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Abstract. Community detection algorithms are widely used to study
the structural properties of real-world networks. In this paper, we ex-
perimentally evaluate the qualitative performance of several community
detection algorithms using large-scale email networks. The email net-
works were generated from real email traffic and contain both legitimate
email (ham) and unsolicited email (spam). We compare the quality of
the algorithms with respect to a number of structural quality functions
and a logical quality measure which assesses the ability of the algorithms
to separate ham and spam emails by clustering them into distinct com-
munities. Our study reveals that the algorithms that perform well with
respect to structural quality, don’t achieve high logical quality. We also
show that the algorithms with similar structural quality also have similar
logical quality regardless of their approach to clustering. Finally, we re-
veal that the algorithm that performs link community detection is more
suitable for clustering email networks than the node-based approaches,
and it creates more distinct communities of ham and spam edges.
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1 Introduction

Unfolding the communities in real networks is widely used to determine the struc-
tural properties of these networks. Community detection or clustering algorithms
aim at finding groups of related nodes that are densely interconnected and have
fewer connections with the rest of the network. These groups of nodes are called
communities or clusters and they exist in a variety of different networks [9]. The
problem of how to find communities in networks has been extensively studied
and a substantial amount of work has been done on developing clustering algo-
rithms (an overview can be found in [8, 21]). However, there is no consensus on
which algorithm is more suitable for which type of network. Therefore, a number
of studies have experimentally compared the qualitative performance of differ-
ent community detection algorithms on synthetic and benchmark graphs with
built-in community structure [12, 5]. However, these graphs are different from
real-world networks as the assumptions they make are not completely realistic
[8]. Delling et al. [6] have shown that the implicit dependencies between com-
munity detection algorithms, synthetic graph generators, and quality functions



used for assessing the qualitative performance of the algorithms make mean-
ingful benchmarking very difficult. Therefore, empirical studies of the existing
algorithms on real-world networks are crucial in order to evaluate different al-
gorithms and to find the most suitable methods for different types of networks.

Moreover, community detection in real-networks has many different applica-
tions. Community detection algorithms can be used to find users with similar
interests in a social network in order to provide recommendations to them, to
group the peers that are geographically close in a peer-to-peer system to improve
the performance of the system, or to detect the communities generated by ma-
licious users in order to mitigate Sybil attacks [24]. In this paper, we study the
community structure of a number of large email networks containing both legiti-
mate ham and unsolicited spam emails. In an email network, the nodes represent
email addresses and the edges represent email communications. In addition to
a qualitative comparison of the algorithms, our goal is to find the best commu-
nity detection algorithm that can separate spam and ham emails by clustering
them into distinct communities. Such an algorithm can potentially be deployed
in spam detection mechanisms that aim at mitigating the spam problem by
looking at email traffic rather than email contents.

In order to achieve our goals, we have selected a number of broadly used
community detection algorithms that are known to perform well on synthetic,
benchmark, and a limited number of real graphs. In this study we evaluate
and compare the qualitative performance of these algorithms when they are
applied to large-scale email networks. Since the true community structure of our
networks is unknown, it is important to use a quality measure to compare the
algorithms. It is known that there is no single perfect quality metric for the
comparison of the communities detected by different algorithms [2], therefore we
use a number of structural quality functions such as modularity [17], coverage,
and conductance [11], as well as a logical quality measure which is determined
based on how homogeneous the edges inside the communities are. We use this
measure to investigate and compare the ability of the selected algorithms in
separating ham and spam emails into distinct communities.

The contributions of the paper are as follows. We show that there is a trade-off
between creating high structural and high logical quality communities. There-
fore, hierarchical and multiresolution algorithms which allow us to select the
granularity of the clustering are more suitable to create the communities with
the desired quality. We reveal that different algorithms that create communi-
ties with similar size distribution achieve similar structural and logical qualities,
even though they use different approaches for clustering. Finally, we show that
an algorithm that clusters networks based on the similarity of edges is superior
to the algorithms that perform node-based clustering.

The rest of this paper is organized as follows. Section 2 presents the qual-
ity functions which are used for evaluating and comparing the algorithms. The
community detection algorithms being compared are presented in Section 3.
Section 4 reviews related previous research. In Section 5, the dataset used for
empirical comparison is presented and the experimental results are discussed.
Finally Section 6 concludes the work.



