
Towards Network Containment
in Malware Analysis Systems

Mariano Graziano
Institut Eurecom

graziano@eurecom.fr

Corrado Leita
Symantec Research Labs

corrado_leita
@symantec.com

Davide Balzarotti
Institut Eurecom

balzarotti@eurecom.fr

ABSTRACT
This paper focuses on the containment and control of the
network interaction generated by malware samples in dy-
namic analysis environments. A currently unsolved problem
consists in the existing dependency between the execution
of a malware sample and a number of external hosts (e.g.
C&C servers). This dependency affects the repeatability of
the analysis, since the state of these external hosts influences
the malware execution but it is outside the control of the
sandbox. This problem is also important from a contain-
ment point of view, because the network traffic generated
by a malware sample is potentially of malicious nature and,
therefore, it should not be allowed to reach external targets.

The approach proposed in this paper addresses the re-
peatability and the containment of malware execution by ex-
ploring the use of protocol learning techniques for the emu-
lation of the external network environment required by mal-
ware samples. We show that protocol learning techniques,
if properly used and configured, can be successfully used to
handle the network interaction required by malware. We
present our solution, Mozzie, and show its ability to au-
tonomously learn the network interaction associated to re-
cent malware samples without requiring a-priori knowledge
of the protocol characteristics. Therefore, our system can be
used for the contained and repeatable analysis of unknown
samples that rely on custom protocols for their communica-
tion with external hosts.

Keywords
Malware containment, protocol learning, network traffic re-
play

1. INTRODUCTION
Dynamic analysis is a useful instrument for the charac-

terization of the behavior of malware samples. The most
popular approach to perform dynamic analysis consists in
the deployment of sandboxes, i.e., instrumented environ-
ments in which a malware sample is run, and in which de-

tailed information on the actions performed by the sample is
logged. A variety of different approaches has been explored
for the collection of host-based information in sandboxed en-
vironments. These range from the API hooking approaches
adopted by CWSandbox [4] and the Cuckoo sandbox [6], as
well as more elegant and less intrusive techniques such as
the ones used by TTAnalyze and Anubis [8, 3]. The output
of the sandbox analysis has proven to be of extremely useful
to malware analysts, both to study the execution of a sin-
gle sample and to identify behavioral commonalities among
different samples [9].

However, the result of the execution of a malware sample
in a sandbox is highly dependent on the sample interaction
with other Internet hosts. This was clearly described by
Rossow et al. in [24], where the authors analyzed the inter-
action between malware and Internet hosts during extended
execution in a sandboxed environment. The study under-
lined the critical dependance on remote hosts for the down-
load of additional malware components and for the C&C
coordination.

The network traffic generated by a malware sample also
raises obvious concerns with respect to the containment of
the malicious activity. In fact, it is important to ensure
that the correct execution of the sample does not cause any
damage to other external hosts, for instance in the context of
self-propagation attempts. However, these concerns go be-
yond the containment issue and relate directly to the quality
of the analysis itself. For instance, Leita et al. [17] compared
the output of the clustering algorithm presented in [9] with
other information sources, such as static malware clustering
techniques and honeypot data. This empirical study clearly
showed how polymorphic variants of the same malware sam-
ple could be erroneously associated to different groups de-
pending on the state of their C&C server at the moment in
which the samples were executed.

In this paper we address two problems. The first is the
poor repeatability of malware analysis experiments. Mal-
ware analysts often execute samples inside a sandbox, in
order to observe and collect their malicious behavior. How-
ever, the exhibited behavior may depend on external fac-
tors, such as the commands received by a C&C server or
the content of a given URL. For example, consider a clas-
sic scenario common to many security companies. Collected
samples are automatically analyzed by a malware analysis
system, and their behavior (e.g., filesystem operations, pro-
cess creations, and modification to the Windows registry)
is stored in a database. When a program requires a closer
look, an analyst can run it again in a separate, better in-

strumented environment, for example by using a debugger
or by collecting all the system calls. Unfortunately, it is
often the case that these “secondary inspections” are per-
formed several days, or even weeks after the samples were
initially collected, with the risk of studying dead samples
for which the required infrastructure is not available any-
more. In fact, the remote machines contacted by malware
are volatile by nature, often hosted on other compromised
computers, or taken down by providers and law enforcement
when the malicious activity is detected. Therefore, the mal-
ware infrastructure required to properly run the sample is
normally available for only a limited amount of time.

The second problem we address in this paper is related
to malware containment, i.e., to the ability of properly ex-
ecute a given sample in an isolated environment, where it
cannot cause any harm to the rest of the world. In gen-
eral, full containment of a new, previously unknown, sam-
ple is impossible. However, we can identify two scenarios
in which such result could be achieved: the execution of a
polymorphic variation of an already analyzed malware, and
the re-execution of a previously studied sample. In both
cases, the sample (or a behaviorally equivalent variation of
it) has already been analyzed by the system and, therefore,
the problem of full containment can be reduced to the pre-
vious problem of repeatable execution. The idea is that if
we can “mimic” the behavior of the network to match the
one observed in a previous execution, we can obtain at the
same time a repeatable experiment and a containment of the
malware execution.

To mitigate these issues, in this paper we want to study to
which extent it is possible to enrich the information collected
during malware execution to make the experiments repeat-
able and achieve full network containment. In particular,
we experiment with a protocol-agnostic technique [20] previ-
ously adopted to model the attack traffic in high-interaction
honeypots [18, 16]. The idea consists in building a finite
state machine (FSM) of the network activity generated by
each malware sample. The extracted FSM can be stored
alongside the other collected information, and can then be
used to properly “simulate” all the required endpoints when-
ever the sample needs to be analyzed again in the future.

