
POSTER: Cross-Platform Malware:
Write Once, Infect Everywhere

Martina Lindorfer*, Matthias Neumayr*, Juan Caballero†, Christian Platzer*
*Vienna University of Technology †IMDEA Software Institute

{mlindorfer, mneumayr, cplatzer}@iseclab.org juan.caballero@imdea.org

ABSTRACT
In this ongoing work we perform the first systematic in-
vestigation of cross-platform (X-platform) malware. As a
first step, this paper presents an exploration into existing
X-platform malware families and X-platform vulnerabilities
used to distribute them. Our exploration shows that X-
platform malware uses a wealth of methods to achieve porta-
bility. It also shows that exploits for X-platform vulnerabili-
ties are X-platform indeed and readily available in commer-
cial exploit kits, making them an inexpensive distribution
vector for X-platform malware.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software

Keywords
Cross-Platform Software; Malware; Vulnerabilities.

1. INTRODUCTION
A desired capability by many programmers is writing a

program once and then using it on different computing plat-
forms without modifications. This capability has been sold
by programming languages using catchphrases such as“write
once, run anywhere” or “write once, compile anywhere” and
brings benefits such as reduced development time, code reuse,
and easier maintenance.

Although these paradigms are fairly extended in benign
software, they are not prevalent in malware. Nowadays, the
very large majority of malware runs on a single platform:
most malware targets Windows, with Android malware re-
cently growing, and few instances of Mac OS and Linux
malware. While cross-platform (X-platform) malware has
been around for a long time, e.g., the Morris worm in 1988
and macro viruses in the 90’s [11], it still constitutes a very
small minority.

However, the advent of mobile computing and the increase
in X-platform malware in the last two years raises the ques-
tion of whether the tide is rising. In this context, security

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’13, November 4–8, 2013, Berlin, Germany.
ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2512517.

vendors like Websense [24] and Fortinet [14] have forecasted
X-platform malware as a 2013 trend. While it is unclear how
fast (if) the tide will rise, in this work we proactively perform
the first systematic investigation of X-platform malware, to
be prepared when (if) it happens.

For a malware developer, supporting a new platform is
a decision that boils down to a cost-benefit analysis. Since
the goal of most malware families (targeted attacks apart) is
monetizing the infected computers, the malware developer
needs to weigh the additional income obtained by reaching
targets of the new platform, against the required additional
investment in software development and distribution.

In this ongoing work we strive to understand such a cost-
benefit tradeoff. As a first step, we perform an exploration
of existing X-platform malware. This helps us understand
what monetization vectors work across platforms and how
much development effort is needed to make the malware
X-platform. For example, we observe malware families fo-
cusing on click fraud (e.g., LilyJade [18]) and information-
stealing (e.g., ZeuS-in-the-Mobile [26]), two monetization
vectors that extrapolate well to mobile platforms. We also
observe families that reuse the same Java code on all plat-
forms (e.g., jRAT [16]) and others that prefer platform-
specific components (e.g., Badbunny [3]).

Malware developers also require cost-effective ways of dis-
tributing their X-platform malware. Our examination shows
that they favor distribution vectors that support all plat-
forms such as social engineering and vulnerabilities on pro-
grams that run on multiple platforms, i.e., X-platform vul-
nerabilities. Given the predominance of drive-by downloads
as a malware distribution vector [6], we analyze the pres-
ence of exploits for X-platform vulnerabilities in commercial
exploit kits. Our exploration shows that most X-platform
vulnerabilities have been weaponized in at least one exploit
kit. It also shows that most exploits for X-platform vul-
nerabilities indeed work on different platforms, without any
modifications. Thus, malware owners using drive-by down-
load specialization services, can essentially distribute their
malware to multiple platforms at no extra cost.