2 Quality of Community Detection Algorithms

In this section, we present the notations and the quality functions that are used
in the rest of the paper.

Preliminaries Let G = (V,E) represent a connected, undirected, and un-
weighted graph where V is the set of n nodes and E is the set of m edges of
G. A clustering C = {C1, . . . , Ck} is a partitioning of V into k clusters Ci, by a
node-based community detection algorithm. A cluster containing only a single
node is called a singleton, and a cluster with only one internal edge is called
trivial. If nodes can be shared between clusters, the clustering is called overlap-
ping. The number of intra- and inter-cluster edges of a cluster C are denoted by
m(C) and m(C), respectively and m(C) :=

∑

C∈C m(C) is the total number of
intra-cluster edges in C.

Quality Functions A quality function is used either as an objective function
to be optimized in order to find the communities of a network, or as a measure
for assessing the quality of a clustering [6]. When the true community structure
of a network is not known, quality functions are necessary for evaluating the
qualitative performance of clustering algorithms. Since no single best quality
function exists [2], we investigate three widely used structural quality functions:
coverage, modularity [17], and conductance [11].

Coverage. Coverage of a clustering, cov(C) := m(C)
m

, is the most simple quality
function, however, it is biased towards coarse-grained clusterings.

Modularity.Modularity is defined asQ(C) := m(C)
m

− 1
4m2

∑

C∈C

(
∑

v∈C deg(v)
)2

and is based on the idea that a good cluster should have higher internal and
lower external density of edges compared to a null model with similar structural
properties but without a community structure [17].

Conductance. Conductance of a cut (C, V \C) in a graph is defined as φ(C) :=
m(C)

min(
∑

v∈C
deg(v),

∑
v∈V \C deg(v)) , and tends to favor clusterings with fewer number

of clusters [2]. Inter-cluster conductance, δ(C) := 1−maxi φ(Ci), i ∈ {1, . . . , k},
is usually used as a worst-case measure to assess the quality of a clustering. The
average conductance ( 1

|C|

∑

C∈C φ(C)) is also a useful metric, since if an algo-

rithm creates singletons, the inter-cluster conductance value will be dominated
by the zero value for these clusters, while the average would not [4].

The above widely used structural quality functions cannot be directly cal-
culated for assessing the quality of link community detection methods because
of the community overlaps. For instance, modularity of a link community can
be calculated by applying a modified modularity function on a projected and
weighted transformation of the network [7]. In this paper we investigate the
structural quality of link communities by using two of the quality measures in-
troduced in [1]. Community coverage measures the fraction of the nodes that
belong to at least one non-trivial community, and Overlap coverage measures
the average number of times a node is clustered inside non-trivial communi-
ties. Higher values for overlap coverage mean that the algorithm has extracted



more information from the network. The algorithms that don’t find overlapping
communities yield the same value for both overlap and community coverage.

In addition to the structural quality, we determine the logical quality of a
clustering based on the type of the edges inside its communities. A clustering
which yields only homogeneous communities, in which all of the edges are of
the same type, has a perfect logical quality. For instance, a clustering with com-
munities that contain only spam emails or only ham emails has higher logical
quality compared to a clustering which yields communities containing a mixture
of both ham and spam. In addition, the amount of spam and ham emails that
can be separated into distinct homogeneous communities by an algorithm is used
to determine its logical quality.

3 Studied Community Detection Algorithms

In this section we briefly describe the community detection algorithms we have
selected and compared using our email networks.

Fast modularity optimization (Blondel) by Blondel et al. [3]. This algorithm,
also known as Louvain method, is a greedy approach to modularity maximiza-
tion. The algorithm starts with assigning each node to a singleton and progresses
by moving nodes to neighboring clusters in order to improve modularity. This
method has complexity O(m) and unfolds a hierarchical community structure
with increasing coarseness and meaningful intermediate communities.

