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Abstract—When it comes to security risks, especially malware,
Mac OS X has the questionable reputation of being inherently
safe. While there is a substantial body of research and implemen-
tations dealing with malware on Windows and, more recently,
Android systems, Mac OS X has received little attention so far.

To amend this shortcoming, we built a Mac OS X based high-
interaction honeypot and used it to evaluate over 6,000 blacklisted
URLs to estimate how widespread malware for Mac OS X is
today. We further built a dynamic analysis environment and
analyzed 148 malicious samples to gain insight into the current
state of Mac OS X malware. To the best of our knowledge, we
are the first to tackle this task.

I. INTRODUCTION

The crumbling hegemony of Microsoft Windows-operated
computers comes with various side effects. On one hand,
this development provides other operating systems with the
opportunity to gain a foothold in the ongoing contest for
market shares. On the other hand, malware writers are called to
attention. The decision if a possible target is worth pursuing
is a simple bill of cost-effectiveness [1]. When the market
share of an OS and thus the potential for monetization exceeds
a certain tipping point, miscreants will invest in developing
malware for this platform. So far this trend is evident in
most environments, with Google’s Android OS being the
most popular amongst them. However, while malware analysis
and defense strategies for Android-based devices are well
under way, the third big player when it comes to consumer
electronics is curiously mostly ignored: In 2012, 24% of
the estimated 1.07 billion consumer computing devices were
shipped by Apple [2]. Further estimates state, that the current
market share of Mac OS X amounts to almost 9% [3].

While iOS for mobile devices is arguable an undesirable
target for malware writers due to its restricted and confined
nature, devices running OS X are vulnerable to all kinds of
attacks, including drive-by downloads, scareware or malware-
infected executables downloaded from arbitrary sources. Al-
though all major companies aim to confine their PC-systems
with their own app stores (e.g. Apple App Store and Microsoft
Windows Store), these operating systems are still general-
purpose and therefore hard to control completely. Additionally,
Mac users are often more gullible because unlike Windows
users, they are not sensitized to being the target for malware
writers [4]. Still, research in this direction is sparse, even if the
need to act has well been established [5], [6]. In this paper,
we provide an analysis on the threat level OS X users are
currently facing, starting from possible ways of infecting their
devices up to a dynamic analysis of currently available OS X
malware.

In summary, we make the following contributions:

• We present iHoneyClient, a VirtualBox-based high in-
teraction honeypot capable of automatically investigating
and downloading OS X binaries.

• We evaluate a set of 6,028 blacklisted URLs and examine
their threat level for OS X users.

• We present a dynamic analysis environment, capable of
automatically deploying and executing OS X binaries.

• We provide an overview of currently circulating OS X
malware and evaluate our approach based on results
created from human analysts.

II. TECHNICAL BACKGROUND

In this section we provide a short overview of existing OS X
malware and how it infiltrates the target system. Furthermore,
we discuss approaches to malware analysis on other platforms.

A. Mac OS X Malware

Targeted attacks aside, the most notorious and wide-spread
Apple malware to date is Flashback (also named Flashfake), a
Trojan horse specifically targeting OS X. First spotted in the
wild in 2011, Flashback imitated an installer for Adobe Flash.
In early 2012, the Flashback developers changed the attack
vector from social engineering to drive-by downloads, exploit-
ing several Java vulnerabilities. Most important among these
is CVE-2012-0507 [7], which uses insufficient type checking
to break out of the Java sandbox. This bug was already fixed
by Oracle a month before the Flashback developers started
using it. However, Apple had not yet merged the fix into
their Java version, leaving OS X users vulnerable. To help
spread Flashback, the attackers modified tens of thousands of
WordPress blogs to include a malicious script and managed to
infect approximately 700,000 computers worldwide [8], [9].

Flashback not only shows the potential for mass malware
on OS X, it also shows a level of sophistication comparable
to recent Windows outbreaks. It makes use of the latest
malware technologies: self-decrypting program code, zero-day
vulnerabilities, utilizing publicly available services to manage
the botnet, multi-layered domain generation algorithms, self-
protection mechanisms, sound authentication procedures and
strong cryptography. Furthermore, its authors monetized the
infected hosts through click fraud. The incident also shows
that Apple’s update policy may lead to very serious problems
in the future.



B. Malware Analysis

In order to protect users from malware, researchers and
anti-malware companies need a thorough understanding of the
functionality, capabilities and purpose of malware samples.
This insight can be gained by analyzing malware samples
either statically or dynamically.

