
IRILD: an Information Retrieval based method
for Information Leak Detection

Eleni Gessiou 1, Quang Hieu Vu 2, Sotiris Ioannidis 1

1 Institute of Computer Science, FORTH, Greece
2 Etisalat BT Innovation Center, Khalifa University, UAE

Abstract—The traditional approach for detecting infor-
mation leaks is to generate fingerprints of sensitive data,
by partitioning and hashing it, and then comparing these
fingerprints against outgoing documents. Unfortunately, this
approach incurs a high computation cost as every part of
document needs to be checked. As a result, it is not applicable
to systems with a large number of documents that need to
be protected. Additionally, the approach is prone to false
positives if the fingerprints are common phrases. In this
paper, we propose an improvement for this approach to offer
a much faster processing time with less false positives. The
core idea of our solution is to eliminate common phrases
and non-sensitive phrases from the fingerprinting process.
Non-sensitive phrases are identified by looking at available
public documents of the organization that we want to protect
from information leaks and common phrases are identified
with the help of a search engine. In this way, our solution
both accelerates leak detection and increases the accuracy
of the result. Experiments were conducted on real-world
data to prove the efficiency and effectiveness of the proposed
solution.

Keywords-privacy, information leaks, fingerprinting

I. INTRODUCTION

Information leaks are a critical problem of computer
systems. The leak of confidential data, be it acciden-
tal or intentional, may cause huge losses to the data
owner. These losses may not be only financial, such as
termination of contracts or compensation for customers,
but also reputation loss whose cost cannot be estimated
easily. In particular, according to a study [1] in 2006
conducted by the Ponemon Institute at 31 organizations
that lost confidential information, the average cost of a
case of information leak was approximately 4.8 million
USD. Typical examples of information leak include the
case of MediaDefender in 2007 when over 6,000 internal
emails were leaked to the outside world 1 and the case
of ACS:Law firm in September of 2010 when personal
details of 5,300 people became public 2.

There are two primary solutions for information leak
detection. The first one is to use specific expressions, key-
words or phrases to identify confidential information. For

1http://www.usatoday.com/tech/news/computersecurity/hacking/
2007-09-18-mediadefender-leak N.htm?csp=34

2http://www.bbc.co.uk/news/technology-11418962

example, a leak of a Mastercard number can be detected
by searching expressions of 16 digits starting with two
digits in the range from 51 to 55. While this solution is
simple and easily applied, its main disadvantage is that it
cannot be employed if confidential information cannot be
well-defined by expressions, keywords, or phrases. In this
case, the alternative solution is to generate fingerprints
of confidential information, which can appear in any
structure, and check the generated fingerprints against
fingerprints obtained from outgoing traffic.

To protect a confidential document from information
leaks, a simple approach is to generate a fingerprint of
the whole document and check this fingerprint against fin-
gerprints of all outgoing documents. Since this approach
cannot handle the case where the leaked information is
only in part of the document, the popular approach is to
employ cyclical hashing to generate a series of fingerprints
for the document and use this series of fingerprints, which
in turn are checked against the series of fingerprints
of outgoing documents. Nevertheless, there are still two
weaknesses in this popular approach. First, the popular
approach incurs a high cost in both fingerprint generation
and leak detection since every part of a document needs to
be checked. Consequently, due to the high leak detection
cost, this approach is not applicable to systems where a
large number of documents must be protected. Second,
it is prone to false positives if a lot of common phrases
are used in confidential documents, and expectedly this
will create a lot of hits when checked against outgoing
documents. The reason is because these phrases often exist
in all documents.