Maps of random walks (Infomap) by Rosvall and Bergstrom [19]. This algo-
rithm is a flow-based and information theoretic clustering approach with com-
plexity O(m). It uses a random walk as a proxy for information flow on a net-
work and minimizes a map equation, which measures the description length of
a random walker, over all the network clusters to reveal its community struc-
ture. Infomap aims at finding a clustering which generates the most compressed
description length of the random walks on the network.

Multilevel compression of random walks (InfoH) by Rosvall and Bergstrom
[20]. This method generalizes the Infomap method to reveal multiple levels of
a network. InfoH minimizes a hierarchical map equation to find the shortest
multilevel description length of a random walker.

Potts model community detection (RN) by Ronhovde and Nussinov [18]. This
algorithm is based on minimization of the Hamiltonian of a local objective func-
tion, the absolute Potts model. The multiresolution variant of the algorithm
deploys information theory-based measures to find the best communities on all
scales. The complexity of this method is superlinear O(m1.3) for the community
detection algorithm and O(m1.3 log n) for the multiresolution algorithm.

Markov clustering (MCL) by Dongen [23]. MCL is based on the idea that a
random walk entering a dense cluster likely remains for a long time inside the
cluster before switching between sparsely connected communities. The random
walks are calculated deterministically and simultaneously using a matrix of tran-
sition probabilities. The MCL algorithm has a complexity of O(nk2), where k

refers to the average or maximum number of allowed neighbors for the nodes.
Link community detection (LC) by Ahn et al. [1]. All of the above algorithms

aim at clustering nodes into densely connected communities. However, Ahn et



al. [1] have defined communities as a group of topologically similar edges and
have introduced a link community detection algorithm for revealing them. The
algorithm unfolds the hierarchical structure and overlapping communities of a
network. Although the clustering is meaningful at all scales, an objective func-
tion, the partition density, is used to select the optimum level of hierarchy.

All of the above algorithms are known to perform well on large networks.
Infomap, InfoH, and MCL are suitable for clustering networks where edges rep-
resent flows. Emails can be seen as flows of data between people, so flow-based
approaches are good candidates for clustering email networks. Email communi-
cations can also be seen as pairwise relationships between people, so the other
topological methods could also be suitable. LC which is based on calculating the
similarity of the edges in a network can also be suitable since we are interested
in grouping the same type of edges into the same clusters.

In this study, we have used the implementations of the algorithms, which
were publicly available, in order to conduct the experiments. Blondel creates a
hierarchy of clusterings where the best modularity is achieved at its last level.
We have also looked at the clustering yield at Blondel’s first level of hierarchy,
which has smaller meaningful communities, and refer to it as Blondel L1. We
have also used the basic RN algorithm instead of its multiresolution variant to
be able to choose the desired clustering granularity. The granularity of the clus-
terings should be considered when comparing the quality of the algorithms since
structural quality functions are usually in favor of coarse-grained clusterings [2].

4 Related Work

Experimental comparisons of different community detection algorithms have
been conducted on both real and benchmark graphs. Lancichinetti and For-
tunato [12] compared different algorithms including Blondel, Infomap, RN, and
MCL, on GN and LFR benchmark graphs. They showed that Infomap, Blondel,
and RN perform well, but MCL performs worse especially for large communities.
They also showed that the performance of Blondel decreases for large graphs,
whereas Infomap remains stable. Brandes et al. [4] conducted an experimental
evaluation of three clustering methods including MCL using random clustered
graphs and showed that MCL performs well with respect to some quality func-
tions but produces more clusters than contained in the network.

Community detection algorithms have also been evaluated and compared
using different real networks. Tibély et al. [22] have analyzed the community
structure of a large mobile phone call graph using Blondel L1, Infomap, and
an overlapping method. Leskovec et al. [14] studied a number of real networks,
including the Enron email network and an email network of a large organization,
to empirically compare two different clustering methods. The latter dataset was
also used by Lancichinetti et al. [13], in addition to other real networks, to study
the characteristics of communities in different types of complex networks. They
used Infomap together with another algorithm to show that although different
methods output different clusterings, the statistical properties of their commu-
nities are quite similar for similar classes of networks. Studies of the community



structure of email networks have also been conducted by Guimerà et al. [10]
using emails in a university.