2. OVERVIEW
This section defines X-platform programs and presents an

examination of X-platform malware and vulnerabilities.
A computing platform can refer to an operating system

family (e.g., Windows, Linux, OS X, Android), a computer
architecture (e.g., x86, AMD64, ARM), or a combination
of both (e.g., Windows on x86). In this work, a platform
corresponds to an OS family and we consider two OS families
different if they do not share significant amounts of code. In
particular, we consider different versions of the same OS



Family Date DV Windows Linux OS X Windows Phone Symbian Android BlackBerry
Badbunny [3] 07/2009 SE JavaScript Perl Ruby
Boonana [4,5] 10/2010 SE Java Java
ZitMo [25,26] 09/2010 SE Java* Java Java* Java
Olyx [21] 06/2011 Exploit PE MACH-O
Tibet [23] 03/2012 Exploit PE MACH-O
Flsplysc [13] 04/2012 Exploit PE Python
Crisis [17] 04/2012 SE PE MACH-O PE*
LilyJade [18] 05/2012 Exploit JavaScript JavaScript JavaScript
GetShell [15] 07/2012 SE Java Java Java
Netweirdrc [20] 08/2012 SE PE ELF MACH-O
jRAT [16] 10/2012 SE Java Java Java
Ssucl [22] 01/2013 SE PE Java
MinecraftHack [19] 03/2013 SE Java Java
Janicab [2] 07/2013 Exploit/SE VB Script Python
Clt10 [7] (PoC) 2006 - ASM ASM
Yakizake [11] (PoC) 08/2007 - .NET .NET
Clapzok [12] (PoC) 05/2013 - ASM ASM ASM

Table 1: X-platform malware, earliest date reported, and distribution form used for each supported platform.
Stars mark platforms supported later than the earliest reported date.

(e.g., Windows XP, Vista, 7) and different distributions of
the same OS (e.g., Ubuntu, Fedora) the same platform.

We say that a program is X-platform if it is portable across
(i.e., runs on) different OS families. A program can become
portable by using programming languages that compile to
bytecode (e.g., Java, .NET), at the source code level using
standardized interfaces like POSIX or interpreted languages,
and by running on top of other X-platform programs such
as web browsers or office applications.

2.1 X-Platform Malware
As a first step we perform an investigation of existing X-

platform malware. Table 1 shows malware families we found,
the earliest date they were reported, their distribution vector
(DV), and the target platforms they support. The top of the
table comprises 14 families observed in the wild, while the
bottom three are proof-of-concept malware.

Out of the 14 families in the wild, four use exploits to
get installed on the target hosts, while the remaining nine
convince users to install them through social engineering
(SE) and one uses both depending on the platform. The four
families that solely rely on exploitation leverage X-platform
vulnerabilities that enable installation on the different target
platforms (see Section 2.2).

For each supported platform, Table 1 shows in which form
the malware is distributed, which is tightly linked to how the
malware achieves portability. It shows that X-platform mal-
ware can be distributed as source code (Python, JavaScript,
Perl), binary code (PE, ELF, MACH-O), or bytecode (Java,
.NET). When the malware is not distributed as binary code,
it can fail to run if the infected host does not have an inter-
preter for the scripts or a runtime for the bytecode. When
distributed as binary code, it needs to match the executable
file format used by the platform. Note that distribution as
source code or bytecode makes it significantly easier for an-
alysts to reverse-engineer the malware. So far, the use of
external tools to obfuscate the source code and bytecode is
not prevalent among X-platform malware.

An important question is to what degree X-platform mal-
ware reuses code across platforms. Our preliminary exam-
ination indicates a mixture of approaches. Three families
use the same code across platforms: Minecraft and jRAT
(both Java) and LilyJade, a JavaScript browser plugin that
uses the Crossrider API [9] to run on Internet Explorer,
Chrome, and Safari without modifications. In addition,
Boonana and Getshell distribute as a Java JAR file, but later
download platform-specific modules. Another four families
use different malware for each platform. In particular, Bad-

bunny distributes as an OpenOffice document containing a
macro and executables for each platform, Sscul distributes
as an Android APK containing a PE executable, Crisis as
a Java JAR file containing PE and MACH-O executables,
and Flsplysc uses Java code during exploitation to select
which platform-specific module to install. Finally, there are
four families for which further analysis is needed. Olyx, Ti-
bet, and Netweirdrc distribute as executables, and although
Zitmo is written in Java for all platforms, its Android version
is significantly simpler [25], pointing to the use of separate
code bases. To refine this preliminary examination we plan
to use code analysis and similarity techniques.

2.2 X-Platform Vulnerabilities
A X-platform vulnerability is a software defect on a X-

platform program. The vulnerable program may comprise
both platform-specific and platform-independent code, or be
fully platform-independent by running on top of an above-
OS runtime that enables portability. In both cases, a X-
platform vulnerability is present in the platform-independent
code of the vulnerable application.

