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Abstract—Many existing techniques for reversing data struc-
tures in C/C++ binaries are limited to low-level programming
constructs, such as individual variables or structs. Unfortu-
nately, without detailed information about a program’s pointer
structures, forensics and reverse engineering are exceedingly
hard. To fill this gap, we propose MemPick, a tool that detects and
classifies high-level data structures used in stripped binaries. By
analyzing how links between memory objects evolve throughout
the program execution, it distinguishes between many commonly
used data structures, such as singly- or doubly-linked lists, many
types of trees (e.g., AVL, red-black trees, B-trees), and graphs.
We evaluate the technique on 10 real world applications and 16
popular libraries. The results show that MemPick can identify
the data structures with high accuracy.

I. INTRODUCTION

Modern software typically revolves around its data struc-

tures. Knowing the data structures significantly eases the

reverse engineering efforts. Conversely, not knowing the data

structures makes the already difficult task of understanding

the program’s code and data even harder. In addition, a deep

knowledge of the program’s data structures enables new kinds

of binary optimization. For instance, an optimizer may keep

the nodes of a tree on a small number of pages (to reduce page

faults and TLB flushes). On a wilder note, some researchers

propose that aggressive optimizers automatically replace the

data structures themselves by more efficient variants (e.g., an

unbalanced search tree by an AVL tree) [1].

Accurate data structure detection is also useful for other

analysis techniques. For instance, dynamic invariant detec-

tion [2] infers relationships between the values of variables.

Knowing the types of pointer and value fields, for instance

in a red-black tree, helps to select the relevant values to

compare and to avoid unnecessary computation [3]. Likewise,

principal components analysis (PCA) [4] is a technique to

reduce a high-dimensional set of correlated data to a lower-

dimensional set with less correlation that captures the essence

of the full dataset but is much easier to process. PCA is used

in a wide range of fields for many decades. In recent years, it

has become particularly popular as a tool to summarize tree

data structures [5], [6].

Unfortunately, most reversing techniques for data structures

in C/C++ binaries focus on “simple” data types: primitive

types (like int, float, and char) and their single block extensions

(like arrays, strings, and structs) [3], [7]–[9]. They do not cater

to trees, linked lists, and other pointer structures.

Existing work on the extraction of pointer structures is

limited. For instance, the work by Cozzie et al. is unabashedly

imprecise [10]. Specifically, they do not (and need not) care for

precise type identification as they only use the data structures

to test whether different malware samples are similar in their

data structures. Of course, this also means that the approach

is not suited for reverse engineering or precise analysis.

A very elegant system for pointer structure extraction, and

perhaps the most powerful to date, is DDT by Jung and

Clark [1]. It is accurate in detecting both the data structures

and the functions that manipulate them. However, the approach

is limited by its assumptions. Specifically, it assumes that

the programs access the data structures exclusively through

explicit calls to a set of access functions. This is a strict

requirement and a strong limitation, as inline manipulation of

data structures—without separate function calls—is common.

Even if the programmer defined explicit access functions,

most optimizing compilers inline short access functions in the

more aggressive optimization levels. Also, in their paper, Jung

and Clark do not address the problem of overlapping data

structures—like a linked list that connects the nodes of a tree.

Overlapping data structures, sometimes referred to as overlays,

are very common also.

A. Contributions

In this paper, we describe MemPick: a set of techniques

to detect and classify heap data structures used by a C/C++

binary. MemPick requires neither source code, nor debug sym-

bols, and detects data structures reliably even if the program

accesses them inline. Detection is based on the observation

that the shape of a data structure reveals information about

its type. For instance, if an interconnected collection of

heap buffers looks like a balanced binary tree throughout

the program’s execution, it probably is one. Thus, instead

of analyzing the instructions that modify a datastructure,

we observe dynamically how its shape evolves. As a result,

MemPick does not make any assumptions about the structure

of the binary it analyzes and handles binaries compiled with

many different optimization levels, containing inline assembly,

or using various function calling conventions.

Since our detection mechanism is based solely on the

shape of data structures, we do not identify any features

that characterize their contents. For instance, we cannot tell

whether a binary tree is a binary search tree or not. Nor do
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Pin	

binary	
to	analyze data	structures	

iden�fied	by	
MemPick

I.	Collect	traces:	
Run	the	binary	many	
�mes.	Log	all	heap	
alloca�ons	and	accesses.

II.	Offline	analysis:
See	how	the	memory	
graph	evolves	over	�me,	
detect	individual	data	
structures,	and	then	the	
overall	one.	(Refer	to	
Steps		1		‐		4		in	Fig.	2.)	

III.	Final	mapping:
Combine	the	results
and	present	them	to	
the	user.	

Fig. 1. MemPick: high-level overview.

we pinpoint the functions that perform the operations on data

structures.

On the other hand, MemPick is suitable for all data struc-

tures that are distinguishable by their shape. The current

implementation handles singly- and doubly-linked lists (cyclic

or not), binary and n-ary trees, various types of balanced trees

(e.g., red-black treed, AVL trees, and B-trees), and graphs.

Additionally, we implemented measures to recognize sentinel

nodes and threaded trees.

One of the qualitatively distinct features of MemPick is

its generic method for dealing with overlays (overlapping

data structures). Overlays complicate the classification, as

the additional pointers blur the shape of the data structures.

However, even if all nodes in a tree are also connected via a

linked list, say, MemPick will notice the overall data structures

and present them as a “tree with linked list” to the user.