It is important to note that in this paper we only address
network repeatability: Our goal is to ensure that the mal-
ware finds all the remote components it needs to properly
execute. On the contrary, we do not address full process
repeatability, i.e., the problem of forcing two executions of
a malicious executable to behave exactly the same from an
operating system point of view. Balzarotti et al. [7] studied
the problem of full repeatability in the context of the detec-
tion of split personalities in malware. Their prototype works
at the system-call level and has several technical limitations,
making it hard to deploy on current malware sandboxes.

To summarize, the paper makes the following contribu-
tions:

• We discuss how protocol learning techniques can be
used to model the traffic generated during the execu-
tion of malware samples. In particular, we describe the
limitations of protocol-agnostic approaches and show
that, if properly setup and configured, they can be used
to successfully replay real malware conversations.

• We describe the implementation of Mozzie, a network
containment system that can be easily applied to all

Approach Containment Quality

Full Internet access × ∼
Filter/redirect specific
ports

∼ ∼

Common service emulation
√

∼
Full isolation

√
×

Table 1: Network access strategies in dynamic anal-
ysis

the existing sandbox environments. According to our
experiments, an average of 14 network traces are re-
quired by Mozzie to model the traffic and achieve full
containment for real malware samples.

The rest of this paper is structured as follows. In Sec-
tion 2 we introduce the problem of network repeatability
and containment and we discuss related work on the topic.
In Section 3 we briefly describe the core ideas underneath
the protocol learning algorithms adopted in this paper. In
Section 4 we present our approach, the architecture of our
system, and the details of our prototype implementatoin of
Mozzie. We then present and discuss the results of our ex-
periments in Section 5, and and the limitations of our ap-
proach in Section 6. Finally we conclude the paper in Sec-
tion 7.

2. MALWARE ANALYSIS AND CONTAIN-
MENT

Several different strategies have been proposed in the state
of the art to address the problem of network containmnent
and the quality of the dynamic analysis. In particular, the
concept of quality refers to both the need to allow connec-
tivity to external hosts (to expose the malware interesting
behavior) and to the need to make the analysis process re-
peatable. Table 1 summarizes the previous work in four
different categories.

Full Internet access. The most straightforward approach
consists in providing the sandbox with full Internet
access. A similar approach is however unacceptable
from a containment standpoint: the malware sample
is left free to propagate to victims, or to participate
to other types of malicious activities (DoS, spam, ...).
The quality of the analysis is also only partially accept-
able: the sample is left free to interact with external
hosts upon execution, but its behavior becomes de-
pendent on the state of external hosts, leading to the
problems underlined in [17].

Filter/redirect specific ports. The containment problem
associated to Full Internet access is rarely discussed
in Internet-connected sandboxes such as Anubis [3],
CWSandbox [4] and others. From informal discussions
with the maintainers, it appears to be common prac-
tice for the public deployment of these sandboxes to
employ simple filtering or redirection rules, in which
TCP ports commonly associated to malicious scans
(e.g. port 139 and port 445) are either blocked or
redirected towards honeypots. This partially solves
the containment problem: SMB vulnerabilities are a
very common propagation vector for self-propagating

malware, that can be easily prevented with such mea-
sures. However, this approach is not able to deal with
other types of activity whose nature cannot be easily
discerned from the TCP destination port. A similar at-
tempt to perform containment through redirection was
implemented also in the context of honeyfarms such
as Potemkin [28] and GQ [12]. In such deployments,
the authors had investigated the idea of reflecting out-
bound traffic generated by infected virtual instances
of the honeyfarm towards other instances of the same
honeyfarm. A similar approach proved to be valuable
for the analysis of malware propagation strategies, but
was not effective at dealing with other types of traf-
fic such as C&C communication. In fact, redirecting a
C&C connection attempt towards a generic honeyfarm
virtual machine is not likely to generate meaningful re-
sults. Kreibich et al. [15] have recently improved GQ
making it a real and versatile malware farm. They
have addressed the containment problem with precise
policies but their approach has not dealt with the re-
peatability issue.

Common service emulation. Sandboxes such as Norman
Sandbox prevent the executed malware from connect-
ing to the Internet, and provide instead generic service
implementations for common protocols such as HTTP,
FTP, SMTP, DNS and IRC. A similar approach was re-
visited and enhanced by Ionue et al. in [14], a two-pass
malware analysis technique in which the malware sam-
ple is allowed to interact with a “miniature network”
generated by an Internet emulator able to provide a
variety of dummy services to the executed malware
sample. All these approaches are however limited, and
rely on a-priori knowledge of the communication proto-
cols employed by the malware sample. Malware often
uses variations of standard protocols, or completely
ad-hoc communication protocols that cannot be han-
dled through dummy services. Yoshioka et al. [30] have
tried to tackle this problem by incrementally refining
the containment rules according to the dynamic anal-
ysis results. While such an approach provided an ele-
gant solution to the containment problem, it did not
address the quality of the analysis and it did not at-
tempt to remove dependencies between the malware
behavior and the state of the external Internet hosts
involved in the analysis.

Full isolation. Completely preventing the malware sample
from interacting with Internent hosts ensures a per-
fect containment of its malicious activity. However,
the complete inability to interact with C&C servers
and repositories of additional components is likely to
severely bias the outcomes of the dynamic analysis pro-
cess.

