
Self-stabilizing (k,r)-clustering in Clock Rate-limited Systems

Andreas Larsson
Computer Science and Engineering
Chalmers University of Technology

Email: larandr@chalmers.se

Philippas Tsigas
Computer Science and Engineering
Chalmers University of Technology

Email: tsigas@chalmers.se

Abstract—Wireless Ad-hoc networks are dis-
tributed systems that often reside in error-prone en-
vironments. Self-stabilization lets the system recover
autonomously from an arbitrary system state, mak-
ing the system recover from errors and temporarily
broken assumptions. Clustering nodes within ad-hoc
networks can help forming backbones, facilitating
routing, improving scaling, aggregating information,
saving power and much more. We present a self-
stabilizing distributed (k,r)-clustering algorithm. A
(k,r)-clustering assigns k cluster heads within r
communication hops for all nodes in the network
while trying to minimize the total number of cluster
heads. The algorithm assumes a bound on clock
frequency differences and a limited guarantee on
message delivery. It uses multiple paths to different
cluster heads for improved security, availability and
fault tolerance. The algorithm assigns, when possible,
at leastk cluster heads to each node withinO(rπλ3)
time from an arbitrary system configuration, where
π is a limit on message loss andλ is a limit on pulse
rate differences. The set of cluster heads stabilizes,
with high probability, to a local minimum within
O(rπλ4g log n) time, where n is the size of the
network and g is an upper bound on the number
of nodes within 2r hops.

I. I NTRODUCTION

Starting from an arbitrary system state, self
stabilizing algorithms let a system stabilize to, and
stay in, a consistent system state [1]. There are
many reasons why a system could end up in an
inconsistent system state of some kind. Assump-
tions that algorithms rely on could temporarily

be invalid. Memory content could be changed by
radiation or other elements of harsh environments.
Battery powered nodes could run out of batteries
and new ones could be added to the network. It is
often not feasible to manually configure large ad-
hoc networks to recover from events like this. Self-
stabilization is therefore often a desirable property
of algorithms for ad-hoc networks. However, the
trade off is that self-stabilization often comes with
increased costs. A self-stabilizing algorithm can
never stop because it is not known in advance
when temporary faults occur. Nevertheless, as long
as all assumptions hold, it can converge to stable
result, or, after convergence, stay within a set
of acceptable states. Moreover, there are often
overheads in the algorithm tied to the need to
recover from arbitrary system states. They can be
additional computations, larger messages, larger
data structures or longer required times to achieve
certain goals.

An algorithm for clustering nodes together in
an ad-hoc network serves an important role. Back
bones for efficient communication can be formed
using cluster heads. Clusters can be used for rout-
ing messages. Cluster heads can be responsible
for aggregating data into reports to decrease the
number of individual messages that needs to be
routed through the network, e.g., aggregating sen-
sor readings in a wireless sensor network. Hierar-
chies of clusters on different levels can be used for

improved scaling of a large network. Nodes in a
cluster could take turns doing energy-costly tasks
to reduce overall power consumption.

Clustering is a well studied problem. Due to
space constraints, for references to the area in gen-
eral, we point to the survey of the area with regard
to wireless ad-hoc networks by Chen, Liestam and
Liu in [2] and the survey by Abbasi and Younis in
[3] for wireless sensor networks. In this paper we
focus on self-stabilization, redundancy and security
aspects. One way of clustering nodes in a network
is for nodes to associate themselves with one or
more cluster heads. In the (k,r)-clustering problem
each node in the network should have at leastk
cluster heads withinr communication hops away.
This might not be possible for all nodes if the
number of nodes withinr hop from them is smaller
than k. In such cases a best effort approach can
be taken for getting as close tok cluster heads
as possible for those nodes. The clustering should
be achieved with as few cluster heads as possible.
To find the global minimum number of cluster
heads is in general computationally hard, and algo-
rithms usually provide approximations. The (1,r)-
clustering problem, a subset of the (k,r)-clustering
problem, can be formulated as a classical set cover
problem. This was shown to be NP complete in [4].
Assuming that the network allowsk cluster heads
for each node, the set of cluster heads forms a total
(k,r)-dominating set in the network. In atotal (k,r)-
dominating set the nodes in the set also need to
havek nodes in the set withinr hops, in contrast
to an ordinary (k,r)-dominating set in which this is
only required for nodes not in the set.

There is a multitude of existing clustering al-
gorithms for ad-hoc networks of which a number
is self-stabilizing. Johnen and Nguyen present a
self-stabilizing (1,1)-clustering algorithm that con-
verges fast in [5]. Dolev and Tzachar tackle a lot of
organizational problems in a self-stabilizing man-
ner in [6]. As part of this work they present a self-

stabilizing (1,r)-clustering algorithm. Caron, Datta,
Depardon and Larmore present a self-stabilizing
(1,r)-clustering in [7] that takes weighted graphs
into account. Self-stabilization in systems with
unreliable communications was introduced in [8].
In [9] a self-stabilizing (k,1)-clustering algorithm,
that can cope with message loss, is presented.

There is a number of papers that do not have
self-stabilization in their settings. Fu, Wang and Li
consider the (k,1)-clustering problem in [10]. In
[11] the full (k,r)-clustering problem is considered
and both a centralized and a distributed algorithm
for solving this problem are presented. Wu and Li
also consider the full (k,r)-clustering in [12].