Static analysis examines the malicious program without
executing it. The most widely used technique for static anal-
ysis is pattern matching, an integral part of most antivirus
scanners. Additionally, they use heuristics in order to detect
new malware. However, this approach can be circumvented by
simple code transformations and binary obfuscation. Moser et
al. [10] showed that static analysis is an NP-hard problem,
thus rendering static analysis unfeasible in the long run.

In contrast, dynamic analysis relies on monitoring the be-
havior of a malware sample while it is executed in a controlled
environment. Instead of analyzing the program instructions,
the behavior of the program under analysis is monitored and
evaluated. Several applications have been developed based on
dynamic analysis sandboxes to monitor botnet traffic [11],
obtain unpacked and unencrypted malware samples [12], [13],
automatically obtain malware mitigation procedures [14] and
detect unknown evasion techniques [15]. Several such tools
exist today for both, research and commercial purposes. How-
ever, most of them simulate a Microsoft Windows environ-
ment. A comprehensive survey of dynamic analysis tools and
techniques was given by Egele et al. [16].

With the possibility to analyze a binary, there is still the
need to gather samples in the first place. Honeypots are the
tool of choice for that purpose. They exist in a variety of
forms: They can simulate services, data, computers, devices,
clients or whole networks to attract the attention of miscreants
and gather information about attacks.

While many honeypot implementations are passive, waiting
for attackers to target them, client honeypots take an active
role. They initiate communication with a server, e.g. by
opening URLs in a web browser. Client honeypots typically
consist of three components:

Queuer: The queuer is responsible for generating a list of
targets for the visitor to interact with. Several techniques exist
to create URL lists, among them search engines, blacklists,
crawlers and feedback from the analyzing component.

Visitor: The visitor’s task is to interact with the server. After
receiving targets from the queuer it communicates with the
given target, e.g. by opening a URL in a web browser. Often,
the visitor is contained in a virtual machine to avoid infecting
the analysis environment.

Analyzer: After the communication with the server is finished,
the analyzer examines the new state of the visitor, respectively
the data generated by it. It generates reports and can feed data
back to the queuer.

An important characteristic of honeypots is the level of
interaction they provide. High-interaction honeypots simulate
a whole system, e.g. a host including its operating system and
devices. In contrast, low-interaction honeypots simulate only
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Fig. 1. System overview of the iHoneyClient host (Queuer and Analyzer)
and the iHoneyClient workers (Visitor).

one service, or parts of one service. The level of interaction
is not only important for how authentic a honeypot appears
to the attacker, but also affects its isolation and containment.
Furthermore, the techniques used for analyzing the monitored
behavior differs. While high-interaction honeypots tend to an-
alyze state changes, low-interaction honeypots mostly employ
pattern matching. This directly affects their ability to detect
certain malicious activities like time bombs or changes to
their environment [17]. These properties, combined with our
prerequisites, drove our decision to establish a high-interaction
client honeypot for gathering malware samples.

III. SYSTEM

As illustrated in Figure 1, iHoneyClient consists of several
workers running in virtual machines, orchestrated by the iHon-
eyClient host. The host compiles a list of URLs to be visited or
files to be analyzed, depending on the mode of operation. The
workers either visit those URLs to collect malware samples
dropped drive-by download attacks or provide the dynamic
analysis environment to analyze samples.

To catch new malware, iHoneyClient retrieves URL lists
from different services providing malware-related URL black-
lists (currently Malware Domain List [18], Malware Patrol [19]
and Clean-MX [20]). Before visiting a URL, the host checks
if the server is reachable, the HTTP status code and content
type returned after a HTTP HEAD request. The first two
checks increase the efficiency of iHoneyClient, while the
third enforces the focus on drive-by downloads. Only requests
returning content of the type ”text/html” are analyzed to filter
out the numerous entries pointing directly to Windows exe-
cutables. When malware samples are analyzed directly, their
file type is examined before execution. iHoneyClient is able
to automatically process Mach-0 binaries, .dmg disk images,
.zip archives containing OS X Applications, Java archives and
installers in .pkg files. Whenever a URL or malware sample
passes these checks, a new VirtualBox instance is created to
provide a clean environment for further analysis.

iHoneyClient workers are virtualized instances of Mac OS X
10.6.8 ”Snow Leopard”. A few modifications to the vanilla
Mac OS X installation are necessary to be able to run it
in a virtual machine. This stems mostly from the usage of
EFI (Extensible Firmware Interface), that is not yet fully sup-
ported in VirtualBox. The same modifications are used by the
“Hackintosh”community, that strives to run Apple’s operating
system on PC hardware. This includes a custom bootloader
called Chameleon, that contains an EFI emulator capable of
providing the basic system information required by the XNU
kernel, two kernel modules to provide shutdown and power



management functionality and a kernel module simulating the
System Management Controller (SMC) chip used to identify
the virtual machine as genuine Apple hardware.