Table 1 underlines a partial trade-off between the contain-
ment problem and that of ensuring the quality and repeata-
bility of the analysis. On the one hand, running the malware
sample in full emulation addresses all the containment con-
cerns but, by barring the malware sample from communicat-
ing with the external hosts it depends on, it strongly biases
the results of the dynamic analysis (i.e., the sample may
only go as far as trying to connect to the hosts but with-
out exposing any real malicious behavior). On the other

hand, providing the sandbox with full Internet connectivity
increases the analysis quality but it does not solve the re-
peatability problem, and it also raises important ethical and
legal concerns.

This paper aims at addressing this problem by exploring
the use of protocol learning techniques to automatically cre-
ate network interaction models for the hosts the malware
depends on upon execution (even in presence of custom and
undocumented protocols), and using such models to provide
the sandbox with an isolated, yet rich network environment.

3. PROTOCOL INFERENCE
A common problem when looking at the network inter-

action generated by a malware sample is associated to the
interpretation of application-level protocols. Malware sam-
ples often propagate by exploiting vulnerabilities in poorly
documented protocols (such as SMB), and rely on custom
protocols for their coordination with the C&C servers [26,
25, 27]. The execution of the sample in isolation requires us
to trick the malware sample in interacting with replicas of
the real Internet hosts the malware interacts with (victims,
C&C servers, ...), but without being able to assume a-priori
knowledge of the application-level protocol implemented in
such services.

This challenge is addressed in this paper by resorting to
protocol learning techniques. Techniques such as Script-
Gen [20, 19], RolePlayer [13], Discoverer [11] and Netzob [5]
aim at partially reconstructing the protocol message syntax
and, in some cases, the protocol Finite State Automata [19,
5] from network interactions. The inference is performed by
looking at network traces generated by clients and servers
while minimizing the number of assumptions on the proto-
col characteristics. Differently from other approaches such
as [10, 22, 21, 29], that factor into the protocol analysis also
host-based information obtained through execution moni-
toring or memory tainting, the above methods focus on the
extraction of the protocol format solely from network traces
and are therefore particularly suitable to our task, where
we are unable to control the remote endpoints contacted by
malware.

While any of the previouly mentioned tools would be suit-
able for this task, in this paper we focus on ScriptGen [20, 19]
because of its limited amount of assumptions on the protocol
characteristics and its support to the inference not only of
single protocol messages, but also of their structure within
the protocol flow. ScriptGen is an algorithm that gener-
ates an approximation of a protocol language by means of a
“server-side” Finite State Machine whose scope corresponds
to a specific TCP connection or UDP flow: the FSM root
corresponds to the establishment of the connection, while
any of the FSM leaves corresponds to the point in which the
connection is successfully closed. In the FSM representation
each transition is labelled with a regular expression match-
ing a possible client request, while each state is labelled with
the server answer to be sent back to the client when reaching
that specific state.

ScriptGen performs this task through two subsequent pro-
cesses, as illustrated in Figure 1:

1. Semantic clustering. Initially introduced in [19],
the semantic clustering algorithm aims at grouping
together protocol messages likely to be semantically
similar. Any new conversation to be added to an ex-

Conversa)on*head* Conversa)on*tail*

Unknown**
request*

MAIL FROM: <da ve@gmail .com> !
MAIL FROM: <steve@y ahoo.com> !
MAIL FROM: <yahoo@ msn .com> !

fixed*region* muta)ng**
region*

seman)c*clustering*

region*analysis*

Figure 1: Simplified diagram of the ScriptGen operation

isting protocol model will consist of two parts: an ini-
tial part (head) composed of messages already mod-
eled in the current version of the FSM, and a final
part (tail) composed of messages that do not match
the current model. A 0-length head represents a con-
versation whose first message already differs from the
current protocol model, while a 0-length tail models
a conversation that already fully matches the exist-
ing protocol knowledge. Semantic clustering aims at
grouping together messages sharing the same head (by
matching the head messages against the current FSM
model) and likely to be sharing the same tail (by clus-
tering conversations sharing the same head according
to the length of the tail messages).

2. Region analysis. Semantic clustering leads to the
identification of protocol messages that are very likely
to be associated to a specific semantic context. The
process that generalizes the specific protocol messages
into a set of regular expressions able to correctly recog-
nize future messages sharing the same semantic value
is called region analysis and was introduced in [20].
Through the analysis of multiple versions of a seman-
tically similar message, the region analysis algorithm
aims at identifying regions with similar characteristics.
Through the subsequent application of global align-
ment algorithms (Needleman-Wunsch [23]), ScriptGen
refines the clustering of the messages separating those
exposing major structural differences (macrocluster-
ing) while correctly dealing with variable length fields.
The final result consists in a global alignment of each
identified group. The statistical analysis of each byte
of the alignment outcome is used to identify proto-
col regions, i.e., portions of protocol message likely to
have a specific semantic value. The distribution of
the content of each region over the different samples
gives us information on their semantic nature: regions
with random content throughout the set of samples
are likely to be nonce values, regions with fixed con-

tent are likely to be separators or semantically reach
protocol fields, and regions mutating through a limited
amount of possible values are likely to be associated to
more subtle protocol semantics, whose preservation is
decided through a microclustering threshold. The final
outcome of this semantic evaluation is a set of regular
expressions, each of which will lead to the generation
of a new subtree in the FSM object.

Most of the ScriptGen operation is driven by thresholds,
that regulate for instance the different clustering steps. A
simple approach for tuning the thresholds to the best config-
uration was introduced in [20] and consisted in brute-forcing
all the possible combinations of thresholds to identify the
global optimum. While this is an computationally expensive
process, the computed thresholds proved to be sufficiently
robust to handle protocols with “similar” characteristics in
terms of amount of variability in their structure.