Other algorithms do not take the cluster head
approach. In [13], sets of nodes that all can com-
municate directly with each other are grouped
together without assigning any cluster heads. In
this paper malicious nodes that try to disturb the
protocol are also considered, but self-stabilization
is not considered.

A. Our Contribution

We have constructed a self-stabilizing(k, r)-
clustering algorithm for ad-hoc networks that can
deal with message loss, as long as at least one
out of π consecutive broadcasts are successful,
and that uses unsynchronized pulses, for which
the ratios between pulse rates are limited by a
factor λ. The algorithm makes sure that, within
O(rπλ3) time, all nodes have at leastk cluster
heads (or all nodes withinr hops if a node has less
thank nodes withinr hops) using a deterministic
scheme. A randomized scheme complements the
deterministic scheme and lets the set of cluster
heads stabilize to a local minimum. It stabilizes
within O(rπλ4g log n) time with high probability,
whereg is a bound on the number of nodes within
2r hops, andn is the size of the network.

We presented the first distributed self-stabilizing
(k,r)-clustering in [14]. There, the system settings

assumed perfect message transfers and lock step
synchronization of the nodes. The current article
is a further development of that work and the
main idea of the algorithm is the same. The un-
reliable communication media, the unsynchronized
nodes and the introduction of a veto mechanism to
speed up convergence, all have made the current
algorithm quite different, yet clearly related to the
one in [14]. We present correctness proofs for
quick selection of enough cluster heads (k cluster
heads withinr hops when possible) and that the
set of cluster heads converges towards a local
minimum and stays at that local minimum. This
includes an upper bound on the time it takes, with
high probability, for that convergence to happen.
Furthermore, we also present experimental results
on the convergence of the algorithm and how it
copes with changes to the topology.

B. Document Structure

The rest of the paper is organized as follows.
In section II we introduce the system settings.
Section III describes the algorithm. Section IV
gives the overview of the proofs of the algorithm.
We discuss experimental results, security and re-
dundancy in Section V.

II. SYSTEM SETTINGS

We assume a static network. Changes in the
topology are seen as transient faults. We denote
the set of all nodes in the networkP and the size
of the networkn = |P|. We impose no restrictions
on the network topology other than that an upper
bound,g, on the number of nodes within2r hops
of any node is known (see below).

The set of neighbors,Ni, of a nodepi is all the
nodes that can communicate directly with nodepi.
In other words, a nodepj ∈ Ni is one hop from
node pi. We assume a bidirectional connection
graph, i.e., thatpi ∈ Nj iff pj ∈ Ni. The
neighborhood,Gr

i of a nodepi is all the nodes
(including itself) at mostr hops away frompi and

Ĝr
i = Gr

i \ {pi}. Let g ≥ maxj |G
2r
j | be a bound,

known by the nodes, on the number of nodes within
2r hops from any node.

Nodes are driven by a pulse going off every1
time unit (with respect to its local clock). Pulses
are not synchronized between nodes. The pulse
frequency, in real time, of a nodepi is denotedρi.
For any pair of nodespi andpj the ratioρi/ρj ≤ λ,
a value is a known to the nodes. Without loss of
generality we assume that the frequency of the
slowest clock in the system is1 and thus the clock
frequency of any nodepi is in [1, λ].

Among π successive messages sent from one
node there is at least one message, such that all
immediate neighborspj ∈ Ni receive that particu-
lar message. Such a message is called asuccessful
broadcast. The nodes know the value ofπ. Apart
from that assumption, messages from a nodepi can
be lost, be received by a subset ofNi, or received
by all nodes inNi.

III. SELF-STABILIZING ALGORITHM FOR

(k, r)-CLUSTERING

The goal of the algorithm is, using as few cluster
heads as possible, for each nodepi in the network
to have a set of at leastk cluster heads within
its r-hop neighborhoodGr

i . This is not possible if
a nodepi has |Gr

i | < k. Therefore, we require
that |Cr

i | ≤ ki, where Cr
i ⊆ Gr

i is the set
of cluster heads in the neighborhood ofpi and
ki = min(k, |Gr

i |) is the closest number of cluster
heads tok that nodepi can achieve. We do not
strive for a global minimum. That is too costly.
We achieve a local minimum, i.e., a set of cluster
heads in which no cluster head can be removed
without violating the(k, r) goal.

The basic idea of the algorithm is for cluster
heads to constantly broadcast the fact that they
are cluster heads and for all nodes to constantly
broadcast which nodes they consider to be cluster
heads. The set of considered cluster heads consists

1 on pulse:
2 timer ← (timer + 1) mod T

3 if estate= SLEEP∧∃t s.t. (i, JOIN, t) ∈ smem then state← HEAD
4 if state= HEAD then (newheads, newslaves) ← ({i}, ∅)
5 else(newheads, newslaves) ← (∅, {i})
6 for each j∈ { k |k 6= i ∧∃ ki 6= JOIN,t s.t. (k,ki,t) ∈ smem} do handlestate(j)
7 (heads, slaves) ← (newheads, newslaves)
8

9 /* Escaping */
10 if state ∈ {HEAD, ESCAPING}
11 estate← updateestate()
12 if estate = INIT ∧ state = HEAD ∧ |heads| > k