In contrast to previous studies, the dataset used in this study is based on
email traffic captured on a high speed Internet backbone link, and is not limited
to a single organization. To the best of our knowledge, this is the first study of the
community structure of large-scale email networks containing spam. This dataset
enables us to evaluate the ability of the community detection algorithms in
separating spam from legitimate email by clustering them into distinct clusters.

5 Experimental Evaluation

In this section, the email dataset and the the experimental results are presented.

5.1 Dataset

The dataset used for creating the email networks was generated by collecting
SMTP packets on a 10 Gbps link of the core-backbone of SUNET1 during a
period of 14 consecutive days in March 2010. During the collection period more
than 797 million SMTP packets were collected, which were sent and received
by 614,601 distinct domains. Around 3.4 million emails were extracted from
the collected packets after removing unusable and rejected email transmissions.
These emails were then classified to be either spam or ham using a well-trained
filtering tool 2. Following that, email contents were discarded and email addresses
were anonymized in order to preserve privacy in a way that no information about
the senders, receivers, and content of the emails are retrievable.

In addition to a complete email network, we generated daily and weekly
email networks. An email network consists of email addresses as nodes, and the
email communications between them as edges. More details on the measurement
location, data collection and pre-processing, and the structural and temporal
properties of the email networks can be found in [15] and [16], respectively.

5.2 Comparison of the Algorithms

In this section, the experimental results regarding the qualitative performance
of the clustering algorithms with respect to their structural and logical quality
is presented. A summary of the results can be found at the end of the section.

Table 1 shows the total number of nodes and edges, and the number of
spam edges in each studied email network, as well as the number of communities
created by each clustering algorithm. The algorithms were applied to the giant
connected component (GCC) of each email network, which is a subset of the
nodes in the network where a path exists between any pair of them. The networks
are also considered as unweighted and undirected.

1 The Swedish University Network (http://www.sunet.se/) serves as a backbone for
university traffic, student dormitories, research institutes, etc.

2 The SpamAssassin (http://spamassassin.apache.org) was in use for a long time
in our University mail server and it incurs high detection and low false positive rates.



Table 1. The properties of the GCC of the generated email networks (larger networks
become more connected) and the number of communities created by each algorithm.

Network # Nodes # Edges # Spam Blondel InfoH Infomap Blondel L1 MCL RN LC

Day 1 167,329 236,673 173,640 253 546 10,505 39,477 38,775 41,215 88,028

Day 2 153,734 194,797 97,260 194 397 8,025 28,077 27,011 28,499 61,027

Day 3 123,878 168,896 108,996 218 412 8,151 29,150 28,031 30,022 64,310

Day 4 128,200 172,836 113,299 218 398 8,484 29,123 28,043 30,167 63,165

Day 5 101,643 135,195 89,119 195 311 6,664 22,212 21,593 23,935 46,928

Day 6 72,068 99,361 75,713 236 183 4,714 13,904 13,716 17,697 30,236

Day 7 73,131 103,293 85,879 199 271 4,842 17,305 16,808 18,631 37,581

Week 1 901,699 1,441,731 961,809 558 1,470 41,916 149,131 144,054 187,960 451,275

Day 8 115,232 155,919 90,299 234 379 7,745 27,661 26,514 28,409 57,931

Day 9 112,713 152,569 88,273 188 383 7,521 26,395 25,549 26,942 56,443

Day 10 140,843 195,999 121,158 255 441 8,664 31,033 30,231 39,020 67,741

Day 11 125,029 179,410 116,056 192 398 8,171 28,501 27,897 30,484 65,285

Day 12 106,816 149,407 100,595 211 380 7,319 25,314 24,328 28,040 54,317

Day 13 73,325 98,713 71,954 339 296 5,275 16,736 16,074 22,476 32,403

Day 14 68,315 100,089 76,408 179 210 4,741 14,567 14,254 17,822 31,463

Week 2 810,543 1,348,373 859,324 436 380 40,553 143,569 139,366 156,822 430,232

All 1,599,732 2,790,322 1,858,686 1,028 1,740 63,471 230,013 220,346 294,581 817,074

