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ABSTRACT
We have collected several large-scale datasets in a number of
passive measurement projects on an Internet backbone link
belonging to a national university network. The datasets
have been used in different studies such as in general classi-
fication and characterization of properties of Internet traffic,
in network security projects detecting and classifying mali-
cious traffic and hosts, and in studies of network-level prop-
erties of unsolicited e-mail (spam) traffic. The Antispam
dataset alone contains traffic between more than 10 million
e-mail addresses.

In this paper we describe our datasets, the data collection
methodology including experiences in collecting and process-
ing data on a large scale. We have in particular selected
a dataset belonging to an anti-spam project to show how
a practical analysis of highly privacy-sensitive data can be
done, in this case containing complete e-mail traffic. Not
only do we show that it is possible to collect large datasets,
we also show how to solve different issues regarding user
privacy and give experiences from how to work with large
datasets.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; C.2.2
[Network Protocols]: Applications (SMTP, FTP, etc.)

General Terms
Measurement

Keywords
Internet Measurement, Large-Scale Datasets, E-mail traffic,
Spam

1. INTRODUCTION
Access to real-life large-scale datasets is in many cases cru-
cial for understanding the true characteristics of network
traffic and application behavior. The collection of large
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datasets from backbone Internet traffic is therefore very im-
portant for such analysis although the data collection projects
in themselves face several challenges [13]. Not only is mere
physical access to optical Internet backbone links needed,
but also rather expensive equipment in order to deal with the
large data volumes arriving at high speeds. Adding to the
complexity, the collected data traces must be desensitized
due to privacy issues because they may contain privacy-
sensitive data. This anonymization process must be done
in such a way so that a satisfactory analysis to answer the
research question still can be performed, without leaking any
sensitive user data. Packets also need to be reassembled into
application level “conversations” so that, finally and maybe
the most challenging part, methods and algorithms suitable
for analysis of massive data volumes can be run. Finding
these scalable methods is difficult.

We have over the years performed several data collection
projects where large datasets have been gathered and ana-
lyzed. Different projects have had different goals with the
data collection and for each project, unique tools have been
developed and used. In this paper we describe the data
collection procedure and the challenges we have faced with
dealing with high-speed data collection and give examples of
how data have been used in different projects. In particular,
we describe a current project, the Antispam project, aiming
for spam detection mechanisms on the network level where
characteristics of SMTP traffic are collected and analyzed.
Not only does this involve collection of vast amounts of e-
mail traffic but the data collected is also highly sensitive so
that automated ways to handle message privacy are essen-
tial. We also describe a method that could be deployed for
analyzing the large-scale Antispam dataset. This method
allows us to find distinguishing characteristics of legitimate
and unsolicited e-mails which could be used for complement-
ing current anti-spam tools.

The rest of this paper is organized as follows. Section 2
presents our methodology for data collection, including chal-
lenges we encountered and the solutions we deployed. Sec-
tion 3 introduces the large-scale datasets collected during
different years for different projects. Section 4 describes the
collection of a particular dataset, the Antispam dataset, and
in Section 5 we shift focus to describe the analysis of this
Antispam dataset and how we compare unsolicited with le-
gitimate e-mails. In Section 6 we present related work by
comparing other sources of data collection with our collec-
tion method and resulting datasets. Finally, Section 7 con-



Figure 1: OptoSUNET core topology. All SUNET
customers are via access routers connected to two
core routers. The SUNET core routers have local
peering with Swedish ISPs, and are connected to the
international commodity Internet via NORDUnet.
SUNET is connected to NORDUnet via three links:
a 40 Gbps link and two 10 Gbps links. Our measure-
ment equipment collects data on the first of the two
10 Gbps links (black) between SUNET and NOR-
DUnet.

cludes the paper.

2. DATA COLLECTION METHODOLOGY
In this section, we describe the current measurement setup
used to collect data, as well as some of the challenges encoun-
tered and our solutions to these. It is vital to understand the
underlying data collection platform to correctly be able to
use the resulting datasets. As with any experimental plat-
form, problems do occur, but as we show below, these can
sometimes be compensated for either in the collection phase
or in the analysis stage.

