
T-Fuzz: Model-Based Fuzzing for Robustness Testing of Telecommunication
Protocols

William Johansson, Martin Svensson, Ulf E. Larson
Ericsson AB

{william.x.johansson,martin.x.svensson,ulf.t.larsson}@ericsson.com

Magnus Almgren, Vincenzo Gulisano
Chalmers University of Technology

magnus.almgren@chalmers.se

Abstract—Telecommunication networks are crucial in to-
day’s society since critical socio-economical and governmental
functions depend upon them. High availability requirements,
such as the ”five nines” uptime availability, permeate the
development of telecommunication applications from their
design to their deployment. In this context, robustness testing
plays a fundamental role in software quality assurance. We
present T-Fuzz – a novel fuzzing framework that integrates
with existing conformance testing environment. Automated
model extraction of telecommunication protocols is provided
to enable better code testing coverage. The T-Fuzz prototype
has been fully implemented and tested on the implementation
of a common LTE protocol within existing testing facilities.
We provide an evaluation of our framework from both a
technical and a qualitative point of view based on feedback
from key testers. T-Fuzz has shown to enhance the existing
development already in place by finding previously unseen
unexpected behavior in the system. Furthermore, according
to the testers, T-Fuzz is easy to use and would likely result in
time savings as well as more robust code.

I. INTRODUCTION

Telecommunication networks and services are today clas-
sified as critical societal infrastructures [1], [2]. They fulfill
socio-economical functions such as connecting end users
over voice and text, and providing Internet access. Ac-
cording to [3], there are over 6.8 billion mobile cellular
subscriptions, and over 2 billion active mobile-broadband
subscriptions worldwide. Telecommunication also fulfills
governmental functions, such as carrying emergency calls
and public warning messages during a crisis.

To meet the needs of end users and governments alike
(e.g., to make sure that emergency calls do not disappear
between the caller and the dispatch), telecommunication
operators must guarantee high availability of their networks.
A common availability requirement is 99.999% uptime [4],
which is less than five and a half minutes downtime per
year. Considering these requirements, extended disturbances
would soon put the operator out of business. To guarantee
high availability, both software and hardware need to be
robust against failures. Errors that are found in software
running in production systems need to be fixed by applying
patches, which in turn may require restarting software. This
causes inevitable downtime and is not acceptable. Thus, a
sound robustness testing strategy for testing the software

is critical to ensure that errors are found early in the
development process.

A well-known technique for robustness testing of soft-
ware is fuzzing [5]. In fuzzing, further described in Sec-
tion II-C, malformed messages are injected into a System
Under Test (SUT). Malformed messages can be created
from scratch (generation-based fuzzing) or as mutations
of valid messages (mutation-based fuzzing). The SUT is
monitored for unwanted behavior to determine if an injected
message caused any problem. Fuzzing has earlier been
used in traditional computing environments such as various
UNIX platforms and network services [6]. However, recent
works [7], [8], [9], [10], [11] show that fuzzing has been
successfully used to find exploitable bugs also in the 2G
and 3G cellular networks.

In this paper we present a methodology of how the
robustness testing procedure for telecommunication products
can be improved by also integrating fuzzing in the normal
conformance testing. There are already existing robustness
testing tools that specifically target the telecommunication
area [12], [13], where certain protocol models and test cases
are provided. However, to support new protocols, these either
have to be provided by the vendor or written from scratch
by the tester. Furthermore, these tools do not integrate
into existing environments, making their use a completely
separate testing task, often with the requirement of rather
specialized knowledge to use the tool in question. Clearly,
there are several advantages if the robustness testing could
be integrated as part of the regular testing environment. It
would then be executed as part of any test suite as well as
being easier for the testing engineers to use.

We developed T-Fuzz – a novel fuzzing framework for
telecommunication networks that overcomes the limitations
of existing tools. T-Fuzz provides the following benefits.

• It integrates with existing testing environments.
• It easily adapts to different telecommunication proto-

cols.
• It achieves full protocol coverage and
• it is easy to use.

These claims will be elaborated upon in the rest of the
paper. Since T-Fuzz is integrated with the TTCN-3 (Testing
and Test Control Notation Version 3) framework for confor-



mance testing, further described in Section II-B, it achieves
several advantages. The framework is general enough so that
it can reuse models of 3GPP protocols that are created for
conformance testing. As conformance testing is a mandatory
activity of the SUT, such models are always created when
new protocols are introduced. A side effect with the exis-
tence of such models is that fuzz testing can start very soon
after a new protocol is introduced in the product, making
the testing time efficient. Furthermore, having the complete
model specification let us achieve full protocol coverage
through generation-based fuzzing. Having the model inte-
grated into a known environment and removing the tedious
model creation task means testers should find it much easier
to use than a separate tool.

T-Fuzz has been fully implemented and integrated into
TITAN, a TTCN-3 compiler and execution environment. We
describe the design and implementation of T-Fuzz. Through
a modular design, minimum customization is needed when
changing protocol or SUT. We describe the instantiation of
T-Fuzz for a specific LTE protocol, the 3GPP Non-Access
Stratum (NAS) protocol [14], and measure its usefulness in
finding unexpected behaviors and discuss lessons learned.
We also complement the technical discussion with a quali-
tative evaluation based on initial feedback from the confor-
mance test team. Their feedback is presented together with
observations on the usefulness of the framework from a test
engineer perspective.

The remainder of this paper is outlined as follows. In
Section II, we provide details of the telecommunication
network, existing test environments in use, as well as a brief
introduction to fuzzing. Given this background knowledge,
we describe the design of T-Fuzz and its implementation in
an existing test environment in Section III and Section III-A,
respectively. In Section V we evaluate the usefulness of
T-Fuzz. We describe the instantiation of T-Fuzz for the NAS
protocol [14] with an evaluation of the unwanted behavior
found. We then analyze the results from a quantitative
questionnaire answered by key test engineers about the use-
fulness of T-Fuzz. Related work is presented in Section VI.
We conclude the paper in Section VII.

