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Abstract—JIT spraying has an assured spot in an attacker’s
toolkit for Web browser exploitation: With JIT spraying an
attacker is able to circumvent even the most sophisticated defense
strategies against code injection, including address space layout
randomization (ASLR), data execution prevention (DEP) and
stack canaries.

In this paper, we present LOBOTOMY, an architecture for
building injection-safe JIT engines. LOBOTOMY is secure by
design: it separates compiler and executor of a JIT engine in
different processes that share the memory regions containing the
compiled code. This allows us to use least-privilege access rights
for both processes, preventing memory regions to be mapped with
write- and execute-rights at the same time.

Our proof-of-concept implementation that modifies the well-
known Firefox JIT engine Tracemonkey shows both the effective-
ness and real-world feasibility of our architecture. Additionally,
we provide a thorough evaluation of our version compared to an
unmodified baseline and competing approaches.

I. INTRODUCTION

Virtual machines that process interpreted code often em-
ploy just-in-time (JIT) compilation in order to increase the
performance of frequently used parts of a program. While the
most prominent example for JIT compilation is the Javascript
engine of modern browsers, it is also used for e.g. Adobe’s
Actionscript.

Unfortunately, the widespread use of JIT compilation has
also made it an attractive target for (browser) exploitation. So-
called JIT spraying is an attack vector that was first described
by Blazakis et al. in [3]. The 2012 Pwn2Own contest [6] has
impressively shown the potential of JIT spraying attacks, when
Firefox was compromised by a vulnerability that enabled such
an attack. In a nutshell, the typical procedure is to first use the
JIT engine to produce native shellcode and then leveraging a
bug in the engine’s compiler component to redirect the control
flow. To generate shellcode by means of a JIT engine, it is fed
with an input program that consists of numerous operations on
large constant operands, such as XOR. When being executed
from the right offset, these constant operands decode to the
malicious instructions that constitute the shellcode.

At the root of JIT spraying are memory regions that are
both write- and executable within the address space of a
process, the JIT engine. To counter this attack, one has to
find a way to separate the write permissions from the execute
permissions, either temporally or spatially. One approach is
to allocate two regions of memory backed by the same
temporary file, separated by a certain offset within the same

process. This is a stable and fast solution. However, should an
attacker discover this (not explicitly randomized) offset, any
security gained by implementing such a mechanism would
be lost again [10]. Another possible approach is to change
the mapping on demand: A memory region would be mapped
writable and only marked as executable when the compiled
code needs to be run [4]. However, if an attacker could stall,
delay or lengthen the execution of compiled code while the
associated pages are marked executable, a successful exploit
is still feasible. Additionally, this approach may leave memory
regions unprotected that contain compiled code but are not
currently being executed.

In this paper, we present LOBOTOMY, a novel, generic
approach to harden JIT engines against code injection. Instead
of separating writable and executable memory by time or by
an offset within the memory space of a process, the two re-
gions are accessed from two different processes: compiler and
executor. As a result, an attacker exploiting the compiler has
no access to executable codepages. Essentially LOBOTOMY re-
establishes the conceptional separation of data and code that
was lost with the introduction of JIT compilation.

To summarize, our contributions are threefold:

• We introduce LOBOTOMY, a novel architecture for
JIT engines to improve their resilience against JIT
spraying.

• We present a proof-of-concept implementation of this
architecture using Tracemonkey as it is shipped with
Firefox 5.

• We evaluate our approach and the impact this architec-
ture has on the JIT engine and compare it with simpler
protection mechanisms.

II. MOTIVATION AND PROBLEM DEFINITION

With the introduction of JIT compilation, two concepts that
used to exist separately – code compilation and execution –
were integrated into a single process. The on-demand fashion
and the performance critical operation caused these concepts
to be implemented in tight interaction. In the following we
are going to discuss the operation of a typical JIT engine, the
problems caused by its design and our threat model.

JIT Engine Operation. As an example for a JIT engine based
on a conventional architecture, we refer to Nanojit, which is
used by both Tracemonkey in Firefox and Tamarin in Adobe’s
Flash player. Figure 1 show the basic operation of a JIT engine.



Whenever code is being run by the interpreter, the monitor
keeps track of how often certain code parts are being executed.
Once the count for a code part reaches a certain threshold,
the monitor tells the recorder to start recording a trace.
The recorder keeps track of the execution, recording every
instruction until a control flow branch takes it back to the part
of the code that started the trace. Then, it passes the completed
trace on to the compiler. The latter compiles the recorded trace
from the interpreted language to native code and passes it to the
executor. Now, whenever the monitor encounters a code part
that matches the beginning of a compiled trace, it invokes the
executor to run the native code instead of using the interpreter.