To address the problems of the popular approach,
we propose a solution based on information retrieval to
identify only phrases containing sensitive information for
fingerprinting. The basic idea of our solution is to check
the popularity of phrases before fingerprinting in two
ways. We first look at available public documents of the
company or organization that we want to protect from
information leak. If the phrase exists in these documents,
it does not convey any secret information, and hence it
is not a sensitive phrase. We then submit the phrase to
a search engine such as Google and measure the number
of returned results. Intuitively, the higher the number of

returned results is, the more popular the phrase is. What
this means is that if a phrase has a large number of re-
turned results, it is a common phrase. By removing public
and common phrases in documents from the fingerprint
generation process, our solution reduces both the cost of
fingerprint generation and leak detection, offering higher
processing speed. Furthermore, our solution can improve
the accuracy of detection by reducing false positives
caused by public and common phrases. In summary, our
work makes the following major contributions:

• We propose a novel solution to improve the perfor-
mance of the traditional approach for information
leak detection in terms of processing speed and
accuracy. Our core idea is to identify non-sensitive
phrases as well as common phrases, and eliminating
them from the fingerprinting process of confidential
documents.

• To evaluate the popularity of a long combined phrase
which has not returned results from search engines,
we propose a novel technique to split the phrase into
sub-phrases and identify the popularity of the phrase
based on the popularity of its divided phrases.

• We conducted an extensive experimental evaluation
of the effectiveness and efficiency of our proposed
method.

The rest of the paper is organized as follows. In
Sections II and III, we discuss prior work and introduce
background knowledge. In Sections IV and V, we present
and evaluate our solution. Finally, we conclude in Sec-
tion VI.

II. RELATED WORK

In the past few years, a number of white papers have
been written discussing different aspects of information
leak prevention in general, and how to detect information
leak in particular. These include [2], which introduces
basic solutions to detect and prevent information leaks,
[3], which presents testing and evaluation standards for
information leak prevention products and [1], which stud-
ies the cost incurred by information leaks in practice.

In general, as discussed in [2], there are two main
approaches to information leak detection. One is based on
defining sensitive expressions, keywords or phrases. This
way, information leaks are detected if the outgoing traffic
contains the specified expressions, keywords or phrases.
The other is based on fingerprints of information. For ex-
ample, a popular approach for information leak detection
in documents is to divide them into multiple parts and
generate fingerprints of these parts. These fingerprints are
checked against fingerprints of similar divided parts of
outgoing traffic for leak detection.

A special type of information leak is information leak
from applications. To deal with this type of leak, [4]

proposes Privacy Oracle, a solution that tests an applica-
tion with different inputs and maps input perturbations to
output perturbations to detect potential information leaks.
Alternatively, [5] introduces the use of shadow execution
that runs two copies of an application at the same time
in which, the one containing personal information is kept
away from accessing the network while the other with
non-confidential data is used to communicate over the
network. The response from the network is then shared for
both copies. These solutions are, in fact, complementary
to these basic solutions as well as the solution presented
in this paper.

In addition to information leak detection, there exists a
class of techniques that address access control to prevent
information leak. Access control is required in cases
where the information is available to someone but should
be restricted from others. With respect to this aspect,
[6], [7], [8], [9] introduce solutions to avoid information
leaks caused by accidentally sending emails to unintended
recipients. The basic idea of these solutions is to perform
data analysis to measure the similarity between the current
outgoing email and previous outgoing emails of the same
recipient. If there is a big difference between them, the
current outgoing email may contain information leak. On
the other hand, [10] presents CLAMP, an architecture that
protects confidential information in web servers by en-
forcing strong access control on user data while isolating
code running on behalf of different users. These access
control techniques are orthogonal to the basic solutions as
well as the solution presented in this paper.

The use of search engines to detect information leaks
has been introduced in [11]. However, in our work,
the purpose of using search engines is simply to detect
inferences between keywords. The purpose of finding
inferences between keywords is to discover sensitive docu-
ments that do not contain specified sensitive keywords but
contain closely associated keywords. It is because with
high probability, these sensitive documents also contain
confidential data. With respect to inference detection, prior
to this work, web based inference has been significantly
studied in a number of papers such as [12], [13], [14].

