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ABSTRACT
Malicious software installed on infected computers is a fundamental
component of online crime. Malware development thus plays an
essential role in the underground economy of cyber-crime. Malware
authors regularly update their software to defeat defenses or to
support new or improved criminal business models. A large body
of research has focused on detecting malware, defending against it
and identifying its functionality. In addition to these goals, however,
the analysis of malware can provide a glimpse into the software
development industry that develops malicious code.

In this work, we present techniques to observe the evolution of a
malware family over time. First, we develop techniques to compare
versions of malicious code and quantify their differences. Further-
more, we use behavior observed from dynamic analysis to assign
semantics to binary code and to identify functional components
within a malware binary. By combining these techniques, we are
able to monitor the evolution of a malware’s functional compo-
nents. We implement these techniques in a system we call BEAGLE,
and apply it to the observation of 16 malware strains over several
months. The results of these experiments provide insight into the
effort involved in updating malware code, and show that BEAGLE
can identify changes to individual malware components.
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K.6.5 [Security and Protection]: Invasive software

General Terms
Security
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1. INTRODUCTION

In parallel with the development of cybercrime into a large under-
ground economy driven by financial gain, malicious software has
changed deeply. Originally, malicious software was mostly simple
self-propagating code crafted primarily in low-level languages and
with limited code reuse. Today, malicious software has turned into
an industry that provides the tools that cybercriminals use to run
their business [30]. Like legitimate software, malware is equipped
with auto-update functionality that allows malware operators to de-
ploy arbitrary code to the infected hosts. New malware versions are
frequently developed and deployed; Panda Labs observed 73,000
new malware samples per day in 2011 [5]. Clearly, the majority
of these samples are not really new software but rather repacks or
incremental updates of previous malware. Malware authors update
their code in an endless arms race against security countermeasures
such as anti-virus engines and SPAM filters. Furthermore, to suc-
ceed in a crowded, competitive market they “innovate”, refining the
malware to better support cybercriminals’ modus operandi or to find
new ways to profit at the expense of their victims.

Understanding how malware is updated over time by its authors
is thus an interesting and challenging research problem with prac-
tical applications. Previous work has focused on constructing the
phylogeny of malware [15, 20]. Instead, we would like to observe
subsequent versions of a malware and automatically characterize
its evolution. As a first step, quantifying the differences between
versions can provide an indication of the development effort behind
this industry, over the observation period.

To provide deeper insight into malicious software and its devel-
opment, we need to go a step further and identify how the changes
between malware versions relate to the functionality of the malware.
This is the main challenge that this work addresses. We propose tech-
niques that combine dynamic and static code analysis to identify the
component of a malware binary that is responsible for each behavior
observed in a malware execution, and to measure the evolution of
each component across malware versions.

We selected 16 malware samples from 11 families that included
auto-update functionality, and repeatedly ran them in an instru-
mented sandbox over a period of several months, allowing them to
update themselves or download additional components. As a result
of dynamic analysis, we obtain the unpacked malware code and a log
of its system-level activity. We then compare subsequent malware
versions to identify code that is shared with previous versions, and
code that was added or removed. From the system-level activity we
infer high-level behavior such as “downloading and executing a bi-
nary” or “harvesting email addresses”. Then, we identify the binary
code that implements this observed functionality, and track how it
changes over time. As a result, we are able to observe not only the



overall evolution of a malware sample, but also the evolution of its
individual functional components.

In summary, this paper makes the following contributions:
• We propose techniques for binary code comparison that are effec-

tive on malware and can also be used to contrast a single binary
against multiple others, such as against all previous versions of a
malware or against a dataset of benign code.

• We propose techniques that use behavior observed from dynamic
analysis to assign semantics to binary code. With these tech-
niques, we can identify functional components in a malware
sample and track their evolution across malware versions.

• We implement these techniques in a tool called BEAGLE, and use
it to automatically monitor 16 malware samples from 11 families
over several months and track their evolution in terms of code
and expressed behavior. Our results, based on over one thousand
executions of 381 distinct malware instances, provide insight
into how malware evolves over time and demonstrate BEAGLE’s
ability to identify changes to malware components.

2. EVOLUTION OF MALICIOUS CODE
Malware is the underlying platform for online crime: From SPAM

to identity theft, denial of service attacks or fake-antivirus scams [4],
malicious software surreptitiously installed on a victim’s computer
plays an essential role in criminals’ online operations. One key
reason for the enduring success of malicious software is the way it
has adapted to remain one step ahead of defenses.

Cybercriminals are under constant pressure, both from the secu-
rity industry, and—as in any market with low barriers to entry—from
competing with other criminals. As a result, malicious software is
constantly updated to adapt to this changing environment.

The most obvious form of adversarial pressure that the security in-
dustry puts on malware authors comes from antivirus (AV) engines:
Being detected by widely-deployed AVs greatly reduces the pool of
potential victims of a malware. Thus, malware authors strive to de-
feat AV detection by using packers [29]—also known as “crypters”.
AV companies respond by detecting the unpacking code of known
crypters. The result is that a part of the malicious software indus-
try has specialized in developing crypters that are not yet detected
by AVs: Interestingly, Russian underground forums advertise job
openings for crypter developers with monthly paychecks of 2,000
to 5,000 US Dollars [21].

This is however only one aspect of the ongoing arms race. SPAM
bots try to defeat SPAM filters using sophisticated template-based
SPAM engines [34]. Meanwhile, botnets’ command and control
(C&C) infrastructure is threatened by take downs, so malware au-
thors experiment with different strategies for reliably communicat-
ing with their bots [35]. Similarly, the security measures deployed
at banking websites and other online services, such as two-factor
authentication, require additional malicious development effort. For
this, malware authors embed code into the victim’s browser that
is targeted at a specific website, for instance to mislead him into
sending money to a different account than the one he intended to. A
plugin implementing such a “web inject” against a specific website
for a popular bot toolkit can be worth 2,000 US Dollars [21].