It is important to understand that ScriptGen avoids any
assumption on the nature of the protocol separators or on
the possible representation of semantically relevant fields,
and performs a partial reconstruction of the protocol seman-
tics by analyzing at the same time multiple samples of the
same type of protocol exchange (conversation). The higher
the number of conversations available to the algorithm, the
more precise the protocol inference process will be. Intu-
itively, if we consider two message instances of a protocol
containing a random cookie value, their cookie value could
be aabd and awed. ScriptGen would have no way to consider
such protocol section as a mutating region of 4 characters,
since (by accident) both values start with ‘a’ and end with
‘d’. These accidental false inferences can be filtered out only
by considering a sufficiently large number of conversation
samples.

ScriptGen has been successfully used in the past to auto-
matically generate models of network behavior for the em-
ulation of vulnerable services in exploits. This emulation
was included in a distributed honeypot [16, 18] deployment,
in order to emulate 0-day exploits and collect information

on the propagation vector of self-propagating malware. This
paper investigates the use of ScriptGen in a different context,
that of malware analysis, and tries to leverage its properties
to automatically generate network models for the remote
endpoints involved in the execution of a malware sample in
a sandboxed environment.

4. SYSTEM OVERVIEW
Our approach to achieve repeatability and containment

in malware analysis experiments can be summarized in four
steps:

1. Traffic Collection - In this phase the system collects
a number of network traces associated with the exe-
cution of a certain malware sample. This can be done
by running the malware in a sandbox, or by extracting
existing traces generated by past analyses.

2. Endpoint Analysis - This is a cleaning and normal-
ization process applied to all the collected traces. Its
main goal consists in removing anomalous traces that
could affect the results and the associated conclusions.
Each trace is then normalized to remove endpoint ran-
domization, such as the one introduced by IP fluxing
techniques.

3. Traffic Modeling - This phase aims at the automated
generation of models starting from the collected traffic
samples and at their subsequent storage in a compact
representation. The modeling can be performed in two
different ways: in an online fashion (from now on called
incremental learning), in which the model is initially
very simple and it is subsequently refined at every new
execution of the sample, or in an offline fashion, more
suitable for the analysis of previously collected network
dumps. The actual logic used to model the traffic is
implemented in a separate component of our system.
As we already explained in Section 3, the current im-
plementation is based on the ScriptGen approach, but
other unsupervised algorithms can be easily plugged
into our system to achieve the same result.

4. Traffic Containment - In this last phase, we use
the model extracted in the previous step to mimic the
network environment required by the malware sample.
The containment system is implemented as a trans-
parent proxy. When the model is sufficiently precise,
the proxy is able to mimic the external world, effec-
tively achieving “full containment”. When the model
is incomplete, the proxy redirects the requests it can-
not handle to the real targets. In this case, the system
also collects the forwarded traffic to improve the train-
ing set, effectively closing the loop back to Step 1.

In the rest of the section, we introduce each phase in de-
tails, and we describe how each of them have been imple-
mented in our system.

4.1 Traffic Collection
Collecting the malware traffic is as simple as running a

network sniffer while the sample is running in the sand-
box. For instance, several online systems (e.g., Anubis [3],
and CWSandbox [4]) allow users to download the pcap file
recorded during the analysis phase.

As explained in Section 5, we used two different datasets
for our experiments, one extracted from old Anubis reports,
and one collected live by running the samples inside a Cuckoo’s
sandbox. Finally, in order to be consistent with the data
collected in the past, also in our experiments we limited
the malware analysis and the network collection time to five
minutes per sample.

4.2 Endpoint Analysis
The second phase of our process consists in cleaning and

normalizing the collected traffic to remove spurious traces
and improve the effectiveness of the protocol learning phase
when facing network-level randomization.

The cleaning phase mainly consists in grouping together
traces that exhibit a comparable network behavior. The in-
tuition underneath this cleaning process is that the traces
may have been generated at different points in time, and
may capture different“states”of the remote endpoints. Most
of the traces are likely to have been generated when the mal-
ware was indeed fully active, but we may still have to deal
with a minority of traces that may have been generated, for
example, when the C&C server was temporarily not reach-
able. It should be noted that the semantic clustering pro-
cess explained in Section 3 allows ScriptGen to correctly
deal with these cases. However, in this paper we are inter-
ested in evaluating the efficiency of our method at correctly
leveraging useful traces to generate usable models, and thus
we choose to clean the dataset from these spurious traces.
In practice, this is achieved by clustering together traces
according to each involved destination endpoint, where end-
point is defined as an (IP, port) tuple. We consider the clus-
ter with the highest amount of traces having similar high-
level network behavior as the one representing the state of
interest for our experiments.

While the cleaning process succeeds in most of the cases,
in some of our experiments we noted that the clustering
algorithm failed to identify a predominant network behavior
for a specific sample. Closer investigation revealed that this
failure is associated to the introduction of randomization
in the network behavior of the sample. The most common
example of this phenomenon is associated to malware using
IP fluxing techniques. IP flux, also known as fast-flux, is a
DNS-based technology used by malware writers to improve
the resilience of their (often botnet) architecture. The idea
is to rapidly swap the IP address associated to a particular
domain name, to avoid having a single-point of failure and
reducing the effect of IP blacklisting.