13 state← ESCAPING
14 < heads, slaves> ← < heads\ { i}, slaves∪ { i}>
15 if state= ESCAPING∧ estate= SLEEP
16 if ∃t s.t. (i, JOIN, t) ∈ smem then state← HEAD
17 elsestate← SLAVE
18 if state= SLAVE then < estate,estart> ← < SLEEP,-1>
19

20 /* Add heads */
21 if |heads| < k
22 heads← heads∪ { smallest(k -|heads|, slaves)}
23 slaves← slaves\ heads
24

25 /* Join and send state */
26 for each j∈ heads
27 if j 6= i then sendset← pruneset(sendset∪ {< j, JOIN, r, π> })
28 elsestate← HEAD
29 smem← stepmem(smem)
30 < sendset,data> ← stepset(pruneset(sendset∪ {< i, state, r, π> }))
31 LBcast(< i,data>)
32

33 function updateestate:
34 if timer = 0 then estart← uniformlyrandom({0, 1, . . ., T-Tcool-1})
35 if estart∈ [0,T-Tcool-1]
36 if timer ∈ [estart, estart] then return INIT
37 else if timer ∈ [estart+1, estart+Tflood-1] then return FLOOD
38 return SLEEP

Figure 2. Pseudocode for the self-stabilizing clustering algorithm (1/2).

both of nodes that are known to be cluster heads
and, additionally, nodes that are elected to become
cluster heads. The content of the broadcasts are
forwarded r hops, but in an aggregated form to
keep the size of messages down. The election
process might establish too many cluster heads.
Therefore, there is a mechanism for cluster heads to
drop their cluster head roles, toescape. Eventually
a local minimum of cluster heads forms a total
(k,r)-dominating set (or, if not possible given the
topology, it fulfills |Cr

j | ≥ kj for any nodepj).

The choice of which nodes that are picked when
electing cluster heads is based on node ID:s in
order to limit the number of unneeded cluster
heads that are elected when new cluster heads are
needed.

One could imagine an algorithm that in a first
phase adds cluster heads and thereafter in a second
phase removes cluster heads that are not needed. To
achieve self-stabilization however, we cannot rely
on starting in a predefined system state. Recovery
from an inconsistent system state might start at
any time. Therefore, in our algorithm there are no

40 function handlestate(j):
41 js← prioritystate(j,smem)
42 if js = HEAD
43 newheads← newheads∪ { j}
44 sendset← pruneset(sendset∪ {< j, JOIN, r, π> })
45 else if js = ESCAPING∧ j ∈ heads
46 if |heads| ≤ k
47 newheads← newheads∪ { j}
48 sendset← pruneset(sendset∪ {< j, VETO, r, π> })
49 elseheads← heads\ { j}
50 newslaves← (newslaves∪ { j}) \ newheads
51

52 function prioritystate(j,mem):
53 if ∃ t s.t. (j, HEAD, t) ∈ mem
54 return HEAD
55 if ∃ t s.t. (j, ESCAPING,t) ∈ mem
56 return ESCAPING
57 return SLAVE
58

59 function stepmem(mem):
60 newmem← ∅
61 for each< j,js,ttk> in mem
62 ttk← min(ttk,κ)-1
63 if ttk > 0
64 newmem← prunemem(
65 newmem∪ {< j,js,ttk> })
66 return newmem
67

68 function stepset(set):
69 < newset, newdata> ← < ∅, ∅>
70 for each< j,ji ,ttl,ttf> in set
71 < ttl, ttf> ← < min(ttl,r), min(ttf,π)-1>
72 if ttf > 0 ∧ ttl > 0 then
73 newset← pruneset(newset∪ {< j,ji ,ttl,ttf> })
74 if ttf ≥ 0 ∧ ttl > 0 then
75 newdata← newdata∪ {< j,ji ,ttl> }
76 return < newset, newdata>
77

78 on LBrecv(< k, infoset>):
79 for each< j,ji ,ttl> ∈ infoset
80 ttl ← min(ttl,r))
81 if ji = VETO
82 if j = i ∧ state= ESCAPING
83 state← HEAD
84 else if (j 6= i ∧ ji 6= JOIN) ∨ (j = i ∧ ji = JOIN)
85 smem← prunemem(smem∪ {< j,ji ,κ> })
86 if j 6= i ∧ ttl > 1
87 sendset← pruneset(sendset∪ {< j,ji ,ttl-1,π> })

Figure 3. Pseudocode for the self-stabilizing clustering algorithm (2/2).

phases and the mechanism for adding cluster heads
runs in parallel with the mechanism for removing
cluster heads and none of them ever stops.

At each pulse a node sends out its state (the
algorithmic state, i.e., which role it takes in the

algorithm) and forwards the states of others. A
cluster head node normally has the state HEAD and
a non cluster head node always has state SLAVE.
If a nodepi in any pulse finds out that it has less
thank cluster heads it selects a set of other nodes

Constants, and variables:
i : Constant id of executing processor.
T, Tcool, Tflood, κ : Constants derived from r, k, λ andπ. See Definition4.
state∈ {HEAD, ESCAPING, SLAVE} : The state of the node.
timer : Integer. Timer for escape attempts.
estart : Integer. The escape schedule.
estate∈ {SLEEP, INIT, FLOOD} : State for escape attempts.
heads, slaves: Sets of Id:s tracking what nodes have which role.
smem, sendset, data : Infotuple sets for keeping and forwarding state data.