The need to remain one step ahead of defenses is only one reason
for malware’s constant evolution. Cybercriminals strive to increase
their profits—which are threatened by trends such as the declining
prices of stolen credentials [22]—by developing new business mod-
els. These often require new or improved malware features. As
an example, one sample in our dataset implements functionality to
simulate a system malfunction on the infected host—presumably to

Execution
Monitoring 1

2

3

x

Binary Comparison
011
0000101
1000100
1100011

011
0000101
1000100
1100011

011
0000101
1000100
1100011

Behavior Extraction

Semantic-
Aware 

Comparison

Code Changes
Unpacked
Malware
Variants

System-Level
Activity

Behaviors

Evolutionary
changes

Update
Server

Figure 1: Overview of BEAGLE.

try to sell the victim fake AV or utility software that will “solve” the
problem, and another one is able to steal from Bitcoin wallets.

From an economic perspective, we would like to know how ex-
pensive it is for a malware author to develop a new feature, as well
as how much effort he needs to invest into defeating a security coun-
termeasure. In the absence of direct intelligence on a malware’s
developers practices, the malware code itself is the richest available
source of information on the malware development process. Human
analysts routinely analyze malware binaries to understand not only
what they can do but also to get a glimpse into the underground econ-
omy of cybercrime. In this work, we develop techniques to automate
one aspect of this analysis: Measuring how malware changes over
time and how these changes relate to the functionality it implements.

3. APPROACH
We implement the approach described in this section in a system

we called BEAGLE1. Fig. 1 shows an overview of our approach.
BEAGLE first dynamically analyzes a malware sample by running

it in an instrumented sandbox, as detailed in §4.1. We allow the
sample to connect to its C&C infrastructure to obtain an updated
binary. This way, we capture new versions of the analyzed malware.
Later, we analyze these updated samples by also executing them in
our analysis sandbox. In addition to recording the sample’s system-
and network-level behavior, the sandbox also acts as a simple generic
unpacker [32], and records the unpacked version of the malware
binary and of any other executables that are run on the system. This
includes malicious code that is injected into benign processes. This
allows us to analyze the deobfuscated binary code and compare it
across versions with static code-analysis techniques.

Then, BEAGLE compares subsequent versions of a malware’s
code to quantify the overall evolution of the malware code. Our
approach to binary code comparison is based on the control-flow
graph’s (CFG) structural features, as described in §4.2. This first
comparison provides us with an overall measure of how much the
code has changed and how much new code has been added, but it
offers no insight into the meaning of the observed changes.

To attach semantics to the observed changes, we take advantage
of the behavioral information provided by our analysis sandbox. The
sandbox provides us with a trace of low-level operations performed
by the malware. In the behavior extraction phase, discussed in
§4.3, we analyze this system-level activity to detect higher-level
behaviors such as “sending SPAM”, “downloading and executing a
binary from the Internet”. These behaviors are detected based on
a set of high-level rules. In addition to these behaviors that have
well-defined semantics (as determined by the human analyst who
wrote the detection rule), we also detect behaviors with a-priori
unknown semantics, by grouping related system-level events into
1HMS Beagle was the ship that Charles Darwin sailed on in the voyage that
would provide the opportunity for many of the observations leading to his
development of the theory of evolution.



unlabeled behaviors. Once a behavior has been detected, we employ
a lightweight technique to map the observed behavior to the code
that is responsible for it, and tag individual functions with the set of
behaviors they are involved in.

Last, we perform semantic-aware binary comparison as described
in §4.4. For this, we combine the results of the behavior-detection
step with our binary-comparison techniques to analyze how the
code’s evolution relates to the observed behaviors. Thus, we are
able to monitor when each behavior appears in a malware’s code-
base and to quantify the frequency and extent of changes to its
implementation. The goal is to provide insight into the semantics of
the code changes and help the analyst to answer questions such as
“What is the overall amount of development effort behind a malware
family?”, “Within a family, which components are most actively
developed?” or “How frequently is a specific component tweaked?”.

4. SYSTEM DESCRIPTION
BEAGLE has four modules. The Execution Monitoring module is

a sandbox that logs the relevant actions that each sample performs
while running (e.g., call stack, system calls, sockets opened, sys-
tem registry modifications, file creation). The Behavior Extraction
module analyzes these logs for each malware sample and extracts
high-level behaviors using a set of rules and heuristics. In parallel,
the Binary Comparison module disassembles the unpacked binary
code. Then, it analyzes the code of each malware sample to find
added, removed and shared portions of the CFG across samples, and
“labels” these portions with the relative high-level behavior extracted
at runtime. The Semantic-Aware Comparison module monitors how
the labeled code evolves over time.

4.1 Execution Monitoring
The first step is to obtain subsequent variants of that malware

family. One approach would be to rely on the labeling of malware
samples by AV engines, and select samples from a specific family
as they become available over time. However, this approach has
two problems. First, AV engines are not very good at classifying
malware largely because their focus is on detection rather than clas-
sification [6,25]. Second, different samples of a malware family may
be independent forks of a common code base, which are developed
and operated by different actors.

The approach we use in BEAGLE is to take advantage of the auto-
update functionality included in most modern malware. Specifically,
by running malware in a controlled environment and letting it update
itself, we can be confident that the intermediate samples that we
obtain represent the evolution over time of a malware family—as
deployed by a specific botmaster.

Stateful Sandbox. A malware analysis sandbox typically runs each
binary it analyzes in a “clean” environment: Before each execution,
the state of the system in the sandbox is reset to a snapshot. This
ensures that the sample’s behavior and other analysis artifacts are
not affected by previously-analyzed samples. To allow samples to in-
stall and update themselves, however, we need a different approach.
A simple yet extremely inefficient solution would be to let the mal-
ware run in the sandbox for the entire duration of our experiments.
Running a malware sample for months also increases the risk that,
despite containment measures, it may cause harm. Instead, we rely
on malware’s ability to persist on an infected system. Each sample
is allowed to run for only a few minutes. At the end of each analysis
run, BEAGLE captures the state of the system, in the form of a patch
that contains file-system and registry changes to the “clean” sys-
tem state. Additionally, we detect a malware sample’s persistence
mechanism by monitoring known auto-start locations [36]. When
we want to re-analyze the sample, we start by applying the patch

to the “clean” snapshot. Then, we trigger the detected persistence
mechanism, so that we effectively simulate a reboot, thus continuing
the analysis with updated versions. Hence, in the first execution we
observe the installation and update functionality of the original mal-
ware sample. In the following executions we observe the updated
variants and additional updates.