Table 2 summarizes our investigation on X-platform vul-
nerabilities. The left side of the table shows, for each vul-
nerability, its CVE identifier [10], the vulnerable program,
whether there exists a publicly available exploit for the vul-
nerability, and whether any exploit kit contains an exploit
for it [8]. As shown, X-platform vulnerabilities exist in
browser plugins (Java, PDF, Flash), web browsers (Firefox,
WebKit), and prevalent desktop applications like Microsoft
Word. The majority of these applications are written in
C/C++, although by far the most vulnerable application is
the Java runtime, for which we plan to evaluate which parts
of the code contain the vulnerabilities.

Nearly all of these vulnerabilities have publicly available
exploits, the exception being recent zero-day vulnerabilities
(marked with Z) for which we expect a public exploit soon.
It is worrisome to observe that for most of these vulnera-
bilities an exploit is included in commercial exploit kits. If
these exploits are truly X-platform (examined in Section 3),
then for an attacker using drive-by download specialization
services [6], distributing its malware to multiple platforms
essentially incurs no extra cost.

3. PRELIMINARY RESULTS
Our exploration of X-platform vulnerabilities shows that

exploits are widely available for them. But, it is unclear
whether those exploits indeed work across platforms with-
out modifications, given particular exploit payloads and OS-



CVE Program Exploit Kit
Metasploit

XP 7 Linux X
2009-0563 MS Word 3
2009-3867 Oracle Java 3 3 3
2010-3333 MS Word 3
2011-1774 WebKit 3 3
2011-3544 Oracle Java 3 3 3 3 3 3
2012-0507 Oracle Java 3 3 3 3 3 3
2012-0779 Adobe Flash 3 3 3
2012-1723 Oracle Java 3 3 3 3 3
2012-4681 Oracle Java 3 3 3 3 3 3
2012-5076 Oracle Java 3 3 3 3 3 3
2013-0422 Oracle Java 3 3 3 3 3 3
2013-0431 Oracle Java 3 3 3 3 3 3
2013-0640 Adobe Reader Z - - - -
2013-0641 Adobe Reader Z - - - -
2013-0758 Firefox 3 3 3 3 3
2013-1488 Oracle Java 3 3 3 3 3
2013-1491 Oracle Java Z - - - -
2013-2423 Oracle Java 3 3 3 3 3 3

Table 2: X-platform vulnerabilities, whether an ex-
ploit is publicly available and included in an exploit
kit, and whether the exploit works in each platform.

specific defenses such as ASLR and W ⊕ X. To investi-
gate this, we test exploits for X-platform vulnerabilities,
from the Metasploit framework [1], against different plat-
forms. Our setup includes Windows XP, Windows 7, De-
bian Linux, Mac OS X 10.6 “Snow Leopard”, and Mac OS
X 10.8 “Mountain Lion”. To allow running vulnerable Java
versions on recent browsers we disable extensions.blocklist
in Firefox and XProtect in Safari. For Java exploits we
use the java/meterpreter/reverse_tcp payload and the
generic/shell_reverse_tcp payload for others, verifying
exploitation by executing uploaded files.

The results on the right side of Table 2 show that the ma-
jority (9 out of 15) of the public exploits for X-platform vul-
nerabilities are truly X-platform, exploiting different plat-
forms with no modifications. Four other exploits fail to run
in at least one vulnerable platform, and the two Microsoft
Word exploits crash in all platforms. Note that the failing
exploits are for the oldest vulnerabilities; exploit writers are
becoming more effective over time.

4. FUTURE WORK
In this paper we have introduced our ongoing work to un-

derstand the X-platform malware and vulnerabilities land-
scape. Much remains to be done, including collecting sam-
ples of the identified X-platform malware families, measur-
ing the amount of code reuse across platform-specific exe-
cutables, examining exploits that do not work on all plat-
forms, and analyzing X-platform exploits and malware in the
wild. For the latter, we are deploying multi-platform honey-
clients to monitor what platforms are exploited by drive-by
downloads and what malware is dropped on each platform.

5. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
under grant agreement n. 257007 (SysSec) and the FFG –
Austrian Research Promotion under grant COMET K1.