External functions and macros:
LBcast(m) : Broadcasts message m to direct neighbors.
LBrecv(m) : Receives a message from direct neighbor.
smallest(a,A) : Returns themin(|A|,a) smallest id:s in A.
pruneset(A): maxt← {< j,ji ,ttl,ttf> ∈ A : ttl = maxτ {τ : < j,ji ,τ ,ttf> ∈ A}}

return {< j,ji ,ttl,ttf> ∈ maxt : ttf = maxφ {φ : < j,ji ,ttl,φ> ∈ maxt}}
prunemem(A): return {< j,ji ,ξ> ∈ A : ξ = maxx {x : < j,ji ,x> ∈ A})}

Figure 1. Constants, variables, external functions and macros
for the algorithm in Figures 2 and 3.

that it decides to elect as cluster heads. Nodepi
then elects established cluster head nodes and any
newly elected nodes by sending ajoin message to
them. Any node that is not a cluster head becomes
a cluster head if it receives a join addressed to it.

We take a randomized approach for letting nodes
try to drop their cluster head responsibility. Time
is divided into periods ofT pulses. A cluster head
nodepi picks uniformly at random one pulse out of
theT−Tcool first pulses in the period as a possible
starting pulse,estarti, for an escape attempt. Ifpi
has more thank cluster heads in pulseestarti, then
it will start an escape attempt. When starting an
escape attempt a node sets it state to ESCAPING
and keeps it that way for a number of pulses to
make sure that all the nodes inGr

i will eventually
know that it tries to escape. A nodepj ∈ Gr

i

that would get fewer thank cluster heads ifpi
would stop being a cluster head can veto against
the escape attempt. This is done by continuing to
regardpi to be a cluster head and send a VETO
back topi. If pj , on the other hand, has more than
k cluster heads it would not need to veto. Thus, by
accepting the state ofpi as ESCAPING,pj will
not send any join topi. After a number of pulses

all nodes inĜr
i will have had the opportunity to

veto the escape attempt. If none of them objected,
at that pointpi will get no joins and can set its
state to SLAVE.

If an escape attempt bypi does not overlap
in time with another escape attempt it will suc-
ceed if and only ifminpj∈Gr

i
|Cr

j | > k. If there
are overlaps by other escape attempts, the escape
attempt by pi might fail even in cases where
minpj∈Gr

i
|Cr

j | > k. The random escape attempt
schedule therefore aims to minimize the risk of
overlapping attempts.

The pseudocode for the algorithm is described
in Figures 2 and 3 with accompanying constants,
variables, external functions and macros in Fig-
ure 1. At each pulse of a node the lines 1-31 are
executed resulting in a message that is broadcast
at some time before the next pulse of that node.
When a message is being received, the lines 78-87
are executed.

IV. CORRECTNESS

In Section IV-A we show some basic results that
we use further on. In Section IV-B we will show
that withinO(rπλ3) time we will have|Cr

i | ≥ ki
for any nodepi. First we show that this holds while
temporarily disregarding the escaping mechanism,
and then that it holds for the general case in
Theorem 1. In Section IV-C we will show that a
cluster head nodepi can become slave if it is not
needed and if it tries to escape undisturbed by other
nodes inG2r

i . We continue to show that the set of
nodes converges, with high probability, to a local
minimum inO(rπλ4g log n) time in Theorem 2.

Definition 1. When all system assumptions hold

from a points in time and forward, we say that “we

have a legal system execution froms”. We denote a

pulse ofpi with Γi
x for some integerx. Consecutive

pulses ofpi have consecutive indices, e.g.,Γi
x,

Γi
x+1, Γi

x+2, etc. We denote the time betweenΓi
x

and Γi
x+1 with γi

x.

Definition 2. We define the set ofstates as

{SLAVE,HEAD,ESCAPING}. An infotuple is a

tuple (j, js, ttx) or (j, js, ttl, ttf), wherejs is a

either a state or one of{VETO, JOIN} and is said

to be for nodepj regardless ifpj is the original

sender or final receiver of the infotuple. Thettx

field can either be attl, the number of hops the

info is to be forwarded, or attk, the number of

pulses for which the infotuple should be kept in

smem before being discarded. Attf field denotes

the number of resends that is left to be done for

that particular tuple.

We say that a state earlier in the list [HEAD,

ESCAPING, SLAVE] has priority over a state that

is later in that list.

We say that an infotuple(j, σ, τ) is memorablei

if and only if eitherj 6= i and σ is a state, or if

j = i and σ = JOIN and that it isrelevanti if

and only if either it ismemorablei or if i = j and

σ = VETO.

Definition 3. A nodepi is said tohandlea stateσ

for a nodepj in a pulseΓi
x when thehandlestate

function is called with parameterj at line 6 and

the subsequent call to theprioritystate with j as

a parameter returnsσ, settingjsi = σ at line 41.

A. Basic properties

This section builds up a base on how the al-
gorithm works together with the system settings.
First up is the definition of various constants whose
value is the result of later lemmas.