Generic Unpacking. BEAGLE’s analysis sandbox also captures the
deobfuscated binary code by acting as a simple, generic unpacker.
In its current implementation, BEAGLE simply captures and dumps
all code found in memory at process exit or at the end of the analysis
run. We do not restrict this to the initial malware process, but also
include all code from binaries started by the malware or of processes
in which the malware has injected code. For instance, one of the
ZeuS samples in our dataset downloads code from a C&C server and
injects it into a the explorer.exe process. In such a case, BEAGLE
also dumps an image of the explorer.exe process that includes
the injected code.

This simple approach to unpacking, although sufficient for the
purpose of our experiments, could be defeated by more advanced
packing approaches where unpacked code is re-packed or deleted
immediately after use. To address this limitation, BEAGLE could
be extended to incorporate more advanced generic unpacking tech-
niques [26, 32].

Sandbox Implementation. BEAGLE’s sandbox is an extension
of Anubis [8], a dynamic malware analysis sandbox based on the
whole-system emulator Qemu. Anubis captures a malware’s behav-
ior in the sandbox at the API level, producing a log of the invoked
system and API calls, including parameters. Furthermore, Anubis
uses dynamic taint tracing to capture data flow dependencies be-
tween these calls [9]. In order to facilitate attribution of behavior
observed in the sandbox to the code responsible for it, we extended
the sandbox to log the call stack corresponding to each API call.

4.2 Binary Comparison
The next component of BEAGLE compares binaries and identifies

the code that is shared between versions, the code that was added, or
removed. This allows us to quantify the evolution of malicious code
by measuring the size of code changes and computing a similarity
score between malware variants. More importantly, as discussed
in §4.4, we combine this information with code semantics inferred
from dynamic behavior to gain an understanding of how evolution
relates to malware functionality.

Code Fingerprints. Our technique for binary comparison relies on
the structure of the intra-procedural CFG, extending work from [23].
The CFG is a directed graph where nodes are basic blocks and an
edge between two nodes indicates a possible control flow transfer
(e.g., a conditional jump) between those basic blocks. Follow-
ing [23], nodes in the CFG are colored based on the classes of
instructions that are present in each node, and the problem of find-
ing shared code between two binaries is reduced to searching for
isomorphic k-node subgraphs (we use k = 10 following [23]). As
this problem is intractable, [23] proposed an efficient approxima-
tion that relies on extracting a subset of a CFG’s k-node connected
subgraphs and normalizing them. Each normalized subgraph is
a concise representation of a code fragment. In practice, the nor-
malized subgraph is hashed to generate a succinct fingerprint. By
matching fingerprints generated from different code samples, we
are able to efficiently detect similar code.

As shown by Kruegel et al. [23], these fingerprints are to some
extent resistant to code metamorphism, and are effective for detect-
ing code reuse in malware binaries [28]. Here, we take this a step
forward and use them to locate the shared code between successive



malware variants. For this, given an unpacked malware binary M,
we disassemble it, extract the colored CFG and compute the corre-
sponding set of CFG fingerprints FM . For each fingerprint f , we
also keep track of the addresses bM( f ) of the set of basic blocks it
was generated from. For a set of fingerprints F , we indicate the cor-
responding basic blocks in sample M with BM(F ) =

⋃
f∈F bM( f ).

To compare two samples M and N, we compute the intersection of
the corresponding fingerprints IM,N = FM ∩FN . The basic blocks
corresponding to the fingerprints in this set in either sample corre-
spond to code that is common to M and N. We call them shared
basic blocks. In sample M, the set of basic blocks that is shared
with N is thus SM(M,N) = BM(IM,N). If M and N are two suc-
cessive variants of a malware AN(M,N) = BN \ SN(M,N) (short,
A(M,N)) is the set of basic blocks added in the new sample N,
whereas RM(M,N) = BM \SM(M,N) (short, R (M,N)) is the set of
basic blocks removed from the old sample M.

Code Whitelisting. The unpacked code produced by our sandbox
may include code unrelated to the malware. One reason is that
malware may inject code into legitimate processes, that will then be
included into our analysis. Furthermore, a malware process some-
times loads system dynamically linked libraries (DLLs) directly
into its address space, without using the standard API functions for
loading DLLs. In both cases, the unpacked binaries produced by our
analysis sandbox will include code that is not part of the malware.

To exclude this code from analysis, we rely on a whitelisting
approach. For this, we identify all code (executables and DLLs) in
the “clean” sandbox, and compute the set W of all CFG fingerprints
found in this code. In our analysis of each malware sample M, we
then identify the basic blocks B(W ) that match these fingerprints.
We call them whitelisted basic blocks, and do not take them into ac-
count for further analysis. An additional benefit of whitelisting code
from a clean system is that this can also eliminate code from stan-
dard system libraries that has been statically linked into a malware
binary.

Similarity and Evolution. We compute the similarity between two
malware samples with a variant of the Jaccard set similarity:

J(M,N) :=
|S?(M,N)|

|S?(M,N)|+ |A(M,N)|+ |R (M,N)|
(1)

This is roughly the number of shared basic blocks over the total of
shared, added and removed basic blocks. The number of shared
basic blocks in the two samples |SN(M,N)| and |SM(M,N)| may
differ slightly, because multiple identical k-node subgraphs may
exist in a single sample. We mitigate this by picking |S?(M,N)|,
which is the maximum between the two.

In addition to comparing pairs of samples, we would like to con-
trast a new malware sample against all previously observed variants,
and identify the code that is new in the latest variant. Measuring
this code provides the most direct measure of the malware authors’
development effort for this variant. For this, we compute the set
FM1,..,Mt−1 of fingerprints found in the first t−1 samples, and iden-
tify the new basic blocks NMt = BMt \BMt (FM1,..,Mt−1).

4.3 Behavior Extraction
Automatically understanding the purpose and semantics of binary

code is a challenging task. The system-level behavior of a malware
sample in an analysis sandbox, however, can be more readily inter-
preted. To detect specific patterns of malicious behavior previous
work [16, 27] has started from system-level events, enriched with
data flow information. Martignoni et al. in [27] frame this as a “se-
mantic gap” problem, and propose a technique to detect high-level
behavior from system-level events using a hierarchy of manually
crafted rules. In the absence of prior knowledge of a pattern of

malicious behavior, on the other hand, no such rules are available.
As an alternative to leveraging prior knowledge, researchers have
used data flow to link individual system-level events into graphs, and
applied data mining techniques to a corpus of such graphs to learn
to detect malware [11] or to identify its C&C communication [17].