II. BACKGROUND

In this section we first provide the reader with background
information about the LTE telecommunication network in-
frastructure, the Evolved Packet System. We continue dis-
cussing how conformance testing is performed in this con-
text and present the TTCN-3 testing language. Finally, we
briefly introduce the fuzzing testing technique.

A. The Evolved Packet System

The Evolved Packet System (EPS) provides LTE con-
nectivity and is divided into three main networks: Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) for
wireless communication, Evolved Packet Core (EPC) which

UE eNodeB SGW

MME

PGW

HSS

Internet

E-UTRAN EPC Network PDN

Signaling
Payload

Figure 1. Simplified overview of the EPS network with the core nodes

handles LTE cellular communication [15] and Public Data
Networks (PDN) for access to external networks such as
the Internet. A brief overview of the EPS is illustrated in
Figure 1.

E-UTRAN makes it possible for User Equipment (UE),
such as mobile phones and tablets, to access the telecommu-
nication network [16]. The UE communicates with a radio
base station, referred to as E-UTRAN Node B (eNodeB),
which provides signaling capabilities to the Mobility Man-
agement Entity (MME) and forwarding of payload messages
from the UE towards the PDN. The MME is a core node
in the EPS and is responsible for the attachment (connec-
tion procedure) and detachment (disconnect procedure) of
UEs [17]. The MME assures the sustainability of UEs con-
nection to PDNs by handling the handover between eNodeB
stations. The Home Subscriber Server (HSS) provides the
MME with authentication and authorization functions of an
attaching UE. When the MME has authenticated the UE as
a valid EPS network user, addresses to a Serving Gateway
(SGW) and a Packet Data Network Gateway (PGW) are sent
to the UE. The SGW and PGW are the two gateways an IP
packet from E-UTRAN has to pass in order to reach a PDN.

B. Conformance Testing in EPS

The EPS network is built upon standardized interfaces and
protocols to support an open market for telecommunication
operators. Rigorous testing is required to ensure correct
communication between two nodes from different vendors.
Conformance testing is intended to test the product against
the specified standards. In order to accomplish this, it re-
quires the model representation of the protocol specification
to be covered in full detail.

The TTCN-3 testing language is standardized by the
European Telecommunications Standards Institute (ETSI)
and commonly used for test specifications [18]. The TTCN-3
test system provides internal and external communication
and requires test cases and models in TTCN-3 language [19],
[20].

The TTCN-3 test language is strongly typed and contains
a number of built-in types, such as integer for integers,
bitstring for strings of bits, and charstring for



strings of characters. It also defines structured types, such as
record, to specify structures of typed fields. A TTCN-3
module usually contains type definitions, port definitions,
functions, and test cases. Type definitions are used to specify
structures or to subtype any built-in type by adding restric-
tions (a subtype of integer may restrict the value to be
in the range 0− 255, while a subtype of bitstring may
restrict it to be exactly 5 bits long). Port definitions describe
communication links and message’s types. Lastly, test cases
describe the test logic (e.g., SUT’s ports to which to connect,
messages to be sent or expected replies).

In order to perform tests of the system implementation,
a test environment for the SUT has to be present with
simulated surrounding nodes. TITAN is a TTCN-3 compiler
and execution environment which generates C++ code from
TTCN-3 [21]. The generated C++ code is compiled together
with runtime libraries and external C++ source files that will
be executed in the TTCN-3 test system. External C++ code
is used to implement the communication link over the test
ports as well as providing extra functionality to use from the
TTCN-3 test cases. With this technique, a native standalone
binary can be produced for good performance and executed
on many different platforms.

C. Fuzzing

Fuzzing [22] is a software robustness testing technique.
When fuzzed, the SUT is fed with malformed or invalid data
and monitored for exceptions such as unexpected behavior.
Fuzzing techniques are categorized as either mutation-based
or generation-based [23]. A mutation-based fuzzer creates
malformed or invalid data modifying valid messages with
mutators. Several mutation techniques can be applied to
modify valid messages: substitution, bit flipping, data re-
moval or data addition, among others. One or more of these
mutation techniques can be applied by a mutator to message
fields or to specific bytes of valid messages. Opposite to
mutation-based fuzzers, generation-based fuzzers build mal-
formed messages from scratch and rely on message models
with full protocol specifications. It should be noted that,
depending on the SUT, malformed messages might require a
valid checksum or ciphering. To this end, protocol awareness
is required to provide good code coverage (e.g., to ensure
malformed messages are not systematically discarded by the
SUT due to wrong checksums).

III. DESIGN

In this section, we present the design requirements and
the main components of the T-Fuzz framework.

T-Fuzz is intended to extend the TITAN conformance
test framework providing robustness testing by means of
generation-based fuzzing. We aim at a full integration be-
tween TITAN and T-Fuzz since this would lead to a more
extensive testing of new protocols used in products under
development.

SUT Executable
Test Suite

C++
Compiler

TTCN-3
Compiler

TITAN

TTCN-3
Input

Modules

Model
Extraction

Fuzzing
Engine

Observer

External
C++ Code

T-Fuzz

C++

messages

events

feedback

Figure 2. T-Fuzz components extending the conformance test environment

Our first design goal is to transparently integrate the func-
tionality enabled by T-Fuzz with TITAN’s ones. Doing this,
it should be possible to fuzz all the communication protocols
supported by TITAN. In order to achieve this, T-Fuzz should
rely on the protocol models defined in TTCN-3, which are
already used by TITAN to generate conformance test suites.
Our second design goal is to rely minimally on a tester when
defining a test suite where fuzzed messages are sent to the
application under test. In order to achieve this, T-Fuzz should
provide a way of creating fuzzed messages that resembles
the one used to create valid ones. That is, the tester should
only decide whether a message sent to the SUT is valid or
fuzzed, but he should not be required to specify how to fuzz
the message itself.