When a malware uses IP fluxing, most of the collected net-
work traces will involve different endpoints. In other words,
instead of having ten samples of conversations associated
to a single endpoint, we will have ten different targets as-
sociated to one conversatione each. As we will see in the
discussion of the Traffic Modeling component, this situa-
tion plays against our choice of creating protocol models on
a per-endpoint basis: each endpoint will not be associated
to a sufficient amount of samples to generate a meaningful
model. However, this phenomenon is easy to detect because
our endpoint clustering component would return an unusual
result composed of many clusters containing a single trace
each. In this case we automatically “normalize” the end-
points by identifying the DNS request that returned differ-
ent IP addresses and by forcing it to return always the same
value. In these cases, our system automatically replaces each

Figure 2: Creation of a Traffic Model

fluxed IP with the normalized IP in all the subsequent net-
work flows. By performing this simple step we can obtain an
uniform learning dataset, ready to be analyzed by the next
stage of our system.

4.3 Traffic Modeling
Starting from the set of network traces obtained from the

previous phase, the Traffic Modeling phase leverages the pro-
tocol learning algorithm (in our case, ScriptGen) to gener-
ate models for the network interaction with each endpoint
involved in the malware execution. The models are main-
tained in the form of a dictionary, where each encoutered
destination IP address and destination port is associated to
its corresponding model (see Figure 2). This dictionary is
later used to mimic the whole network environment, with
the goal of containing all the requests generated by the mal-
ware.

4.4 Containment Phase
The goal of the containment phase is to “trick” the mal-

ware sample into believing that it is connected to the Inter-
net, while in fact all the traffic is artificially generated by
leveraging the information contained in the current protocol
model.

The main component of the containment phase is the FSM
player. The player is responsible for analyzing the incoming
packets looking for new connections attempts, and check-
ing if the contacted endpoint is present in the dictionary of
FSMs. If so, the corresponding model is loaded and associ-
ated to the connection. Then, for each message, the player
analyzes the current state and computes the next state. This
is done by finding the best transition that matches the in-
coming content and by extracting the corresponding list of
possible answers.

Figure 3 shows the operation of our system over two pos-
sible operation modes: full and partial containment.

In the full containment case, the protocol model is ac-
curate enough to allow our system to correctly generate a
response for every network interaction generated by the mal-
ware upon execution.

In the partial containment case, instead, the protocol model
is inaccurate or incomplete: some of the network interac-
tions created by the malware are not modelled in the asso-
ciated FSM. Whenever a message cannot be matched with
the current FSM, the system is unable to further emulate
the associated remote endpoint. In such case, the system
enters in replay mode for that specific endpoint, and replays

all the traffic generated so far towards the real Internet host
associated to it. By replaying all the traffic generated so
far, we are able to handle possible authentication steps that
the malware may have already performed in its interaction
with the FSM. The answer to the unknown request is even-
tually delivered by the real endpoint, and all the subsequent
interaction is then relayed by the system (proxy mode).

This process needs to be carried out without affecting
the malware execution. For instance, consider the exam-
ple in Figure 4 in which the malware sends three messages
{Msg1,Msg2,Msg3} over a TCP connection. The player is
able to follow the first two messages on the FSM, thus re-
turning the corresponding responses {Resp1, Resp2}. How-
ever, the third message is different from what it was ex-
pecting, and it does not know what to answer. Therefore,
Mozzie opens a new TCP connection to the original target,
and quickly replay the messages 1 and 2 in chronological or-
der to bring the new connection to the same state of the one
it is simulating with the malware. Then it sends the Msg3
and switches to proxy mode. In proxy mode, the system
acts like a transparent proxy, forwarding each packet back
and forth from the malware to the endpoint on the Internet.
When the connection is terminated, the data is used to in-
crementally improve the model, so that it could handle the
same conversation in the future.

By executing a malware sample multiple times, we are
therefore able to gradually and automatically move from
partial containment (in case in which part of the generated
interacton is still unknown) to full containment, where all
the malware network behavior is fully modeled and emulated
by the system. However, it should be noted that the full
learning of the network behavior of the malware is different
from the full knowledge of the protocol. It is possible to
follow a malware without contacting the external server in
all its executions within the sandbox, but this does not mean
all the commands of the protocols have been discovered.

4.5 System Implementation
In the previous sections we explained the architecture of

the system. Now we can describe how Mozzie, our prototype
implementation, is realized.

Mozzie is based on iptables. In particular it uses the
NFQUEUE userspace packet handler with the Python nfqueue-
bindings [2]. This allows our user-space component to ac-
cept, drop, or modify each incoming packet. To decode the
packets that are in the queue, we used the Scapy [1] library.

Our current prototype handles three different IP proto-

Figure 3: Replaying Architecture

cols: ICMP, UDP and TCP. ScriptGen cannot model the
ICMP protocol, because it lacks the concept of port that
is required to build the Finite State Machine. Therefore,
Mozzie intercepts all the ICMP ECHO request messages and
always answers with an ECHO reply. Beside that, the sys-
tem mainly works as a userspace NAT, changing the desti-
nation IP and port for each TCP or UDP packet, to redirect
them to the emulator responsible for that endpoint. The em-
ulator runs an implementation of the ScriptGen algorithm
and one instance of the FSM Player for each endpoint con-
tacted by the malware. For example, if the malware opens
a new TCP connection toward (IP, Port), Mozzie checks if
a FSM exists for that endpoint. If it finds one, it starts
one FSM Player process to handle the connection and start
redirecting the packets toward it. If not, it let the packets
pass through so they can reach the real destination on the
Internet.

Finally, the endpoint analysis is implemented as a series of
Python scripts. One is responsible to process the available
network traces and to cluster them together according to the
contacted endpoints. The normalization is implemented by
a separate tool that dissects the packets, changes the answer
of the DNS requests, and replaces the corresponding IPs in
the rest of the network traffic.