III. BACKGROUND

A popular approach to detect information leaking from
a confidential document is to employ cyclical hashing to
split the document into multiple parts and generate fin-
gerprints for these parts. In particular, given a document,
the method repeatedly creates fingerprints for strings of
C characters from the start to the end of the document,
offset by O characters each time (C and O are predefined
parameters). An example is shown in Figure 1, where C
and O are set to 30 and 10 respectively. In this example,
30 characters from the 1st to the 30th positions are used
to generate fingerprint1, 30 characters from the 10th to

fingerprint1 fingerprint2 fingerprint3

The following is a summary of our meeting. We have a plan to

purchase 2000 monitors for our new building in the next month.

For this purpose, we would like to organize a live auction with

the participation of at least 4 bidders. The estimated cost of the

purchase is from 2 to 4 million...

fingerprint4

fingerprint1 fingerprint2 fingerprint3

The following is a summary of our meeting. We have discussed

about the business strategy of our company in the next year...

fingerprint4

A confidential document

An outgoing document

Figure 1. An example of using cyclical hashing

the 40th positions are used to generate fingerprint2, 30
characters from the 20th to the 50th positions are used to
generate fingerprint3, and so on.

Given an outgoing traffic channel (e.g., an outgoing
email or a file uploading to an outside server), cyclical
hashing is also employed to generate a set of fingerprints
for the traffic. These fingerprints are then checked against
those previously extracted from confidential documents to
detect information leaks. In the example in Figure 1, since
the first three fingerprints of the outgoing document match
the first three fingerprints of the confidential document, it
is considered to have partial information leak.

A problem with this approach, illustrated in Figure 1,
is that it introduces false positives when common phrases
or sentences are used. In this example, even though the
common sentence “the following is a summary of our
meeting” appears in both the confidential document and
the outgoing document, since it does not convey sensitive
information, there is actually no information leakage. Fur-
thermore, this redundant check incurs a high processing
cost, and hence the approach fails to work in systems with
a large number of sensitive documents.

IV. IRILD

To avoid false positives involving common phrases as
shown in the example of Figure 1 and also reduce the un-
necessary cost of generating and checking fingerprints of
the common phrases, we propose IRILD, an information
retrieval based method that is able to identify common
phrases and eliminate them from the fingerprinting pro-
cess. In our method, we evaluate the popularity of phrases
by submitting them to an Internet search engine such as
Google3 and measure the number of returned results. The
higher the number of returned results of a phrase is, the
more common the phrase is. For example, since there are
approximately 15,300 results returned from Google when

3http://www.google.com

A confidential

document

A set of

candidate strings

and phrases

extract

candidate strings

and generate

candidate phrase

A reduced set of

candidate strings

and phrases

identify types of

phrases and

eliminate public and

common phrases

A database of

fingerprints

generate

fingerprints from

remaining

candidate strings

Figure 2. An overview of fingerprint generation

searching for the sentence “the following is a summary
of our meeting”, the sentence is considered as a common
sentence and no fingerprint should be generated for it.
Furthermore, assume that the organization, which employs
IRILD also maintains public documents (e.g., documents
in public folders of the company’s web site). IRILD will
also eliminate phrases that can be found in those public
documents from the fingerprinting process because these
phrases contain already known information.

IRILD generates fingerprints for confidential documents
in three steps. In the first step, similar to the popular ap-
proach introduced in Section III, IRILD employs cyclical
hashing on each confidential document to generate a set of
candidate strings for the fingerprinting process. Note that
by using a fixed number of characters to generate strings, a
candidate string may not be a complete phrase (e.g., as in
the example of Figure 1, the second candidate string, “ing
is a summary of our meetin” is not a complete phrase).
Thus, from this set of candidate strings, IRILD needs to
generate a set of candidate, complete phrases. Each phrase
corresponds to a candidate string and is the shortest phrase
that totally covers the string. For example, the candidate
phrase corresponding to the second candidate string in
the example of Figure 1 is “following is a summary of
our meeting”. In the second step, IRILD identifies public
phrases and common phrases and removes them from
the set of candidate phrases. Finally, candidate strings
associated with remaining sensitive candidate phrases are
used to generate fingerprints. The overview of IRILD’s
processing steps to generate fingerprints for a confidential
document is illustrated in Figure 2.