Since we rely on the generation-based fuzzing approach,
we can create fuzzed messages by generating arbitrary data
in any field of any protocol message. As discussed in [23],
this greatly enhances the strength of robustness testing
compared to mutation-based fuzzers such as T3FAH [24].
Furthermore, it would also result in a higher code coverage
since it could generate all the different messages specified
by a given protocol.

A. T-Fuzz: An Extension of the TITAN Environment

Figure 2 presents the TITAN environment extended with
the T-Fuzz framework. In the following, we provide a de-
scription of the TITAN environment and continue discussing
T-Fuzz’s composing modules. When designing a new test
suite, a set of TTCN-3 protocol models and user specified
test cases is fed to the TITAN TTCN-3 Compiler. The
latter parses and analyzes the input modules in order to
generate C++ code to communicate with the SUT. The
external C++ code, provided by the tester, implements the
interface towards the SUT and, once compiled together with
the generated code, results in the final Executable Test
Suite (ETS). The generated ETS contains the necessary
functionality for setting up and executing the test (e.g.,
encoding and decoding of messages or logging). During



module Example
{

type bitstring BIT4 length(4);
type hexstring HEX2 length(2);
type record MSG
{

BIT4 fourBitField,
HEX2 twoHex,
integer number optional

};
}

Figure 3. Example TTCN-3 module with type definitions

execution, test messages are sent to the SUT, which responds
accordingly. At the end of an execution run, a summary with
verdicts of the test cases is presented to the tester.

As discussed in the previous section, we aim at a trans-
parent integration between TITAN and T-Fuzz. Given the
steps required to create an ETS, we would like to provide
auto-generated functions that can be used to inject fuzzed
messages to the SUT. The framework should also report
results once a robustness test has been completed.

As presented in Figure 2, T-Fuzz is composed of three
main modules:

a) Model Extractor: used to extract TTCN-3 models that
are later used as input for the fuzzer.

b) Fuzzing Engine: used to produce C++ code that pro-
vides functions to generate fuzzed messages according
to the extracted models.

c) Observer: used to monitor the SUT and provide feed-
back to the ETS to take online decision about how to
fuzz the SUT.

We present each module in detail in the following para-
graphs.

Model Extractor: Since T-Fuzz relies on generation-
based fuzzing, it must be able to generate messages from
scratch. Nevertheless, in its current implementation, there
is no built-in functionality in TTCN-3 to randomly gener-
ate messages. In order to do this, the models defined in
TTCN-3 are extracted by the Model Extractor. The latter is
able to extract all subtypes and structured types from the
input models statically at compile time. It is also capable
of distinguishing between optional or mandatory structure
fields. Finally, it only requires input model’s definitions and
does not need populated instances of them.

Fuzzing Engine: Once the models for the messages
defined by a protocol have been extracted, the Fuzzing
Engine provides the functionality to generate instances of
the models. This is achieved by taking the extracted mod-
els and creating generation functions for all the built-in
TTCN-3 types (see Section II-B), the extracted subtypes and
structured types. It also provides functions to specify which

Example.MSG

BIT4

bitstring

4 bits

HEX2

hexstring

8 bits

integer

optional

Structure
Subtype
Built-in

Figure 4. Extracted model tree of MSG structure in Example module

structure fields should not be randomized but rather set to a
specific value (e.g. identification fields). Finally, it allows to
specify a fixed seed as basis for the randomization in order
to have repeatable experiments.

The Observer: The purpose of the Observer is to
monitor the SUT and provide feedback to the ETS to guide
the fuzzing depending on the observed results. Different to
the Model Extractor and the Fuzzing Engine, the specific
Observer implementation depends on the SUT. The cur-
rent plan for T-Fuzz is to provide Observer templates for
commonly monitored system features such as CPU usage,
memory consumption of the SUT or logs. We discuss a
specific implementation of an Observer in the evaluation
(Section V-B).

IV. IMPLEMENTATION

In this section, we discuss in more detail and present the
implementation of the Model Extractor and Fuzzing Engine
modules. As discussed in Section III-A, the implementation
of the Observer module depends on the SUT, we present a
possible implementation in Section V-B. We conclude the
section discussing the TTCN-3 API provided by T-Fuzz to
tune how the SUT is fuzzed.

A. Model Extractor

With TITAN, the input TTCN-3 model files are parsed
to generate C++ code that is later used to connect and
forward messages to the SUT. The Model Extractor has
been developed as an extension of the TITAN’s TTCN-3
Compiler. After the C++ code has been generated, the
Model Extractor statically analyzes it in order to extract the
information needed to create fuzzed messages.

While parsing the code generated by TITAN, the Model
Extractor builds a model tree of structures where each
field is represented by a node. These nodes describe
the types of the fields, where subtypes are represented
by internal nodes while leaf nodes represent one of
the seven built-in TTCN-3 types: boolean, integer,
float, charstring, bitstring, hexstring or
octetstring. In many protocols, especially in binary



ones, subtypes define a length requirement on built-in types.
As an example, type bitstring BIT4 length(4)
would define a subtype of type bitstring whose length
is of exactly four bits. Furthermore, fields in a record
structure can be specified as mandatory or optional. The
Model Extractor parses all existing fields taking into account
existing restrictions and distinguishing between mandatory
and optional ones. A sample module containing subtype and
structure definitions is presented in Figure 3. The module
Example defines two subtypes (BIT4 and HEX2) and one
structure (MSG) composed by the same subtypes and by an
optional built-in integer. The resulting extracted model
for the TTCN-3 structure MSG is shown in Figure 4. Once
model trees have been created, they’re fed to the Fuzzing
Engine module, as discussed in the following section.

B. The Fuzzing Engine

The generation of data takes place in the Fuzzing Engine.
The latter relies on the models extracted by the Model Ex-
tractor in order to create instances of the different structures
and subtypes. The resulting generation code is provided to
TITAN and compiled to the final ETS.