We aim to make our observation of the evolution of malware
functionality as complete and insightful as possible. Therefore, we
assign semantics to observed behavior that matches known patterns,
but also take into account behaviors for which no high-level meaning
can be automatically established. In this work, we call the former
labeled, and the latter unlabeled behavior.

Unlabeled Behavior. An unlabeled behavior is a connected graph
of system-level events observed during the execution of a sample.
Nodes in this graph represent system or API calls, whereas the
edges represent data flow dependencies between them. As data flow
dependencies are lost when files are written to disk, we also connect
nodes that operate on the same file system resources.

Our purpose in taking unlabeled behavior into account is to iden-
tify components of the malware and measure their evolution, even
though we do not (yet) know what functionality they implement.

Labeled Behavior. A labeled behavior consists of one or more
unlabeled behaviors—or, in other words, connected subgraphs of
system-level events—such that they match a manually-crafted spec-
ification of a known malware behavior. These specifications can
take into account the API calls involved, their arguments, as well as
the data flow between them. For instance, we define the DOWNLOAD_
EXECUTE behavior as any data flow dependency from the network to
a file that is later executed; another example is the AUTO_START be-
havior, which we define as a write to any of a set of known autostart
locations.

Behaviors that remain unlabeled can be examined by an analyst
who can assign semantics to them and define behavior specifications
for detecting them. Thus, BEAGLE’s knowledge-base of behavior
specifications grows over time to cover a broader spectrum of mal-
ware functionality. As we show in §5.6, a relatively small number
of manually-written behavior specifications was sufficient to cover
a significant fraction of the malware code that was executed during
our experiments.

4.4 Semantic-Aware Comparison
The goal of this step is to attach meaning to the overall changes

in the binary code. Essentially, we divide the malware program
into a number of functional components. To this end, BEAGLE
starts from the behaviors observed at runtime, as discussed in §4.3,
and identifies the binary code that is responsible for each observed
behavior. By tracking the evolution of this code across malware ver-
sions, we are able to measure the evolution of malware’s functional
components.

Mapping Behavior to Code. The output of the behavior extraction
phase is, for each behavior observed in a sample’s execution, a
sequence of system or API calls with the corresponding call stack.
BEAGLE next tries to identify the code responsible for this behav-
ior. BEAGLE works at function granularity: It identifies the set of
functions in the unpacked binary that are involved in that behavior,
and “tags” them with the behavior. A single function may be tagged
with multiple behaviors (e.g., a utility function that is re-used across
different functional components). To identify the functions involved
in a behavior, we use static analysis to identify a code path that could
have been responsible for the observed sequence of calls (taking into
account the corresponding call stacks). To do so, we resolve the path
between any two consecutive calls by recursively looking up code
references to the target function until we find the source function.



FAMILY NAME AND LABEL SOURCE 1ST DAY DAYS EXECUTIONS MD5S LIFESPAN

Banload TrojanDownloader:Win32/Banload.ADE (1) 2012-01-31 87 78 3 2.00/83.00/29.33/37.95
Cycbot Backdoor:Win32/Cycbot.G (1) 2011-09-15 73 73 69 1.00/73.00/2.04/8.60
Dapato Worm:Win32/Cridex.B (2) 2012-02-24 65 62 25 1.00/43.00/4.60/8.31
Gamarue Worm:Win32/Gamarue.B (2) 2012-02-10 78 77 19 1.00/76.00/8.47/16.44
GenericDownloader TrojanDownloader:Win32/Banload.AHC (1) 2012-01-31 82 79 5 2.00/69.00/16.80/26.16
GenericTrojan Worm:Win32/Vobfus.gen!S (1) 2012-02-07 76 73 55 1.00/44.00/2.71/6.32
Graftor TrojanDownloader:Win32/Grobim.C (1) 2012-02-17 37 39 22 1.00/17.00/6.00/5.53
Kelihos TrojanDownloader:Win32/Waledac.C (2) 2012-03-03 56 38 8 1.00/54.00/21.00/22.88
Llac Worm:Win32/Vobfus.gen!N (1) 2012-02-07 32 33 82 1.00/10.00/1.49/1.71
OnlineGames Worm:Win32/Taterf.D (1) 2011-09-02 87 80 47 1.00/38.00/3.94/7.28
ZeuS PWS:Win32/Zbot.gen!AF 1be8884c7210e94fe43edb7edebaf15f (3) 2012-02-09 79 78 6 1.00/78.00/26.67/28.70
ZeuS PWS:Win32/Zbot 9926d2c0c44cf0a54b5312638c28dd37 (3) 2012-02-15 74 73 4 1.00/50.00/18.50/19.63
ZeuS PWS:Win32/Zbot.gen!AF* c9667edbbcf2c1d23a710bb097cddbcc (3) 2012-02-23 66 63 6 1.00/36.00/11.00/13.43
ZeuS PWS:Win32/Zbot.gen!AF* dbedfd28de176cbd95e1cacdc1287ea8 (3) 2012-02-09 79 78 4 1.00/78.00/20.25/33.34
ZeuS PWS:Win32/Zbot.gen!AF* e77797372fbe92aa727cca5df414fc27 (3) 2012-02-10 79 77 5 1.00/77.00/16.20/30.40
ZeuS PWS:Win32/Zbot.gen!AF* f579baf33f1c5a09db5b7e3244f3d96f (3) 2012-03-03 57 55 11 1.00/30.00/5.64/9.75

Table 1: Dataset. The labels in the first columns are based on Microsoft AV naming convention. The MD5 column is the number of
distinct binaries encountered. Lifespan is the duration in days of the interval in which an MD5 was observed (min/max/mean/stdev).

We use the addresses in the call stack as landmarks this path should
traverse and in case the dynamic path cannot be resolved statically.
We tag all functions in the identified path as part of the behavior.

Working at function granularity is a design decision that trades
off some precision in delimiting functional components, to achieve
performance compatible with a large-scale experiment. As discussed
in §4.1, our modified sandbox logs events at the system API level.
Previous work that performed a similar mapping of behavior to code
at instruction granularity [28], on the other hand, relied on a sandbox
logging each executed basic block.