Since MemPick relies on dynamic analysis, it has the same

limitation as all other such techniques—we can only detect

what we execute. In other words, we are limited by the

code coverage of the profiling runs. While code coverage for

binaries is an active field of research [11], [12], it is not the

topic of this paper. In principle, MemPick works with any

binary code coverage tool available, but for simplicity, we

limited ourselves to existing test suites in our evaluation.

B. Outline

In Section II we describe the overall architecture of the

system. Section III presents details about the low-level ma-

nipulation of the memory graph, that is the basis of our high

level data structure representation from Section IV. Section V

deals with the intricacies of data structure classification, that

are extended with additional details about height balanced

trees in Section VI. In Section VII we give an overview

of information offered to the user, followed by an extensive

evaluation in Section VIII and a discussion about the observed

limitations and possible extensions in Section IX. Finally we

discuss related projects on data structure reverse engineering

in Section X and conclude the paper in Section XI.

II. MEMPICK

We now discuss our approach in detail. Throughout the

paper, we will use the data structure in Figure 2 as our running

example. The example is a snapshot of a binary tree with

three overlapping data structures: a child tree, a parent tree

and a list facilitating tree traversal. Each node of the tree has

a pointer to a singly-linked list of some unrelated objects that

ends with a sentinel node. The example is sufficiently complex

to highlight some of the difficulties MemPick must overcome

and sufficiently simple to track manually.

Figure 1 illustrates a high-level overview of MemPick. The

detection procedure consists of three major stages. First, we

record sample executions of an application binary. Next, we

feed each of them to an offline analysis engine that identifies

and classifies the data structures. Finally we combine the

results and present them to the user.

The first stage requires tracking and recording the execution

of the application, and for this we use Intel’s PIN binary

instrumentation framework [13]. PIN provides a rich API

that allows monitoring context information, e.g., register or

memory contents, for select program instructions, function-

and system calls. We instrumented Pin to record memory

allocation functions, along with instructions storing the ad-

dresses of all buffers allocated on the heap. In the remainder

of this paper, we assume that applications use general-purpose

memory allocators like malloc() and free(), or mmap().

It is straightforward to use the approach by Chen et al. [14] to

detect custom memory allocators and instrument those instead.

For the offline analysis stage, MemPick analyzes the shape

of links between heap buffers to identify the data structures.

It consists of four further steps. In this section, we describe

them briefly and defer the details to later sections (see also

the circled numbers in Figure 2).

1© MemPick first organizes all heap buffers allocated by the

application, along with all links between them, into a

memory graph. It reflects how the connections between

the buffers evolve during the execution.

2© Next, MemPick performs type analysis to split the graph

into collections of objects of the same type. For instance,

Figure (2a) illustrates a fragment of the memory graph

at a point when the tree contains 8 nodes, and Figure 2b

partitions the data structure into objects of the same type.

3© Given the partitions, MemPick analyzes the shape of

the data structures by considering the links in each

partition, searching for overlapping structures, and finally

identifying types. For instance, in Figure (2c), MemPick

first learns that the collection of squared nodes contains

a child tree, a parent tree, and a list. It then classifies the

data structure as a binary tree by means of a decision

tree.

4© Finally, MemPick measures how each tree used by the

application is balanced in order to distinguish between

various types of height-balanced trees, e.g., red-black and

AVL trees. This is illustrated in Figure (2d).

We discuss each step in detail in Sections III-VI. Once all

the execution traces are analyzed, we combine the results, and

present them to the user (Section VII).

III. MEMORY GRAPHS: INTERCONNECTED HEAP OBJECTS

A memory graph illustrates how links between heap objects

evolve during the execution of an application. By itself, this

is not enough to extract the links that are relevant to identify

a data structure. For instance, in Figure 2a, we do not want
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(a)	The	memory	graph	a�er	MemPick
iden�fied	the	types	of	the	objects.	

(b)	The	memory	graph	split	into	two	par��ons	containing	
objects	of	the	same	type.	MemPick	also	found	one	sen�nel	
node	(denoted	by	the	double	circle).	

typedef struct list_node {

  data_t data;

  lnode_t *next; 

} lnode_t;

typedef struct tree_node {

  data_t data;

  tnode_t *left, *right;

  tnode_t *parent, *next;

  lnode_t *list_elem;      

} tnode_t;

Data	structures	used	in	the	memory	graph.	
As	MemBrush	operates	at	the	binary	level,	
it	does	not	have	access	to	this	informa�on.

(c)	MemPick	detected	three	overlapping	data	structures	in	the	collec�on	
of	the	squared	nodes:	a	child	tree,	a	parent	tree,	and	a	list.	Each	of	them	
is	denoted	by	a	different	line	type.	Next,	the	collec�on	of	the	squared	nodes	
is	classified	as	a	binary	tree	with	a	linked	list,	and	the	collec�on	of	the	circled	
nodes	as	three	sinlgly‐linked	lists.	

L:1,	R:1

L:1,	R:1

L:0,	R:2

L:2,	R:3

(d)	MemPick	measures	if	the	tree	is	balanced.	It	measures	the	height	of	
the	subtrees	recursively,	and	concludes	that	it	is	unbalanced.	

1 2

3

4

Fig. 2. A running example illustrating MemPick’s detection algorithm.

to report a graph comprising all the nodes, but rather classify

the tree and the lists separately. For this purpose, MemPick

separates memory nodes that belong to unrelated low-level

C/C++ types, i.e., different structs or classes.