Generation of structure fields is made by traversing the
model tree and generating values for each of the descendant
nodes. While parsing the nodes, fields marked as optional
are instantiated randomly. As discussed in Section II-C,
generation-based fuzzing might result in poor code coverage
if specific message parts are not created accordingly to the
fuzzed values of a message. For this reason, the Fuzzing
Engine allows the tester to specify which fields should be set
to specific values rather than fuzzed ones. All the different
fields are first looked up in an override table before their
value is fuzzed. If a value exists in the table, this value is
used instead of a fuzzed one. The TTCN-3 environment will
be used to perform operations on the messages and encoding
them (i.e., calculate checksums and perform ciphering). The
union and enum types will be generated by choosing
one possible alternative at random. The built-in types are
generated by assigning bits randomly. The random bits
returned are based on a random seed that can be set at any
time. This way, messages resulting in unexpected behavior
can be easily repeated.

C. TTCN-3 API

T-Fuzz relies on the TTCN-3 language. By returning
the data generated in T-Fuzz expressed in TTCN-3, the
existing infrastructure used for conformance testing can be
transparently used to fuzz the SUT. After model extraction
and creation of the generators in the Fuzzing Engine, T-Fuzz
creates a TTCN-3 module that serves as the glue between
the TTCN-3 input models and the C++ code. This module
exposes all the generator functions created by the fuzzing
engine for all subtypes, structures and built-in types using

NAS

ESM

. . .PDN
connectivity

request

NotificationESM
status

ESM
information

request

EMM

. . .Service
request

Identity
request

Detach
accept

Attach
request

Figure 5. Tree over NAS protocol with a subset of EMM’s and ESM’s
message types

the format fuzz_gen_<M>_<T>(), where M and T rep-
resent the model and the type, respectively. These functions
can be used by the tester to control how messages are fuzzed.
With respect to the Example module in Figure 3, generators
for all defined subtypes (BIT4 and HEX2) and structures
(MSG) are exposed. A randomly generated BIT4 can there-
fore be created by calling fuzz_gen_Example_BIT4()
while a random MSG structure can be created invoking
fuzz_gen_Example_MSG().

As described in the previous section, some fields need
to be preserved from random generation. Functions to
save these values are also exposed in the glue code in
the format fuzz_override_<M>_<T>(name,val).
With respect to the Example module (Figure 3), a call
to fuzz_override_Example_HEX2("twoHex",
‘FA’H) will ensure that all generated structures containing
a HEX2 field named twoHex will set its value to 0xFA.

V. EVALUATION

In this section, we evaluate the T-Fuzz framework from
both a technical and a qualitative perspective (based on
feedback from key testers of the SUT).

In the first part of the evaluation, we present how T-Fuzz
has been used to perform robustness testing on the NAS
protocol [14], used in LTE telecommunication networks to
carry signaling messages between a UE and the SUT1. We
focus on NAS since it is used in conformance testing of
the SUT and the necessary protocol models are already
available. We first present an overview of the protocol and
then proceed describing the evaluation setup and the testing
outcome.

The second part of the evaluation discusses the results of
a survey that has been conducted as part of the evaluation
together with key testers of the SUT. The survey focuses on
the usability and possible benefits enabled by T-Fuzz.

A. NAS Overview

The NAS specification defines two distinct protocols
for EPS Mobility Management (EMM) and EPS Session
Management (ESM) between a UE and the SUT. The SUT
handles mobility functionality (e.g., attach and detach of a
UE, authentication and ciphering setup) and specifies 32

1The actual system under test is not disclosed. As our focus is on the
testing methodology, there is no loss of generality.



different message types [14]. ESM handles establishment
and control of user data (e.g., connection to a PDN or
establishment of bearers) and specifies 22 different message
types. An example of the NAS message tree is shown in
Figure 5.

EMM and ESM protocols are defined and implemented
by means of state machines. Both the UE and the SUT have
one EMM state machine and one ESM state machine per
bearer context. We focus further on the description of the
EMM state machine, which is responsible for the mobility
of the UE, since ESM state machines are only responsible
of the PDN connectivity and bearers which do not affect the
communication with the SUT. A complete description of the
EMM’s and ESM’s state machines can be found in [14].

The SUT’s EMM state machine is based around the
mobility of the UE. As presented in Figure 6, the main states
are EMM-REGISTERED and EMM-DEREGISTERED and
specify whether the UE is attached or detached to the
network, respectively. In order for a UE to be at-
tached, an Attach Request message is sent to switch from
state EMM-DEREGISTERED to EMM-REGISTERED-
INITIATED and is followed by an Attach Accept message
in order to switch to the EMM-REGISTERED state.

A UE can be in either EMM-IDLE or EMM-
CONNECTED mode, depending on whether a connection to
the MME is properly setup. When in EMM-IDLE mode, the
UE is allowed to send five different messages (referred to as
initial NAS messages) to switch to the EMM-CONNECTED
mode. When in EMM-CONNECTED mode (i.e., when a
proper signaling connection exists between the UE and the
SUT), several more messages are allowed to be sent and
received, depending on the EMM state. According to the
standard [14], most actions are performed in the EMM-
REGISTERED state. That is, most of the messages are
sent after a complete attach sequence (EMM-REGISTERED
state) and an initial message that switches the UE from
EMM-IDLE to EMM-CONNECTED mode.

B. Evaluation Setup

The SUT testers has a complete environment in place
for conformance testing of the NAS protocol. By using this
existing environment, we could readily setup the necessary
network equipment (i.e., the UEs and the SUT). As discussed
in Section V-A, the messages that can be sent by the UE
depend on its state. To this end, the SUT testing environment
eases the fuzzing of the NAS protocol by allowing us to start
an experiment by sending the valid messages required to
reach the desired UE’s initial state. The SUT is completely
isolated and the fuzzing tests will be the only executions
affecting the SUT.