Note that while the fingerprint generation of IRILD is
different from that of the popular approach, the informa-
tion leak detection of these two approaches is still the
same, i.e., fingerprints of confidential documents in the
database are used to check against fingerprints of outgoing
documents for information leak detection. Also, note that
both cyclical hashing method and IRILD do not work for
encoded, encrypted, or compressed data. The aim of cyclic
hashing method and IRILD is to prevent information

leak in normal text information channels. We believe
that solutions to deal with concealed information (e.g.,
encoded or encrypted data) and regular expression patterns
or time aspect of the information are complementary to
IRILD.

A. Public phrase identification

The task of identifying public phrases from a set of
candidate phrases is simply a search of these phrases from
available public documents. To fulfill the task, a solution
is to employ the basic information retrieval technique to
create document indices for public documents and inverted
indices for words in public documents. Each document
index records words that appear in a public document.
On the other hand, each inverted index records positions
of a word in all documents the word appears. For example,
the structure of a document index can be {docx: word1,
word2, word3, · · ·} while the structure of an inverted
index can be {wordy: [doc1: pos11, pos12, pos13, · · ·],
[doc2: pos21, pos22, pos23, · · ·], · · ·}. To detect whether a
phrase is a public phrase, we first parse the phrase into a
list of words. After that, we search document indices to see
if there is any document that contains all words in the list.
If such a document exists, we then retrieve inverted indices
of the words to see their positions in the document. If the
words appear at adjacent positions, it forms a phrase in the
document. In this case, we conclude the checking phrase
is a public phrase since the checking phrase matches a
phrase in a public document. While this solution always
generates exact results without false positives, it incurs a
high cost in search. As a result, this technique can only
be used if the number of public documents is not very
large. An alternative solution is to also employ cyclical
hashing to generate fingerprints for public documents
and compare these fingerprints to the fingerprints of the
candidate strings to check if the candidate strings exist
in public documents. This technique is often used if the
number of public documents is large.

B. Common phrase identification

As previously discussed, to check whether a phrase is
a common phrase, we submit the phrase to Google and
measure the number of returned results. Basically, a phrase
is a common phrase if there are a lot of returned results. As
discussed before if the phrase has a lot of returned results
from the search engine, we hypothesize that there is a
high probability that it does not contain secret information.
On the other hand, if the search engine returns only
a few results for the search, the phrase is considered
as a sensitive phrase. To make it easy to evaluate the
popularity of a phrase, we propose a formula to calculate
the popularity score of the phrase from its number of
returned results by the search engine as follows:

Score(P) = log10(N(P) + 1) (1)

where P is the evaluating phrase and N(P) is the number
of results returned from searching P . A common phrase
is a phrase whose popularity score is greater than a
predefined threshold K. For example, if we set K to
4 and the search of a phrase P has 20,000 number of
results, P is considered as a common phrase because
Score(P) = log10(20, 000 + 1) > 4.

The above technique to identify common phrases usu-
ally works if candidate phrases are not long (e.g., common
phrases are single phrases). However, in cases where
candidate phrases are long (e.g., when C is set to a large
value, the candidate phrases that cover candidate strings
are also long), a problem comes. In these cases, candidate
phrases can be a combined phrase, a sentence, or even
some sentences or a paragraph. While it is easy to identify
the popularity of a single phrase by the search engine, it
is more difficult to do the same thing for a combined long
phrase or sentence. It is because with high probability, the
long phrase cannot be found by the search engine. To deal
with this problem, we suggest a simple way to parse the
combined phrase or sentence into smaller single phrases
and calculate the popularity of the combined phrase from
the popularity of the split single phrases. In particular,
let P1, P2, · · ·, Pn be n single phrases that are split
from a combined phrase P and Score(P1), Score(P2),
· · ·, Score(Pn) be their popularity scores. Score(P) is
calculated as:

Score(P) = min
i=1..n

{Score(Pi)} (2)

The rationale behind the above formula is that the score
of the combined phrase should be equal to the minimum
popularity score of its members. The intuition of the for-
mula is straightforward. A combined phrase is a common
phrase if all of its sub-phrases are common. On the other
hand, a combined phrase is a sensitive phrase if at least
one of its split phrases is a sensitive phrase.