Monitor Compiler

Recorder

Executor

new trace

known trace

interpreted code

native code

Fig. 1. Operation of a JIT Engine

Memory Access Rights. In a typical operating system, access
to memory is restricted by permissions that are granted on
a per-page basis. These permissions include read access (R),
write access (W) and code execution (X). Memory pages can
exhibit every combination of these access rights.

The issue with JIT engines is that the memory region
the native code resides in has read, write and executable
permissions set. This is a design issue that is dictated by
the architectural layout of JIT engines: The compiler requires
writes access to put the compiled code in the same region
the executor needs execute permissions on to actually run the
compiled code. This opens possibilities for attackers: if they
manage to place their own native instructions in these memory
regions, the instructions can be executed right away, given a
vulnerability that allows to alter the control flow.

JIT Spraying and Threat Model. A JIT spraying attack
consists of two stages. The goal of the first stage is to
place “shellcode”, i.e. code under the attacker’s control, in
an executable memory region. To this end, the attacker uses a
series of instructions of the interpreted language that operate
on large immediate operands, such as exclusive-or. When
compiled to native code, these immediate operands are written
unchanged into executable memory. Starting from the right
offset, the corresponding bytes in memory decode to native
code instructions. These instructions are used to form the
shellcode. To actually get the JIT engine to compile the
attacker’s shellcode, the attacker places them into a loop so
that they are executed often enough to pass the threshold for
compilation. In the second stage, all that remains is for the
attacker to leverage an exploit to redirect the JIT engine’s
control flow to the previously generated shellcode.

Based on the principles of a JIT spraying attack, our threat
model is comprised of the following assumptions:

• The code of the interpreted language and thus the input
to the JIT engine is under the attacker’s control.

• The JIT engine’s compiler features at least one vulner-
ability that allows the attacker to redirect the control
flow to her benefit.

III. APPROACH

Our aim is to develop an architecture for Just-In-Time
compilers of active content such as Javascript or Flash that
is provably more secure against JIT spraying attacks than
conventional architectures. In a nutshell, the problem with
conventional architectures is that implementation flaws in the
compiler can be leveraged to execute code that is injected in
the course of compilation.

LOBOTOMY addresses this problem by splitting the JIT
engine into two different processes: the compiler and the
executor. While the compiler only has write access to memory
pages used for compiled code, the executor only has execute
permissions. Re-establishing this logical separation effectively
prevents compiler bugs from being exploited to redirect control
flow to code injected by a JIT spray.

This approach is based on the assumption that exploitable
vulnerabilities are more likely found in the compiler than in
the executor. The rationale behind this is that the compiler is
more complex and thus bug-prone than the executor. We back
this assumption by our evaluation that shows that a JIT engine
runs significantly more different code parts in the compiler
than in the executor (see Section VI-A).

IV. SPLITTING A JIT ENGINE

In this section we present how we split the architecture of
a typical JIT engine into two different processes. We are going
to discuss how compiler and executor interact in LOBOTOMY
from a conceptual point of view and during runtime.

A. Design

When splitting the JIT engine into two different pro-
cesses, the tight interaction of the components needs to be re-
established across process boundaries. We isolate the compiler
from the executor by introducing separate execution contexts
and use shared memory for synchronization and to exchange
data.

Execution Contexts. Usually the JIT engine and all its logic
components, that is monitor, recorder, compiler and executor
run in one execution context. LOBOTOMY separates the ex-
ecution context used for compilation from the one used for
execution, with the context used for compilation being the
main one that the execution context is being derived from.

Figure 2 shows the context switches involved in the execu-
tion of JITted code. First, the compiler clones itself to create
the executor, both save their context and the executor waits
on its semaphore (1-3). Then, interpreted code is executed (4)
until a trace is ready for compilation and we switch back to
the compiler (5, 6). After compilation, the compiler unblocks
the executor (7) and the executor switches context again to
execute the JITted code (8). When the JITted code is done, we
again switch back to the executor (9, 10), which signals to the
compiler (11). The compiler then switches back to the context
where the JITted code stopped and resumes with interpreted
code (12).
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Fig. 2. Execution contexts involved in executing JIT code with LOBOTOMY.

Context switches are achieved by two system calls:
getcontext will save the current context to a data structure
that setcontext can resume from later on.

Shared Memory. To exchange data between the different
execution contexts we use shared memory. Figure 3 depicts
the two primary purposes shared memory serves:

• The modified compiler allocates JIT codepages from
a shared memory file, mapped as RW. While the com-
piler maps the JIT codepages with RW permissions,
the executor maps them as RX to prevent an attacker
from loading more code into the page that is currently
being executed.