Behavior Evolution. The set of functions that implement a behavior
is a functional component of a malware instance. By comparing
the components that implement a behavior in successive versions
of a malware, we can observe the evolution of that functionality
over time. This allows us to get an idea of the development effort
involved in updating this functionality by measuring the amount of
new code, as well as quickly identifying significant updates to the
malicious functionality that may warrant further inspection. For this,
we apply the techniques discussed in §4.2 to successive versions of a
component, instead of considering entire unpacked binaries. Among
the versions of a component observed throughout our experiments,
we select the largest implementation by number of basic blocks and
call it the reference behavior.

Dormant Functionality. Like any dynamic code analysis approach,
a limitation of BEAGLE is incomplete code coverage. In a typical
execution, a malware sample will reveal only a fraction of the func-
tionality it is capable of: For instance, a bot will send SPAM only
if instructed to do so by the botnet’s C&C infrastructure. Thus,
the techniques described above will identify the presence of each
functional component only in some of a sample’s executions, even
though the code implementing the functionality is present through-
out our experiments. This limits our visibility in the component’s
evolution. In the limit, if a behavior is observed only once, we do not
see any evolution. To be able to track evolution in a more complete
way, we use the CFG fingerprints from §4.2 to identify a compo-
nent even in executions where it is dormant and the corresponding
behavior cannot be observed. For this, we identify the dormant com-
ponents by locating the functions in a sample that match fingerprints
from an active (non-dormant) component in another execution.

5. EXPERIMENTAL EVALUATION

5.1 Setup
We run BEAGLE on a desktop-class, dual-core machine with 4GB

of RAM, and execute each sample for 15 minutes approximately
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Figure 3: CDF of added basic blocks per family. Day-to-day
changes (a) are concentrated around low values for all the fam-
ilies, whereas in the long run (b) each family evolves distinc-
tively, showing different development efforts.

once a day, depending on the workload of the sandbox. Each analy-
sis continues from the state of the previous day’s execution in order
to analyze only the updated versions. Since we want to observe
malware updating itself, we cannot run it in a completely isolated
environment, but need to allow it to access the C&C infrastructure
from which to obtain updates. To prevent malware from causing
harm, we employ containment measures such as redirecting “dan-
gerous” protocols to a local honeypot and limiting bandwidth and
connections. These measures cannot guarantee that the malware we
run will never cause harm (0-day attacks are especially hard to rec-
ognize and block), but we believe that they are sufficient in practice
if combined with a prompt response to any abuse complaints (we did
not receive any complaints during the course of our experiments).

5.2 Dataset
We selected samples from three different sources: (1) Recent

submissions to Anubis for which the data flow detection of Jack-
straws [17] indicated download & execute behavior. (2) Malware
variants from the top threats according to the Microsoft Malware
Protection Center [2] (3) ZeuS samples from ZeuS Tracker [3].
We then discarded samples that showed no update activity in our
environment.

As summarized in Tab. 4.3, we analyzed the evolution of 16 sam-
ples from 11 families between September 2011 and April 2012. We
stopped the analysis and discarded a sample after it failed to contact
its C&C server for more than two weeks. Overall, we analyzed a
total of 1,023 executions of 381 distinct malware binaries.
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Figure 2: Added, removed and shared code over time. The first row shows the day-to-day changes in the code (i.e., we compare
subsequent pairs of samples in the same family), whereas the second row shows the new code. Other families such as Gamarue and
GenericDownloader, omitted for space limits, also exhibit interesting evolutions.

5.3 Validation
BEAGLE automatically finds differences between hundreds of

malware samples in a few hours on a desktop-class computer. Clearly,
an in-depth understanding of the code differences would still require
a reverse engineer, which BEAGLE cannot possibly substitute. How-
ever, BEAGLE provides valuable guidance to quickly decide what
are the interesting changes between malware releases to focus man-
ual inspection. That said, it is hard to assess the correctness of
BEAGLE, mainly because we do not have the source code of succes-
sive malware versions, and lack a ground truth on the semantics of
malware components and their comparison.

The binary comparison component of BEAGLE described in §4.2,
however, can be validated by comparing its results against estab-
lished tools for binary code comparison. For this, we use Bin-
Diff [1, 13], the leading commercial tool for binary comparison and
patch analysis, and compare the similarity scores it produces when
comparing pairs of samples to those from BEAGLE. Note that Bin-
Diff is based on a completely different approach and uses a number
of proprietary heuristics for comparison, and relies on program’s
call graph, which is not taken into account by our tool. Although the
absolute value of BinDiff’s similarity score and BEAGLE’s similarity
score differ, we were able to find a linear transformation2 from one
value to another with a low residual mean square error (6.3% on
average, with a peak of 17% for GenericTrojan). Note however
that BinDiff cannot efficiently be used to contrast a binary against
multiple others. BEAGLE’s binary comparison component, on the
other hand, can be used to contrast a sample against all previous
versions (to detect new code), or against a library of benign software
(for whitelisting), as discussed in §4.2.

5.4 Overall Changes
In Fig. 2 we show the timelines resulting from comparing samples

within three families: Graftor, ZeuS (4th variant), and Llac. We only

2To this end, we used R’s linear model fitting functions (lm() and
poly()).
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Figure 4: (a) CDF of the detection rate of malware samples
among 43 AV engines, at the time each sample is observed for
the first and last time in our experiments. (b) Detection rate of
Kelihos binaries over time—one line per distinct binary.

show three timelines because of space limitations. For the top row
of the figure, we consider each consecutive pair of samples of a
malware, that is at time t and t−1. Then, as described in §4.2, we
calculate the amount of added, removed and shared code (Eq. (1)),
expressed in distinct basic blocks, between the two samples, and
normalized to the total number of distinct basic blocks. For the
bottom row, we calculate the absolute amount of code that was
never found in any of the previous samples.