Blondel creates a coarse-grained clustering and in average achieves 46% mod-
ularity gain over Blondel L1. InfoH also creates coarse clusters and in average
gains more than 15% in the compression of the description length of the random
walks on the networks over the non-hierarchical version (Infomap). MCL allows
us to select the granularity of the clustering by choosing an inflation parameter.
It is also possible to choose the resolution parameter for RN to achieve a clus-
tering with the desired granularity. We have selected the inflation parameter in
MCL and the resolution parameter in RN so that for most of the networks they
yield clusterings with a close granularity to that of Blondel L1. This allows us to
further investigate and compare the effect of the granularity of the clusterings
on their quality. LC is different in nature from the other algorithms as it is based
on link community detection rather than a node-based approach. LC yields the
finest-grained clustering for all of the networks at its best level of hierarchy.

Figure 1 summarizes the distribution of the size of the communities created
by the different algorithms for the “week 2” email network. The distributions for
other daily and weekly networks are quite similar. It can be seen that Blondel and
InfoH, which create very coarse-grained clusters, have very different community
size distributions compared to each other and the rest of the algorithms. It can
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Fig. 1. A comparison of community size distribution using “Week 2” email network.
Blondel L1, MCL, and RN follow very similar distributions.
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Fig. 2. Comparison of structural quality of the algorithms on daily, weekly, and com-
plete email networks. Blondel and InfoH yield the best structural quality.

also be seen in Figure 1(b) that, surprisingly, Blondel L1, MCL, and RN follow
similar distributions. The main difference is that MCL and RN create a number
of singletons, but Blondel L1 does not. The community size distribution of LC
is also close to the other three methods, but it creates more clusters.

Structural Quality Figure 2 shows a comparison of the structural quality
of the different clusterings. Each bar corresponds to a daily network (day 1 to
day 14), except the last three bars from the left for each of the algorithms,
which correspond to week 1, week 2, and complete email networks, respectively.
It can be seen that Blondel, which aims at maximizing modularity, have the
highest structural quality with respect to all of the quality functions. Although
InfoH uses a fundamentally different approach it achieves equally good structural
quality, however its quality degrades for larger networks. Blondel L1, MCL, and
RN, which have closer granularities, also show similar quality with respect to
coverage, modularity, and average conductance. However, based on the inter-
cluster conductance, MCL and RN do not perform well since they might create
a number of singletons which results in an inter-cluster conductance of zero.

Our experimental results reveal that the structural quality of clusterings
are roughly consistent for different daily networks. The clusterings with similar
granularity and community size distribution also show similar structural quality,
therefore, it is important to take the granularity of the clusterings into account
when comparing the algorithms. LC creates a clustering with the finest granular-
ity, however the studied structural quality functions cannot be directly used for



assessing the quality of this algorithm due to its different nature. In this paper,
we look at community coverage and overlap coverage which were introduced for
assessing the quality of link-based clustering by Ahn et al.[1].

LC, Blondel, and InfoH yield full community coverage for all of the email
networks. Infomap, Blondel Ll, MCL, and RN achieve community coverage of
around 0.99, 0.84, 0.83, and 0.8, respectively. However, this function on its own is
not enough for assessing the quality of a clustering method, it is also important to
consider the overlap coverage of the clusterings. None of the algorithms, except
MCL and LC, find overlapping clusters so their overlap coverage is equal to
their community coverage. MCL is not an overlapping clustering method, but
for some specific graphs it might find overlaps [23]. In our email networks, MCL
yields very few overlapping communities so its overlap coverage is just slightly
higher than its community coverage. LC yields overlap coverage of 2.6, 3.1, and
3.4 in average for the daily, weekly, and complete email networks, meaning that
it unfolds more overlaps in larger networks.

Logical Quality Our experiments show that all algorithms create a number
of spam communities that only contain spam, ham communities that only con-
tain ham, and mix communities with a mixture of both ham and spam edges.
Figure 3 shows a comparison between the percentage of spam, ham, and mix
communities created by the different algorithms. The last three bars from the
left for each of the algorithms correspond to week 1, week 2, and the complete
email networks, respectively. It can be seen that InfoH and Blondel perform
worse, since these algorithms tend to merge smaller homogeneous communities
into mix communities to achieve higher structural quality. The best results for
all networks are achieved by LC.