• A shared memory object to allow easy communication
between parent (monitor/compiler) and child (execu-
tor). It contains pointers to mutexes for synchroniza-
tion, the state object, the trace to be executed, the side
exit taken after the trace completes as well as other
management information. It serves as the centerpiece
of the communication between compiler and executor
and is henceforth referred to as communicator.

Compilation 
Context

Execution 
Context

Shared Memory

Communicator
JIT codeJIT codeJIT code

Fig. 3. LOBOTOMY uses shared memory to exchange data and synchronize
the compilation and executor contexts.

B. Runtime Behavior

During monitoring and compilation time, the behavior of
LOBOTOMY is the same as that of a conventional JIT engine.
However, it deviates as soon as a compiled trace is about to be
executed. In the following we first describe the normal process
for trace execution before we present the differences to an
execution sequence of LOBOTOMY.

Conventional Trace Execution. In order to execute a trace,
first memory is allocated for the execution state and the
native stack. The execution state is the object through which
information such as stack- and frame pointers is passed to the

trace. The native stack contains values used by the trace. The
monitor then calls the trace as a function, with the state as
parameter. When a trace terminates, it returns a so-called side
exit which informs the monitor of the cause of the termination.
In particular, it allows the monitor to keep a count of how
many times a trace took a certain exit, such as a call to another
piece of bytecode. If this count exceeds the above mentioned
threshold, the monitor starts recording a new trace. The side
exit is also used to keep the state of the interpreter and the
native state synchronized.

While running a trace, potential exits are represented by so-
called guards. A guard is an assumption made at the time the
trace is compiled. As long as it holds, the control flow of the
trace mirrors the control flow during the recording. When the
assumption is broken, the control flow of the native execution
is considered to have fallen off the trace, causing the compiled
function to return. The monitor keeps track of these events
by means of the side exits. If a new trace is recorded that
represents the control flow beyond a guard, a jump to this
trace is patched in instead of that guard.

Execution Sequence of LOBOTOMY. Figure 4 shows a
detailed walk-through of an exemplary execution sequence.
The lifetime of the object compiler stack is used to indicate
that computations of both processes take place on the stack
allocated for the compiler. The native stack, which the main
function operates on, is only used when a process waits
on a semaphore after a context switch. The basic execution
sequence of the engine remains unchanged. However, we
added the objects compiler stack, compiler, executor stack and
executor. Correspondingly, we introduced calls (1) and (2) to
generate the compiler stack and to start the compiler process.
The process then follows the control flow until a trace is to
be executed. At this point, we clone the compiler to create
the executor process (10), which waits for the semaphore.
Although it is not actually used, a stack for this process
is allocated beforehand (9). After the compiler stores status
information about the trace to be executed in the shared
memory, a manual context switch, involving a post to a
semaphore and a setcontext call (11) starts the executor.
Now, the code compiled at runtime is executed (12). In our
implementation, this implies a prior call to mprotect in
order to make the corresponding memory executable. A more
optimized implementation could map these memory segments
into the executor context with code execution rights in the
course of (11) or even (10). After trace completion, the com-
municator is used to store the trace information encapsulated
in the TracerState object passed to the trace, as well as the
exit taken to leave the trace. The executor then proceeds to
unmarshal the data on the stack of the virtual machine back
into the physical stack and updates several registers of the
virtual machine. Finally, the executor saves its current context
and triggers the context switch to allow the compiler to resume
before pausing itself.

Built-in Functions. In interpreted languages, functions that
are not implemented in the language itself, but rather in native
code and are part of the runtime environment, are referred
to as being built-in. JIT compiled code might include calls to
such built-in functions, raising the question which context they
belong to. As they typically make heavy use of the interpreter
as well as the recorder’s state, the compilation context is the



Fig. 4. Execution sequence of LOBOTOMY, including handling of built-in functions.

obvious choice. For this reason, we introduce a context switch
from the executor to the compiler whenever a built-in function
is invoked. After the switch, the compiler calls the built-in
function requested by the executor. The built-in function may
in turn call back to the interpreter itself (14), which might
cause the recursive compilation of another trace. Once the
recursive call returns, control is handed back to the executor
running the JIT code (15). After completion of the JIT code,
we switch back to the compiler context (16). From there on,
LOBOTOMY functions in the same way like a conventional
engine.