Building the graph Like RDS [15] and DDT [1],

MemPick inserts new nodes in the graph whenever a heap

allocation occurs, and deletes existing ones upon deallocation.

Edges represent connections between the allocated buffers.

MemPick adds or removes them whenever the application

modifies a link between two heap objects. This happens either

on instructions that store a pointer to one object in another

one, on instructions that clear previous pointers, or on calls to

the memory deallocation functions.

Tagging the graph with type information Conceptually

MemPick assigns two objects the same type if they are both

either source or destination of the same instruction. Intuitively,

an instruction carries implicit typing of its operands. How-

ever, to avoid false-positives (classifying two different objects

together), MemPick first excludes instructions that might be

type agnostic and handle objects of various types, such as

instructions in memcpy-like functions.

Specifically, we aim for instructions that modify links in

heap objects of a single type. To do so, MemPick classifies

an instruction as type aware if it consistently stores a pointer

to a heap buffer (or NULL) to a memory location at a specific,

constant offset in another heap buffer. In other words, we do

not consider instructions that store non-pointer values to the

heap objects, or that store the pointers at different offsets at

different times, etc. However, as it is common for applications

to keep sentinel nodes in static or stack memory, we need to

relax these filtering condition a little to allow for pointers to

sentinel nodes.

The way MemPick extends the memory graph with type

information is different from the approach used by DDT [1].

In particular, DDT applies typing based on allocation site,

which poses problems when an application allocates an object

of the same type in multiple places in the code—which is

quite common in real software. For example, linked lists

allocate memory nodes when inserting elements both in

the STL (push_front and push_back) and the GNOME

GLib (g_list_append and g_list_prepend) libraries. To

handle these cases, DDT further examines if objects from

different allocation sites are modified by the same interface

functions in another portion of the application. As discussed

in Section I, relying on the interface is a strong assumption

that fails in the case of code that uses macros, say, rather than

function calls to access the data structures, or in the face of

aggressive optimization where the access code is inlined.

If necessary, we can further refine our analysis with existing

approaches to data structure detection, like Howard [8] or

static analyses [16]–[18]. While none of these techniques can

combine objects from different allocation sites, they would

help reduce possible false positives. For all experiments in this

paper, however, we use MemPick’s mechanism exclusively.

IV. FROM MEMORY GRAPH TO INDIVIDUAL DATA

STRUCTURES

Given the memory graph, MemPick divides it into sub-

graphs, each containing individual data structures. These data

structures will form the basis for our shape analysis (see

Section V). As illustrated in Figure (2b), the output partitions

are connected subgraphs whose nodes all have the same type.

MemPick starts by removing from the graph all links that

connect nodes of different types. Doing so splits the graph

into components that each reflect transformations of individual
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structures during execution. In the example from Figure 2, one

of the partitions would illustrate the growth of the tree.

Observe that not every snapshot of the memory graph is

suitable for shape analysis. The problem is that properties

characteristic to a data structure are not necessarily maintained

at each and every point of the execution. For example, if an

application uses a red-black tree, the tree is often not balanced

just before a rotate operation. However, in all the quiescent

time periods when the application does not modify the tree,

its shape retains the expected features, e.g., it is balanced,

every node has at most one parent, there are no cycles, and

so on. Therefore, MemPick performs its shape analysis only

when a data structure is quiescent.

MemPick defines quiescent periods in the number of in-

structions executed. Specifically, we measure the duration (in

cycles) of the gaps between modifications of the data structures

and then pick the longest n% as the quiescent periods. As

long as we are sufficiently selective, we will never pick non

quiescent periods. For instance, in our experiments, we picked

only the longest 1% gaps as quiescent periods. The dynamic

gap size allows MemPick to adapt to the characteristics of each

binary and data structure. Compiler options and data usage

patterns all contribute to the observed gap sizes. The method

defined in MemPick benefits from two core properties, 1) it

guarantees a lower bound of quiescent periods for every data

structure, 2) it provides maximum robustness, by selecting the

largest possible gap size that still satisfies the quiescent period

frequency desired by the reverse engineer.

Before we pass the stable snapshots of each data structure

to the shape analyzer, we detect and disconnect sentinel nodes.

The problem of sentinels is that they blur the shape of data

structures. For example, if we did not disconnect the sentinel

node in Figure (2b), it would be difficult to see that the

partition of circled nodes is in fact a collection of three lists.

To pinpoint sentinel nodes in a partition of the memory

graph, MemPick counts the number of incoming edges for

each node, and searches for outliers. While this strategy works

well for lists, trees, and graphs, it might break some highly

customized data structures. For example, in the case of a star-

shaped data structure, it disconnects the central node, and

MemPick reports a collection of lists.

Finally, for each partition of the memory graph, we acquire

its snapshots in the quiescent periods, and use them in the

following stage of MemPick’s algorithm, discussed in the next

section.

V. SHAPE DETECTION

We identify the shape of the graph-partitions based on

observations during the quiescent periods. Any given shape

hypothesis needs to hold for every “snapshot” of the graph-

partition, since it represents a globally valid property of the

data structure. Outliers are not allowed, as they would reduce

the certainty of the final hypothesis. Since data structures often

overlap and each of the overlapping substructures blur the ac-

tual shape, we identify them first. For instance, in Figure (2c),

it is not simple to tell that the component composed of squares

The	overlapping	structure	contains	
the	le�	and	right	children	edges.	

The	overlapping	structure	contains	
the	le�	child	edge	and	the	sibling	edge.	