Definition 4. We defineκ = ⌈(2rπ + 1)λ⌉,

Tflood = ⌈r(4π + 2)λ2 + r(2π + 2)λ⌉, ts =

r(2π + 1)λ2 + r(π + 1)λ + λ− 1, te = (Tflood −

1)λ+r(π+1)λ+κλ, th = κ−r(π−1)λ−1, and

Tcool = ⌈te + r(π + 1)λ⌉. Furthermore, we define

T = Tes +Tcool, whereTes = ⌈ 2g
ln 2 (ts + te−2th +

1)⌉.

Lemma 1. Assume that we have a legal system

execution from times − (π − 1)λ and consider a

nodepi that has a pulseΓi
x at times. Now, assume

thatpi has(k, σ, τ, π), with τ > 0, in sendseti just

before executing line 30 inΓi
x and consider a node

pj ∈ Ni and a time intervalI = [s− (π−1)λ, s+

(π + 1)λ].

First, there exist a pulseΓj
y ∈ I so that(k, σ, τ ′)

is received inγj
y−1, for a τ ′ ≥ τ .

Second, if (k, σ, τ ′) is memorablej , then

(k, σ, κ) ∈ smemj in Γj
y just before executing

line 2.

Third, if k 6= j, regardless of whatσ is, and if

τ > 1, then there exist a pulseΓj
ŷ ∈ I (possibly

equal toΓj
y) in which (k, σ, θ̂, π) ∈ sendsetj with

an θ̂ ≥ τ − 1, just before executing line 30.

This lemma shows that the algorithm forwards
information from any nodepj such that it reaches
all nodes inĜr

j within time O(rπλ). The three
factors are due to forwardingr hops, only one in
π messages are guaranteed to arrive and the clock
skew can allows for pulses to be up toλ time apart.

Lemma 2. Assume that we have a legal system

execution from times − r(π − 1)λ and consider

a node pi that has a pulseΓi
x at time s. Now,

assume thatpi has (k, σ, r, π) in sendseti just

before executing line 30 inΓi
x and consider a

node pj ∈ Gr
i , pj 6= pi and a time interval

Î = [s− r(π − 1)λ, s + r(π + 1)λ].

First, if (k, σ, τ ′) is relevantj , there exist a

pulseΓj
y ∈ Î so that(k, σ, τ ′) is received inγj

y−1,

for a τ ′ ≥ 1.

Second, if (k, σ, τ ′) is memorablej , then

(k, σ, κ) ∈ smemj in Γj
y just before executing

line 2.

Lemma 3. Assume that we have a legal system

execution from times− r(π − 1)λ and consider a

nodepi that has a pulseΓi
x at times. If pj ∈ Gr

i ,

then i ∈ slavej ∪ headj from times + r(π + 1)λ

and forward.

Lemma 4. Assume that we have a legal system ex-

ecution from times and consider a nodepi that has

a pulseΓi
x at times and that has(i, σ, r, π), where

σ is a state, insendseti just before executing

line 30 inΓi
x. Assume thatpi do not add(i, σ, r, π)

to sendseti in the time intervalI = (s, s + a),

for an a > s + r(π + 1)λ + (κ − 1)λ. In other

words,pi does not execute line 30 withstatei = σ

in any pulses or between any pulses in the time

interval I. Consider any nodepj in the network.

Under these assumptions, the last pulseΓj
y in the

time intervalI for pj ∈ Ĝr
i such thatpj receives

(i, σ, τ) for any τ in γi
y−1, can not be later than

s+ r(π+ 1)λ. Furthermore, for any pulse ofpj in

the time interval(s+ r(π+ 1)λ+ (κ−1)λ, s+a),

and between those pulses,(i, σ, ξ) /∈ smemj for

any ξ.

Lemma 5. Let ŝ = s − r(2π + 1)λ2 and assume

that we have a legal system execution from timeŝ,

and consider a nodepi that has a pulseΓi
x at time

s and that has(k, σ, r, π) in sendseti just before

executing line 30 inΓi
x. Assume that(k, σ, ·) is

memorablej . Then, there exists a pulseΓj
y ∈ I =

[s+ r(π+ 1)λ−1, s+ r(π+ 1)λ+λ−1] in which

∃ξ > 0 such that(k, σ, ξ) ∈ smemj .

Second, now consider only the case whenk = i

and σ is a state and consider a statêσ 6= σ. As-

suming thatpi do not have(i, σ̂, r, π) ∈ sendseti

just before executing line 2 in any pulse in the time

interval (s−r(2π+1)λ2, s+r(π+1)λ+λ−1). In

this Lemma we denote this asΣσ̂ holding for Γi
x.

Then,∄ξ′ such that(i, σ̂, ξ′) ∈ smemi just before

executing line 2 inΓj
y.

Third, if Σσ′ holds for allσ′ that have a higher

priority thanσ, thenpj handlesσ for pi in Γj
y (see

Definition 2).

The corollary shows that the mechanisms that
keeps data for a certain time, guarantees that even-
tually nodes inĜr

j will see the correct state of node
pj if it stays in that state long enough. Compared to
Lemma 2 this introduces another factorO(λ) time.
This is because if a node wants to make sure that
O(rπλ) time has passed it needs to countO(rπλ)
pulses, butO(rπλ) pulses can takeO(rπλ2) time.
Building Lemmas on top of each other, this is the
mechanism that adds additional factors ofλ the
further we go in the proof chain.