2.1 Current Measurement Setup
We collect backbone traffic on an OC-192 (10 Gbps in each
direction) link in the core-backbone of SUNET, the Swedish
University Network (SUNET),1 which not only serves as
a backbone for university traffic but also for a substantial
number of student dormitories, research institutes, as well as
some museums and government agencies. It contains a large
amount of exchange traffic with commercial companies.

Its current version, OptoSUNET, is a star structure over
leased fiber, with a central exchange point in Stockholm.
OptoSUNET connects all SUNET customers redundantly to
a core network in Stockholm, as depicted in Figure 1. Traffic
routed to the international commodity Internet is carried on
three links between SUNET and NORDUnet, where NOR-
DUnet peers with Tier-1 backbone providers, large CDNs
(Content Distribution Networks) and other academic net-
works.

We use two high-end rack mounted systems (Linux) as mea-
surement systems, one for outgoing and one for incoming
traffic. At the core network in Stockholm, we apply optical

1http://www.sunet.se/

splitters to tap the two OC-192 links. Each optical split-
ter, tapping either the inbound or outbound OC-192 link, is
attached to an Endace DAG6.2SE card in one of the mea-
surement nodes. The cards are capable of collecting data on
PoS and 10 Gbit-Ethernet links with bandwidths of up to
10 Gbps. We usually collect network data simultaneously
for both directions.

Depending on the project (see Table 1) and its goal with
the data collection, we then perform some pre-processing of
the raw data before transferring them for further analysis
and storage at the processing platform at Chalmers Univer-
sity. This pre-processing ranges from anonymization (see
Section 2.2.3) of the data (all projects), to spam categoriza-
tion (the Antispam project). The experimental infrastruc-
ture is further described in [7].

2.2 Challenges and Solutions
We categorized the problems we encountered and our solu-
tions in three clusters, general problems relating to the setup
of the system, problems related to the collection process, and
finally problems related to the pre-processing of the dataset
before the final analysis and storage.

2.2.1 General Challenges
One of the most difficult problems we faced was actually not
of a technical nature, but involved gaining access to the net-
work infrastructure in the first place. Fortunately, there is a
long tradition of work between our department and SUNET,
so there was already a basis for trust. Furthermore, we also
consulted an ethical vetting board, and based on their feed-
back we could proceed with the measurements. However,
as will be described below, the required anonymization of
user data is very important and permeates many of our de-
cisions on what kind of data we can collect and how it can
be analyzed.

A more technical problem involved the equipment. At the
time of purchase (2004), we faced problems with finding sys-
tems with enough internal bus bandwidth to cope with full
link-speed data collection. Captured data should be received
by the network card, be moved to main memory, and then
be written to disk in speeds up to about 1 GB/s. The used
high-end RAID system with six striped disks offered around
0.4 GB/s disk throughput, which turned out to suffice due to
the large over-provisioning of the 10 Gbps link by SUNET.
The network architecture changed somewhat during 2007
when one (parallel) 40 Gbps and one 10 Gbps link were
added. Unfortunately, equipment for collecting data from
all links was too expensive to acquire for our projects (each
direction would require 5 times as much hardware).

Finally, there are limitations in using real-life datasets, that
are not specific to our datasets. To mention one is that
the measurements give us snapshots of traffic from a single
vantage point during a limited time period. The results
should thus be extended with similar data from other times
and locations.

2.2.2 Collection Challenges
Regarding the collection phase of large datasets, the first
problem we must cope with is the sheer volume of traffic.



At heavily loaded links, data may arrive with up to 1 GB/s.
Even if this theoretical maximum is rarely reached due to
over-provisioning of the links, different data reduction meth-
ods must be applied to further decrease the load on the mea-
surement nodes. However, these methods must not influence
the real-time nature of the traffic capture, i.e. we must be
able to keep up with the traffic. We partially solved this by
having very well-defined experimental plans with clear goals
of exactly what we should capture to do our analysis.

For example, for datasets spanning long time intervals, we
only capture flow summaries instead of individual packets,
while we collect short snapshots (10 or 20 minutes) of packet
traces to investigate protocol properties. To allow for a more
dynamic traffic capture, we currently investigate real-time
computations on the DAG cards so that decisions can be
taken in real time based on more complex traffic properties.

Moreover, any dataset we collect and analyze should be
safely stored so that others can repeat the analysis or com-
pare results. This poses additional archiving requirements
on the measurement system.