Fig. 3. An example binary tree with three pointer variables: left,
right, and sibling. It has two overlapping data structures: {left,
right} depicted on the left (denoted by the solid edges), and {left,
sibling} depicted on the right. Observe that the overlapping data
structures are not disjoint — both contain the left child edge.

actually represents a tree. Only after we distinguish between

the child tree, the parent tree, and so on, does the identification

become straightforward. Given the overlapping structures, we

employ a hand-crafted decision tree that finally classifies the

data structure. As a final step, we offer support for refined

classifiers cases that discover data structures requiring more

advanced analysis, e.g., threaded trees. We now discuss the

stages in turn.

A. Overlapping Data Structure Identification

To find overlapping data structures, we search for maximal

sets of pointer variables that keep all nodes of the data

structure connected. In the remainder of this section, we refer

to the constituent overlapping data structures as overlays,

following a similar notion in network graphs.

In particular, for each partition of the memory graph,

we consider a set P = {p1, . . . , pn}, where each pi is

the offset of a pointer variable in the struct or class

representing the node type. For example, in Figure 2, we

have P = {4, 8, 12, 16}, which maps to the set of pointers

in the tree: {left, right, parent, next}. Next, we list all

maximal subsets of P that keep the partition connected. The

subsets are maximal in the sense that they do not contain

any redundant elements, i.e., if we remove an element from a

subset, the remaining pointers do not cover the whole partition.

In the tree in Figure 2, we identify the following set of

overlays: {{4, 8}, {12}, {16}}. Even though these structures

are disjoint, in many other data structures, they may have

common elements. Refer to Figure 3 for an example.

We can now apply the rules in Table I to classify each

overlay individually. Columns 2–5 specify the number of

incoming and outgoing edges for ordinary and special nodes,

while the last one defines how many special nodes there are

. For instance, each “ordinary” (internal) node of a list has

one incoming and one outgoing edge; additionally each list

has one node with just one outgoing edge (the head), and

one node with just one incoming edge (the tail). Currently,

we do not distinguish between different classes of graph, e.g.,

cyclic and acyclic graphs, but extending the list of rules is

straightforward.

35



TABLE I
MEMPICK’S RULES TO CLASSIFY INDIVIDUAL OVERLAYS. THEY SPECIFY

THE NUMBER OF INCOMING AND OUTGOING EDGES FOR ORDINARY AND

SPECIAL NODES.

Type Ordinary nodes Special nodes

in out in out #

List 1 1 0 1 1

1 0 1

Circular list 1 1 – – –

Binary child tree 1 {0,1,2} 0 {1,2} 1

Binary parent tree {0,1,2} 1 {1,2} 0 1

3-ary child tree 1 {0,...,3} 0 {1,...,3} 1

3-ary parent tree {0,...,3} 1 {1,...,3} 0 1

n-ary child tree 1 {0,...,n} 0 {1,...,n} 1

n-ary parent tree {0,...,n} 1 {1,...,n} 0 1

Graph all the remaining cases

B. Data Structure Classification

Finally, MemPick combines the information about all over-

lays, and reports a high-level description of the partition

being analyzed. This step follows a decision tree presented

in Figure 4. To classify the tree in Figure (2c), MemPick first

checks that the data structure has no graph overlays. Since it

contains a binary child and a parent tree overlays, MemPick

reports a binary tree (with an additional linear overlay). To

refine the results, MemPick additionally measures the balance

of the tree in Section VI.

C. Refinement Classifiers for Special Data Structures

Some popular data structures have very specific shapes for

which the general classification rules of Section V-B are not

sufficient. Threaded trees are one such example, currently

support by MemPick. In order to increase the accuracy of it

classification, MemPick allows for the addition of refinement

classifiers that are tailored for specific data structures. We will

discuss the threaded tree as an example, as it is the only

common data structure with an “exceptional” shape we en-

countered throughout our extensive evaluation (Section VIII).

Threaded trees are a variant of the well-known binary

trees. In a threaded tree, all child pointers that would be

null in a binary tree, now point to the in-order predecessor

or the in-order successor of the node. For instance, the left

child could point to the predecessor and the right child to

the successor. Alternatively, the data structure may use only

one of the children for threading. Without loss of generality,

assume the threaded tree uses the right child node to thread

to the successor node. Threading facilitates tree traversal. The

additional links are known as threads. Refer to Figure 5 for

an example threaded tree. In our experiments, threaded trees

appear in three libraries, including the GNOME GLib library.

Since a threaded child pointer keeps all nodes of the tree

connected, it forms a single element overlapping structure.

Observe that it has the shape of a binary parent tree. Thus, a

child pointer is either threaded, and it forms a binary parent

right	child	edge

le�	child	edge	

right	child	thread
NULL

D

B

A

C

HG

FE

D

AG

H

C

F

B

E

Right‐threaded	binary	tree. Binary	parent	tree	corresponding	
to	the	overlapping	structure	formed	
by	the	right	child.

Fig. 5. The left-hand side figure presents an example right-threaded
binary tree, and the right-hand side one illustrates the corresponding
overlapping binary parent tree.

tree overlapping structure itself, or it is not threaded, and

never included in an overlapping structure. Since it is an

extraordinary situation, MemPick performs further analysis to

test if this partition of the memory graph is a threaded tree.

It searches for a root candidate to which it can successfully

apply the un-threading algorithm [19]. After this step, it

obtains a binary child tree overlapping structure, and the final

classification is straightforward.