These timelines show that overall, day-to-day changes in malware
code are relatively small: As would be expected, most new malware



FAMILY NAME %TAGGED %LABELED %RATIO %ADDED %REMOVED %SHARED NEW #LABELS

Banload 7.31 ± 1.70 6.68 ± 0.75 91.43 2.48 ± 2.96 2.83 ± 3.10 94.69 ± 3.75 176.2 ± 409.2 5
Cycbot 32.36 ± 2.40 31.23 ± 2.95 96.50 10.59 ± 10.36 10.30 ± 10.42 79.11 ± 12.80 1361.4 ± 3937.2 11
Dapato 2.81 ± 1.22 1.15 ± 0.55 40.90 5.15 ± 5.14 5.57 ± 5.63 89.28 ± 7.48 2402.9 ± 7165.3 4
Gamarue 15.90 ± 14.06 14.06 ± 13.40 88.42 12.08 ± 8.16 12.50 ± 9.32 75.41 ± 11.57 2500.1 ± 7747.2 12
GenericDownloader 9.10 ± 1.93 8.58 ± 1.59 94.30 9.80 ± 9.85 9.58 ± 8.81 80.62 ± 12.48 3330.6 ± 7367.8 6
GenericTrojan 22.94 ± 11.05 20.18 ± 10.69 87.97 16.66 ± 16.15 17.03 ± 15.15 66.31 ± 18.76 4974.1 ± 14339.6 11
Graftor 12.66 ± 6.20 9.58 ± 4.70 75.70 6.47 ± 10.40 6.84 ± 9.96 86.69 ± 13.48 682.0 ± 1662.8 4
Kelihos 24.20 ± 2.24 24.09 ± 2.26 99.53 5.18 ± 8.69 5.60 ± 10.10 89.23 ± 12.64 2145.3 ± 4065.3 12
Llac 19.13 ± 14.25 19.11 ± 14.26 99.91 12.82 ± 12.53 14.45 ± 14.70 72.73 ± 19.05 3323.3 ± 7899.1 10
OnlineGames 2.18 ± 0.30 1.96 ± 0.21 89.97 3.35 ± 3.12 3.37 ± 3.12 93.28 ± 5.44 420.0 ± 718.0 9
Zeus 8.37 ± 2.59 6.15 ± 1.32 73.44 2.10 ± 2.24 3.59 ± 11.27 94.31 ± 11.28 1910.8 ± 6148.0 11
Zeus 8.26 ± 1.56 6.44 ± 1.14 78.00 3.65 ± 3.07 5.25 ± 11.85 91.09 ± 12.41 4086.0 ± 11936.3 12
Zeus 10.45 ± 2.67 7.91 ± 2.49 75.73 2.61 ± 2.20 4.51 ± 12.64 92.88 ± 12.47 2234.5 ± 7117.9 11
Zeus 8.55 ± 2.15 6.53 ± 1.19 76.41 2.55 ± 2.51 3.93 ± 11.26 93.52 ± 11.35 2013.6 ± 6874.5 12
Zeus 8.82 ± 1.79 7.73 ± 1.36 87.65 3.12 ± 2.78 4.57 ± 11.33 92.32 ± 11.46 3245.9 ± 7456.3 12
Zeus 7.44 ± 1.31 6.41 ± 0.88 86.06 2.24 ± 2.51 4.53 ± 13.46 93.23 ± 13.46 2523.9 ± 6834.9 13

Table 2: Overall tagged and labeled code (in each version), added, removed, shared code (between consecutive versions), and new
code (with respect to all previous versions) for each family (mean±variance, measured in basic blocks). #Labels is the number of
distinct behavior labels detected throughout the versions.

versions are incremental updates that reuse most of the code. New
code is largely concentrated in a smaller number of peaks, that
indicate significant updates to the malware code base. For some
families, the amount of brand new code in some of these peaks is
significant, up to for instance 50,000 new basic blocks for Llac.

Fig. 3 shows a CDF of the similarity of day-to-day differences
between successive malware versions (3(a)) and between each ver-
sion and the first analyzed version (3(b)). Comparing the two
graphs clearly shows that while daily updates mostly consist of
small changes, for some families the cumulative effect of these
small changes eventually result in binaries that are very different
from the original sample. This long term evolution varies a lot
across the families in our dataset. In Fig.3(b) we highlight Zeus
(2nd variant) and Gamarue that show particularly large cumulative
changes.

Tab. 2 summarizes our results, which confirm that, in the majority
of cases, the malware writers reuse a significant amount of code
when they release day-to-day updates. Remarkably, for a few fami-
lies the new code added in day-to-day changes accounts for around
10% of the entire malware code on average.

5.5 AV Detection
In §2 we suggested that AV engines are one of the main reasons

malware authors frequently update their code. During the course
of our experiments, we scanned all observed binaries with 43 Anti-
Virus engines by using the VirusTotal service. Fig. 4a shows that, as
expected, the detection rate of AV engines on a set of binaries—in
this case, all binaries executed in our experiments—is generally
lower at the beginning of their life cycle than towards the end. More
interestingly, we found that in some families, such as Kelihos, as
shown in Fig. 4b, the malware writers seem to release a new binary
as soon as previous binaries get detected by AV engines. Indeed,
whenever a larger number of AV engines start detecting a sample, the
malware writers unleash a new, unknown binary, causing a sudden
drop in the detection rate.

5.6 Code Behavior
As described in §4.3, we specify behavior as graphs of API calls,

connected by data flow, and can take into account API call pa-
rameters. Depending on the granularity at which BEAGLE should
track changes, an analysts can label behavior by rules that com-
prise only one function such as RegSetValue(HKEY_CURRENT_
USER\Software\Microsoft\Windows\CurrentVersion\Run,*)
for (one variant of) the AUTO_START behavior, or more complex rules
such as InternetOpenUrl|connect -> InternetReadFile|recv

-> WriteFile -> WinExec|CreateProcess for the DOWNLOAD_
EXECUTE behavior.

Taking into account a-priori knowledge about the behavior of
the samples in our dataset and observations during the analysis, we
defined rules that label a total of 31 distinct behaviors.
Install. We detect modifications to known autostart locations (AUTO_

START) to recognize when a sample installs on the system.

Networking. We label network behavior based on protocols and
port numbers. We label any data flow to the network over port 25
as SPAM. Furthermore, we distinguish between HTTP_REQUEST,
HTTPS_REQUEST, DNS_QUERY, general TCP_TRAFFIC and UDP_
TRAFFIC as well LOCAL_CONNECTION from and to localhost. Fi-
nally, OPEN_PORT indicates that the malware listens on a local
port.