C. Multi-Processing Challenges

Several challenges have to be tackled in order to success-
fully implement our approach. First, it is necessary to make
certain objects, such as the runtime object, which provides

interfaces for memory allocation and similar tasks, available
to two distinct processes. According to its documentation,
Tracemonkey [8] is not designed for this. Thus, we have
to ensure that these objects are accessed in a deterministic
manner and that the two processes are indistinguishable from
the runtime object’s point of view. We also need to guarantee
that all objects and variables that need to be shared by the
two processes are shared. This obviously includes the memory
region containing the compiled code and user data. It is equally
important though that variables critical to the state of the JIT
engine are shared as well. By default, these conditions and
invariants are implemented as integer flags and reside on the
stack.

Given these circumstances, a naive attempt to separate the
executor from the compiler using normal processes as created
by fork is likely to fail: The two components will eventually



loose sync because they do not share the same stack. In
particular calls to a native C++ function from a trace often
cause desynchronization. In the following a desynchronization
likely leads to unexpected behavior and eventually to the
violation of an assertion or even an outright crash.

While pointers to the codepages are fairly easy to localize
and handle, it is more difficult to modify the allocation of the
control flags. These flags are declared in header files and used
all across the JIT engine. The engine expects these flags to
behave and to interact in a certain manner, i.e. be located at
certain offsets from each other. In fact, various sanity checks
are based on these interactions. Splitting the engine into two
different processes may break these invariants and cause the
associated checks to fail.

The situation is further complicated by the fact that once
the executor process is spawned, memory regions allocated
by the parent are not automatically available in the child. In
addition it is not always possible to reproduce an allocation of
a chunk of memory at exactly the same address as in another
process.

Since memory management is a critical component of
Tracemonkey and Firefox in general, any modifications can
have far-reaching and unforeseen consequences and should be
kept at a minimum. Nonetheless, we require a custom mem-
ory manager underneath the memory management functions
provided by Tracemonkey to manage the file-backed shared
memory, which we need to allow implicit communication
between the two processes after clone.

V. IMPLEMENTATION

Due to the complexity and high degree of optimization,
we decided to keep changes to the JIT engine of Firefox
as minimal and as local as possible. Thus, no interfaces
between individual components were modified. However, some
components had to be adapted in order to allow the engine to
function when split into two parts. In particular, changes to
the following elements are of consequence:

First, the Memory Manager had to be modified to permit
the allocation of file-backed shared memory so that the two
processes may share data and implicitly communicate through
their objects. This also requires a solid API between the
processes that allows one process to map memory that was
mapped by the other process in exactly the same location.
Second, a critical structure, containing much of the information
that directs the control flow of the tracer was moved to the
shared heap space. Finally, an explicit context switch had to
be introduced at critical points in the code to ensure that as
much native C++ code is executed by the compiler instead of
the trace executor.

A. Memory Management

By default, Nanojit allocates all memory pages to store
native code with RWX access rights. Due to this policy, no
calls to mprotect have to be made after the initial allocation,
beneficial to operational performance. However, this behavior
is obviously no suitable basis for an architecture meant to be
resistant to JIT spraying. Instead, the default access rights were
changed to RW.

Since it is necessary to access the trace from across process
boundaries, the trace and all data necessary for successful
execution need to reside in shared memory. Memory man-
agement in Nanojit is handled by several allocators with
different lifetimes and purposes, such as code, permanent data
or temporary data. These allocators provide basic memory
management functions such as allocate and free and work
similar to the malloc-family of functions in the LibC. We
modified these functions to use a custom heap management
which is backed by a file in the shared memory space of the
operating system. Our heap manager preallocates large sections
of shared memory upon initialization and redistributes it in
smaller blocks when required. While this might increase the
initial footprint of Tracemonkey, the effect is expected to level
down the longer the engine is running as Tracemonkey itself
keeps large amounts of memory in reserve.

In some cases, either the executor or the compiler will
allocate additional memory, which has to be made available to
the other process. Thus, means for allocation synchronization
are required. To this end, the mmap system call is used in
conjunction with the MAP_FIXED flag, which allows the user
to specify an exact base address for the chunk of memory to be
allocated: When a process requests new memory, a chunk of
memory is allocated from a shared memory file. The chunk’s
base address, its size and the offset in the memory file are
written to the communicator object and a context switch is
initiated. The other process can then use the information from
the communicator object to allocate the exact same chunk and
switch back to the original process.

Once compilation of a trace is completed, trace execution
starts. If no executor exists yet, the process is spawned at this
point. The memory region of the current trace as well as any
new side exits that may have been generated by the compiler
are then made executable for this process alone. Once these
instructions have been made executable, the list used to access
them is cleared. It is not necessary to keep a list of previously
executed fragments, since in the memory space of the executor,
the fragments stay executable during the executor’s lifetime.