VI. CLASSIFICATION OF HEIGHT-BALANCED TREES

When the shape detection step in Section V-B classifies

a data structure as a tree, MemPick additional measures

measures its internal balance. It recognizes height-balanced

trees [20], and identifies AVL, red-black and B-trees. AVL

trees are binary trees where the heights of the child subtrees

of any node differ by at most one. Red-black trees on the other

hand allow the height of the longest branch to be at most two

times that of the shortest branch. B-trees combine high child

count with perfect balance, all leaf nodes are located at the

same height. Other balanced tree variants, like binomial or

2-3-4 trees can also be described based on their worst case

imbalance and maximum child count.

MemPick measures the height of a tree recursively, starting

at the root (i.e., the node with no incoming edges). While

computing the height of the left and right subtrees, hL and

hR, respectively, MemPick keeps track of both the absolute

and relative height imbalance, i.e., |hL − hR| and hL/hR.

It classifies the tree as an AVL tree, if for all its subtrees

|hL−hR| ≤ 1, and as a red-black tree — under the condition

that 1

2
≤ hL/hR ≤ 2. For non-binary trees it checks the B-

tree property of |hL − hR| = 0. Since MemPick focuses its

analysis on the shape of a tree, it might misclassify a too

balanced red-black tree as an AVL tree. However, if a red-

black tree is always perfectly balanced, this behavior is very

useful for an analyst to know about.
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Does	it	contain	a	tree?

Does	it	contain	an	extra
overlapping	structure?	

Does	it	contain	a	graph?

Does	it	contain	an	n‐ary	
tree,	n	>=	3?	

Does	it	contain	two	lists?	
(Circular	or	uncircular)	

Does	it	contain	one	list?	

An	unclassifed	data	
structure.	

A	singly‐linked	list.	

A	doubly‐linked	list.	

An	n‐ary	tree.	MemPick	
measures	the	balance.	

A	binary	tree.	MemPick	
measures	the	balance.	

Does	it	contain	a	tree?	

A	graph.	

Does	it	contain	a	list?	

A	graph.	

A	graph	with	a	linear
overlapping	structure.	

A	graph	with	a	tree	
overlapping	structure.	

YES

YES

YES

YES

NO

YES

NO

NO

NO

NO

YES

NO

YES

NO

YES

NO

Fig. 4. MemPick’s decision tree used to perform the final classification of a partition of the memory graph.

VII. FINAL MAPPING

In the final step, MemPick combines the results of the

partitions from the different execution traces, and presents

them to the user.

Currently, the output of MemPick is a list of data structures

that the application assigns to its local or global variables.

Whenever the application stores a pointer to an identified

heap buffer in either stack or static memory, MemPick maps

the destination to the stack frame of the currently executing

function or a global memory location, respectively.

Since the output relates to static locations from the binary, it

is straight-forward to merge together data structure information

from different execution traces. Using the mapping between

data structures and variables, MemPick can detect partitions of

the same data structure from different execution runs and gen-

erate global sets of data structure partitions. MemPick already

operates with the notion of multiple independent partitions for

a given data structure, making the merger transparent to the

end user.

In the future, we plan to merge MemPick with Howard [8],

a solution to extract low-level data structures from C binaries.

As Howard automatically generates new debug symbol tables

for stripped binaries, MemPick’s results will fit in perfectly,

providing the user with much more useful details. For instance,

in Figure 2, instead of information that the application has a

pointer to a struct consisting of one integer and five other

pointers, the user will learn that the application has a pointer

to an unbalanced binary tree with three overlays, and that each

node of the tree has a pointer to a singly-linked list of some

other data structures. However, this extension is beyond the

scope of this paper.

VIII. EVALUATION

We evaluated MemPick on two sets of applications. For

the first set, we gathered as many popular libraries for lists

and trees as we could find. We then exercised the most

interesting/relevant functions using test programs from the

libraries’ test suites. These synthetic tests allow us to control

exactly the features we want to test. Next, we evaluated

MemPick on a set of real-world applications, like chromium,

lighttpd, wireshark, and the clang compiler.

A. Popular Libraries

We tested MemPick on 16 popular libraries that feature

a diverse set of implementations for a wide range of data

structures. Including libraries in the evaluation has multiple

benefits. Firstly, they provide strong ground-truth guarantees

since the data structures and their features are well docu-

mented. Secondly they provide a means to evaluate a wider

range of implementation variants, since most applications

typically rely on a few standard implementations like STL and

GLib in practice. For all the libraries we tried to use the built-

in self-test functionality. Only if such a test was not available,

we built simple test harnesses to probe all functionalities.

In the following we present a short summary of the rea-

soning behind some of the library choices. The evaluation

set contains 4 major STL variants and GLib, the libraries

typically used by major Linux applications. In addition, libavl

brings a large variety of both balanced and unbalanced binary

trees, with different overlay configurations, like the presence of

parent pointers or threadedness. Several libraries (like UTlist,

BSD queues, and Linux lists) implement inline data structures

with no explicit interface in the final binary—typically by

offering access macros instead of functions. We also include

the Google implementation of in-memory B-Trees to validate

the ability of MemPick to detect balanced non-binary trees.

Typically B-Trees are implemented in database applications,

which operate on persistent storage, leading to a lack of

pointers in the data structure nodes.

Table II presents a summary of our results gathered from the

libraries. We do not present results for individual data structure

partitions as that number is dependent on the specific test

applications. In all scenarios MemPick classified all partitions

for any given data structure the same way.