The SUT is implemented largely in the Erlang program-
ming language. An Erlang application is built by using
strongly isolated lightweight processes which share no mem-
ory, with message passing as the only interaction between

EMM-
DEREGISTERED

EMM-
REGISTERED-

INITIATED

EMM-
REGISTERED

EMM-SERVICE-
REQUEST-
INITIATED

Attach
Request

Attach
Reject

Atta
ch

Acc
ep

t

Detach
Request

Service
Request

Service
Request
Accept

or
Reject

Figure 6. Simplified EMM state machine

them [25]. According to the Erlang philosophy, functionality
should be divided into supervisor trees, where each process
node is either a supervisor or a worker [26]. The supervisor
processes manage their child processes, either workers or
supervisors, and monitor if they are alive. The worker
processes only execute a single task. In the SUT, every
attached UE is represented by an Erlang worker process.
If an unwanted state is entered during fuzzing, the UE is
disconnected. Such a condition does not necessarily imply
a bug in the system since it might have been deliberately
provoked as the only way to handle an event, but it can be
an indicator that further investigation is needed.

As specified in Section III-A, two out of the three modules
of T-Fuzz (the Model Extractor and the Fuzzing Engine)
have a general implementation and do not need to be tailored
to each specific protocol or SUT. Only the templates of the
T-Fuzz Observer need to be changed to the environment
of the SUT. For this evaluation, we have implemented the
T-Fuzz Observer as an Erlang counter that keeps track of
the number of unwanted states that are entered during an
experiment. The Observer will keep record of all messages
and resend the ones potentially causing unwanted behavior.
This is to guarantee reproducibility. At the end of each
experiment, the Observer generates a report that associates
each unwanted behavior with the fuzzed input message that
caused it. The resulting reports have been shared with the
testing team for further investigation.

C. NAS Protocol Fuzzing

Four different test cases are defined for our evaluation:
Initial, Phase1, Phase2 and Phase3. The first test
case, Initial, is intended to send malformed messages
from the UE to the SUT before the former is attached to
the latter. The other test cases perform different kinds of
setup, with different states being entered. These test cases
extend the previous one by adding more complex setup and
configuration, thus letting us focus on the fuzzing activities
to a particular setup to see if any unwanted behavior is
shown then.

T-Fuzz was tested over a couple of weeks for these 4



Initial Phase1 Phase2 Phase3

0%

20%

40%

60%

0% 0.6%

43.4%

56%

R
el

at
iv

e
un

w
an

te
d

be
ha

vi
or

Figure 7. Unwanted behavior observed in the NAS test cases, relative to
the total amount of unwanted behavior

26.8%

73.2%

Unwanted behavior

Normal behavior

43.5%

56.5%

UE

SUT

Figure 8. The left figure shows the percentage of the message types that
are involved in causing unwanted behavior, while the right figure highlights
the origin of these for the Phase3 test case

different test cases, sending the same number of messages
for each test case. The bar plot in Figure 7 shows the amount
of unwanted behavior that is observed for each test case,
with respect to the total number of unwanted behaviors.
The Phase2 and Phase3 test cases together counts for
the majority of the unwanted behaviors.

Further statistics are collected and presented for the
Phase3 test case, which was the origin of the most un-
wanted behaviors. We analyzed which NAS messages were
involved. The portion of message types involved, presented
in the left chart in Figure 8, shows that only 26.8% of the
types were represented. This may well be used for further
analysis on what parts of the implementation to focus testing
on. The portion of messages that should, according to the
standard [14], originate from the UE or the SUT respectively
is presented in the right chart in Figure 8. The result show
that the messages originating from the SUT are slightly
overrepresented.

The results may indicate that the messages causing un-
wanted behavior were unexpected and could not be properly
handled, or that the worker process entered a state that
called for the supervisor to interrupt its execution because
the UE sent a message it should not. Results also indicate
that the UE and the SUT have different views on the
connection states and the easiest way to solve a conflict
might be to simply restart the communication. The resulting
statistics can be used to decide what parts of the SUT should
be further investigated. Since the messages are completely
reproducible, it is easy to troubleshoot an unwanted behavior
by simply sending the same messages again.

Table I
ANSWERS FROM QUESTIONNAIRE

Question Answer
Q1 Average 2.3 out of 5
Q2 Average 4.6 out of 5
Q3 Average 4.2 out of 5
Q4 Average 2 out of 5
Q5 Average 3.6 out of 5
Q6 Median 1.75 days
Q7 Average 4.17 out of 5
Q8 1/3 yes, 2/3 no
Q9 Average 4 out of 5
Q10 Median 10%
Q11 Median 4.5 days

D. Observations on Generalizability and Usability

T-Fuzz is at this stage very capable of testing the 3GPP
protocols. Several protocols are modeled in TTCN-3, and
testing them with T-Fuzz is very straight-forward. The time
needed to implement fuzzing of a new protocol depends on
the amount of required functionality (e.g., to reach a wanted
state before fuzzing, to evaluate response messages and so
on). Plainly sending fuzzed messages to the SUT takes no
time to setup. This has been proven to work with initial
testing of another 3GPP protocol without much test logic,
but could easily be made more efficient by an experienced
tester with knowledge about the protocol and its states.

When the design and implementation of T-Fuzz was ready,
we performed an evaluation of its usability and applicability
within the organization. The purpose of this evaluation is
to report the internal experience with the tool, and also to
gather information that other testers in the same field may
benefit from. For the evaluation, we gathered the testers that
work with TTCN-3 and TITAN towards the SUT, i.e. the
key testers. We demonstrated T-Fuzz for them and we also
presented and discussed unwanted behavior observed while
fuzzing the NAS protocol. We then asked the testers to fill
in a questionnaire regarding T-Fuzz. The following eleven
questions were given.
Q1: Would this tool save time in your daily activities? [1-5]
Q2: Would this tool be helpful to discover hidden/new

aspects of the product? [1-5]
Q3: Would this tool increase the quality of the product? [1-