6. REFERENCES
[1] Metasploit. http://www.metasploit.com.
[2] Multisystem Trojan Janicab attacks Windows and

MacOSX via scripts.
http://blog.avast.com/2013/07/22/multisystem-trojan-
janicab-attacks-windows-and-macosx-via-scripts/,
July 2013.

[3] SB/BadBunny-A, July 2009. http://www.sophos.com/en-
us/threat-center/threat-analyses/viruses-and-
spyware/SB~BadBunny-A/detailed-analysis.aspx.

[4] Boonana Trojan Horse, October 2010.
http://www.securemac.com/boonana-bulletin.php.

[5] Boonana trojan linked to malware for Windows, Mac OS X
or Linux, October 2010.
http://nakedsecurity.sophos.com/2010/10/28/cross-
platform-worm-targets-facebook-users/.

[6] C. Grier et al. Manufacturing Compromise: The Emergence
of Exploit-as-a-Service. In Proceedings of the 19th ACM
Conference on Computer and Communication Security
(CCS), 2012.

[7] CAPZLOQ TEKNIQ v1.0, 2006.
http://spth.virii.lu/rrlf7/sources/clt.htm.

[8] An Overview of Exploit Packs (Update 19.1), April 2013.
http://contagiodump.blogspot.com/2010/06/overview-
of-exploit-packs-update.html.

[9] Crossrider. http://crossrider.com.
[10] CVE Database. http://cve.mitre.org/cve/.
[11] P. Ferrie. Something Smells Fishy. Virus Bulletin,

November 2007.
http://pferrie.host22.com/papers/yakizake.pdf.

[12] P. Ferrie. MultiPlatform Madness. Virus Bulletin, June
2013. http://pferrie.host22.com/papers/clapzok.pdf.

[13] Python-based malware attack targets Macs. Windows PCs
also under fire, April 2012.
http://nakedsecurity.sophos.com/2012/04/27/python-
malware-mac/.

[14] Fortinet’s FortiGuard Labs Reveals 2013 Threat
Predictions, December 2012.
http://www.fortinet.com/press_releases/121210.html.

[15] Multi-platform Backdoor Lurks in Colombian Transport
Site, July 2012. http://www.f-
secure.com/weblog/archives/00002397.html.

[16] New Multiplatform Backdoor Jacksbot Discovered, October
2012. http://www.intego.com/mac-security-blog/new-
multiplatform-backdoor-jacksbot-discovered/.

[17] T. Katsuki. Crisis: The Advanced Malware, November
2012. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
crisis_the_advanced_malware.pdf.

[18] Worm 2.0, or LilyJade in action, May 2012.
http://www.securelist.com/en/blog/706/Worm_2_0_or_
LilyJade_in_action/.

[19] Intego Discovers a New Multi-Platform Minecraft Password
Stealer, March 2013. http://www.intego.com/mac-
security-blog/intego-discovers-a-new-multi-
platform-minecraft-password-stealer/.

[20] An Analysis of the Cross-Platform Backdoor NetWeirdRC,
August 2012.
http://www.intego.com/mac-security-blog/an-
analysis-of-the-cross-platform-backdoor-netweirdrc/.

[21] Backdoor Olyx - is it malware on a mission for Mac?, July
2011. http://blogs.technet.com/b/mmpc/archive/2011/
07/25/backdoor-olyx-is-it-malware-on-a-mission-for-
mac.aspx.

[22] Mobile attacks!, January 2013. http:
//www.securelist.com/en/blog/805/Mobile_attacks/.

[23] Tibet.C Malware Delivered by Poisoned Word Documents
Installs Backdoors on Macs, March 2012.
http://www.intego.com/mac-security-blog/tibet-c-
malware-delivered-by-poisoned-word-documents-
installs-backdoors-on-macs/.

[24] 7 for 13: 2013 Security Predictions from Websense,
December 2012.
http://www.websense.com/content/websense-2013-
security-predictions.html.

[25] ZeuS-in-the-Mobile: Facts and Theories, October 2011.
http://www.securelist.com/en/analysis/204792194/.

[26] ZeuS Mitmo: Man-in-the-mobile, September 2010.
http://securityblog.s21sec.com/2010/09/zeus-mitmo-
man-in-mobile-i.html.