5. EVALUATION
In this section we describe the experiments we performed

to evaluate Mozzie’s ability to model real malware traffic.
All the experiments were performed on an Ubuntu 10.10
machine running ScriptGen, Mozzie, and iptables v1.4.4. To
perform the live experiments, we ran all samples in a Cuckoo
Sandbox [6] running a Windows XP SP3 virtual machine.

5.1 System Setup
The goal of our evaluation is to automatically find the

minimum number of network traces required to generate a
finite state machine that can be used to fully contain the
network traffic generated by a given malware sample.

To reach this goal, the first step of our experiments con-
sisted in testing ScriptGen and properly tuning its param-
eters for the protocols we wanted to model. In fact, in our
system we use ScriptGen to model the network behavior of

MALWARE PROXY TARGET

msg1

resp1

msg2

resp2

msg3

msg1

resp1

msg2

resp2

msg3

resp3

resp3

msg4

msg4

resp4

resp4

Figure 4: Sequence of messages during traffic replay

a generic program, but this is not the scenario for which the
learning protocol tool was designed in the first place. As we
already explained in Section 3, the best thresholds of Script-
Gen’s learning algorithm were experimentally set to the val-
ues that were observed to work well (in average) for network
worms and remote exploits. However, those thresholds need
to be re-computed for different protocols, in particular when
moving from a text-based (e.g., HTTP) to a binary format
(e.g., RPC).

In the first part of our experiments, we performed a num-
ber of tests to learn the optimal parameters for a number
of protocols that are commonly used by several malware
samples, namely HTTP, IRC, DNS, and SMTP. This step
requires the algorithm to be executed several times on the
same protocol traces, each time with different parameters 1.
Once the optimal setup was reached, we reused the same val-
ues for all the malware samples that used the same protocol.
However, in one of the experiments, we discovered that the

1Please refer to [20, 19] for a description of the procedure
required to set the thresholds

malware under analysis implemented a custom binary pro-
tocol. Since we did not have the ScriptGen configuration
for that protocol, we had to re-apply the learning phase for
that particular sample traffic.

Even though this operation can take several hours, it is
important to note that if the thresholds are not set to their
optimal values our technique would still be able to model
unknown protocols, even though the system would require
an higher number of traces to reach the full containment.

5.2 Experiments
Our experiments with real malware can be divided in two

groups. In the first case, that we label “offline” learning, we
use our system to model old traces collected in the past for
polymorphic samples. Malware sandboxes normally avoid
executing the same sample multiple times, returning the
previously computed results when they recognize (usually
from the MD5) that a file was already analyzed in the past.
However, in case of polymorphic variations, it is possible
that the same malware family gets executed several times.
Based on this observation, we extracted from the Anubis [3]
database the network traffic dumps associated to five poly-
morphic samples that adopted cleartext protocols in their
communication.

Our goal was to show that, by using these traces, we can
model the network behavior of the malware, and use the
extracted FSM to replay and contain the execution of any
other polymorphic variation of the same sample.

The results of this first experiment are reported in Ta-
ble 2. The first two columns report the antivirus label and
the malware category associated to each sample. The next
column reports the success of the experiment, where a FULL

(100%) value means that full containment was achieved and
all the packets were properly replayed. In only one case,
for the Koobface malware, our system was not able to suc-
cessfully model the entire network traffic. The reason is the
fast flux approach adopted by Koobface in which both the
domain names and the IP addresses rotate. This makes it
impossible for Mozzie to correctly model the DNS protocol,
since there are not two sequences of request/response that
look the same in the dataset.

Column 4 shows whether the normalization step was ap-
plied to the traffic. As we already explained in Section 4,
clustering is required to deal with noise in the network traces,
most of the time introduced by an anomalous execution of
the malware (e.g., due to a network timeout on a web re-
quest). On top of that, certain malwares require a normal-
ization phase to properly sanitize the traces from random-
ization introduced by IP or domain flux techniques.

Finally, the last column of the table shows the number
of input traces required to successfully model the traffic.
We started the experiment by running Mozzie on a single
network trace. We then loaded the extracted model in a
virtual machine and used it to try to contain five consecu-
tive executions of another polymorphic variation of the same
malware. The reason behind the five runs is that we wanted
to be sure that ScriptGen did not return the right message
by chance, and that the experiment can be reliably repeated
multiple times. If the extracted model was not sufficient to
properly “replay” the network conversation, we added one
more network trace to the learning pool and repeated the
experiment. The number in the fifth column represents the
number of network traces required to create a Finite State

Machine that achieved full containment (or its best approxi-
mation in the case of Koobface) of the malware sample. The
results vary between 9 and 23 traces. These numbers may
seem large, but it is important to remember that Script-
Gen is completely protocol agnostic and that each experi-
ment was performed starting with an empty protocol model.
For example, we discovered that 6 traces is the minimum
amount required to properly model a DNS request/response
exchange (due to the fact that the response has to contain
the same request ID field used in the request).

Table 3 reports the result of our second group of tests. In
this second experiment, we focused on incremental learning,
i.e., on analyzing current malware in a sandbox environ-
ment each time refining our model of the network traffic.
We started by executing the samples 3 times, without at-
tempting to replay the traffic. Then we created our first
model, and started executing the sample in the sandbox
with Mozzie acting as a proxy. Whenever the system was
not able to contain the traffic, the requests were forwarded
to the real servers, and the FSM updated with the new infor-
mation. The third column reports the number of time each
malware has to be analyzed before the model can achieve
full containment for five consequent runs.