Corollary 1. Assume that we have a legal system

execution from times− λ and consider a nodepi
that has a pulseΓi

x at time s. Let χ = ⌈r(2π +

1)λ2+r(π+1)λ+2λ⌉. Now assume that a nodepi,

in each of the pulsesΓi
x–Γi

x+χ−1, adds(i, σ, π) to

sendseti and does not add(i, σ′, π) to sendseti

for any σ 6= σ′. Then, for any nodepj ∈ Gr
i , pj

has a pulseΓj
y at a time ŝ = s + r(2π + 1)λ2 +

r(π + 1)λ − 1 + t for a t ∈ [0, 2λ], in which pj

handlesσ for pi. Furthermore,ŝ happens between

the execution of the pulsesΓi
x and Γi

x+χ−1

B. Getting Enough Cluster Heads

This section builds up a case showing that the
algorithm will elect enough cluster heads. We show
how cluster heads are elected in Lemmas 6, 7 and
8. In Lemma 9 we take a look at how the escape
mechanism works. Finally, in Theorem 1, we put
it all together and show that withinO(rπλ3) time
from starting a legal execution, each nodepj in the
network will getkj cluster heads withinr hops.

Definition 5. For a nodepi to be acluster headis

equivalent tostatei ∈ {HEAD,ESCAPING}. For

a nodepi to be a slave is equivalent tostatei =

SLAVE. For a nodepj , we defineCr
j as the set of

cluster heads inGr
j . Furthermore, we defineHx to

be the set of cluster heads in the network at time

x.

We now look how the addition of cluster heads
work while temporarily disregarding the escaping
mechanism. In this setting we will show that within
a finite time we will have|Cr

i | ≥ ki for any node
pi. Later on we will lift this restriction and show
that |Cr

i | ≥ ki will still hold even when regarding
the more general case.

Lemma 6. Assume that we have a legal system

execution from times. Assume that, for all nodes in

the network, theirstate can never be ESCAPING,

their estate is always SLEEP and lines 10-18 are

never executed. Under these assumptions, any node

pi will have ki cluster heads withinr hops from

time s + (3rπ + 2)λ and forward.

Now we consider the full escape mechanisms
and show that a node that receive joins remains or
becomes a cluster head.

Lemma 7. Assume that we have a legal system

execution from times − λ and consider a node

pi that has a pulseΓi
x at time s. If pi has

(i, JOIN, ξ) ∈ smemi, for someξ > 0 before

executing line 2, thenpi is a cluster just before

executing line 4 inΓi
x and will stay cluster head

throughout the rest ofΓi
x and throughoutγi

x.

Furthermore, if nodepi is a cluster head just before

executing line 2 inΓi
x, then it is a cluster head

throughout the entireΓi
x.

In the following Lemma we show that a node
that is continuously wanted as a cluster head even-
tually becomes one.

Lemma 8. Assume that we have a legal system

execution from times. Assume that a nodepj 6= pi

wants a nodepi ∈ Gr
j to be cluster head as soon

as it knows about it and is never willing to let

it escape. In other words, (1) ifi ∈ slavesj and

i /∈ headsj after line 7 in a pulseΓj
y, we assume

that the condition in line 21 holds inΓj
y and that

i is added toheadsj at the execution of line 22,

and (2) the condition in line 46 would hold when

handlestate is called withi as a parameter in any

pulse ofpj .

Under these assumptions, there exists a pulseΓi
x

such thatstatei 6= SLAVE after executing line 3 in

Γi
j , and such thatstatei 6= SLAVE in anyΓi

x′+1

or γi
x′ for any x′ ≥ x.

We continue to take a look at how the escape
mechanism operates to know in what ways it could
interfere with electing enough cluster heads.

Definition 6. A nodepi initiates an escape attempt

in a pulseΓi
x if the condition holds in line 12 and

lines 13–14 are executed inΓi
x.

Lemma 9 shows that the escape mechanism
works, that a cluster head that is not needed can
escape that responsibility.

Lemma 9. Assume that we have a legal system

execution from times−Tcool and consider a node

pi that initiates an escape attempt in a pulseΓi
x

at times.

If all nodespj ∈ Gr
i have|Cj | > k at times+th

and no nodepℓ ∈ Ĝ2r
i , initiates an escape attempt

in any pulse in[s− te + th, s+ ts − th] then node

pi will set statei to SLAVE in pulseΓi
x+Tflood

and

havestatei = SLAVE throughout anyγi
x′ or Γi

x′+1

for any x′ ≥ x + Tflood.

If, on the other hand, there exists a nodepj ∈ Gr
i

that is having|headsj | ≤ k with k ∈ headsj when

pj is first handling ESCAPING forpi, thenpj will

not setstatei to SLAVE in this escape attempt.

Theorem 1 shows that, within timeTcool +
(5rπ + 4)λ ∈ O(Tfloodλ) = O(rπλ3) from an
arbitrary configuration, all nodespi have at least
ki cluster heads withinr hops and that the set of
cluster heads in the network can only stay the same
or shrink from that point on. From Corollary 1 we
get the factorO(λ2) time for a node to know that
it has reached out. This theorem introduces another
factor ofO(λ) because a node needs to be sure that
another node has finished something as discussed
previously.