Download & Execute. This describes the updating functionality of
a malware sample by labeling any data flow from the network to
files that are then executed (DOWNLOAD_EXECUTE) or to memory
sections that are injected into foreign processes (DOWNLOAD_
INJECT).

Information Stealing. We currently detect four information-steal-
ing behaviors. FTP_CREDENTIALS and EMAIL_HARVESTING in-
dicate that the malware harvests FTP credentials and email ad-
dresses, respectively, from the filesystem and registry. BITCOIN_
WALLET indicates that the malware searches for a Bitcoin wallet
to steal digital currency. Finally, INTERNET_HISTORY is detected
when the malware accesses the user’s browsing history.

Fake AV. Fake AV software modifies system settings to simulate
system instability and persuade the victim to pay for additional
software that fixes these “problems”. We detect this as modifi-
cations to the registry that disable the task manager (DISABLE_
TASKMGR) or hide items in the start menu (HIDE_STARTMENU),
as well as enumeration of the file system and setting all file
attributes to hidden (HIDE_FILES).

Browser Hijacking. We detect this type of behavior when a mal-
ware changes Internet Explorer’s or Firefox’s proxy settings,
(IE_PROXY_SETTINGS and FIREFOX_SETTINGS).

Anti AV. We detect behavior that disables system call hooks com-
monly used by AV software by restoring the System Service
Dispatch Table rom the disk image of the Windows kernel
(RESTORE_SSDT).

AutoRun. We detect the use of the AUTO_RUN feature as modifica-
tions to autorun.inf, changes to the AutoRun settings in the
registry and the enumeration and spreading to external drives.



Lowering Security Settings. We currently detect three types of be-
haviors that lower a system’s security settings: the creation of
new Windows firewall’s rules or attempts to disable it completely
(FIREWALL_SETTINGS), registry modifications that disable Inter-
net Explorer’s phishing filter (IE_SECURITY_SETTINGS), and
changes to a system security policy that classifies executables as
low risk file types when downloading them from the Internet or
opening email attachments (CHANGE_SECURITY_POLICIES).

Miscellaneous. We also detect a number of simple behaviors that
have self-explanatory labels: INJECT_CODE, START_SERVICE,
EXECUTE_TEMP_FILE, ENUMERATE_PROCESSES and DOWNLOAD_
FILE.

Unpacking. To identify a malware’s unpacking code (UNPACKER),
we do not rely on behavior rules as we do for other labels. Instead,
we assume that all code found in the original malware binary
before unpacking is part of the unpacking behavior. The reason
is that malware authors use packing to hide as much as possible
of their software from analysis and detection: Thus, all other
functionality is typically found inside the packing layer.

The first column of Tab. 2 shows the percentage of a sample’s
overall code that is tagged with any behavior (labeled or unlabeled).
This is all the code that is responsible for any observed behavior,
and is a measure of the code coverage of our dynamic analysis.
Overall coverage is relatively low, which confirms the difficulty of
performing a complete dynamic analysis. The second column show
the percentage that is tagged with a labeled behavior; That is, code
to which we were able to attribute a high-level purpose. Except
for one outlier (Dapato, at 40.9%) the labeled code is on average
73.4%−99.91% of the total tagged code. This shows that BEAGLE
was able to assign most executed code to a functional component.

5.7 Behavior Evolution
With the techniques discussed in §4.4, BEAGLE is able to monitor

the evolution of each of the detected behaviors across successive
malware versions. For each functional components that implements
a behavior, BEAGLE can produce results similar to those presented
for the overall malware code in Table 2 and in Figures 2 and 3. Due
to space limitations, we can present here only a small sample of
these results. To present the evolution of behaviors, we focus on
the similarity (as defined in Eq. (1)) between each version of the
behavior and the reference behavior. As discussed in Section 4.4,
the reference behavior is the largest implementation of a behavior
by number of basic blocks, across a malware’s versions. While
this does not provide a complete picture of the code’s evolution,
it gives an idea of how each behavior grows towards its largest
implementation (i.e., the reference behavior).

Fig. 5 shows the similarity over time of each behavior found in
ZeuS (3rd variant) against the respective reference behavior. This
shows the contribution of each behavior to the overall changes. In-
terestingly, in this family as well as in other families, we notice very
limited code change overall (first plot). However, the breakdown
reveals some significant changes towards the end of the observation
window, where behaviors such as TCP_CONNECTION, DOWNLOAD_
INJECT and HTTP_REQUEST change their similarity with respect to
the reference.

A more compact representation of the behavior “variability” is
exemplified in Fig. 5, which shows the boxplot distribution of the
similarity of each behavior against the respective reference behav-
ior. In the family under examination, which is Gamarue, behaviors
such as DOWNLOAD_EXECUTE, UDP_TRAFFIC, and DOWNLOAD_FILE
almost never change, except for some outliers (empty circles). Other
behaviors, instead, exhibit more variance, which means that their
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Figure 5: ZeuS (3rd variant): Similarity over time of each be-
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line is the overall code similarity with respect to the first sam-
ple of that family. This plot shows how the overall changes are
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Figure 6: Gamarue: Distribution of the similarity of each be-
havior against the respective reference behavior. Each box
marks the 0%-, 25%- and 75%-, 100%-quantiles, and the me-
dian. The circles indicate the outliers.

code is changed often, corresponding to a proportionally larger
development effort.

5.8 Lines of Malicious Code
Throughout our evaluation, we have used basic blocks as the

unit of measurement for code, whereas it would be more useful
to quantify the malware development effort in terms of lines of
malicious code. Unfortunately, directly measuring the Lines of



Code (LoC) would require the malware’s source code, which is
typically unavailable. Nonetheless, we would like to provide a
rough estimate of the amount of source code that may correspond
to the observed changes. For this, we attempt to estimate a range
of possible values for the ratio of basic blocks to LoC in malware
samples. Clearly, factors such as the compiler, compiler options and
programming paradigms can significantly influence such ratio, thus
our estimate is not generalizable outside the scope of our dataset.