In addition to the changes to the allocators, some criti-
cal data structures such as ThreadData, containing status
information of the tracer as well as data required by the
Javascript virtual machine, were moved from the stack to the
heap to allow them to be shared between the processes more
easily. Still, some objects are required to remain on the stack.
Fortunately data on the stack can be implicitly shared: since
the two processes never run in parallel, they can inhibit the
same stack area during most of their execution (see Section
V-C).

B. Nested Traces and Deep Bail

A phenomenon that can occur during trace execution and
that needs particular attention is nesting of traces, or rather, the
abortion of nested traces. Traces are considered nested when
the loops that caused them to be generated are nested. This
means that the call graph of the trace consists of an outer
and an inner graph, where the outer calls the inner graph [2].
This condition does not usually interfere with the modifications
made for LOBOTOMY. However, trace abortion may cause
complications in certain cases. As mentioned before, some



utility functions in the tracer are implemented directly in
machine code in order to increase performance. These native
functions can then call functions such as js_Interpret,
which eventually cause a new trace to be recorded. Concep-
tionally, such traces are one trace with a call to an opaque,
native block. In practice though, the trace may abort with a
condition called a Deep Bail. In such a case, the control flow
executes code associated with the compiler before returning
from the trace, instead of directly jumping back to the exit
point of the executor. The consequence is that the roles of
executor and compiler are no longer as strictly disjoint as they
would conceptionally be. Since the memory regions containing
the native code are mapped into the executor with read- and
execute permissions only, the compilation of this kind of
trace could crash, were it not for well-placed context switches
around the functions which cause such behavior. Additionally,
this issue runs contrary to the design goal of isolating the
code and memory used by the executor from areas used by
the compiler, as far as possible.

To solve this problem, context switches from executor to
the compiler were added to all functions that could cause
nesting of traces and Deep Bails. The executor is reactivated
after the function that caused the abortion of the trace returns.
It is then merely responsible for updating the status object to
signal a Deep Bail condition and to unmarshal the VM stack
and the virtual machine’s registers and then switches its context
with the compiler.

We use context switching that is entirely based on
getcontext and setcontext. The context saved by
getcontext in one process is written to shared memory and
used in setcontext by the other process. This requires that
each process is able to operate on the stack of the other process,
or more practically, that both processes share a stack. This is
commonly thought of as troublesome, and the man-page of
clone insists on the allocation of one stack per process.

C. Shared Stacks

Both the compiler and the executor must have separate
stacks. However, clone allows the user to provide any
suitably aligned and sized piece of memory for use as stack
by the child entity, even if it is drawn from a shared memory
file. To replace the physical machine’s native stack with shared
memory, it is necessary to pre-allocate two large blocks of data
immediately after the application starts, so that no important
information is stored on the native stack. After stack allocation,
Tracemonkey must be made aware of the change of the stack’s
base address. This information is required to detect over-
recursion and similar conditions, as well as to accurately
calculate various offsets. Once the engine is aware of the
change, the compiler proceeds to execute as usual. When
a trace is about to be executed, a new process is cloned
and the second pre-allocated memory chunk is assigned as
its stack. This memory will, however, see no true use. The
compiler, in the course of the context switch, saves its context,
which includes the compiler’s stack, and then jumps to a
context on the native machine stack. The compiler’s destination
context is located on the native stack because this is where
the first getcontext originated. After the compiler signals
to the executor’s semaphore, the executor switches its own
context with the one just saved by the compiler, from where

execution continues. This process works exactly the same way
in the other direction and is triggered by either completion
of the trace, a built-in function call or a request for memory
allocation.

VI. EVALUATION

In this section, we evaluate both the effectiveness and the
performance of LOBOTOMY. We show:

• that the assumption LOBOTOMY’s design is based
on – less attack surface in the compiler than in the
executor – is reasonable.

• the reduction of executable JIT memory regions during
compilation compared to other approaches is signifi-
cant.

• the performance of LOBOTOMY is competitive.

As a comparison baseline we use an unmodified version
of the Javascript engine, both with JIT compilation en- and
disabled. In addition to the baseline we also implemented
the approach proposed by Chen et al. in Jitdefender [4].
Jitdefender tries to prevent JIT spraying by using only least-
privilege permissions for the JIT codepages during compilation
and execution. We implemented this approach by inserting
an additional call to mprotect to add execute permission
to the JIT memory regions before execution. Because of the
shortcomings of the Jitdefender approach (see Section VIII),
we also implemented an enhanced version that will re-protect
the JIT memory regions when they are not being run: the
access rights to side exits and previously compiled fragments
are set and reset before and after trace execution. Throughout
the evaluation we will refer to the basic Jitdefender approach
as NX and the enhanced version as re-protecting NX.