The process of monitoring activities inside the virtual ma-
chine is centered around DTrace [21]. The basic building block
of this dynamic tracing framework are its instrumentation
points, called probes. Whenever the code instrumented by
a probe is executed, the probe fires, which results in the
execution of a D program specified by the user. Probes can
either be statically inserted at key positions by a programmer
or dynamically at runtime. DTrace is able to patch running
programs as well as the kernel and insert interrupts at arbi-
trary points, notifying the DTrace user of events like system
calls, function calls or CPU performance data. We use this
mechanism to react to key system calls like opening files or
connecting sockets.

To make full use of DTrace, iHoneyClient requires another
kernel module. Apple introduced a new ptrace API allowing
a program to prevent DTrace from monitoring it, similar to
denying a debugger to attach. The activities of malware using
this API would not be detectable with iHoneyClient. Thus, we
prohibit such ptrace calls with a kernel module [22].

The software setup of iHoneyClient intentionally provides
an easy target for attackers. Aside from the upgrade to OS X
10.6.8, no patches or updates were installed. The software
configuration includes Firefox 3.6.8 (released in July 2010)
and Java 1.6.0 17 (released in December 2009).

The iHoneyClient virtual machine instances are connected
to the host with a VirtualBox NAT network. The hosts are
isolated from the Internet with a firewall. We took care to
block network traffic known to be malicious while imposing
as few restrictions to the malware samples as possible. Thus,
we blocked all ports associated with e-mail traffic, ports of
services known to be remotely exploitable and non-standard
ports used by known mass malware. Additionally, we log all
traffic to and from the virtual machine instances.

While the iHoneyClient worker performs its task, it is
monitored with DTrace. For analyzing URLs, the focus lies
on opened files and newly created processes. After a timeout,
the logs and all opened files are copied to the iHoneyClient
host. There, they are scanned with antivirus products from
Kaspersky and Avira to detect new infections. Furthermore,
the process logs are checked for new, non-standard processes.
In the dynamic analysis mode, we log all system calls. After
copying the system call logs to the host, several scripts analyze
the results and create an analysis report.

Figure 2 illustrates one run of the iHoneyClient honeypot.
For analyzing stand-alone malware samples, the program flow
is analogous. The only difference is, that the queuer compiles
a list of files to be analyzed while the visitor performs checks
on the file type instead of an HTTP request. Then, the file is
executed inside the virtual machine instance.

IV. EVALUATION

We evaluated our system threefold: First, we performed case
studies on two well-known OS X malware samples to verify
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Fig. 2. Flow chart of an iHoneyClient honeypot run.

the completeness of our reports. We then used iHoneypot to
crawl blacklisted domains to see whether we can find OS X
malware dropped by drive-by download exploits in the wild.
Finally, we give insights on the behavior of over a hundred
malware samples collected during execution in our sandbox.

A. Case Studies
In order to verify, whether the honeypot is able to correctly

recognize new malware infections, we tested it in an exper-
imental setup. First, we used the Metasploit framework [23]
to create a simple web site exploiting CVE-2011-3544 [24], a
vulnerability in Javas Rhino Scripting Engine. We used the
java/meterpreter/reverse_tcp payload, which provides a
shell-like environment for uploading files or spawning pro-
cesses. After the iHoneyClient worker visited the prepared
website and spawned a new meterpreter session, we uploaded
a sample of Flashback and executed it in the virtual machine.
The antivirus scanner correctly detected both the malicious
Java applet and the Flashback binary.

To verify the correct functionality of the iHoneyClient
analyzer we manually compared the analysis reports for two
well-known malware samples to the threat descriptions from
antivirus companies and show by means of log snippets how
the malware’s behavior is reflected by the analysis report.
OSX/Olyx.B. Olyx is a backdoor used in targeted attacks on
Tibetan NGOs. We used threat descriptions by ESET [25] and
Microsoft [26] as a reference.