5]
Q4: Would this tool require a fuzzing expert to use? [1-5]
Q5: Would this tool fit with the testing requirements? [1-5]
Q6: How many days would it take to get familiar with the

tool? [Number of days]
Q7: How likely is it that you would use such a tool, given

that you should perform negative testing? [1-5]
Q8: Have you found unwanted behavior similar to the one

presented? [Yes/No]
Q9: Would this tool save time in finding such unwanted

behavior? [1-5]
Q10: What is the probability the unwanted behavior would



be found by you without this tool? [Percentage]
Q11: How many days would it take to find this unwanted

behavior without the presented tool? [Number of days]
The answers (presented in Table I) provided us with

interesting input about the usefulness and ease of use of
T-Fuzz. Question Q1 got a rather negative response, 2.3 on
average. The reason is that questioned testers do not perform
this kind of negative testing in their daily activities. Never-
theless, an average of 4.6 for question Q2 shows that testers
believe T-Fuzz is capable of finding bugs which would not
have been found with current test methods. Question Q3

confirms, with an average of 4.2, that the quality of the
product would improve using T-Fuzz as a complement of the
existing robustness testing already performed. The answers
to questions Q4 (2 on average) and Q6 (a median of 1.75
days) show that the testers do not feel a deep knowledge of
fuzzing is required to use T-Fuzz. Testers believe T-Fuzz is
easy to use and they could get familiar with it after 1-3 days.
The average 3.6 on question Q5 indicates that the tool would
fit with the existing testing requirements. Distinguishing the
testing between positive and negative, the testers’ average
4.17 for question Q7 indicates that they believe the tool
would be used.

Questions Q8 to Q11 relate to the unwanted behavior
presented to the testers. The answers for question Q8

indicate that similar unwanted behavior are rarely found.
One third of the testers have unintentionally encountered
similar unwanted behavior while testing other parts of the
SUT. This is further supported by the median value 10% for
question Q10, which indicates that the presented unwanted
behavior would probably not have been found early in the
testing phase. The average 4 for question Q9 states that
the key testers of the SUT believe T-Fuzz would simplify
the task of finding such unwanted behavior. Question Q11

gives an estimation of the time saved using T-Fuzz instead of
finding the unwanted behavior manually. By using T-Fuzz,
the median value states that over 4.5 days could be saved.

The outcome of the survey highlights that T-Fuzz can con-
tribute in solving some of the challenges presented in [27],
as described in Section VI. The key challenge of being able
to perform robustness testing of smaller parts of the system
is addressed by T-Fuzz with specific per-protocol tests. This
also simplifies troubleshooting knowing in which part of the
overall system a fault has occurred. By using T-Fuzz, one
test case can create a large amount of messages leading to
good coverage of the protocol. This addresses the challenge
that relies in the creation and selection of which robustness
tests should be performed. As for the challenge of creating a
representative testing environment, making use of TITAN’s
conformance test environment ensures that T-Fuzz resembles
as much as possible the customer’s environment. T-Fuzz also
provides the possibility of efficiently performing robustness
testing continuously and automatically, which addresses the
challenge of manually executing test cases with large time

constraints.

VI. RELATED WORK

In this section, we discuss the existing work related to
fuzzing and robustness testing in the context of telecom-
munication industries. We also present existing fuzzing
environments and discuss why the fuzzing component of
T-Fuzz is implemented as a stand-alone module.

Fuzzing and robustness testing in telecommunication
industries: The authors of [27] present a case study of the
existing robustness testing strategies and practices defined in
a telecommunication industry (Ericsson AB). As discussed,
the main bottleneck in robustness testing is not the lack of
test cases but rather the long times and high costs required
to properly setup a testing environment. A complete testing
environment involves real hardware, the prototype or under-
development application that will be tested and simulated or
real input data. Several features need to be monitored during
robustness testing, ranging from hardware to software issues.
Moreover, it is also generally difficult to systematically
create and select which test cases to perform in order to
ensure good testing coverage. To this end, T-Fuzz aims
at providing a transparent and time-saving framework for
robustness testing (by means of generation-based fuzzing)
relying on the hardware and software tools that are already
used for conformance testing.

In [24], the authors present T3FAH: a mutation-based
fuzzer that, similarly to T-Fuzz, relies on TTCN-3 to extract
the SUT’s input model. With T3FAH, real data being sent
to the SUT is mutated in an on-line fashion. Mutation
rules are defined by means of an attack pattern library and
are generated modifying input fields with suitable mutation
operators. The latter are type dependent generators that can
also fuzz fields trying to exploit common vulnerabilities. As
an example, a buffer overflow attack pattern on the TTCN-3
charstring type could mutate such a field with a 1024
bytes long random string. T-Fuzz differs from T3FAH in
several aspects. First, T3FAH case study focuses on the
fuzzing of SIP clients while we focus on the NAS protocol.
Secondly, being mutation-based, it requires the tester to
specify how input messages should be mutated (i.e., to
specify the attack pattern library). Finally, the presented
work does not discuss how T3FAH can be integrated in
existing testing environments, which is one of the main
contributions of T-Fuzz.

The DIAMONDS project [28] focuses on model-based
security testing, a research field that studies how to system-
atically and efficiently define security test objectives. Some
work in the DIAMONDS project has been focused on the
generation of fuzzing tests that rely on the TTCN-3 testing
language. The authors state that generators and mutators
should be implemented by making use of already existing
fuzzing frameworks, such as Peach [29], in order to ease
the development of fuzzing tests. As discussed in [30], it



is possible to test new protocols with reasonable effort by
relying on existing fuzzing frameworks. While T-Fuzz shares
some commonalities with the DIAMONDS project, it can
automatically generate values for all models in TTCN-3
without relying on third party generators or mutators. We
discuss in the following paragraph why T-Fuzz does not rely
on existing fuzzing frameworks.