Overall, we tested 2 IRC botnets, 1 HTTP botnet, 4 drop-
pers, 1 ransomware, 1 backdoor and 1 keylogger. For these
samples, we needed a number of network traces ranging from
4 to 25. The first number seems in contradiction with the
lower bound we have previously found. The truth is that
this particular sample does not use DNS and thus contact
the C&C servers directly by using an hardcoded IP address.
For all the other malware that generate DNS traffic the num-
ber is definitively higher than the lower bound. On average
we need 14 traces to be able to build a good traffic model.

Certainly, large malware analysis systems forced to ana-
lyze tens or hundreds of thousand of samples per day cannot
afford to repeat the tests 14 times. However, such a high
number of new samples collected every day is largely due to
the common use of polymorphism and packing techniques
by malware writers. Therefore, once a FSM is available for
one of the samples in the family, any further variation that
preserves the behavior of the program does not require any
additional training. Our system could help analyzing poly-
morphic samples for which the required network infrastruc-
ture is not available any more, and that nowadays cannot
be tested at all. This, as we already described in the intro-
duction, can improve the result of clustering, and can help
malware analysts to properly label those samples that do not
work anymore at the time of the analysis. Even better, our
system could be used to replicate a specific network scenario
that is targeted by a malware infection. Recent years have
seen the rise of sophisticated attacks targeting specific envi-
ronments, such as Stuxnet and Duqu [26, 25]. In these cases,
the network traces obtained from the targeted network in-
frastructure (e.g. traces of interaction in a DCS system in
a power generation control system) could be used to build
a model of the targeted network environment, allowing the
analysis of the malware to be successfully performed inside
traditional, and safe, sandboxes.

6. LIMITATIONS
The current prototype of our containment system has sev-

eral limitations. Some are specific to the way the system has

Sample Category Containment Endpoint Normalization Traces
W32/Virut IRC Botnet FULL NO 15
PHP/Pbot.AN IRC Botnet FULL NO 12
W32/Koobface.EXT HTTP Botnet 72% YES 9
W32/Agent.VCRE Dropper FULL NO 23
W32/Agent.XIMX Dropper FULL YES 10

Table 2: Results of the Offline learning Experiments

Sample Category Runs Containment Endpoint Normalization
W32/Banload.BFHV Dropper 23 FULL NO
W32/Downloader Dropper 25 FULL NO
W32/Troj Generic.AUULE Ransomware 4 FULL NO
W32/Obfuscated.X!genr Backdoor 6 FULL NO
SCKeylog.ANMB Keylogger 14 FULL YES

Table 3: Results of the Incremental learning Experiments

been implemented and some are related to the self-imposed
constraints associated to the chosen methodology.

More specifically, we can group the current limitations
into three main families:

• The method adopted in this paper is completely protocol-
agnostic. While its nature allows us to guarantee our
ability to handle custom, undocumented protocols that
can be adopted by future malware, it also imposes un-
necessary constraints when dealing with simpler and
well known protocols such as DNS. We have already
seen that our system requires six samples of network
interaction to learn how to properly replay a DNS re-
quest. The same result could be easily achieved by
analyzing only one request, parsing the DNS fields,
and extracting the required information in an ad-hoc
fashion. However, the goal of this paper was to show
how far it is possible to go with a completely generic
system. Therefore, our results can be considered as a
upper bound, as the system could be easily improved
by adding ad-hoc handlers for common and well known
protocol interactions.

• Our current prototype is implemented as a network
proxy. Even though this approach has some advan-
tages (e.g., it can be easily plugged into any existing
sandbox), it makes the analysis of encrypted proto-
cols impossible. However, this is mostly a technical
limitation. The same approach could be implemented
at the API level, where most of the network traffic
is still available in clear text. Most of the malware
sandbox environments already hook into the Windows
API to extract information about the malware behav-
ior. By adding our system to the hooked network and
cryptographic APIs, we could intercept the communi-
cation on the host side and achieve full containment
also for some encrypted protocols (e.g., the ones based
on SSL).

• Our approach is very inefficient when a malware sam-
ple exhibits different behaviors independently of the
input it receives from the network. For example, if a
sample randomly selects the action to perform out of
many possible options, Mozzie would require a lot of
traces to properly model all possible behaviors. As an

extreme case, domain flux techniques (or large pools
of domain names like the one described in Section 5)
cannot be modeled by our system without requiring
protocol-aware heuristics, such as handling the DNS
interaction by using a custom DNS service.

7. CONCLUSIONS
This paper addresses the problem of network containment

and repeatability in the context of dynamic analysis tools
such as sandboxes. As pointed out by previous work [17, 24]
malware execution behavior has often a strong dependency
with the state and the behavior of external hosts This raises
repeatability issues: a malware analysis cannot be repro-
duced if the state of these external hosts has changed. At
the same time, containment concerns are always associated
to the communication of malware with external hosts, con-
cerns that have only partially been addressed by the current
state of the art.

We have discussed how protocol learning, used in the pre-
vious works in the context of service emulation for server-
side honeypots, can be successfully used in this new con-
text to provide an emulated, and contained network envi-
ronment that allows correct execution of malware samples
even in presence of undocumented, ad-hoc communication
protocols.

We have described the implementation of Mozzie, a net-
work containment system that can be easily adapted to all
the existing sandbox environments. According to our ex-
periments, an average of 14 network traces are required
by Mozzie to model the traffic by approaching the prob-
lem of sandbox network emulation in a completely generic,
protocol-agnostic way that can be applied to real-world mal-
ware samples.

The benefits of the large-scale application of similar tech-
niques are significant: old malware samples whose C&C in-
frastructure has been shut down can be analyzed in the same
network conditions they were supposed to find when active;
in-depth analyses of samples of interest can be carried out
in complete isolation, e.g. without direct connectivity to the
underlying C&C server and thus without disclosing details
on the analysis operation to the bot herders; malware tar-
geting specific network environments (e.g. industrial control
systems) can be analyzed in a replica of the network layout
they expect to find.