A. Effectiveness

The effectiveness of LOBOTOMY’s design is based on the
assumption that the execution component of a JIT engine has a
considerably smaller attack surface for memory corruption vul-
nerabilities than the compilation component. To provide proof
of this assumption, we measured the ratio of code executed
by the executor process in comparison to code executed in the
compiler process. The code coverage evaluation is based on
runtime data produced by the automated “JIT test” testsuite
shipped with Tracemonkey, which consists of 1087 individual
test cases.

For this purpose we use the program instrumentation tool
PIN [11]. We modified the “proccount” PIN tool to keep
record of invoked functions and the number of instructions ex-
ecuted per function. While this measurement does not provide
instruction- or path coverage in the usual way, it does provide
an approximation of the complexity of each process. This is
sufficient to determine how much native code can potentially
be run with execute rights to JIT code.

The results of the coverage evaluation are depicted in
Table I. They clearly show that the separation between ex-
ecutor and compiler reduces the amount of code executed
with execute permissions on any chunk of heap memory
significantly. When running the set of regression tests, the
number of functions executed by the executor is 5023 with



TABLE I. NUMBER OF FUNCTIONS AND INSTRUCTIONS (EXECUTED
DURING THE FIRST RUN OF EACH FUNCTION) AFTER 1087 TEST CASES.

Process Function Count Instruction Count

Compiler 935k 251,106k
Executor 5k 150k

150,229 instructions. At the same time, the compiler executed
935,337 functions with over 250 million instructions.

While the call trace of the compiler shows all functions
related to JIT compilation as well as the built-in functions exe-
cuted during a JIT trace, the executor only shows functions that
are necessary for the context switch, such as setcontext
and getcontext, functions for memory allocation such
as mmap and the functions initially called before built-in
functionality is executed on trace. These invocations are related
to tasks such as string concatenation, setting and getting of
object properties or the execution of regular expressions. They
remain on the trace of the executor since they have been
replaced with stubs that trigger a context switch if they are
called from the executor. Since these stubs are all generated
by a small set of C++ macros, varying only in the number
of parameters that are passed, this code is easy to audit. The
rest of the executed code is either located in LibC or in the
function ExecuteTrace. The latter encapsulates the start of
the trace and the setting of execute rights to newly compiled
code fragments and currently measures 63 lines of code.

In conclusion we provided evidence that LOBOTOMY re-
duces the attack surface of Tracemonkey for JIT spraying by
at least two orders of magnitude. There are no code fragments
that are mapped with RWX-permissions, because the virtual
memory of the two processes is fully separated.

Comparison with NX. While LOBOTOMY does not allow for
code to be mapped with RWX-permissions by design, the NX
approach rather works on a best-effort basis. We demonstrate
this by simulating a normal user session protected by the re-
protecting NX variant. We use Selenium [9] in Firefox to
automatically interact with common websites. Figure 5 shows
the number of RWX pages in the course of the user session.
The graph is characterized by a more or less linear increase,
with some plateaus after new memory is allocated. Occasional,
small drops are caused by garbage collection events.

As part of the test we visited several common websites,
such as google.com, facebook.com, twitter.com, youtube.com
and a local news portal. On each site, the mouse was hovered
over each active element, including links, images with alt-texts
and other components that were found. Finally we simulated
interaction with maps.google.com, which caused the large
increase of executable pages at the end of the test run.

The experiment both shows that even the re-protecting NX
approach allows for a significant amount of memory regions
to be mapped RWX. At the same time it also questions the
effectiveness of threshold-based prevention approaches: while
usually the amount of executable memory is in the region of
hundreds of kilobytes, it can also spike even for benign sites.
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Fig. 5. Number of pages that remain write- and executable with re-protecting
NX during simulation of a user session.

TABLE II. RUNTIME PERFORMANCE MEASUREMENTS.

Architecture Runtime Overhead 95% Quantile

Baseline with JIT 1.00x 1.00x
Non-re-protecting NX 1.02x 1.02x
Baseline w/o JIT 2.60x 6.86x
LOBOTOMY 4.87x 1.27x
Re-protecting NX 9.04x >10x

B. Performance

Table II shows the results of our runtime performance
measurements. The implementation of the basic NX approach
only introduces a negligible overhead, as it only adds a single
system call before each trace execution. In contrast, its more
secure counterpart that re-protects the executable memory
regions, has a significantly higher overhead. This overhead
is predominantly caused by the additional system calls to re-
protect memory regions and the necessary bookkeeping. With
LOBOTOMY, the sole fact that the engine consists of two
processes that need to be synchronized causes an intrinsic
performance overhead. This is not only because of the need
for context switches, but also because any allocation of shared
memory after clone needs to be performed twice.