A concern with this approach is that sensitive informa-
tion may be leaked if a determined adversary can capture
all queries submitted to the search engine and reconstruct
indexing documents from these queries. Our solution to
this concern is to submit queries from different locations
to hide the fact that all queries come from the same
source, and hence the attack should fail. In particular,
in our experiments, we distributed queries to PlanetLab
nodes [15] in different countries across continents and
only submitted the queries to the search engine from
there. Note that alternative to PlanetLab nodes, search
proxies [16], [17] can be used to anonymize the queries.
Furthermore, besides Google, we also employed other
search engines such as Yahoo!4 and Bing5 for query
submission. By employing multiple sources to send the

4http://www.yahoo.com
5http://www.bing.com

queries and multiple destinations (i.e., search engines)
to process the queries, we have created “noise” for our
method. In particular, the noise can be adjusted by increas-
ing or decreasing the number of sources and destination
according to the following formula:

N(PlanetLab Nodes) ∗N(Search Engines) (3)

where N(PlanetLab Nodes) is the number of PlanetLab
nodes and N(Search Engines) is the number of search
engines that we used in the experiments. With the use of
noise, it will require an extremely high cost to inspect all
PlanetLab nodes and search engines if an adversary wants
to reconstruct indexing documents from the submitted
queries.

C. Improvement techniques
Besides the basic solution to identify public phrase, we

suggest two improvement techniques as follows:
• We observe that if a phrase contains numbers, it

is often a sensitive phrase. It is because in most
cases numbers represent sensitive information, such
as telephone numbers, dates of birth, amounts of
money, etc. As a result, we decided to consider all
phrases containing numbers as sensitive phrases. In
this way, we save time by not querying the Google
for these phrases. In other words, prior to submitting
a phrase to Google, we check whether numbers are
contained in the phrase. If there are, the phrase is
considered as sensitive eliminating the need to per-
form a Google search. By automatically considering
phrases containing number as sensitive phrase, there
is a potential of getting false positives. However, we
note that this false positive rate causes by this case
is very small and acceptable given that our method
outperforms the traditional cyclical hashing method

• We propose that if we have two adjacent phrases
that are overlapped by at least half of the length
(this happens when O < 1

2C or in other words the
length of the offset is less than half of the length of
the candidate string), and one of these phrases is a
popular phrase with a high score, we can also skip the
Google search for the other. The reason is because
with the significant overlapping between these two
phrases, with high probability, the other phrase will
not contain sensitive information.

Note that while these two improvement techniques
help to further improve the processing speed, they may
introduce false positives in some cases. Nevertheless, this
very low false positive rate is tolerable when compared
against the total accuracy.

V. EXPERIMENTAL STUDY

To evaluate the efficiency and effectiveness of IRILD,
we implemented it in Python 2.5 and conducted experi-
ments with the Enron Email Dataset [18], where we chose

Table I
EXPERIMENTAL SETTINGS

Parameter Domain values Default value
C 15 - 30 20
O 5 - 20 10
K 3 - 6 4

50 emails from the “Inbox” of 10 employees as confiden-
tial documents (5 emails for each employee), and used 200
random emails in total from their “Sent Items” to test the
accuracy of the method. The emails used as confidential
documents contained information both about company’s
internal procedures, such as scheduling employees’ pro-
gram, payment status, meetings, etc, and personal infor-
mation such as telephone numbers, email addresses. We
considered textual information in the Enron’s website (an
instance of January 2001 [19]) as public information. For
comparison purpose, we compared IRILD to the popular
approach that employed only cyclical hashing without
the removal of public and common phrases in fingerprint
generation.