To ensure sanity of the resulting data, we apply consistency
and sanity checks immediately after collection, allowing us
to document both measurement related problems (e.g. mea-
surement card failures) and network-related anomalies (e.g.
network maintenance tasks by SUNET). These include in-
spection of time stamps, frame types, packet header infor-
mation, etc. With these sanity checks we can improve the
system in the longer term, but they can also be applied dur-
ing the analysis phase to explain certain traffic behavior.
For sanity checking, we use existing tools such as CAIDA’s
CoralReef [15] and Endace’s dagtools. Additionally, we de-
veloped our own software and modified publicly available
software to suit our needs. The use of our own methods and
programs requires substantial effort, but gives us complete
control of the quality of the data.

As an example of trace insanity, we have experienced some
cases of completely garbled data, most likely occurring due
to hardware problems in the DAG cards loosing framing
synchronization. These traces have been discarded immedi-
ately. To reduce this problem we now restart the cards in
regular intervals, which in turn may lead to some missing
packets in the second between such data collection periods.
We are currently installing new equipment, including new
DAG cards, which should eventually solve this issue.

During normal operation, we have not detected any packet
loss. However, during the collection of one of the datasets,
the Malbone dataset, there have been a few short, but im-
mense traffic surges, where traffic was increasing from the
normal rate of <200k to >400k packets per second. Dur-
ing these surges, our nodes could not keep up with the speed
and dropped packets, which was logged by the measurement
cards. As the information was logged, it was easy to accom-
modate in the analysis stage. We have also detected some
minor errors with the IP header checksums (1 out of 300 mil-
lion frames) and 1 out of 191 million frames were discarded
due to receiver errors.

Finally, the measurements are done over an operational large

network, meaning that parameters change over the course
of the data collection, both in a longer perspective with
planned upgrades as well as with transient failures of cer-
tain equipment.

2.2.3 Pre-processing Challenges
As can be seen from Figure 1, we collect data from one link
(out of three) with two separate systems to collect traffic
in two directions, meaning that we have two datasets with
unidirectional traffic traces. The traffic is load balanced be-
tween the links and, according to SNMP statistics collected
during the last measurement campaign, we see around one
third of all incoming traffic and 15% of all outbound traffic.
This effect introduces an observed routing asymmetry, as we
can sometimes only see the traffic going in one direction of
a TCP connection [8].

Assembling bidirectional TCP flows requires very good time
synchronization between the two systems. During measure-
ments, the DAG cards are thus synchronized with each other
using DUCK Time Synchronization [4], allowing synchro-
nization within ±30ns, which suffices for trace assembly.

A key processing step is also desensitization of the data,
i.e. removing any privacy-sensitive information. Besides
our responsibilities as ethical researchers, this is also one
of the requirements of the ethical vetting board (see Sec-
tion 2.2.1). As a basic step, we discard sensitive payload
and anonymize IP addresses in the resulting trace based on
the prefix-preserving CryptoPAN [21]. Throughout all mea-
surements campaigns we use a single, unique encryption-key
to allow us to track specific hosts and IP ranges between all
measurements. Unfortunately, this anonymization step is
not without penalty but may influence the type of analysis
method we can use as well as restricting the refinement of the
result. As an example, even if we find a very aggressive host
spreading malware within SUNET, we cannot inform the
owner due to the anonymization of the data. Furthermore,
there still exists challenges to improve the anonymization be-
fore datasets potentially could be shared to others on a large
scale. Other desensitization steps performed in projects in-
clude payload removal (MonNet), and e-mail anonymization
(Antispam), which is detailed further in Section 4.3.

2.2.4 Summary
To summarize, our analysis is network centric and does not
consider the end hosts in detail. Overall, it was not a triv-
ial effort to initially setup the data collection platform but
it took both time (years) and effort. As with any experi-
mentally collected data, it is important to understand the
limitations of the experiment setup for correct analysis of
the data. Some problems, given their careful documenta-
tion in the collection phase, can be accommodated for in
the analysis stage.