Major fuzzing frameworks: Some of the existing
fuzzing frameworks that are most commonly used include
the Peach Fuzzer [29], Radamsa [31], Codenomicon De-
fensics [12] and the P1 Telecom Fuzzer [13]. The Peach
Fuzzer [29] is probably the most common one and provides
both mutation-based and generation-based fuzzing. Based
on user-defined input models (Peach Pit files), it can gen-
erate messages both randomly or trying to exploit known
vulnerabilities (as for T3FAH [24]). Differently from Peach,
Radamsa [31] focuses only on mutation-based fuzzing. It
requires a small effort to be set up since it operates on
given sample inputs but does not result in large test coverage.
Codenomicon Defensics [12] is a commercial model-based
fuzzing tool which contains over 200 protocols of which
13 are telecommunication specific, such as GTPv1 and
Diameter [32]. However, there is currently no support for
LTE application layer protocols, such as S1AP or NAS.
Another model-based fuzzing tool that specifically targets
telecommunication networks is the P1 Telecom Fuzzer [13].
It supports a wide range of protocols for GSM, CDMA,
WCDMA and LTE with support for some application layer
protocols such as S1AP and NAS.

The main drawback of all these existing fuzzing frame-
works is that protocol models have to be provided by the
vendor or written from scratch by the tester. The amount
of functional logic needed to execute the tests is huge,
which makes creating a whole new test platform a very
time consuming operation. Rather than relying on third
party frameworks, T-Fuzz makes use of models already
defined for conformance testing, thus not requiring the
intermediate modeling step. In contrast to the third party
frameworks, T-Fuzz is not a standalone tool that requires its
own environment but instead uses the existing environments
for executing conformance tests.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented T-Fuzz, a novel fuzzing
framework for robustness testing that integrates with a
conformance testing environment. T-Fuzz extends the TI-
TAN environment and allows for a fast development of
robustness tests by relying on existing protocol models
used in conformance tests. That is, it allows testers to fuzz
new applications as soon as protocols (which are currently
specified for conformance testing) are in place.

We have evaluated T-Fuzz with respect to the NAS proto-
col implementation and showed that it is able to provoke
unwanted behavior of the SUT and to provide insights

about which parts of SUT should be further investigated
by the developers. We also conducted a survey with key
testers focused on T-Fuzz generalizability and usability. The
outcome of the questionnaire shows that T-Fuzz is perceived
as easy to use (on average testers affirm 2.5 days are required
to get familiar with it). The questionnaire also highlights
that the majority of the testers would use it during normal
work and that it would be useful to spot problems that
would not be found exclusively relying on the current testing
environment. Overall, it would be a valuable addition to the
robustness testing activities.

As discussed, T-Fuzz allows for robustness tests to begin
with a series of valid messages in order to reach the desired
initial protocol state as this has a significant impact on the
fuzzing outcome. In its current implementation, these initial
steps are specified manually. We plan to improve this by
automating the process for future test cases. The current
version is a first step to see if the methodology works. We
plan to increase T-Fuzz fuzzing logic to better fit textual
protocols that, differently from binary ones such as NAS,
define fields with variable length and require more logic
behind the message generation. More advanced generation
techniques, such as presented in [33], could further be
implemented in T-Fuzz.

ACKNOWLEDGMENT

We would like to thank Ericsson AB for the opportunity
of performing this project. This work has been partially sup-
ported by the European Comission Seventh Framework Pro-
gramme (FP7/2007-2013) through the SysSec Project, under
grant agreement 257007, through the FP7-SEC-285477-
CRISALIS project and through the collaboration framework
of Chalmers Energy Area of Advance.

REFERENCES

[1] J. Moteff, C. Copeland, and J. Fischer, “Critical infras-
tructures: what makes an infrastructure critical?” DTIC
Document, 2003.

[2] Commisson of the European Communities, “Critical
Infrastructure Protection in the fight against terrorism.”
[Online]. Available: http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF

[3] International Telecommunication Union, “Key
ICT indicators for developed and devel-
oping countries and the world.” [Online].
Available: http://www.itu.int/en/ITU-D/Statistics/Documents/
statistics/2013/ITU Key 2005-2013 ICT data.xls

[4] J. Gray and D. P. Siewiorek, “High-availability computer
systems,” Computer, vol. 24, no. 9, pp. 39–48, 1991.

[5] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for software
security testing and quality assurance. Artech House, 2008.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2004:0702:FIN:EN:PDF
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls


[6] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl, Fuzz revisited: A re-examination
of the reliability of UNIX utilities and services. University of
Wisconsin-Madison, Computer Sciences Department, 1995.

[7] F. Ricciato, A. Coluccia, and A. D’Alconzo, “A review of DoS
attack models for 3G cellular networks from a system-design
perspective,” Computer Communications, vol. 33, no. 5, pp.
551–558, 2010.

[8] C. Mulliner, N. Golde, and J.-P. Seifert, “SMS of Death: From
Analyzing to Attacking Mobile Phones on a Large Scale,”
USENIX Security Symposium, 2011.

[9] R.-P. Weinmann, “All your baseband are belong to us,”
2010. [Online]. Available: http://2010.hack.lu/archive/2010/
Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.
pdf

[10] Grugq, “Base Jumping: Attacking the GSM
baseband and base station,” 2010. [On-
line]. Available: http://www.coseinc.com/en/index.php?rt=
download&act=publication&file=Base%20Jumping.pdf

[11] S. M. Harald Welte, “OsmocomBB: Running your
own GSM stack on a phone,” 2010. [On-
line]. Available: http://events.ccc.de/congress/2010/Fahrplan/
attachments/1771 osmocombb-27c3.pdf

[12] Codenomicon Ltd., “Codenomicon Defensics,” 2013.
[Online]. Available: http://www.codenomicon.com/defensics/

[13] Priority One Security, “P1 Telecom Fuzzer (PTF),” 2013.
[Online]. Available: http://www.p1sec.com/corp/products/
p1-telecom-fuzzer-ptf/

[14] 3GPP, “3GPP TS 24.301 V12.0.0: Non-Access-Stratum
(NAS) protocol for Evolved Packet System (EPS).”
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/
24301.htm

[15] E. Dahlman, S. Parkvall, and J. Sköld, 4G: LTE/LTE-
Advanced for Mobile Broadband. Academic Press, 2011.