In the experiments, we set the default value of C to 20
because in our opinion the value of C should be equal
to the average length of the queries made in Google.
Note that since the average query in Google consists of
4 words6 and the average length of an English word is 5
characters7, setting C equals to 20 seems quite reasonable.
We set the default value of O to 10 (which is half
of C) because smaller values of O would create more
fingerprints and thus the number of false positives would
be increased. On the other hand, higher values of O would
lead to the decrement of phrases that would be tested for
information leaks, in other words there may be potential
false negatives. Finally, we choose 4 as the default value
of K because we believe that a phrase should be tagged as
common if its occurrences at Google are beyond 10,000,
in number. To summarize, the default and range of values
of C, O, and K used in experiments are listed in Table I.

We evaluated the performance of IRILD and the popular
approach in three aspects: (i) the cost of fingerprint
generation in terms of processing time and the number
of fingerprints, (ii) the cost of information leak detection
in terms of processing time, and (iii) the accuracy of
the results in terms of false positives and false negatives.
Note that to compute the accuracy of IRILD and cyclical
hashing, we manually looked at testing documents to
extract all possible leaked cases (i.e., information that is
copied from confidential documents).

6http://www.beussery.com/blog/index.php/2008/02/google-average-
number-of-words-per-query-have-increased/

7http://blogamundo.net/lab/wordlengths/

 15
 20
 25
 30
 35
 40
 45
 50

 15 20 25 30

#g
en

er
at

ed
 f

in
ge

rp
ri

nt
s

Values of string length C

IRILD
Cyclical Hashing

(a) on the number of fingerprints

 1.5

 2

 2.5

 3

 3.5

 4

 15 20 25 30

tim
e

(i
n

se
cs

)

Values of string length C

IRILD
Cyclical Hashing

(b) on the leak detection time

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 15 20 25 30

Fa
ls

e
Po

si
tiv

es

Values of string length C

IRILD
Cyclical Hashing

(c) on the accuracy

Figure 3. Effect of varying the string length C, keeping the offset position O = 10

 10
 20
 30
 40
 50
 60
 70
 80
 90

 5 10 15 20

#g
en

er
at

ed
 f

in
ge

rp
ri

nt
s

Values of offset position O

IRILD
Cyclical Hashing

(a) on the number of fingerprints

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20

tim
e

(i
n

se
c)

Values of offset position O

IRILD
Cyclical Hashing

(b) on the leak detection time

 0

 50

 100

 150

 200

 250

 5 10 15 20

Fa
ls

e
Po

si
tiv

es

Values of offset position O

IRILD
Cyclical Hashing

(c) on the accuracy

Figure 4. Effect of varying the offset position O, keeping the string length C = 20

 20

 25

 30

 35

 40

 45

 50

 3 4 5 6

#g
en

er
at

ed
 f

in
ge

rp
ri

nt
s

Values of threshold K

IRILD
Cyclical Hashing

(a) on the number of fingerprints

 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 3 4 5 6

tim
e

(i
n

se
cs

)

Values of threshold K

IRILD
Cyclical Hashing

(b) on the leak detection time

 10
 20
 30
 40
 50
 60
 70
 80
 90

 3 4 5 6

Fa
ls

e
Po

si
tiv

es

Values of threshold K

IRILD
Cyclical Hashing

(c) on the accuracy

Figure 5. Effect of varying the threshold K, keeping the string length C = 20 and the offset position O = 10

A. Cost of fingerprint generation

We first evaluated the cost of fingerprint generation for
confidential documents (emails in our case). As expected,
IRILD incurred a processing time around 2 to 3 times
longer than the basic approach, due to the extra time of
submitting queries to Google to determine the popularity
of candidate phrases. Even though IRILD takes time for
indexing data, it happens only once. Later, the database
of the fingerprints could be updated at intervals or when
a new sensitive document is inserted to or an existing
document is removed from the repository. Since the later
step only involves one or few documents, it does not
incur much processing cost. While this extra time can be
reduced by employing PlanetLab [15] to submit queries
concurrently, since fingerprint generation is done offline

whenever a confidential document is submitted to the
system, it does not affect the efficiency and effectiveness
of IRILD.