For all tests executed, we encountered a total of two mis-

classifications, while all other data structures were successfully

identified by MemPick (no false negatives). In the case of

GDSL, the shape of the misclassified binary tree is detected
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appropriately, however MemPick reports perfect balancedness

since the tree is limited to 3 nodes. The misclassification in

GLib is more subtle. The implementation of the N-ary tree

uses parent, left child and sibling pointers. For optimization

purposes the authors also include a previous pointer in the

sibling list. MemPick correctly identifies the presence of an

N-ary parent pointer and binary child pointer (left child +

next sibling) trees, but it also detects an overlay using the

left child and previous sibling pointers. This overlay does not

match any basic shape and is reported as a graph, bringing the

overall classification to a graph. Since MemPick also reports

the overlay classification to the user, a human reverse engineer

can accurately interpret the results. Alternatively, the user can

add a (trivial) refinement classifier for this scenario, since the

presence of two overlays does imply more structure than a

generic graph, but we wanted to keep the number of refinement

classifiers to a minimum.

Summarizing these results, we see that MemPick success-

fully deals with a large variety of data structure implemen-

tations. It is capable of correctly identifying the underlying

type, independent of the presence of interface functions and

independent of overlay variations. The results also show the

efficiency of classifying balanced binary trees based only on

shape information, provided the tree is sufficiently large.

B. Applications

MemPick is designed as a powerful reverse-engineering

tool for binary applications, so it is natural to evaluate its

capabilities on a number of frequently used real applications.

For this purpose we have selected 10 applications from a wide

range of classes, including a compiler (Clang), a web browser

(Chromium), a webserver (Lighttpd), multiple networking and

graphics applications. In all of these instances MemPick fin-

ishes its analysis within one hour, confirming its applicability

to real-world application.

As we discussed in the section II, MemPick operates under

the assumption that it can track all memory allocations. Two

of the selected applications, namely Clang and Chromium, use

custom memory allocators to manage the heap. In the case of

Clang we also instrumented the custom memory allocators

to gain insight to the internal data structures. For Chromium

we were currently unable to perform such instrumentation.

MemPick was still able to detect a large number of data

structures that are defined in third-party libraries which still

employ the system allocation routines. In principle, it would

be straightforward to detect custom memory allocators auto-

matically using techniques developed by Chen et al. [14].

Table III presents an overview of the results from all appli-

cations. It is important to note that for applications there exists

no ground-truth information that we can compare against. For

every application reported by MemPick we manually checked

the corresponding source code to confirm the classification. We

report two types of errors in table III. One is typing errors,

when a given data structure is misclassified by MemPick. The

other is partition errors. They refer to data structures that were

TABLE II
MEMPICK’S EVALUATION ACROSS 16 LIBRARIES. #TOTAL IS THE NUMBER

OF IMPLEMENTATION VARIANTS OF THE GIVEN TYPE AVAILABLE IN THE

LIBRARY, #TRUEPOS IS THE NUMBER OF CORRECTLY CLASSIFIED VARIANTS,
#FALSEPOS IS THE NUMBER OF MISCLASSIFIED VARIANTS

Library Type #Total #TruePos #FalsePos

boost:container dlist 1 1 0
RB tree 1 1 0

clibutils slist 1 1 0
dlist 1 1 0
RB tree 1 1 0

GDSL dlist 2 2 0
binary tree 3 2 1
RB tree 1 1 0

GLib slist 1 1 0
dlist 1 1 0
binary tree 1 1 0
AVL tree 1 1 0
n-ary tree 1 0 1

gnulib dlist 1 1 0
RB tree 2 2 0
AVL tree 2 2 0

google-btree B-tree 1 1 0
libavl binary tree 4 4 0

RB tree 4 4 0
AVL tree 4 4 0

LibDS dlist 1 1 0
AVL tree 1 1 0

linux/list.h slist 1 1 0
dlist 2 2 0

linux/rbtree.h RB tree 1 1 0
queue.h slist 2 2 0

dlist 2 2 0
SGLIB slist 1 1 0

dlist 1 1 0
STDCXX dlist 1 1 0

RB tree 1 1 0
STL dlist 1 1 0

RB tree 1 1 0
STLport dlist 1 1 0

RB tree 1 1 0
UTlist slist 1 1 0

dlist 2 2 0

classified accurately overall, but for which a number of their

partitions contained errors.

The accuracy of MemPick is demonstrated by the fact that

only 3 type misclassifications were detected in all tests on

all 10 applications. MemPick was successful in identifying a

wide-range of data structures, from custom designed singly-

linked lists to large n-ary trees used for ray-tracing. MemPick

also highlights different developer trends in the use of data

structures. Some application developers prefer static storage

such as arrays over complex heap structures. Examples for

this pattern include wget and lighttpd. To ensure that this

observation is not the result of false negatives, we manually

inspected these two applications for undetected data structure

implementations. As far as our evaluation goes, no data

structures were missed by MemPick in these two applications.

Now let us focus our attention on the analysis of the erro-

neous classification reported by MemPick. The first example

is a type misclassification in one of the linked list imple-
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mentations in chromium. In this scenario MemPick reported

a parent-pointer tree between the memory nodes. Browsing

the source reveals the root of the error to be a programming

decision. Nodes removed from the list never have their internal

data cleared, nor are they freed until the end of the application.

These unused memory links will stay resident in memory

and confuse our shape analysis. A potential solution for this

problem is a more advanced heap tracking mechanism with

garbage collection. The latter would identify dead objects in

memory and ensure that they are removed from the analysis.

However we feel that this is not in the scope of the current

paper.