Theorem 1. Assume that we have a legal system

execution from times. Then any nodepj will have

kj cluster heads from times+ Tcool + (3rπ + 2)λ

and onward. Moreover, a node that is not inHt

for a time t ≥ s + Tcool + (5rπ + 4)λ can not be

in Ht′ for a t′ ≥ t and consequently|Ht′ | ≤ |Ht|

for any s + Tcool + (5rπ + 4)λ ≤ t ≤ t′.

C. Convergence to a Local Minimum

Lemma 9 shows that a cluster head node that is
not needed can escape the cluster head responsi-
bility if it does not interfere with escape attempts
by other nodes. This section shows that the set
of cluster heads converges to a local minimum.
We first show that an unneeded cluster head node
can escape, with high probability (Lemma 10) in
O(Tλ) = O(grπλ4) time. The extraλ is due to
the usual reason andT ∈ O(grπλ3). The factor
g is a bound on the number of nodes that could
interfere with a given escape attempt. It is part of
T to give a node a constant probability of escaping
in its one try in a period ofT time (given that it
is not needed as a cluster head).

Lemma 10. Assume that we have a legal system

execution from times and consider a nodepi that is

a cluster head. Assume that|Cr
j | > k holds for all

nodespj ∈ Ĝr
i from times+Tcool+(5rπ+4)λ and

as long aspi remains a cluster head. Then, node

pi will havestatei = SLAVE after times+Tcool +

(5rπ + 4)λ + (β + 1)Tλ with at least probability

1 − 2−β .

Theorem 2, shows that with high probability the
entire network reaches a local minimum within
O(rπλ4g log n) time.

From Theorem 1 we got that all nodespi have
at leastki cluster heads withinr hops inTcool +
(3rπ + 2)λ time after an arbitrary configuration.

Theorem 2 shows that with at least probability
1−2−α the set of cluster heads in the network sta-
bilizes to a local minimum withins+Tcool+(5rπ+
4)λ+(α+log n+1)Tλ time. The factorO(log n) is
multiplied by the result from Lemma 10 because
we go from probabilistic guarantee that one spe-
cific node gets an uninterrupted escape attempt to
that all cluster heads get such an attempt. And the
number of cluster heads is bounded by the number,
n, of nodes in the network.

Theorem 2. Assume that we have a legal system

execution from times. With at least probability1−

2−α, by timeŝ = s + Tcool + (5rπ + 4)λ + (α +

log n + 1)Tλ there will be no cluster head node

pi in the network for whichminpj∈Gi
(|Cr

j |) > k

holds, andHŝ+t = Hŝ holds for any positivet.

V. D ISCUSSION

To experimentally test performance, we did sim-
ulations of the algorithm for various settings ofk
andr. We placed40 nodes with a communication
radius of 1 uniformly at random in a 5 by 5 rect-
angular area. From our experiments we concluded
that using ag that gives us 95% guarantees of
being an upper bound on every|G2r

j | for any given
pj , is not required to get good performance. The
calculated bounds are not tight. In the experiments
we have therefore used a tenth of that value forg
instead.

In addition, we performed experiments on recov-
ery from small changes to the topology from a con-
verged system state. The convergence times from
a newly started network (“Start”) is compared in
Figure 4 with the convergence times after a change
to a initially converged network. We investigate
10% added nodes (“Add”),10% removed nodes
(“Remove”) or10% moved nodes (“Move”).

We can see that the least obtrusive change to the
topology is removed nodes. The chance is good

 0

 1000

 2000

 3000

 4000

 5000

 6000

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

ag
e

co
n

v
er

ge
n

ce
 t

im
e

Setting for (k,r)

Start Add Remove Move

 0

 1000

 2000

 3000

 4000

 5000

 6000

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

ag
e

co
n

v
er

ge
n

ce
 t

im
e

Setting for (k,r)

Start Add Remove

Figure 4. Convergence times from a fresh start, after 10%

node additions, after 10% node removes and after 10% node

moves.

that a removed node is not a cluster head and
thus do not upset the balance. An add is more
expensive than a remove. Nodes might end up in an
area where there is not so many cluster heads and
therefore have to start elect new nodes. A move
is like both a remove and an add. Therefore, it is
anticipated that this case converges slower than the
ones with only adds or only removes.

The flooding of messages makes sure that if
there exist multiple paths of at most lengthr
between a nodepi and a nodepj then joins
and state updates will traverse all possible paths.
This can give us higher fault tolerance if there
are communication disturbances on some links
(i.e., between some immediate neighbors) and also
higher availability for nodes to reach their cluster
heads.

The multiple paths can also give applications
higher security if some nodes in the network can
be compromised. If there is at least one path of at
mostr hops between a nodepi and a nodepj that is
not passing through any compromised nodes then
the flooding makes sure that nodepi and pj gets
to know about each other. Moreover, ifpj wants
pi to be cluster head then the compromised nodes
cannot stop that. If nodes add information to the

messages about the paths they have taken during
message forwarding then the nodes get to know
about the multiple paths. With this knowledge they
can in an application layer use as diverse paths as
possible to communicate with their cluster heads.
Thus even if a compromised node is on the path to
one cluster head and drops messages or do other
malicious behavior there can be other cluster heads
for where there is no compromised nodes on the
chosen paths.