The average number of fingerprints generated by IRILD
and the basic approach when varying C and O are shown
in Figure 3(a) and Figure 4(a) respectively. The results
show that by removing public and common phrases from
fingerprint generation, IRLID significantly reduced the
number of generated fingerprints compared to the basic
approach. In particular, as shown in Figure 3(a), the per-
centage difference in the number of generated fingerprints
between cyclical hashing and IRILD varied from 21%
when C = 30 to 58% when C = 15. On the other hand,
as in Figure 4(a), IRILD generated 55% less fingerprints,
at best case, that O = 5. Even at the worst case, when O

= 15, IRILD manages to generate 39% less fingerprints
than cyclical hashing. It is interesting to observe that while
the number of generated fingerprints in cyclical hashing
does not depend on the value of C, in case of IRILD, the
bigger the value of C is, the more the number of generated
fingerprints is.

B. Cost of information leak detection
In this experiment, we measured the processing time

required to detect information leak from testing docu-
ments. Figure 3(b) and Figure 4(b) show the processing
time of information leak detection when varying C and O.
As expected, since the number of fingerprints in IRILD
was less than those in the basic approach, IRILD took a
smaller number of comparisons, and hence it incurred a
faster processing time. Actually, if we make a comparison
between Figure 3(a) and Figure 3(b) as well as Figure 4(a)
and Figure 4(b), the similarity between them show a
strong correlation between the number of the generated
fingerprints and the information leak detection time.

C. Accuracy
In order to check the accuracy of IRILD and cyclical

hashing, fingerprints of confidential documents in the
database are used to check against fingerprints of outgoing
documents for information leak detection. So as discussed
earlier, we evaluated the accuracy of IRILD by measuring
false positives and false negatives, in terms of fingerprints.
It is interesting to observe that we get the same number
of false negatives in both IRILD and the basic approach.
In particular, both methods have no false negatives when
O < 20 and IRILD has only one false negative when O
= 20, in contrast with cyclical hashing. That is because
both approaches employ the same technique for indexing
sensitive information and searching for information leaks.
However, in terms of false positives, the result of IRILD
is much better than that of the basic approach. As shown
in Figure 3(c) and Figure 4(c), IRILD achieved a much
better accuracy compared to the basic approach. As far
as the true positives concerned, apart from the expected
information leaks that came up, such as telephone numbers
and some meeting dates, because they contained numbers,
we also detected more information leaks. The first one
contains the minutes of a meeting and the second one is
about a contact with an outside partner.

It it important to note that in practice we would always
set O to small values (e.g., O < 1

2C) in order to avoid
false negatives (i.e., all leaks should be detected). In this
case, IRILD significantly outperforms the basic approach
since according to this experiment and the previous two
experiments in Sections V-A and V-B, the smaller the
value of O is, the bigger the improvement IRILD has
compared to the basic approach in terms of fingerprint
generation cost, leak detection cost, and accuracy (or false
positive cost).

D. Effect of varying the threshold K

So far we had K fixed at 4. In this experiment,
we evaluated the effect of varying K from 3 to 6 on
IRILD (note that the change of K does not affect the
popular approach). The experimental results displayed in
Figure 5 show that with the increasing of K, the number
of generated fingerprints as well as the processing cost
increased. It is because when K increased, we put a
higher boundary for phrases to be considered common
phrases, and hence less common phrases were identified
and removed. The consequence of having less identified
common phrases was an increase in the false positives
of the method (happened when K = 6). Note that in the
worst case if we set K to infinity so that all sentences
are considered sensitive in IRILD, both IRILD and the
basic approach will get the same number of false positives.
Nevertheless, as discussed before, a reasonable value of
K should not be high (e.g., 4 or at most 5).