The other two type misclassifications both stem from com-

posite data structures. Templated libraries such as STL make it

possible for the programmer to build composite data structures

like list-of-trees or list-of-lists. MemPick correctly identifies

the data structure boundaries in situations where node types

are mixed, but is unable to do so if both components have

the same type, like dealing with list-of-lists. Without such

boundaries, MemPick will evaluate the shape of the data

structure as a whole. Intuitively, the resulting data structure

still has a consistent shape, but features increased complexity.

A combination of singly-linked lists turns into a child-pointer

tree, while binary trees turn into ternary trees with the addition

of the ”root of sub-tree” pointer. This is also exactly what

MemPick reports in these two scenarios. Pure shape analysis

is not sufficiently expressive to distinguish between this pat-

tern and regular child-pointer or ternary-trees, respectively. A

reverse-engineer using MemPick can still identify this pattern

with good confidence, by observing that the other partitions

of the same type are classified as lists or trees.

Looking at the partition errors in table III, the reader can

notice that the vast majority belong to binary trees. We focus

our attention on this class of errors first. For all misclassifi-

cations of this category, MemPick erroneously detects AVL

balancedness instead of the weaker red-black or unbalanced

properties. As presented previously in section VI measuring

the balancedness of a tree does carry uncertainty if the tree

is too small. We confirmed that for each of the erroneous

partitions, the tree contained no more than 7 nodes, a number

too small to identify the difference between the two tree types.

For all trees larger than this size our algorithm has an error

rate of 0%.

Outside of the 3 main groups of errors, MemPick reports

a few more misclassified partitions. Considering the total

number of partitions reported across the 10 applications, these

errors represent less than 1% and do not impact the overall

analysis.

IX. LIMITATIONS AND FUTURE WORK

In this work we aim to detect and classify heap based

data structures using shape analysis applied to the memory

graph. Applications use memory allocators to manage heap

objects, a facility instrumented in MemPick to maintain an

accurate representation of the memory graph. While most ap-

plications employ system allocation routines like malloc()

TABLE III
MEMPICK’S EVALUATION ACROSS 10 REAL-LIFE APPLICATIONS. #T IS THE

NUMBER OF UNIQUE DATA STRUCTURES BELONGING TO THE GIVEN TYPE,
#MT IS THE NUMBER OF TYPE MISCLASSIFICATIONS, #P IS THE NUMBER OF

PARTITIONS BELONGING TO THE GIVEN TYPE, #MP IS THE NUMBER OF

PARTITION MISCLASSIFICATION

Application Type #T #MT #P #MP

chromium slist 16 0 303 0
dlist 5 0 24 0
list of lists 1 1 8 8
n-ary tree 1 0 16 0
n-ary tree 1 0 2 0
slist + graph 1 0 169 2
graph 2 0 10 1

clang slist 3 1 5 1
dlist 5 0 8 0
RB tree 1 0 6 2
graph 4 0 13 0

inkscape slist 9 0 186 0
dlist 5 0 14 0
RB tree 1 0 7 4
tree of trees 1 0 5 0
n-ary tree 1 0 28 0
slist + graph 1 0 13 0
graph 1 0 1 0

lighttpd slist 2 0 2 0
dlist 1 0 1 0
binary tree 1 0 1 0

pachi n-ary tree 1 0 1 0
povray slist 9 0 36 0

dlist 3 0 66 2
RB tree 1 0 1 0
n-ary tree 1 0 17 0
n-ary tree 1 0 16 1
slist + graph 1 0 12 0

quagga slist 2 0 7 0
dlist 5 0 8 0
binary tree 1 0 4 2

tor slist 12 0 413 4
graph 1 0 1 0

wget slist 3 0 8 0
dlist 1 0 6 0
slist + graph 1 0 13 0

wireshark slist 3 0 99 0
dlist 1 0 1071 0
binary tree 1 0 1 0
n-ary tree 1 0 3 0
RB tree 1 0 95 47
AVL tree 1 0 2 0
slist + graph 1 0 12 0
graph 1 0 1 0

or free(), some applications implement custom memory

allocators for performance benefits. In the latter scenario

MemPick needs to be made aware of the custom memory

allocators in use by the application. While this information

is not readily available in stripped binaries, the approach by

Chen et al. [14] is straightforward to adapt for the requirements

of MemPick.

The shape analysis of the memory graph in MemPick is

based on a set of simple, but stringent rules geared towards

edge counts. This classification mechanism assumes the ability

to discerning relevant and irrelevant edges in the memory
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graph via some typing information. Our evaluation shows that

the type inference engine designed for MemPick can meet this

requirement in practice, but some theoretical corner cases still

exist. Typeless pointers, unions or inner structs could confuse

our current solution in theory. For the the future we propose

the fusion of multiple typing information sources, such as

Howard [8] or static analyses [16]–[18] to limit potential false

positives.

In addition, we focus on data structures that can be classified

based solely on their shape, and not the contents or algorithms

used to handle them. For example, we cannot distinguish

binary search trees from the generic binary trees.

A natural extension of MemPick is the functional analysis

of data structures. MemPick currently identifies all the instruc-

tions involved in the internal operations of the data structure,

but is unable to reason about them. The reverse engineering

value would be expanded by labeling the instructions with their

functional purpose(insertion, deletion). We believe that the

existing shape analysis results significantly reduce the space of

possible operations, enabling a robust and intuitive functional

classification. This extension will allow reverse engineers to

quickly identify code related to the known semantics of data

structures and focus their attention on application logic instead.