Moreover, it is important to assess the amount of spam and ham emails that
can be separated by community detection algorithms, in order to investigate the
possibility of deploying clustering approaches to perform spam detection. Fig-
ure 4 shows the ratio of total spam and ham edges that are inside homogeneous
spam and ham communities. In all of the networks, communities created by LC
contain the highest number of spam and ham edges. Blondel and InfoH have
the worst logical quality and Blondel L1, MCL, and RN have almost similar
quality. For all algorithms, except LC, some of the spam and ham emails end
up as inter-cluster edges and can therefore not be separated by the clustering
algorithms. It can also be seen that the percentage of spam (ham) edges which
are clustered inside spam (ham) communities decreases for larger networks.

Our experiments suggest that the logical quality tends to be higher for fine-
grained clusterings. The granularity of the best clustering created by LC is finer
than the other clusterings in our experiments. LC cuts its hierarchy of clustering
at an optimum threshold which results in maximal partition density. By choosing
a threshold below the optimum value, we can have a clustering with coarser
granularity. Since the algorithm reveals meaningful communities at all scales,
we changed the threshold so that the granularity of the clustering became more
similar to that of Blondel L1, MCL, and RN. Our experiments with the new
clusterings show that, the percentage of spam (ham) edges inside the spam (ham)
communities was reduced. For instance, for the first daily network the percentage
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Fig. 4. Ratio of spam (ham) in homogeneous spam (ham) communities. LC clusters a
higher percentage of total spam (ham) edges inside the spam (ham) communities.

of spam (ham) edges decreased from 87% to 66% (from 76% to 56%). Although
the logical quality degrades by changing the coarseness of the clustering, LC still
shows higher logical quality than all of the other algorithms.

Summary of the Experimental Results

– Blondel and InfoH create coarse-grained clusters and achieve the best quality
with respect to all of the structural quality functions. However, they have
the worst logical quality with respect to both number of homogeneous com-
munities and amount of spam and ham emails that are clustered inside these
homogeneous communities.

– Infomap, which is the non-hierarchical version of InfoH, achieves quite good
structural quality and decent logical quality. However, Blondel L1, which
is based on the first level of Blondel’s hierarchy of clusterings, yields much
better logical quality than Infomap, but worse structural quality with respect
to all of the structural quality functions.

– MCL and RN allow us to change the resolution of the clustering by modify-
ing different parameters. When the granularity of their clusterings is set to
be close to that of Blondel L1, they show almost similar community size dis-
tribution as well as similar structural and logical quality. However, Blondel
L1 is superior to the other two methods due to its lower complexity.



– LC, which performs link community detection, has the best logical quality
and separates the highest amount of spam and ham emails into distinct
homogeneous communities.

6 Conclusions

In this study, we have performed an empirical comparison and evaluation of a
number of high quality community detection algorithms using large-scale email
networks. The studied email networks contain both legitimate and spam emails
and are created from real email traffic. Our study reveals that yielding high
structural quality by community detection algorithms is not enough to unfold
the true logical communities of the email networks. Therefore, it is necessary to
deploy more realistic measures for clustering real-world networks.

More specifically, our study suggests that the community detection algo-
rithms that achieve maximum modularity, coverage, inter-cluster conductance,
or minimum average conductance do not reveal the communities that coincide
with the true clustering of the email networks. For instance the algorithms which
yield worse, but acceptable, average conductance values actually could separate
a large number of spam (ham) emails into distinct spam (ham) communities.
Therefore, the value of this function can be indicative of good logical quality.
However, this observation is based on our email networks, and might not be
conclusive as it was shown that different classes of networks show different com-
munity structures [12, 2].

Overall, our experiments reveal that link community detection is the most
suitable approach for separating spam and ham emails into distinct communities
compared to the other node-based algorithms.
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munities and beyond: Mesoscopic analysis of a large social network with comple-
mentary methods. Physical Review E, 83(5):1–10, May 2011.

23. S. VAN Dongen. Graph clustering by flow simulation. PhD thesis, University of
Utrecht, The Netherlands, 2000.

24. B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An analysis of social
network-based Sybil defenses. In Proceedings of the ACM SIGCOMM 2010 con-

ference, page 363, New York, New York, USA, 2010. ACM Press.