VI. CONCLUSION

In this paper, we introduced IRILD, an information
retrieval based solution to improve the performance of
the traditional cyclical hashing approach for information
leak detection. The core idea of IRILD is to identify and
remove public phrases (found in public documents) and
common phrases (identified by checking the number of
results returned by Google when querying the phrases)
from the fingerprinting process, since these types of
phrases do not contain sensitive information. Furthermore,
we conducted extensive experimental evaluation of our
solution, and proved that it significantly outperformed the
cyclical hashing approach. Specifically, IRILD achieved a
much faster leak detection speed. As a result, IRILD can
be utilized by systems with a large numbers of sensitive
documents. Also, IRILD achieved much higher accuracy
when compared with traditional cyclical hashing due to the
removal of false positives related to public and common
phrases.

The research leading to these results has received
funding by the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no
257007 and the Marie Curie Actions - Reintegration
Grants project PASS.

REFERENCES

[1] T. P. Institute, 2006 Annual Study: Cost of a Data Breach,
2006, white Paper.

[2] S. Institute, Understanding and Selecting a Data Loss
Prevention Solution, 2009, white Paper.

[3] P. T. Labs, Information Leak Prevention Accuracy and
Security Tests, 2006, white Paper.

[4] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis,
and T. Kohno, “Privacy oracle: a system for finding applica-
tion leaks with black box differential testing,” in CCS ’08:
Proceedings of the 15th ACM conference on Computer and
communications security. New York, NY, USA: ACM,
2008, pp. 279–288.

[5] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P.
Sistla, “Preventing information leaks through shadow exe-
cutions,” in ACSAC ’08: Proceedings of the 2008 Annual
Computer Security Applications Conference. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 322–331.

[6] N. Boufaden, W. Elazmeh, Y. Ma, S. Matwin, N. El-Kadri,
and N. Japkowicz, “Peep – an information extraction base
approach for privacy protection in email,” in Proceedings
of CEAS, 2005.

[7] V. R. Carvalho and W. W. Cohen, “Preventing information
leaks in email,” in SDM, 2007.

[8] C. Kalyan and K. Chandrasekaran, “Information leak detec-
tion in financial e-mails using mail pattern analysis under
partial information,” in Proceedings of WSEAS, 2007.

[9] P. Zilberman, A. Shabtai, and L. Rokach, “Analyzing group
communication for preventing data leakage via email,” in
Proceedings of COLLSEC, 2010.

[10] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen,
and A. Perrig, “Clamp: Practical prevention of large-scale
data leaks,” in SP ’09: Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 154–169.

[11] R. Chow, P. Golle, and J. Staddon, “Detecting privacy leaks
using corpus-based association rules,” in KDD, 2008, pp.
893–901.

[12] B. D. Davison, D. G. Deschenes, and D. B. Lewanda,
“Finding relevant website queries,” in In Proc. of WWW,
2003.

[13] P. Nakov and M. Hearst, “Using the web as an implicit
training set: application to structural ambiguity resolution,”
in HLT ’05: Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural
Language Processing. Morristown, NJ, USA: Association
for Computational Linguistics, 2005, pp. 835–842.

[14] J. Staddon, P. Golle, and B. Zimny, “Web-based inference
detection,” in SS’07: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium. Berkeley,
CA, USA: USENIX Association, 2007, pp. 1–16.

[15] Planetlab: An open platform for developing, deploying, and
accessing planetary-scale services, www.planet-lab.org.

[16] Blackbox Search, http://www.blackboxsearch.com/.

[17] Scroogle, http://www.scroogle.org/.

[18] Enron Email Dataset, http://www.cs.cmu.edu/∼enron/.

[19] Internet Archive, http://www.archive.org/.