Acknowledgements
This work has been partially supported by the European
Commission Seventh Framework Programme (FP7/2007-2013)
under grant agreement 257007 and through the FP7-SEC-
285477-CRISALIS project.

8. REFERENCES
[1] Scapy. http://www.secdev.org/projects/scapy/,

2003.

[2] nfqueue-bindings. ://www.wzdftpd.net/redmine/
projects/nfqueue-bindings/wiki/, 2008.

[3] Anubis. http://anubis.iseclab.org, 2009.

[4] Cwsandbox. http://www.mwanalysis.org, 2009.

[5] Netzob. http://www.netzob.org, 2009.

[6] Cuckoo Sandbox. http://www.cuckoosandbox.org,
2010.

[7] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel,
E. Kirda, and G. Vigna. Efficient Detection of Split
Personalities in Malware. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2010.

[8] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
Tool for Analyzing Malware. In 15th European
Institute for Computer Antivirus Research (EICAR
2006) Annual Conference, April 2006.

[9] U. Bayer, P. Milani Comparetti, C. Kruegel, and
E. Kirda. Scalable, Behavior-Based Malware
Clustering. In 16th Symp. on Network and Distributed
System Security (NDSS), 2009.

[10] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
automatic extraction of protocol message format using
dynamic binary analysis. In 14th ACM conference on
Computer and Communications Security, pages
317–329. ACM New York, NY, USA, 2007.

[11] W. Cui, J. Kannan, and H. J. Wang. Discoverer:
Automatic protocol reverse engineering from network
traces. In 16th USENIX Security Symposium, 2007.

[12] W. Cui, V. Paxson, and N. Weaver. GQ: Realizing a
system to catch worms in a quarter million places.
Technical report, ICSI Tech Report TR-06-004,
September 2006.

[13] W. Cui, V. Paxson, N. Weaver, and R. H. Katz.
Protocol-independent adaptive replay of application
dialog. In The 13th Annual Network and Distributed
System Security Symposium (NDSS), February 2006.

[14] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and
K. Nakao. Malware behavior analysis in isolated
miniature network for revealing malware‘s network
activity. In Proceedings of IEEE International
Conference on Communications, ICC 2008, Beijing,
China, 19-23 May 2008, pages 1715–1721. IEEE, 2008.

[15] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and
V. Paxson. Gq: Practical containment for measuring
modern malware systems. In Proceedings of the ACM
Internet Measurement Conference (IMC), Berlin,
Germany, November 2011.

[16] C. Leita. SGNET: automated protocol learning for the
observation of malicious threats. PhD thesis,
University of Nice-Sophia Antipolis, December 2008.

[17] C. Leita, U. Bayer, and E. Kirda. Exploiting diverse
observation perspectives to get insights on the

malware landscape. In DSN 2010, 40th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, June 2010.

[18] C. Leita and M. Dacier. SGNET: a worldwide
deployable framework to support the analysis of
malware threat models. In 7th European Dependable
Computing Conference (EDCC 2008), May 2008.

[19] C. Leita, M. Dacier, and F. Massicotte. Automatic
handling of protocol dependencies and reaction to
0-day attacks with ScriptGen based honeypots. In 9th
International Symposium on Recent Advances in
Intrusion Detection (RAID), September 2006.

[20] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an
automated script generation tool for honeyd. In 21st
Annual Computer Security Applications Conference,
December 2005.

[21] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic
Protocol Format Reverse Engineering through
Context-Aware Monitored Execution. In 15th Annual
Network and Distributed System Security Symposium,
San Diego, CA, February 2008.

[22] Z. Lin and X. Zhang. Deriving input syntactic
structure from execution. In 16th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, Atlanta, GA, USA, November 2008.

[23] S. Needleman and C. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. J Mol Biol.
48(3):443-53, 1970.

[24] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro,
M. van Steen, F. C. Freiling, and N. Pohlmann.
Sandnet: Network Traffic Analysis of Malicious
Software. In 1st Workshop on Building Analysis
Datasets and Gathering Experience Returns for
Security (BADGERS), April 2011.

[25] Symantec. The Stuxnet worm.
http://go.symantec.com/stuxnet.

[26] Symantec. W32.Duqu, the precursor to the next
Stuxnet. http://go.symantec.com/duqu.

[27] Symantec. W32.Koobface.
http://www.symantec.com/security_response/

writeup.jsp?docid=2008-080315-0217-99.

[28] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage.
Scalability, fidelity, and containment in the Potemkin
virtual honeyfarm. ACM SIGOPS Operating Systems
Review, 39(5):148–162, 2005.

[29] G. Wondracek, P. M. Comparetti, C. Kruegel, and
E. Kirda. Automatic network protocol analysis. In
15th Annual Network and Distributed System Security
Symposium (NDSS’08), 2008.

[30] K. Yoshioka, T. Kasama, and T. Matsumoto. Sandbox
analysis with controlled internet connection for
observing temporal changes of malware behavior. In
2009 Joint Workshop on Information Security (JWIS
2009), 2009.

http://www.secdev.org/projects/scapy/
://www.wzdftpd.net/redmine/projects/nfqueue-bindings/wiki/
://www.wzdftpd.net/redmine/projects/nfqueue-bindings/wiki/
http://anubis.iseclab.org
http://www.mwanalysis.org
http://www.netzob.org
http://www.cuckoosandbox.org
http://go.symantec.com/stuxnet
http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99
http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99

