ID, ID’>;

end

end
/* no more links can be made */

return false;

end

As stated above, we assume the adversary wants to be
able to recreate the dataset C, where she can label the high-
frequency data with the identity of the individual customers
from the low-frequency dataset. By analyzing the low-fre-
quency datasets, she tries to find as many “unusual” cus-
tomers as possible, i.e. customers that at some point in
time have data values that differ from the norm so that she
can create a link between H′L′ and L. In the algorithm,
this is performed in the function findLink(). This analysis
can range in its sophistication. In the first version of the
algorithm, we have chosen to implement a method that only
looks for unique values in a time period to show that even
a relatively simple and fast analysis can be surprisingly ef-
ficient. As we will show in Section 3.3, the simplicity of the
function also allows us to model it as a game of balls and
bins so that we can estimate the probabilities of the success
of the scenario.

Note that our discussion so far has been of a general na-
ture; the datasets can contain a diverse set of data as de-
scribed in Section 2.1. However, in the following we are
going to concentrate on consumption traces. These types of
datasets are often used in the literature (please see Table 2
for an overview).

3.3 Probabilistic framework and analysis
In this section, we model the adversarial strategy algo-

rithm in a probabilistic framework to be able to reason for-
mally about the adversary’s capabilities and possibilities of
success in de-anonymizing customers. Given the properties
of the function findLink() shown in Algorithm 1 it is pos-
sible to model the algorithm as a game of balls and bins [15].
In the following discussion, we assume the datasets contain
energy consumption data e.g. kWh consumption indexes.

The energy index data frommj smart meters (balls) in one
time period, j ∈ T , can be sorted into a set of n different
intervals (bins), where the width of the bins corresponds to
a range of energy consumption units (multiples of kWh).
We let the width of the bins be an integer, w, that can
vary from 1 to W . The number of bins is then n = M

w
,

where M = max(mT ) is the maximum index consumption
value for all the time periods considered. At each round, the
number of balls in all the bins is equal with the number of
balls at the beginning of the round e.g.

∑n
i=1mwi = mj .

Any ball that falls alone in a bin is considered to be
uniquely identified and it is removed. This is then repeated;
each round of the game uses data from a time period where
index data for the mj smart meters exist. The game ends
when either all the balls are removed or when there exists
no more time periods with new data. The percent of elimi-
nated balls at the end of the game is then equivalent to the
percent of uniquely identifiable consumption indexes from
that specific dataset.

In the analysis of the bins and balls game presented by
Mitzenmacher and Upfal [15] the probability that a bin re-
ceives a number of r balls when m balls are thrown inde-
pendently and uniformly at random into n bins is given as
a Poisson distribution of mean m

n
.

P [a bin has r balls] =
e−

m
n × (m

n
)r

r!
(1)

Note that we assume a Poisson distribution of the balls
into bins. This will be further discussed in Section 4.2. In
our specific case with r = 1 (only one ball per bin so that we
can identify the customer), the probability above becomes
the following.

P [a bin has 1 ball] = e−
m×w
M × m× w

M
(2)

For the Poisson case, the number of balls in each bin must
be independent random variables. In our case, the number
of balls in the last bin is known as we have m balls and we
know the number of balls in the first n − 1 bins. Corollary
5.9 from [15] states the following.

Corollary 3.1. [15] Any event that takes place with prob-
ability p in the Poisson case takes place with probability at
most pe

√
m in the exact case.

Thus, any event that happens with a small probability in
the Poisson case also happens with a small probability in
the exact case, where balls are thrown into bins [15] and
justifies the Poisson analysis for the bins and balls game.
The expected number of bins with only 1 ball becomes the
following.

E[binswith 1 ball] = e−
m×w
M × m (3)

Let the number of balls available at the beginning of the
game be m0. If we consider two consecutive rounds in the
game, the expected number of balls mj at the beginning of
round j can be computed as:

mj = mj−1 − Ej−1[binswith 1 ball] (4)

where if we substitute the expression for the expected value:

mj = mj−1 × (1− exp (−mj−1 × w
M

)) (5)
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The game ends when either all balls have been removed from
the game (mj = 0) or all the time periods with available
data, T , have been used (j > T ).