Consider a compromised nodepc that can lie and
not follow protocol. First assume thatpc cannot in-
troduce node id:s that does not exist (Sybil attacks,
[15]) or node id:s for nodes that are not within
Gr

c (wormhole attacks, [16]) and thatpc cannot do
denial of service attacks. Thenpc can make any or
all nodes withinGr

c become and stay cluster heads
by sending joins to them or having them repeatedly
go on and off cluster head duty over time by
alternating between sending joins and letting the
node escape. Consider a nodepi that is a cluster
head and has a path to a nodepj of length ≤ r
hops that does not pass throughpc. In this situation
pc can not give the false impression thatpi is not
a cluster head as HEAD takes precedence over
ESCAPING that takes precedence over SLAVE at
message receipt. Ifpc on the other hand is in a
bottleneck between nodes without any other paths
between them then it can lie about a nodepℓ being
a cluster heads and refuse to forward any joins to
pℓ. Now if we assume thatpc is not restricted in
what id:s it can include in false messages it can
convince a nodepℓ that nodes not inGr

ℓ are cluster
heads. In the worst case it can eventually make
pℓ rely exclusively on non-existent cluster heads
with paths that all go throughpc. In any case the
influence by a compromised nodepc is contained
within G2r

c as the maximumttl of a message isr
and is enforced at message receipt.

VI. CONCLUSIONS

We have presented a self-stabilizing(k, r)-
clustering algorithm for ad-hoc networks that can
deal with a bounded amount of message loss, and
that merely requires a bound on the rate differences
between pulses of different nodes in the network.
The algorithm makes sure that, withinO(rπλ3)
time, all nodes have at leastk cluster heads (when
possible) and it stabilizes withinO(rπλ4g log n)
time with high probability. We have also discussed
how the algorithm can help us with fault tolerance
and security.

VII. A CKNOWLEDGMENTS

The research leading to these results has received
funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreement no 257007.

This work, in a shortened form, appeared in
Andreas Larsson and Philippas Tsigas. “Self-
stabilizing (k,r)-clustering in clock rate-limited
systems.” In Proceedings of the 19th Inter-
national Colloquium on Structural Information
and Communication Complexity (SIROCCO 2012),
Springer, 2012.

REFERENCES

[1] S. Dolev, Self-Stabilization, MIT Press, 2000.

[2] Y. P. Chen, A. L. Liestman, and J. Liu,Clustering

Algorithms for Ad Hoc Wireless Networks, vol. 2,
chapter 7, pp. 154–164, Nova Science Publishers,
2004.

[3] A. A. Abbasi and M. Younis, “A survey on
clustering algorithms for wireless sensor networks,”
Comput. Commun., vol. 30, no. 14-15, pp. 2826–
2841, 2007.

[4] R. Karp, “Reducibility among combinatorial prob-
lems,” in Complexity of Computer Computations,
R. Miller and J. Thatcher, Eds., pp. 85–103. Plenum
Press, 1972.

[5] C. Johnen and L. H. Nguyen, “Robust self-
stabilizing weight-based clustering algorithm,”
Theor. Comput. Sci., vol. 410, no. 6-7, pp. 581–
594, 2009.

[6] S. Dolev and N. Tzachar, “Empire of colonies:
Self-stabilizing and self-organizing distributed al-
gorithm,” Theor. Comput. Sci., vol. 410, no. 6-7,
pp. 514–532, 2009.

[7] E. Caron, A. K. Datta, B. Depardon, and L. L.
Larmore, “A self-stabilizing k-clustering algorithm
using an arbitrary metric,” inEuro-Par, 2009, pp.
602–614.

[8] Y. Afek and G. Brown, “Self-stabilization over
unreliable communication media,” Distributed

Computing, vol. 7, pp. 27–34, 1993.

[9] V. Ravelomanana, “Distributed k-clustering algo-
rithms for random wireless multihop networks,” in
ICN 2005, pp. 109–116. Springer, 2005.

[10] Y. Fu, X. Wang, and S. Li, “Construction k-
dominating set with multiple relaying technique
in wireless mobile ad hoc networks,” inCMC

’09, Washington, DC, USA, 2009, pp. 42–46, IEEE
Computer Society.

[11] M. A. Spohn and J. J. Garcia-Luna-Aceves,
“Bounded-distance multi-clusterhead formation in
wireless ad hoc networks,”Ad Hoc Netw., vol. 5,
no. 4, pp. 504–530, 2007.

[12] Y. Wu and Y. Li, “Construction algorithms for
k-connected m-dominating sets in wireless sensor
networks,” inMobiHoc ’08, New York, NY, USA,
2008, pp. 83–90, ACM.

[13] K. Sun, P. Peng, P. Ning, and C. Wang, “Secure
distributed cluster formation in wireless sensor
networks,” inACSAC ’06, Washington, DC, USA,
2006, pp. 131–140, IEEE Computer Society.

[14] A. Larsson and P. Tsigas, “A self-stabilizing
(k,r)-clustering algorithm with multiple paths for
wireless ad-hoc networks,” inICDCS 2011, Min-
neapolis, MN, USA, 2011.

[15] J. Newsome, E. Shi, D. Song, and A. Perrig,
“The sybil attack in sensor networks: analysis &
defenses,” inIPSN ’04, New York, NY, USA, 2004,
pp. 259–268, ACM.

[16] Y. Hu, A. Perrig, and D. B. Johnson, “Wormhole
detection in wireless ad hoc networks,” Tech. Rep.,
Rice University, Department of Computer Science,
2002.