3. DATASETS
We have collected several large-scale datasets on the Inter-
net backbone links. The first traces were collected in 2005
and we still have active projects collecting data from the
links. The datasets differ in the information they contain,
reflecting the type of research question we want to investi-
gate. As we detailed in Section 2, we simply cannot collect



Table 1: Datasets Overview
Dataset Location Collection Period Collection Duration Number of traces Number of Packets /109

MonNet I GigaSUNET 2006-04 20 minutes 74 10.8
MonNet II GigaSUNET 2006-09 to 2006-11 10 minutes 277 27.9
MonNet III OptoSUNET 2008-12 to 2009-11 10 minutes 151 33.0
Malbone OptoSUNET 2010-03 to 2010-10 24 hours 34 12 (flows)
Antispam OptoSUNET 2010-03 24 hours 14 0.8 (SMTP only)

“all” information but need to reduce it both in regard to
storage as well as for anonymization purposes.

The datasets are summarized in Table 1. Below we briefly
describe the characteristics of each dataset. We then de-
scribe the collection and use of the Antispam dataset in de-
tail as a case study.

3.1 The MonNet Datasets
The largest datasets until today were collected within the
MonNet project to classify and understand the characteris-
tics of Internet traffic and to see how it changes over time.
Later analysis of this dataset also included finding malicious
traffic in order to see how and to what extent protocols are
abused.

The MonNet datasets represent 95 hours of backbone traf-
fic, collected on 156 different days mainly during 2006 and
2009. The first set of data was collected during 80 days from
September to November 2006 as 277 randomly selected 10-
minute snapshots. When recording these traces, payload be-
yond transport layer was removed. About 27.9 billion IPv4
frames containing around 480 million flows were collected
and analyzed. The size of the dataset was almost 20 TB in
size (headers only). A second (slightly larger) dataset was
collected during 2009 where 33 billion packets were collected.
Traffic analysis from this data set reveals inbound traffic
from 2, 270, 000 distinct IP addresses to 360, 000 unique in-
ternal addresses.

The datasets collected in the MonNet project have been
studied in detail. Initial studies investigated protocol fea-
tures of packet headers [10] and packet header anomalies
in order to discuss potential security problems, such as in-
correct use of IP fragmentation [9]. Additional flow-level
analysis of the MonNet data allowed investigation of trends
and changes in connection behavior of Internet traffic over
time, e.g. how the popularity of p2p traffic has caused a
change in Internet traffic patterns in the last few years [11,
12, 22].

3.2 The Malbone Dataset
The objective of the Malbone project is to measure and un-
derstand larger communication patterns among hosts over
a longer time period. This may include normal as well as
more malicious behavior.

For more than six months, a 24h snapshot of all flows was
regularly collected once a week. The dataset contains a total
of 12 billion flows for both directions. In Table 2, we have
summarized all unique IPs we found during a single collec-
tion day to give an idea of the scale of the traffic passing by
the measuring point.

This dataset also contains metadata, including, for exam-

ple, hosts known to aggressively spread malware at the time
of the collected snapshots. By using the flow data together
with this information, we can then make more targeted types
of analysis of hosts, despite their addresses being anonymized.

The analysis of this dataset is still in its infancy, but some re-
sults documenting malicious behavior of scanning hosts has
been published as well as particulars of the timing behavior
of hosts. [1].

3.3 The Antispam Dataset
In the Antispam project SMTP traffic was collected to per-
mit the study of the differences in traffic characteristics be-
tween spam and legitimate traffic. The goal is to find meth-
ods for early detection of spamming nodes on the Internet
as close to the source as possible. This method should be an
alternative to spam removal in the receiving hosts. There is
a clear need for moving the defense against spam as close to
the spammers as possible, in order to reduce problems such
as the amount of unwanted traffic and waste of mail server
resources.

Within this project, during 14 days in March 2010, more
than 797 million SMTP packets (filtered on TCP port 25
in the hardware) were passively captured. More than 627
million packets were incoming packets to SUNET and the
rest were outgoing. We aggregated these packets into 34.9
million incoming and 11.9 outgoing SMTP flows. The cap-
tured flows on the incoming direction were originating from
2, 300, 660 distinct IP addresses and were destined to 569, 591
internal distinct IP addresses. The outgoing flows were sent
from 10, 795 to 1, 943, 919 distinct IP addresses.

The main challenges in this project relate to the highly
privacy-sensitive data as well as how to analyze the charac-
teristics of this type of traffic on a large scale. This project
is described more in detail in Section 4.