The adversary would win the game when the percentage
of extracted balls is above a specific threshold, λ, meaning
that a large percentage of the smart meters have been iden-

tified uniquely (
∑

1≤j≤T mj

m0
> λ). The utility company wins

the game when the percentage of uniquely identified smart
meters is low (mT is very close to m0). By investigating
the parameters (m, λ, w), we can explore the limits of the
capabilities of the adversary to make sure that she cannot
identify a large set of customers.

4. EVALUATION STUDY
As mentioned in Section 2.4, the granularity and data

timespan play an important role in the data de-anonymization
process. We investigate these two characteristics by using a
simulation based on the probabilistic framework presented
in Section 3.3 and an evaluation based on a dataset, de-
scribed in Section 4.1. We expect to identify the influence
of the characteristics in the context of the adversarial strat-
egy algorithm presented in Section 3.2. The last part of this
section presents a discussion of the results obtained.

4.1 Description of the dataset
To see how well the adversarial strategy algorithm works

in a real setting we use a dataset consisting of smart meter
readings from a large number of consumers in a medium-
sized city. The original data have hourly smart meter index
readings for a period of seven non-contiguous months. The
data originates from a range of smart meters serving very
small consumers (summer cottages) to large consumers (in-
dustrial customers). The data have gone through a two-step
anonymization process, once by the utility provider and once
by us, to make sure it is not possible to physically identify
any customers in the set. Each record has the <IDanon,
timestamp, value> format. The timestamp and the index
value remain in clear. The data from each smart meter in
the set can be identified by a unique numerical identifier
(IDanon), that remains the same over the seven months.
This is equivalent of having a single pseudonym for each of
the smart meters for the whole time period.

As the data comes from a real AMI, where problems with
missing values sometimes exist, we also sanitized the data
by creating a smaller set where we removed a number of col-
lection artifacts. Mainly, we removed any smart meters that
had gaps in the hourly reporting (values lost), double con-
flicting records for the same timestamp or decreasing index
values for increasing timestamp values.

After the sanitization process, the dataset contained 19, 334
unique smart meters with 99, 355, 998 hourly energy con-
sumption readings. This set is considered to be the high-
frequency dataset (H). From this dataset, we then cre-
ated the low-frequency dataset (L), which is similar for each
customer to the energy consumption values printed in the
electrical bill. This resulted in 4, 156, 810 daily values and
135, 338 monthly values. As can be seen from Table 2, our
dataset is significantly larger than the ones previously used
in literature.

4.2 The Poisson distribution assumption
In the game of bins and balls presented in Section 3.3 we

assume that the balls are thrown independently and uni-

Dataset Number of Number of
meters readings

Kalogridis et al. [7] N/A N/A
Jawurek et al. [9] 53 281, 112
Buchmann et al. [3] 180 60, 480
Daisuke and Cárdenas [14] 108 ?1, 890, 000
Tudor et al. (this paper) 19, 334 99, 355, 998

Table 2: Datasets from AMI
The ? value was estimated based on values in [14]

formly at random so that they can be modeled as a Poisson
distribution.

The balls signify specific smart meters. These smart me-
ters belong to the same households with the same number
of people with habits that will probably not change on a
monthly basis. Regardless of what bin a ball lands in for
a round, the theoretical model assumes that it is equally
likely that the ball falls into any of the bins in the next
round. However, in the real case it is likely that the en-
ergy consumption pattern would be somewhat similar across
months, so that it is more likely that the ball falls into a bin
close to the bin from the last month. We say that the balls
in the real case are somewhat sticky as they tend to favor,
across months, bins that are closely located.

This also implies that if two balls fell into the same bin
one month, it is likely that they will do so also the following
month in the real case. For that reason, we expect that the
identification process, using function findLink() in Algo-
rithm 1, will be more difficult in the real case compared to
the probabilistic model.

Furthermore, the customers may not be divided uniformly
at random across the consumption bins. A typical household
in Europe hosts about 2.3 people5. Our dataset reflects a
large number of such domestic customers, agglomerated in
the low consumption zone, while the probabilistic model as-
sumes a random spread in the bins. This also strengthens
our expectations regarding the difficulty to identify a ma-
jority of the customers in the real case.