[16] 3GPP, “3GPP TS 23.401 V11.6.0: General Packet Radio Ser-
vice (GPRS) enhancements for Evolved Universal Terrestrial
Radio Access Network (E-UTRAN) access.” [Online]. Avail-
able: http://www.3gpp.org/ftp/specs/html-INFO/23401.htm

[17] 3GPP, “3GPP TS 23.002 V12.2.0: Network architecture.”
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/
23002.htm

[18] ETSI, “Introduction – About TTCN-3,” 2013. [Online]. Avail-
able: http://www.ttcn-3.org/index.php/about/introduction

[19] ETSI, “201 873-5 Part 5: TTCN-3 Runtime
Interface (TRI), Version: 4.4.1,” 2012. [On-
line]. Available: http://www.etsi.org/deliver/etsi es/201800
201899/20187305/04.04.01 60/es 20187305v040401p.pdf

[20] ETSI, “201 873-6 Part 6: TTCN-3 Con-
trol Interface (TCI), Version: 4.4.1,” 2012. [On-
line]. Available: http://www.etsi.org/deliver/etsi es/201800
201899/20187306/04.04.01 60/es 20187306v040401p.pdf

[21] J. Z. Szabó and T. Csöndes, “TITAN, TTCN-3 test execution
environment,” Infocommunications Journal, vol. 62, no. 1, pp.
27–31, 2007.

[22] B. Miller, “Fuzz Testing of Application Reliability,”
1988. [Online]. Available: http://pages.cs.wisc.edu/∼bart/
fuzz/CS736-Projects-f1988.pdf

[23] C. Miller and Z. N. J. Peterson, “Analysis of Mutation
and Generation-Based Fuzzing,” 2007. [Online]. Available:
http://securityevaluators.com/files/papers/analysisfuzzing.pdf

[24] L. Xu, J. Wu, and C. Liu, “T3FAH: a TTCN-3 based Fuzzer
with Attack Heuristics,” in Computer Science and Information
Engineering, 2009 WRI World Congress on, vol. 7. IEEE,
2009, pp. 744–749.

[25] J. Armstrong, “Concurrency Oriented Programming in Er-
lang,” Invited talk, FFG, 2003.

[26] Ericsson AB, “Erlang, OTP Design Principles User’s Guide,
Overview,” 2013. [Online]. Available: http://www.erlang.org/
doc/design principles/des princ.html

[27] S. Eldh and D. Sundmark, “Robustness testing of mobile
telecommunication systems: A case study on industrial prac-
tice and challenges,” in Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference
on. IEEE, 2012, pp. 895–900.

[28] I. Schieferdecker, J. Großmann, and M. Schneider, “Model-
Based Security Testing,” in MBT, ser. EPTCS, A. K. Petrenko
and H. Schlingloff, Eds., vol. 80, 2012, pp. 1–12.

[29] Michael Eddington, Deja vu Security, “Peach Fuzzer,” 2013.
[Online]. Available: http://peachfuzzer.com/

[30] DIAMONDS Consortium, “Development and In-
dustrial Application of Multi-Domain Secu-
rity Testing Technologies,” 2013. [Online].
Available: http://www.itea2-diamonds.org/ docs/caseStudies/
Case Study Experience Sheet Ericsson.pdf

[31] OUSPG, “Radamsa.” [Online]. Available: https://code.google.
com/p/ouspg/wiki/Radamsa

[32] Codenomicon Ltd., “Codenomicon Defensics for 3G/4G
LTE,” 2013. [Online]. Available: http://www.codenomicon.
com/defensics/3g-4g-lte/

[33] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,”
in Advances in Computer Science-ASIAN 2004. Higher-Level
Decision Making. Springer, 2005, pp. 320–329.

http://2010.hack.lu/archive/2010/Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.pdf
http://2010.hack.lu/archive/2010/Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.pdf
http://2010.hack.lu/archive/2010/Weinmann-All-Your-Baseband-Are-Belong-To-Us-slides.pdf
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Base%20Jumping.pdf
http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Base%20Jumping.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1771_osmocombb-27c3.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1771_osmocombb-27c3.pdf
http://www.codenomicon.com/defensics/
http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/
http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/
http://www.3gpp.org/ftp/Specs/html-info/24301.htm
http://www.3gpp.org/ftp/Specs/html-info/24301.htm
http://www.3gpp.org/ftp/specs/html-INFO/23401.htm
http://www.3gpp.org/ftp/Specs/html-info/23002.htm
http://www.3gpp.org/ftp/Specs/html-info/23002.htm
http://www.ttcn-3.org/index.php/about/introduction
http://www.etsi.org/deliver/etsi_es/201800_201899/20187305/04.04.01_60/es_20187305v040401p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187305/04.04.01_60/es_20187305v040401p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187306/04.04.01_60/es_20187306v040401p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187306/04.04.01_60/es_20187306v040401p.pdf
http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
http://securityevaluators.com/files/papers/analysisfuzzing.pdf
http://www.erlang.org/doc/design_principles/des_princ.html
http://www.erlang.org/doc/design_principles/des_princ.html
http://peachfuzzer.com/
http://www.itea2-diamonds.org/_docs/caseStudies/Case_Study_Experience_Sheet_Ericsson.pdf
http://www.itea2-diamonds.org/_docs/caseStudies/Case_Study_Experience_Sheet_Ericsson.pdf
https://code.google.com/p/ouspg/wiki/Radamsa
https://code.google.com/p/ouspg/wiki/Radamsa
http://www.codenomicon.com/defensics/3g-4g-lte/
http://www.codenomicon.com/defensics/3g-4g-lte/

	Introduction
	Background
	The Evolved Packet System
	Conformance Testing in EPS
	Fuzzing

	Design
	T-Fuzz: An Extension of the TITAN Environment

	Implementation
	Model Extractor
	The Fuzzing Engine
	TTCN-3 API

	Evaluation
	NAS Overview
	Evaluation Setup
	NAS Protocol Fuzzing
	Observations on Generalizability and Usability

	Related Work
	Conclusions and Future work
	References