4. ANTISPAM DATASET COLLECTION
In this section we use the dataset Antispam as a case study
to concretely illustrate the collection and analysis of a large-
scale dataset. Such an e-mail dataset can be studied for
better understanding of the behavior of spam traffic, often a
means to propagate malicious content. Research such as [19]
has suggested that spam mainly originates from botnets.
These botnets are also most likely active in other malicious
activities on the Internet. Therefore, detecting spam close
to its source instead of just discarding it by the receivers
can also lead to detection of other malicious traffic from the
same origin.

4.1 SMTP Data Collection
In order to analyze characteristics of e-mail traffic, SMTP
packets were passively collected during two consecutive weeks
of measurements in March 2010.



Table 2: Unique hosts during the data collection 2010-04-01
Inside SUNET Outside SUNET

Incoming Link Destination IPs 970,149 Source IPs 24,587,096
Outgoing Link Source IPs 23,600 Destination IPs 18,780,894

To overcome the storage problem described in Section 2.2.2,
we used a hardware filter to only capture traffic to and from
port 25 using the crl to dag utility of CoralReef [15]. This
still resulted in more than 183 GB of SMTP data, divided
into two unidirectional datasets (see Section 2.2.3).

The captured packets belonging to a single flow were then
aggregated to allow the analysis of complete SMTP sessions.
To reconstruct the sequence of packets into flows, we used
the tcpflow program,2 which understands sequence numbers
and correctly compensates for problems such as out-of-order
packets and retransmitted packets.

The collected data contains both TCP flows with destination
port 25 (SMTP request) and TCP flows with source port 25
(SMTP reply). As each SMTP request flow corresponds to
an SMTP session, it can carry one or more e-mails; thus we
had to extract each e-mail from the flows by examining the
SMTP commands. The resulting extracted e-mail transac-
tion contains the (1) SMTP commands containing the e-mail
addresses of the sender and the receiver(s), (2) e-mail head-
ers, and (3) the e-mail content. Each SMTP reply contains
the corresponding response code to an SMTP request com-
mand, and by also including these in the analysis one can
gain a better insight into the behavior of the receiving mail
servers.

4.2 E-mail Classification
After the collection phase, (1) the dataset is pruned of all
unusable e-mail traces, (2) the remaining e-mail transactions
are classified into either being accepted or rejected, and fi-
nally (3) the e-mails in the accepted category are refined into
either being spam or ham. These three steps are described
in detail below.

Before any classification, we begin by discarding all unus-
able traces. For example, flows with no payload are mainly
scanning attempts and should not be considered in the clas-
sification. Also, SMTP flows missing the proper commands
are excluded from the dataset as they most likely belong
to other applications using port 25. Encrypted e-mail com-
munications cannot be analyzed, and were also eliminated.3

Any e-mail with an empty sender address is a notification
message, such as a non-delivery message [14]; it does not
represent a real e-mail transmission and is also excluded.
Finally, any e-mail transaction that is missing either the
proper starting/ending or any intermediate packet is con-
sidered as incomplete and one might decide to leave out
these e-mails when analyzing the dataset. Possible reasons
for having incomplete flows include transmission errors and
measurement hardware limitations caused by the framing
synchronization problem (Section 2.2.3).

The remaining e-mail transactions are then classified as ac-

2http://www.circlemud.org/~jelson/software/
tcpflow/
3Around 3.8% of the flows carried encrypted SMTP sessions.

cepted, i.e. those e-mails that are delivered by the mail
servers, or rejected. An e-mail transaction can fail at any
time before the transmission of the e-mail data (header and
content) due to rejection by the receiving mail server. There-
fore, rejected e-mails are those that do not finish the SMTP
command exchange phase and consequently do not send any
e-mail data. The rejections are mostly because of spam pre-
filtering strategies deployed by mail servers including black-
listing, greylisting, DNS lookups, and user database checks.

Examining SMTP replies sent by the receiving mail servers
has no effect on the classification of accepted e-mails. How-
ever, they could have been consulted for finding the reasons
of e-mail rejections. In our dataset, due to asymmetric rout-
ing (see Section 2.2.3) only approximately 10% of the flows
are symmetric, where both the e-mail and the correspond-
ing mail server reply are available in the collected traces.
Therefore, we have decided to not further classify the re-
jected e-mail transactions. However, existing responses can
always be queried if required in the analysis.