According to the threat descriptions, Olyx imple-
ments a mechanism to start itself automatically when
the infected system reboots. To this end, it creates the
LaunchAgent script ∼/Library/LaunchAgents/com.apple.
DockActions.plist and attempts to copy itself to /Library/

Audio/Plug-Ins/AudioServer. However, as a default user
does not have write permissions to this directory, the call to
open results in error #13 (permission denied). As described
in the ESET threat report, Olyx thus fails to persist itself and
does not survive a reboot:
open("/Users/xxx/Library/LaunchAgents/com.apple.DockActions

.plist\0", 0x601, 0x1FF) = 6 0



open("/Library/Audio/Plug-Ins/AudioServer\0", 0x601, 0x1FF)
= -1 Err#13

The malware then attempts to connect to its C&C server.
The contacted domain depends on the version of Olyx, in this
case mail.hiserviceusa.com is used. The operation fails with
error #61 (connection refused) since the server is no longer
online:
socket(0x2, 0x1, 0x0) = 0 0

connect to 65.19.141.197:4670 => -1 61
connect(0x0, 0x7FFF5FBFF9D0, 0x10) = -1 Err#61

The malware sample then enters an endless loop retrying to
connect and does not expose any further activities.
OSX/Flashback. As described in Section II-A, Flashback is
the most successful OS X malware to date. We used the threat
analyses by Kaspersky [8] and Intego [27] as a reference for
its behavior.

One notable characteristic of Flashback is that it checks its
host for several applications such as XCode, antivirus scanners
or network monitoring tools:
stat("/Library/Little Snitch\0", 0xBFFFE62C, 0xBFFFE57C) =

-1 Err#2
stat("/Developer/Applications/Xcode.app/Contents/MacOS/

Xcode\0", 0xBFFFE62C, 0xBFFFE57C) = -1 Err#2
[ ... ]
stat("/Applications/HTTPScoop.app\0", 0xBFFFE62C, 0

xBFFFE57C) = -1 Err#2
stat("/Applications/Packet Peeper.app\0", 0xBFFFE62C, 0

xBFFFE57C) = -1 Err#2

If any of these files are present Flashback deletes itself and
terminates. If all checks return a negative result, Flashback
continues to connect to its C&C server. The IP address of
this server varies in most samples from our test set, but
no sample uses DNS to resolve a name. The server refuses
the connection by sending a TCP RST packet. This causes
Flashback to overwrite itself with zeroes, delete itself and
terminate execution:
open_nocancel("/samples/flashback\0", 0x601, 0x1B6) = 8 0
fstat64(0x8, 0x7FFF5FBFE240, 0x7FFF5FBFE30C) = 0 0
write_nocancel(0x8,"\0",0x1000) = 4096 0
[ ... ]
write_nocancel(0x8,"\0", 0x800) = 2048 0
close_nocancel(0x8) = 0 0
unlink("/samples/flashback\0", 0x0, 0x0) = 0 0

With the appearance of newer variants, Flashback has
changed and extended its functionality. For example, OS-
X/Flashback.S deletes all files and folders in ∼/Library/
Caches/Java/cache to delete the applet responsible for infect-
ing the host in the first place. This complicates the process of
sample recovery:
posix_spawn(0xBFFFE5FC, 0x94D8600C, 0xBFFFE538) = 0 0
exec-success( sh -c rm -rf /Users/xxx/Library/Caches/Java/

cache ) = 1 0

B. Honeypot Results

To evaluate out how widespread OS X malware is in the
wild, we used three different domain blacklists (Malware
Patrol, Malware Domain List and Clean MX) to compose an
input feed of drive-by download URLs for iHoneyClient. In
several runs during January 2013, we obtained a total of 6,028
malicious URLs. After applying the URL filters described in
Section III, 2,844 URLs remained to be visited.

TABLE I
ALERTS BY KASPERSKY AFTER CRAWLING KNOWN MALWARE DOMAINS.

Type Amount
JavaScript 386
HTML 23
Windows binary 12
VBS 3
Flash 2

TABLE II
PERCENTAGE OF SAMPLES EXHIBITING NETWORK ACTIVITY.