For LOBOTOMY’s performance evaluation, we not only
show numbers on the mean runtime overhead, but also the 95%
quantile. The reason are specific corner cases for particular
test cases that result in a severely decreased performance.
We thus regard the 95% quantile as being representative
for the performance of the separated architecture. It shows
LOBOTOMY is faster than the baseline without JIT and only
adds a 0.27 overhead to the normal baseline.

The corner cases are not caused by the underlying design,
but a limitation of our proof-of-concept implementation. To
be specific, in our implementation Tracemonkey falls back to
iterating over an internal list that is used for bookkeeping,
instead of accessing the elements directly via a hashtable.



C. Proof-of-Concept Exploit

To showcase LOBOTOMY’s effectiveness and its secu-
rity gain in comparison to re-protecting NX, we chose
CVE-2012-0464, a use-after-free vulnerability in the function
array_toString_sub that is invoked by array_join.
To exploit the vulnerability, the attacker has to overwrite the
built-in function toString of an object inside an array. This
function is then invoked whenever the array member with the
overwritten method is processed by the join-function. This
exploit causes a convoluted control flow in which the JIT
compilation is triggered inside a recursive call from within
another built-in function.

Since this could place an arbitrary constraint on an at-
tacker’s window of opportunity, we additionally simplified the
vulnerability in order to cover a broader range of attack sce-
narios. To this end we inserted an additional indirect function
call in the same basic block of code that also contains the
original vulnerability.

LOBOTOMY renders both vulnerabilities, original and
simplified ineffective. The pointer to the code snippet to
be executed is transported using the shared communicator
object. Even though exactly the same code that is exe-
cuted by the executor process is called by the compiler in
array_toString_sub, the call fails immediately due to
insufficient access rights. This does not change even when
we use the simpler exploit to trigger our vulnerability. We
can therefore conclude that LOBOTOMY provides adequate
protection from attacks that target previously JIT compiled
code.

With the re-protecting NX approach the call to the JIT
compiled fragment also fails for the original vulnerability.
The reason for this failure is that the Array.join built-
in function is called from the outer tree after the inner tree,
in which case trace execution has already finished. Since the
execute bit is unset after the traced tree finishes, the malicious
call fails.

However, the simplified vulnerability, which generates a
simple and straight forward trace that is compiled after the
eighth iteration, causes the introduced jump to succeed. The
reason behind is that the trace is still running and that the
application had no time to unset the execute bit on the relevant
codepages.

A single trace tree can consist of countless fragments
that are linked together by the assembler. This happens when
a previously “cold”, that is, unused branch of the call tree
becomes “hot” and a new fragment is compiled for this
subtree. The fragment is then linked into the place previously
occupied by a guard that causes the execution of the trace
until its end. An attacker could therefore build a very large
trace tree composed of individual fragments that are connected
by branching conditionals. Execution of this function tree in
a long-running loop would cause an increasing number of
interlinked fragments to be added to the tree: As all fragments
in a tree need to have the same access rights, execution of the
root turns all children executable.

Hence, we conclude that the NX approach is not suitable
to protect the JIT engine from attacks that target JIT compiled
fragments.

VII. LIMITATIONS AND FUTURE WORK

LOBOTOMY has been built to be secure by design, thus
limitations regarding its effectiveness are solely determined
by the threat model. The threat model assumes that the
executor is free of vulnerabilities. Thus, a possible scenario
is a flaw in the execution part that allows the attacker to
redirect control flow, although evaluation has shown that this
is highly unlikely. In theory, an attacker could also use code
reuse techniques after exploiting a bug in the compiler to
invoke mprotect and mark the memory page containing the
shellcode executable. However, if circumstances already allow
for code reuse techniques to be used in the first place, a JIT
spraying attack is not needed anyway.

The concept of separate address spaces per process is
central to LOBOTOMY’s design. It is thus not applicable to
JIT engines that reside in the kernel of an OS, such as the
Berkeley Packet Filters JIT engine of the Linux kernel.

In terms of performance, LOBOTOMY’s biggest drawback
is the inherent runtime overhead caused by switching between
the compiler and the executor. Further careful optimization
and analysis of the security requirements could help reduce
the performance penalty by reducing the number of context
switches. In particular, many built-in functions may prove to
be harmless, such as functions that do not compile nested
traces and that do not interact with data controlled by the user.
Besides, the logic translating virtual machine instructions into
the intermediate language could also be made aware of the
separation between compiler and executor.