Finally, we discriminate between spam and ham in our dataset.
As we have captured the complete SMTP flows, including
IP addresses, SMTP commands, and e-mail contents, we
can establish a ground truth for further analysis of only the
spam traffic properties and a comparison with the corre-
sponding legitimate e-mail traffic. We deploy the widely-
used spam detection tool called SpamAssassin4 to mark e-
mails as spam and ham. SpamAssassin uses a variety of
techniques for its classification, such as header and content
analysis, Bayesian filtering, DNS blocklists, and collabora-
tive filtering databases.5

We would like to stress that these classification steps are
carried out automatically after the data collection. As we
describe in the next section, the contents of the e-mails are
then discarded and all other user data desensitized before
we can manually analyze the dataset.

4.3 Anonymization
The final pre-processing step of the Antispam dataset is to
desensitize any user data. As mentioned in Section 2.2.3,
any real data collection is in general privacy sensitive and
large scale e-mail collection even more so. For that reason,
we complete the pre-processing with a complete anonymiza-
tion step. For the anti-spam project where we study traffic
characteristics of ham versus spam traffic, we actually have
little use of the full contents of the e-mails after they have
been properly labeled. On the contrary, given that we re-
duce the size of the dataset significantly by throwing away
user data, it actually gets easier for us to process and store.

4http://spamassassin.apache.org
5The well-trained SpamAssassin applied to our dataset was
in use for a long time at our university, incurring an approx-
imate false positive rate of less than 0.1%, and an detection
rate of 91.3% after around 94% of the spam being rejected
by blacklists.



Immediately after the classification, we started by discard-
ing the body of the e-mails as well as the subject of the
e-mail and the names of the sender and receiver(s). The IP
addresses in the packet headers and payload are anonymized
in a prefix-preserving fashion using CryptoPAN [21], simi-
larly to all of our other projects.

Finally, we are left with the sensitive data carried in the
SMTP requests and replies, namely e-mail addresses and
host/domain names. These form a structure of the underly-
ing communication pattern and cannot simply be discarded
but should instead be anonymized. We have introduced
the following approach for performing domain-preserving
anonymization:

• First, each e-mail address is divided into the user name
and the domain name (i.e. user@domain).

• The user name is local to each domain and is simply
hashed using a secure hash function.6

• The domain name, consisting of one or more dot-separated
components, is split into its parts, and a secure hash
function is applied separately to each component.

• The outputs of the hash function is then re-encoded
into printable ASCII characters.

• Finally, the hashed items are appended to each other to
form an anonymized e-mail address or domain name.
This anonymized name then replaces the original one
in the dataset.

Hashing each domain name component individually allows
us to generate domain preserving anonymized addresses and
names. This gives us the possibility to study the behavior
of e-mail traffic originating from the same domain and to
compare them with traffic from other domains.

Once the sensitive data was discarded, the resulting anony-
mized dataset had a size of 37 GB.

4.4 Summary
The anti-spam dataset was collected in a similar fashion to
the other datasets (Section 2.1). However, as the collection
also included packet payloads, this dataset required a more
complete pre-processing step before any manual analysis
could be performed. Automatic extraction of e-mail trans-
actions from SMTP sessions, classification of the e-mails,
extracting followed by discarding the e-mail bodies, find-
ing and replacing all IP, e-mail addresses, and host/domain
names inside the headers with a corresponding anonymized
version, etc. are just a number of challenges associated with
the collection of this type of traffic that we had to overcome.

5. ANTISPAM DATASET ANALYSIS
In the previous sections we described the necessary auto-
matic pre-processing of the Antispam dataset before the
analysis could start. In this section we change focus and
present our analysis methodology of the dataset.

As we stated before, the goals of the Antispam project is
to study the statistical characteristics of e-mail traffic and
finding the distinguishing properties of spam and legitimate

6The secure hash function is a one-way function, which takes
a secret cryptographic key as input.