Even with these assumptions, the formal framework let
us reason about the characteristics of the AMI datasets and
their influence on the de-anonymization process.

4.3 Results from the probabilistic framework
The estimation run of the adversarial strategy algorithm

is based on the formulas presented in Section 3.3 with the
parameters adapted to match the dataset of real consump-
tion traces. The initial number of smart meters is selected
to be 19,334 in order to exactly match the number present
in the dataset, and the number of rounds in the estimation
is the same as the number of time periods in the dataset –
seven for the monthly case and 30 for the daily case. The
granularity is varied from 1 to 200 kWh. The value for M is
selected to be the same as in the dataset and is the highest
index value for the time periods considered. The expected
number of identified smart meters (balls) at each round is
computed by using Relation (3), while Relation (4) is used
to compute the number of remaining smart meters (balls)
at the beginning of each round.

5http://appsso.eurostat.ec.europa.eu/nui/show.do?
dataset=ilc_lvph01&lang=en
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Figure 3: Fraction of unique smart meters - seven months
of data - estimation case
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Figure 4: Fraction of unique smart meters - 30 days of data
- estimation case

Figure 3 presents the fraction of uniquely identified smart
meters in the monthly case (seven time periods) obtained
in the estimation, while varying the granularity with which
energy consumption index is reported and the available time
periods. Similarly, Figure 4 presents the estimation results
for the daily case, using 30 time periods (only periods 1-5,
10, 20 and 30 are presented in the figure).

4.4 Results of the adversarial strategy algo-
rithm

An evaluation of the effectiveness of the adversarial strat-
egy algorithm is performed, for two characteristics presented
in Section 2.4, data granularity and timespan. The starting
number of smart meters is 19,334 and the number of monthly
values is 135,338. There are seven time periods, equivalent
to the seven months of data and the maximum index value
is computed from the dataset.
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Figure 5: Fraction of unique smart meters - seven months
of data - dataset case
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Figure 6: Fraction of unique smart meters - 30 days of data
- dataset case

Figure 5 presents the fraction of the uniquely identified
smart meters by using the dataset presented in Section 4.1
for the monthly case, while varying the granularity of the
reported energy consumption index from 1 to 200 kWh. The
figure presents only the results from 1 to 50 kWh, after this
point the values continue on what seems to be a linear trend.

The simulation is repeated by using daily datasets, the
equivalent of one month of recordings (30 days - 593, 830
values), where the first month of data is used. Similarly to
the monthly case, the granularity is varied between 1 and
200 kWh. Figure 6 shows the results based on the dataset
for a granularity between 1 and 50 kWh.

4.5 Dicussion of results
Table 3 presents the expected number of uniquely iden-

tified smart meters at each round of the simulation and
the evaluation of the adversarial strategy algorithm in the
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Newly found Total found
smart meters smart meters %

Time Simu- Eval- Simu- Eval-
period lation uation lation uation
m1 18461 11698 95.4% 60.5%
m2 871 5655 99.9% 89.7%
m3 2 1669 100 % 98.3%
m4 0 155 100 % 99.1%
m5 0 11 100 % 99.2%
m6 0 11 100 % 99.3%
m7 0 10 100 % 99.3%

Total 19334 19209 100 % 99.3%

Table 3: Expected number of identified smart meters for a
reporting granularity of 1 kWh

monthly case for a granularity of 1 kWh. The difference be-
tween the simulation and the evaluation is that in the case
of the simulation more smart meters are identified in the
first round compared with the case of the evaluation based
on the dataset. This makes the identification in the next
rounds easier because a smaller number of smart meters
needs to be divided into bins so the probability of having
more than one smart meter in a bin decreases. This result
can be explained through the assumptions that are discussed
in Section 4.2. For the 1 kWh monthly case, the estimation
ends after three rounds, when all the smart meters are iden-
tified. In the evaluation case, the algorithm runs for all the
seven rounds, and 125 smart meters remain unidentified at
the end, but the percent of identified smart meters is still
above 99%.

Table 4 holds the results for the 10 kWh monthly case and
we can observe that in the simulation case the algorithm
took one more round compared to the 1 kWh case, but the
percent of identified smart meters at the end is still 100%.
The evaluation results for the 10 kWh monthly case show
that the number of unidentified smart meters after all the
rounds is 13,706 and the percent of identified smart meters
is 29.1%. This is a much better result than for the 1 kWh
monthly case.