Activity Percentage
Any network activity 30 %
DNS queries 11 %
Valid DNS answers 7 %
Dynamic DNS services 4 %
Successful connections to a server 21 %
Unsuccessful connection attempts 9 %
Connections to two or more servers 5 %
Binding a socket 1 %

A total of 288 of those sites caused one or more antivirus
alerts. Table I details the type of alert, showing a predominance
of malicious JavaScripts. Only five domains successfully used
drive-by downloads, dropping twelve malicious Windows bi-
naries. To our surprise, we were not infected by any kind of
OS X or cross-platform malware.

C. Dynamic Analysis

To get an insight into the behavior of current Mac malware,
we obtained 148 recent malware samples for OS X from
VirusTotal [28] in January 2013 and examined them using
our dynamic analysis environment. To this end, we selected
all samples in VirusTotal’s database that matched a signature
for OS X by at least one antivirus scanner. After filtering out
invalid OS X file types (e.g. Windows executables matching
signatures for OS X malware), the sample set was comprised
of 111 binary Mach-O executables, 27 OS X applications
(.app folders), six Java archives and four .dmg disk images.
We focused our analysis on file modification events, network
activity and process-related activity.

Table III shows statistics about the files created by the
malware samples. More than half the samples did not attempt
to open a file with write access, 12% of the samples created
hidden files, while only 6% attempted to create a LaunchAgent
entry, responsible for starting automatically after a user login
or system reboot.

Table II summarizes the network activity of the analyzed
malware samples. Out of the total of 148 samples, 43 showed
some network activity. Only 17 of those required a DNS
query to initiate a connection, six used a dynamic name
resolution service like DynDNS [29]. In total, the analyzed
samples attempted to open 44 TCP connections, 31 of which
were successfully established. Three malware samples used
erroneous IP addresses due to insufficient validation of the
DNS reply. Although eight samples connected to two or more
servers, all samples failing to connect to their server did not
try another IP address. Two samples bound a socket, but did
not actively initiate any connections.

Table IV shows the most commonly used ports. The ma-
jority of connections used the ports for HTTP(S), other ports
are only used in one or two samples each. Analysis of the



TABLE III
PERCENTAGE OF SAMPLES WRITING FILES.

File write activity Percentage
Any file 43 %
Outside user home 26 %
LaunchAgent entries 6 %
Hidden files 12 %

TABLE IV
USED TCP PORTS.

Port Percentage
80 16 %
443 1 %
3360 2 %
4141 1 %
4670 1 %
8080 2 %
25565 2 %
49474 1 %

TABLE V
PERCENTAGE OF SAMPLES SPAWNING PROCESSES.

Activity Percentage
Samples calling fork 9 %
Samples calling execve 5 %
Samples with erroneous execve calls 3 %

traffic showed that only nine samples actually transmitted data
via HTTP. Two samples used an SSL connection to transfer
encrypted payload.

Another important aspect of malware samples is whether or
not they spawn new processes. Table V gives an overview of
system calls to fork and execve. 13 samples made a system
call to fork, eight called execve. Interestingly, not all execve
calls are preceded by a call to fork. Furthermore, only 50%
of the calls to execve were successful.

V. CONCLUSION

In this paper, we introduced iHoneyClient, a high interac-
tion, VirtualBox-based OS X honeypot. Using this honeypot,
we examined a set of 6,028 URLs retrieved from malware
blacklists to gain insight on the current threat level for OS X
users. We found that only five websites dropped binaries
through drive-by downloads, all of them targeted at Microsoft
Windows.

Additionally, we presented our dynamic analysis environ-
ment and verified it by manually comparing our analysis
logs to threat reports issued by antivirus companies for two
malware samples. Furthermore, we compiled an overview of
the behavior of current OS X malware. Based on 148 malware
samples, we created statistics on file creation, network activity
and process management.

Our findings paint an ambivalent picture of OS X malware.
While some malware families use sophisticated techniques
and pose a significant threat to OS X users, several others
fail to perform simple but important tasks like persisting
after a reboot. Moreover, while computers running Microsoft
Windows face a consistently high risk to become infected with
malicious software, our results suggest that infecting a Mac by
simply browsing the Web is highly unlikely.

Based on the work presented in this paper, we plan to
perform a larger-scale analysis by extending the malware
blacklists used as input for iHoneyClient. We also plan to
crawl the URLs provided by those blacklists regularly. This
will hopefully allow us to monitor a successful OS X malware
outbreak like Flashback. Furthermore, we plan to include the
analysis of OS X executables in a publicly available dynamic
malware analysis tool Anubis [30].
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