Table 3: Antispam dataset statistics
Incoming (/106) Outgoing (/106)

Packets 626.9 170.1
Flows 34.9 11.9
Distinct srcIPs 2.30 0.01
Distinct dstIPs 0.57 1.94
SMTP Replies 2.84 9.14
E-mails 23.5 0.90
Ham 1.15 0.19
Spam 1.43 0.16
Rejected 17.3 0.35
Unusable 3.64 0.20

e-mails. Understanding these properties is necessary for the
development of new spam detection mechanisms to detect
spam already on the network level as close to its source as
possible. In this section, we present some overall statistical
properties of the collected e-mail traffic, and briefly describe
an approach to spam mitigation we have developed.

5.1 Overall E-mail Traffic Characteristics
After the exclusion of unusable flows described in Section 4.2,
we ended up with 24.4 million e-mails and approximately
12 million SMTP replies. The e-mails contained 10, 544, 647
distinct e-mail addresses in the SMTP headers from 532, 825
distinct domains. The unusable e-mails were then discarded.

After e-mail classification, more than 17.6 million e-mails
in our dataset were classified as rejected and only around
2.6 million incoming and 350 thousand outgoing e-mails were
classified as accepted. This observation is similar to what was
observed in [20] where the logs of a university mail server
was analyzed. In this study more than 78% of the SMTP
sessions were rejected by pre-acceptance strategies deployed
by the mail server to filter out spamming attempts. Table 3
shows the dataset statistics for our e-mail data captured in
each direction.

5.2 E-mail Analysis for Spam Mitigation
One approach to spam detection is to conduct a social net-
work based analysis of e-mail communication. This ap-
proach was first proposed in [3] and has since then gained
a large interest. In such analysis, an e-mail network based on
e-mail communication is generated and then graph-theoretical
analysis is applied. By using e-mail addresses as nodes and
letting edges symbolize any e-mail exchange, an e-mail net-
work captures the social interactions between e-mail senders
and receivers. Even though our dataset has been anonymized,
we can still generate an equivalent e-mail network to the
originally collected traffic due to the properties of the anonymiza-
tion process. In [17] we study the structural properties of
such a network generated from one week of traffic.

Any type of analysis of large datasets is challenging from
both a memory and computational time requirement per-
spective, but we also faced some additional challenges in
our graph-theoretical analysis. Many of the standard graph-
theoretical functions used for analysis of graph structures
are very computationally expensive. For instance, the cal-
culation of the average shortest path length between all the
nodes in the network (a measure of the graph connectiv-
ity) is computationally prohibitive for larger graphs. One



method to reduce the complexity is to use sampling, but the
interpretation of the results must then be done with cau-
tion [2].

The generated e-mail network from two weeks contains
10, 544, 647 nodes and 21, 537, 314 edges. To the best of our
knowledge this is the largest e-mail dataset that has been
used for studying the characteristics of e-mail networks. We
used the networkx7 package in python to create and ana-
lyze the structure of the constructed e-mail network. This
package tries to load the whole graph into main memory to
increase the performance. However, loading the complete
graph based on two weeks of e-mail traffic was not possible,
despite the fact that our processing machine has 16 GB of
memory. In order to reduce the required memory we used
methods such as mapping e-mail addresses to integer labels.

We also built more specific e-mail networks based on a sub-
set of the data according to the e-mail classification into
the described categories of rejected, accepted/ham, and ac-
cepted/spam. For example, a spam e-mail network is an
e-mail network containing only the e-mail addresses sending
and receiving spam as nodes with the edges representing any
spam communication. By comparing the generated e-mail
networks, many structural differences are revealed between
networks built from legitimate e-mails and unsolicited traf-
fic. A remarkable observation from our study [17] is that
the structure of a ham network exhibits similar properties
to that of online social networks, Internet topology, or the
World Wide Web. A spam network, on the contrary, has a
different structure as well as a rejected traffic network. This
does in turn, given the large number of spam e-mails, affect
the structural properties of the complete e-mail network.
Our observations suggest that these distinguishing proper-
ties could potentially be exploited for detection of spamming
nodes on the network level.

Our research so far has thus led to two important findings.
First, we have observed differences in the characteristics of
spam and ham traffic, which could lead to spam detection
methods complementing current antispam tools. The ac-
quired knowledge from our analysis of the data also provides
us with the means to produce realistic models of e-mail traf-
fic. These models could in turn be used to generate synthetic
datasets as an alternative to the costly collection and chal-
lenging distribution of the large-scale original data.

6. RELATED WORK
In this section existing sources of data collection that can
be deployed for performing security-related research are in-
troduced and compared with our collection methodology.