Figure 5 shows that varying the granularity under which
data are reported can drastically reduce the fraction of iden-
tified smart meters. For example, reporting the index with-
out the last digit, at a 10 kWh scale, can reduce in this
case the percent of identified smart meters at under 10%
for one period and under 30% for all periods. This result
justifies a reporting scheme in which electrical energy con-
sumed is rounded to the next 10 kWh value, before it is
reported and billed, instead of being reported with 1 kWh
accuracy. This will provide a good and cheap anonymity
solution for the other 70% of the customers, in the case that
everyone opts for such a reporting scheme. The same result
can be observed in Figure 6 where for the daily reporting
with 10 kWh granularity, the percent of identified customers
is brought down to almost 10% for one period and to almost
40% for all periods. This simple reporting solution offers a
better degree of privacy, but it may still not be feasible in
regions where the law requires that energy reporting should
be done with kWh accuracy.

We can see that high-frequency datasets contain so much
information so that the re-identification process is possible

Newly found Total found
smart meters smart meters %

Time Simu- Eval- Simu- Eval-
period lation uation lation uation
m1 12182 1670 63.0% 8.6%
m2 6029 1027 94.1% 13.9%
m3 1093 671 99.8% 17.4%
m4 30 543 100 % 20.2%
m5 0 487 100 % 22.7%
m6 0 579 100 % 25.7%
m7 0 651 100 % 29.1%

Total 19334 5628 100 % 29.1%

Table 4: Expected number of identified smart meters for a
reporting granularity of 10 kWh

even with simple means. In our analysis we have assumed
that the adversary would have access to the complete high-
frequency dataset and the complete low-frequency dataset.

The evaluation results show that reporting energy con-
sumption indexes with kWh accuracy makes the datasets
prone to re-identification, because a large percent of the
customers can be identified uniquely, solely based on their
energy consumption. The results closely tie together the
granularity and the timespan of the data and show their
common effect in the re-identification process. They show
that reducing the granularity used for reporting consump-
tion data can be a very simple and beneficial solution that
increases the privacy level of the datasets. Results from
Tables 3 and 4 strengthen this assumption and show a sig-
nificant decrease of the percent of uniquely identified smart
meters from 99.3% to 29.1%, for a decrease of granularity
from 1 kWh to 10 kWh. Also, Figures 5 and 6 show that fur-
ther reduction of the granularity may significantly reduce the
percent of identified customers, making the datasets more
resilient to the de-anonymization process.

As a general consideration, data timespan and granularity
should be taken into consideration before releasing any AMI
consumption data to third parties, as these two characteris-
tics greatly influence the anonymity of the datasets.

5. CONCLUSION
It is almost unquestionable that the smart grid will pro-

duce more and more data regarding the electrical energy
consumed and the well-being of the electrical grid. Harness-
ing and processing these large quantities of data will make
the electrical grid more resilient to faults, provide a better
balance between the production and the consumption, but
as we saw, these datasets also raise privacy concerns. In
this paper we presented an overview of research regarding
smart grid data privacy. We constructed a formalization of
the problem of de-anonymizing AMI data by matching two
different types of smart metering datasets. We take into ac-
count two main properties of smart metering data: the gran-
ularity of the data reported and its timespan. We argue that
these two, together with the number of pseudonyms used in
the reporting process play a significant role in a three-way
balance towards obtaining better customer anonymity. We
consider a class of adversarial strategies that can be formu-
lated as combinatorial and probabilistic problems and used
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it to evaluate characteristics of these datasets (granularity
and timespan) in an investigation process towards better re-
silience against the de-anonymization process; our results
show that this process should be taken into consideration
before releasing AMI datasets. Future research directions in-
clude extending the theoretical framework and the adversar-
ial strategy model and also to be able to limit the theoretical
maximum number of customers that can be identified. Re-
lated research issues refer to billing models; it is interesting
to investigate the possibilities and limitations in managing
trade-offs between customer incentives for improving their
usage of electricity and privacy issues regarding the data in
the billing system, as these two imply different needs in the
granularity of the data.
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