We obtained the source code of 150 malware samples of various
kinds (e.g., bots, worms, spyware), including the leaked ZeuS source
code, and a corresponding executable binary. Apart from ZeuS, none
of the families in our dataset are represented in these 150 samples.
We then calculated the number of lines of C/C++ source code (LoC),
using cloc, and the number of basic blocks, using BEAGLE’s binary
comparison submodule—we excluded the blocks that belong to
whitelisted fingerprints. Within this dataset, we found that the ratio
between basic blocks and LoC ranges between 50 and 150 blocks
per LoC, and around 14.64 for ZeuS. However, one third of the 150
samples that we analyze exhibit a ratio very close to 50 basic blocks
per LoC, which we take as a conservative lower bound.

Given these estimates, in the case of ZeuS, the average amount of
new code is around 140–280 lines of code, with peaks up to 9,000.
Since the Zeus samples in our dataset are closely related to the
source code used to estimate this ratio, we consider this a relatively
reliable estimate. For the remaining families, with a rough estimate
using a ratio of 50, we notice an average amount of new code around
100–300 LoC per update cycle, with peaks up to 4,600–9,000. These
are just estimates, but they give an overall idea of the significant
development effort behind the evolution of malware.

5.9 Conclusive Remarks
BEAGLE revealed that, within our observation window, some

families are much more actively developed than others. For in-
stance, GenericTrojan, Llac and ZeuS (3rd variant) have a remark-
able amount of new code added. A wider observation window may
obviously unveil other “spikes” of development efforts (e.g., new
code). As discussed in §5.8, for some families such as ZeuS, we can
also give rough estimates of these quantities in lines of source code.

BEAGLE is also able to tell whether and how such changes target
each individual behavior. For instance, some behaviors in certain
families almost never change (e.g., UDP_TRAFFIC or DOWNLOAD_
FILE in Gamarue), whereas other behaviors (e.g., HIDE_STARTMENU
or HTTP_REQUEST in Gamarue) change over time. In some cases,
such as ZeuS (3 rd variant), the overall development effort appears
constant, and relatively low. BEAGLE’s more focused analysis of
the evolution of individual components of this malware, however,
reveals that some behaviors undergo significant changes.

6. LIMITATIONS AND FUTURE WORK
Our results demonstrate that BEAGLE is able to provide insight

on the real-world evolution of malware samples. However, malware
authors could take steps to defeat our system. First of all, the
simple unpacking techniques used by BEAGLE could be defeated by
using more advanced approaches such as multi-layer or emulation-
based packing. For this, BEAGLE could be extended with advanced
unpacking approaches [26, 33]. A further problem is that malware
analyzed by BEAGLE may be able to detect that it is running in an
analysis sandbox, and refuse to update. In recent years, a number
of techniques have been proposed to attempt to detect [7, 24] or
analyze [12, 19] evasive malware.

Even in the absence of evasion, BEAGLE’s dynamic analysis
component suffers from limited code coverage. This problem is
to some extent alleviated by the fact that we combine information

on a malware sample from a large number of executions over a
period of months. None-the-less, behavior that is never observed
in our sandbox cannot be analyzed. As an example, in our current
experiments our observation of the BITCOIN_WALLET behavior is
incomplete because the analysis environment does not include a
Bitcoin wallet for the malware to steal.

BEAGLE can identify and measure the evolution of a malware’s
functional components. However, it cannot tell us anything more
about the semantics of the code changes it detects: This task is
currently left to a human analyst. The next logical step is to develop
patch analysis techniques to attempt to automatically understand
how the update of a component changes its functionality.

7. RELATED WORK
The techniques we apply to measure the similarity between two

versions of the same malware family are related to the field of soft-
ware similarity and classification (as well as plagiarism and theft
detection). We refer the reader to [10], which presents a compre-
hensive review of the existing methods to analyze the similarity of
non-binary and binary code, including malicious code.

BinHunt [14] was developed to facilitate patch analysis by ac-
curately identifying which functions have been modified and to
what extent. For this, the authors compare the program call graphs
and control flow graphs, using symbolic execution and theorem
proving to prove that two basic blocks are functionally equivalent,
despite transformations such as register substitution and instruction
reordering. BinHunt however does not work on packed code, and
its efficiency decreases as the amount of code differences increases.
BEAGLE’s binary comparison component is also based on control
flow graphs, and is robust to some code transformations such as
basic block and instruction re-ordering and register substitution.
While less precise, our approach is fast and scalable and can also
be used to contrast a binary against multiple others. Bitshred [18]
uses n-grams over binary code and bloom filters to efficiently and
scalably locate re-used code in large datasets. Since it relies on raw
byte sequences, however, this approach is less robust to syntactic
changes in binary code.

The work most closely related to our own is Reanimator [28]
which can identify the code responsible for a malware behavior
observed in dynamic analysis at instruction granularity and uses
CFG fingerprints [23] as signatures to detect the presence of this
code in other malware. Our techniques for mapping behavior to
code are less precise, and produce results at function granularity.
The advantage is that we do not require (extremely slow) instruction-
level logging, and are able to apply our techniques to a larger dataset.

Roberts [30] presents some early, high-level insights on the mal-
ware development life cycle, largely based on manual malware
analysis efforts. More recently, in work concurrent to our own,
Rossow et al. [31] performed a large scale analysis of malware
downloaders and the C&C infrastructure they rely on.

8. CONCLUSIONS
Understanding the mechanics and economics of malware evolu-

tion over time is an interesting and challenging research problem
with practical applications. We proposed an automated approach to
associate observed behaviors of a malware binary with the compo-
nents that implement them, and to measure the evolution of each
component across malware versions. To the best of our knowledge,
no previous research has automatically monitored how malware
components change over time.

Our system can observe the overall evolution of a malware sam-
ple and of its individual functional components. This led us to
interesting insights on the development efforts of malicious code.



Our measurements confirmed commonly held beliefs (e.g., that
the malware industry is partly driven by AV advances), but gave
also novel and interesting insights. For instance, we observed that
most malware writers reuse significant portions of code, but that
this varies wildly by family, with significant “spikes” of software
development in short timespans. We were also able to distinguish
between behaviors that never change in a certain family, and others
being constantly developed; In some cases, spikes of development
of a malware component are not visible in the overall evolution of
the malware sample, but are revealed by the analysis of individual
behaviors.

BEAGLE proved to be useful both to build the “big picture” of how
and when self-updating malware change, and to guide a malware
analysts to the most interesting portions of code (i.e., parts that have
changed significantly between two successive versions).
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