To study malicious traffic, methods such as distributed sen-
sors, honeypot networks, network telescopes/darknets, as well
as passive measurements can be deployed for data collection.
Network telescopes monitor large, unused IP address spaces
(darkspaces) on the Internet[16], and are typically only traf-
fic sinks which attract unsolicited traffic without responding
to them. Distributed sensors are usually placed at diverse
geographical and logical network locations by some compa-
nies including antivirus companies, allowing them to sum-

7http://networkx.lanl.gov/

marize wide-area trends by correlating sensor data. How-
ever, they introduce a serious bias, as the users obviously
care about security. Networks of honeypots collect a large
aggregation of traffic behavior from dedicated, unprotected
but well monitored hosts, but passive honeypots are not very
suitable for analysis of normal user responses.

Our approach, passive measurements on large-scale links, is
generally viewed as the best way to study Internet traffic,
as it includes real behavioral responses from a diverse user
population.

Research attempts to characterize and analyze spam have
used a wide range of different datasets, such as data ex-
tracted from users’ mailboxes, mail server log files, sinkholes,
and network flows.

Collecting sent and received e-mail headers in one user’s
mailbox is used in [3], but this collection methodology does
not scale and any such dataset is limited to an individual
user. Mail server SMTP log files, on the other hand, con-
tain information about more users but are usually limited
to incoming e-mails to a single domain. Such datasets have
been used, for example by Gomes et al. [6] where eight days
of SMTP log files of incoming e-mails to a university mail
server was used after a pre-filtering phase and categorization
by SpamAssassin.

Spam collected at sinkholes (honeypots) are usually not re-
stricted to a single domain, as these can either just receive
spam passively, or imitate an open relay which spammers
can exploit to relay spam. However, as described above,
sinkholes, does not include the normal user’s behavior and
do not provide the possibility of comparing characteristics of
spam and ham. Ramachandran and Feamster [19] collected
spam e-mails from two sinkholes and complemented their
traces with other sources of data such as external log files of
legitimate e-mails, BGP routing information, IP blacklists,
etc. Pathak et al. [18] collected spam during three months
from an open relay sinkhole together with information about
the sending host such as TCP fingerprints, IP blacklists, etc.

Collection of flow-level data at gateway routers can lead to
very large datasets; however, no ground truth and limited
possibility of validating the findings are its main shortcom-
ings. Schatzmann et al. [20] have studied NetFlow data
captured during 3 months at the border router of a national
ISP, and complemented their dataset with the log of a uni-
versity mail server to discriminate between rejected spam
and ham flows. Ehrlich et al. [5] have collected large net-
work flow datasets from a router connecting their network
to other ISPs and used local IP blacklists and whitelists to
distinguish spam from ham.

Our Antispam dataset, which was passively collected on an
Internet backbone link, is not limited to a single user or do-
main. Not only does it give us the possibility of studying the
flow-level characteristics of e-mail traffic, but it also shows
which flows carry spam or ham traffic, a property which is
difficult to accurately determine without consulting the e-
mail content.



7. CONCLUSIONS
We have described a number of large-scale datasets collected
on a high-speed backbone link. The datasets have been far
from trivial to collect, and for that reason we shared the
challenges we faced as well as our solutions for processing
the large-scale data.

To exemplify the analysis process, we used the Antispam
dataset to concretely discuss the collection and analysis of
a large-scale dataset. This included our methodology for
anonymization, i.e. the removal of any user-sensitive data
in such a way that also allowed accurate traffic analysis,
as well as a discussion of applying graph-theoretical thech-
niques to the generated e-mail network. To the best of our
knowledge, this e-mail network is the largest that has been
used to study the characteristics of such networks. We could
find clear differences in the communication patterns of spam
and ham traffic, something that we suggest can be used to
both discriminate between them on the network level and to
create more complete simulation models.

The described type of data collection is necessary for such
analysis since most other contemporary data collection ap-
proaches either lack participants’ e-mail addresses or do not
have any legitimate traffic.

We believe that the collection of large-scale datasets such
as the datasets presented in this paper is crucial for under-
standing the behavior of the Internet and its applications.
Security research in particular needs contemporary Internet
traffic in order to show the usefulness and correctness of
security mechanisms and algorithms.
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