X. RELATED WORK

Recovery of data structures is relevant to the fields of shape

analysis and reverse engineering. While shape analysis aims

to prove properties of data structures (e.g., that a graph is

acyclic), reverse engineering techniques observe how a binary

uses memory, and based on that identify properties of the

underlying data structures. In this section, we summarize the

existing approaches and their relation to MemPick.

Shape analysis. Shape analysis [21]–[25] is a static analysis

technique that discovers and verifies properties of linked,

dynamically allocated data structures. It is typically used at

compile time to find software bugs or to verify high-level

correctness properties of programs. Although the method is

powerful, it is also provably undecidable, and so conservative.

It has not been widely adopted.

Low-level data structure identification. The most common

approaches to low-level data structure detection, i.e., primi-

tive types, structs or arrays, are based on static analysis

techniques like value set analysis [16], aggregate structure

identification [17] and combinations thereof [18]. Some recent

approaches such as Rewards [7], Howard [8], and TIE [9],

have resorted to dynamic analysis to overcome the limitations

of static analysis. Even though they achieve high accuracy,

they cannot provide any information about high-level data

structures, such as lists or trees. MemPick is thus comple-

mentary to them.

High-level data structure identification. The most relevant

to our work are approaches that dynamically detect high-level

data structures, such as Raman et al. [15], Laika [10], DDT [1],

and White et al. [26].

Raman et al. [15] focus on profiling recursive data struc-

tures. The authors introduce the notion of a shape graph, that

tracks how a collection of objects of the same type evolves

throughout the execution. MemPick’s memory graph extends

the shape graphs to facilitate data structure detection, which

is beyond the scope of the profiler [15].

Laika [10] recovers data structures during execution. First,

it identifies potential pointers in the memory dump—based

on whether the contents of 4 byte words look like a valid

pointer—and then uses them to estimate object positions and

sizes. Initially, it assumes an object to start at the address

pointed to and to end at the next object in memory. It then

converts the objects from raw bytes to sequences of block

types (e.g., a value that points into the heap is probably a

pointer, a null terminated sequence of ASCII characters is

probably a string, and so on). Finally, it detects similar objects

by clustering objects with similar sequences of block types.

In this way, Laika detects lists and other abstract data types.

However, the detection is imprecise, and insufficient for de-

bugging or reverse engineering. The authors are aware of this

and use Laika instead to estimate the similarity of malware.

Similarly to Laika, Polishchuk et al. [27], SigGraph [28], and

MAS [29], are all concerned with identifying data structures

in memory dumps. However, they all rely on the type related

information or debug symbol tables.

White et al. [26] propose an alternative to shape analysis,

by focusing the analysis on the patterns in data structure

operations. They label instruction groups based on the local

changes observed in the pointer graph. Finally they merge

the label information from all instruction groups to form

a final candidate classification. The main issue with this

approach lies in the complexity of the underlying model, which

requires a repository of manually defined templates to perform

classification. The authors also require source code access to

extract typing information for the pointer graph. Finally, their

evaluation is limited to very simple applications which use a

single data structure internally. With MemPick we have shown

that shape analysis can provide the necessary accuracy, while

benefiting from simple and intuitive models. While MemPick

does not yet support the analysis of data structure operations,

we strongly believe, that the result of the shape analysis is

highly valuable to limit the search space of such analysis.

Guo et al. [3] propose an algorithm to dynamically infer

abstract types. The basic idea is that a run-time interaction

among (primitive) values indicate that they have the same

type, so their abstract types are unified. This approach groups

together objects that are classified together, e.g., array indices,

counts or memory addresses. MemPick’s approach to type

identification (Section III) is less generic, but also simpler and

specifically tailored to our needs.

Currently, the most advanced approach to the data structure

detection problem is DDT [1]. DDT relies on well-structured

interface functions that encapsulate all operations performed

on data structures. The distinction is very strict: the system

assumes that an application never accesses any links between

heap objects, while the interface functions never modify the

contents they store in the data structures. Thus, the applica-

bility of DDT is limited when due to compiler optimizations,
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the interface functions are inlined, their calling conventions

do not follow the standard ones, or when a program simply

uses data structures defined with macros or some less strict

interfaces (e.g., queue.h). In the absence of inlining, DDT

works well with popular and mature libraries, such as the C++

Standard Template Library (STL) or the GNOME C-based

GLib, but it is unclear what accuracy it would achieve for

custom implementations of data structures (let alone malware).

MemPick does not make any assumptions about the structure

of the code implementing the operations on data structures, so

it has no problems analyzing applications that use queue.h,

say. Additionally, DDT does not address the problem of the

auxiliary overlays in data structures. For each data structure

type, it relies on a graph invariant that summarizes its basic

shape. For example, one of the invariants specifies that “each

node in a binary tree will contain edges to at most two other

nodes”. I practice this assumptions does not hold.

XI. CONCLUSION

In this paper, we presented MemPick, a set of techniques

to detect complicated pointer structures in stripped C/C++

binaries. MemPick works solely on the basis of shape analysis.

The drawback of such an approach is that it will only detect

data structures that can be distinguished by their shape. On

the other hand, we showed that MemPick is impervious to

compiler optimizations such as inlining and accurately detects

the overall data structure even if it is composed of multiple

overlapping substructures. We evaluated MemPick first on a

set of 16 common libraries and then on a diverse set of ten

real-world applications. In both cases, the accuracy of the data

structure detection was high, and the number of false positives

quite low. In conclusion, we believe that MemPick will be

powerful tool in the hands of reverse engineers.
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