Apart from that our proof-of-concept implementation of
LOBOTOMY currently fails on 18 of the test cases of Trace-
monkey’s regression test suite. We identified three categories
of memory-management related errors that are caused by the
complexity of splitting an already existing JIT engine:

• A mismatch between trace and statically compiled
code. This happens if statically compiled code as-
sumes dynamic objects from the trace to be located
in a certain memory region, but the trace does not
meet this requirement. Eliminating these errors would
require a defined memory layout shared between stat-
ically and dynamically compiled code locations.

• Over-recursion. This occurs when a testcase runs out
of stackspace. LOBOTOMY’s current implementation
uses a static stack size because this eases the necessary
synchronization between compiler and executor.

• A fragment of dynamically compiled code that is
being called in a trace is not executable. This hap-
pens when a compiled memory region is not tracked
correctly and therefore not marked as executable at
some point. As a result, the executor process will stop
when the code fragment is encountered.

We would like to point out that these issues are not relevant
to LOBOTOMY’s effectiveness. Addressing them as well as
the corner cases in our performance evaluation is a pure
engineering task that requires an effort outside the scope of
this paper. We thus leave it for future work.



VIII. RELATED WORK

While disallowing RWX-accessible memory pages, as sys-
tems like SELinux do, does protect from JIT spraying, it will
also break current JIT engines in general, as they require
memory pages with write and execute rights.

Apart from that, many protection mechanisms against com-
mon heap spraying attacks fail when JIT spraying is involved.
Egele et al. proposed a defense against heap spraying based
on identifying shellcode in string buffers [7]. This mechanism
cannot be applied here since no string buffers are used to store
shellcode.

With NOZZLE [12], Ratanaworabhan et al. describe a
general defense against heap spraying that tries to detect NOP
sleds on the heap and attempts to disassemble objects on
the heap. This technique’s effectiveness is limited against JIT
spraying attacks that use memory leaks to find their jump
targets. Apart from that, JIT engines also tend to generate
quite a large amount of data on the heap even under normal
conditions. It may thus be possible to conduct a JIT spray while
keeping the heap utilization beneath NOZZLE’s threshold.

Bania [1] proposes a heuristic approach against JIT spray-
ing, looking for a series of suspicious instructions in the dis-
assembly of memory regions that store JITed code. While this
heuristic seems reliable, we preferred a systematic approach
to mitigate JIT spraying.

JITSEC [5] mitigates JIT spraying by adding callsite
awareness to system calls implemented by the Linux kernel.
Although this method can protect against current forms of
JIT spraying, it is operating system dependent. Furthermore,
future attacks might combine JIT spraying with code reuse
techniques, which are not detected by this defense mechanism.

Rohlf et al. [13] discuss several ways of hardening JIT
engines. While techniques such as constant blinding, which
applies an XOR with a secret key to all constants, or NOP
injection, which inserts random NOP instructions into the JIT
compiled code could prove to be effective, they can often be
disabled either by exploiting a memory leak in addition to the
actual vulnerability or by spraying more malicious code.

Tao et al. [14] propose the insertion of code that is skipped
if it is correctly aligned but triggers an interrupt if it is aligned
incorrectly. The proposed defense mechanism also employs
the randomization of register assignments and transforms the
immediate operands of instructions. This defense strategy
would prevent the usage of longer sections malicious, JIT code,
but attackers could still use short snippets of malicious JIT
code to gain control over the application.

Ping Chen et al. [4] attempt to prevent JIT spraying by
selectively setting the execute permission for memory pages
containing JIT code just before it is executed. In addition to the
drawbacks of this approach shown in our evaluation, it ignores
the fact that the execution of JIT code may recursively re-enter
the interpreter function of a JIT compiler. In this case, memory
would be executable during interpretation, which drastically
reduces the gained security.

IX. FUTURE WORK AND CONCLUSION

In this paper we presented LOBOTOMY, an approach to
harden a JIT engine’s design against JIT spraying attacks. In a

nutshell it splits compilation and execution of JITed code into
two strictly separated processes to reduce the attack surface.
We implemented this approach as a working proof-of-concept
in Tracemonkey, the JIT engine of Firefox. The evaluation
shows that our modified design is not only successful in
effectively reducing the attack surface, but also performs with
a reasonable overhead.

Still, future work will focus on further optimizing our
implementation performance-wise, with the ultimate goal of
integrating it into a recent version of Firefox. At the time
of writing, newer versions of Tracemonkey and its successors
(Jaegermonkey and Ionmonkey) have already been released.
Since they all build up on the architecture that was modified
here, our concept can be adapted to these newer engines.
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