
Off The Wall: Lightweight Distributed Filtering to Mitigate
Distributed Denial of Service Attacks

Zhang Fu, Marina Papatriantafilou
Chalmers University of Technology, 42196 Gothenburg Sweden. Email: {zhafu,ptrianta}@chalmers.se

Abstract—Distributed Denial of Service (DDoS) attacks are hard to
deal with, due to the fact that it is difficult to distinguish legitimate
traffic from malicious traffic, especially since the latter is from
distributed sources. To accurately filter malicious traffic one needs
(strong but costly) packet authentication primitives which increase the
design complexity and typically affect throughput. It is a challenge
to keep a balance between throughput and security/protection of the
network core and end resources. In this paper, we propose SIEVE,
a lightweight distributed filtering protocol/method. Depending on the
attacker’s ability, SIEVE can provide a standalone filter for moderate
adversary models and a complementary filter which can enhance
the performance of strong and more complex methods for stronger
adversary models.

I. OVERVIEW

Mitigating DDoS attacks is difficult, since it is always a
two-fold project: On one hand, the illegitimate traffic should
be filtered as much as possible, while on the other hand, the
network performance for the legitimate traffic should be degraded
as little as possible. To have good filtering effectiveness, it is
always necessary that the legitimate traffic is distinguishable from
the malicious traffic. Usually, this can be achieved by letting
legitimate clients share some secret knowledge with the filter,
which cannot be revealed to the attacker. Thus legitimate packets
can have valid properties (e.g. message authentication codes,
MACs) that enable them to pass through the filter. Based on this
filtering paradigm, three challenges follow as consequences:

a) Connection setup challenge: Legitimate clients need to
request the filtering knowledge before sending packets to the
server. The attacker can flood massive such requests to prevent
legitimate requests from reaching the server. Granting the local
knowledge of the server to the filtering entities (e.g. routers) may
not be applicable due to privacy issues. So there is a need for a
way for legitimate requests to have chances to be forwarded to
the server when competing with massive spurious requests.

b) Efficient authentication challenge: It is quite common
that unforgeable authentication tokens (e.g. MACs) are used for
packets filtering [18], [22], [17], which requires the filtering
entities to share the same secrets (e.g. keys) with the legitimate
clients and execute some hash function to verify each packet. Such
authentication procedure definitely undermines the throughput of
filtering entities (e.g. routers). The attacker can simply flood
packets with arbitrary MACs in order to keep the checking node
busy with verifying packets, which may form a Denial of Service
attack. Furthermore, using authentication tokens may require new
field(s) in the packet header. This increases the design complexity
and typically harms the bandwidth utilization.

c) Deployment challenge: Due to the distributed nature
of DDoS attacks, routers’ support to filter massive malicious
packets seems inevitable. Routers can filter packets based on

The research leading to these results has received funding from the
Swedish Civil Contingencies Agency (MSB) and from European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement
No.257007.

the paths through which packets are forwarded [16], [13], they
can also filter packets according to message authentication
codes (MAC) [22]. However, since there is a need for global
deployment and changes to current routing infrastructure, such
solutions are not straightforward to apply.

Motives and our approach: By studying the communication
architecture of the modern botnets [9], it is observed that the
attacker usually needs some time to configure the bots with new
attack commands. We reflected on this and on earlier research
where it was shown that smart updating of secret knowledge
enables to both allow legitimate entities to use resources and leave
non-legitimate ones “in the dark”. The latter has been suggested
and worked out in detail for application-level mitigation [3]. In-
spired from this reflection, we suggest SIEVE: a new lightweight
method that enables DDoS mitigation at the network level through
overlay networks. Our goal is to provide a simple and efficient,
yet effective enough mechanism to mitigate DDoS attacks. In
particular, we address the above challenges in the following way:

a) Protecting connection establishment: In SIEVE, legiti-
mate clients need to acquire from the server some secret knowl-
edge to pass through the filter. We provide a simple solution to
address the connection setup challenge. Roughly speaking, in our
solution, network hosts are partitioned into domains. Each domain
has its quota for sending connection requests to the server. Even
if an attacker can compromise many sending sources in some
domains, the connection requests from the uninfected domains
will not be affected. In each infected domain, the solution provides
guaranteed probability for a legitimate request to be served.

b) Lightweight authenticator: SIEVE uses IP addresses as
the authenticators. According to its address, a legitimate client
will send its packets to different filtering points in different time
periods. Since it takes time for the attacker to find out the filtering
rules and to configure an attack using e.g. a botnet, if the filtering
rules can change with appropriate timing, the attacker can be kept
in the “dark” and cannot launch flooding attacks effectively. Using
IP addresses as the authenticators needs neither extra fields in the
packet header nor extra processing time for each incoming packet.
This implies saving of many orders of magnitude of CPU cycles
compared with MAC authentication.

c) Overlay-based deployment: SIEVE uses overlays to de-
ploy the distributed filter and expand the receiving and filtering
capacity of the protected victim. Overlay nodes act as the access
points of the potential victim. Any packet that goes to the
victim should be checked and forwarded by the overlay nodes.
Note that several solutions were proposed [11], [2], [18], [19],
[5] to use overlay networks for mitigating DDoS attacks, since
overlay networks are easy to deploy and do not require global
changes of current routing protocols. However, SIEVE differs
from the previous work in the way of addressing the connection
establishment and authentication/throughput challenges.

The proposed solution also achieves the following:



d) Adaptive cost: We provide analysis of the filtering
effectiveness depending on the forwarding bandwidth of each
overlay node, sending rate of the legitimate packets, flooding
rate from the attacker. According to our analysis, the potential
mitigation service provider can offer different cost options of
different filtering qualities to its customers.

II. PROBLEM AND SYSTEM MODEL

The network is comprised of: servers: network entities who
provide some services (e.g. remote storage services) to their
clients; clients, end-hosts who have valid identities to get service
from the servers; overlay nodes, network hosts or routers who
forward packets from clients to the servers; compromised hosts,
network hosts that are controlled by the adversary. There are
N overlay nodes, we use ni, i ∈ {1, 2, · · · , N} to denote
overlay node i. The word “node” refers to an overlay node, unless
specified otherwise. The deviation of the clock values of any pair
of different network entities is bounded by a small range, ε time
units. The method can be generalized as in [8] to work in the
presence of clock drifts.

The problem addressed here involves the adversary (attacker)
whose goal is to decrease the proportion of the legitimate traffic
received by a server as much as possible by flooding massive
packets to the server. From the protection view, the proposed
solution tries to use overlay nodes to filter malicious traffic
before it reaches the server. Each such overlay node has limited
bandwidth to forward traffic to the server. Following the link
congestion model [4], we assume that the proportion of legitimate
traffic that can pass through node ni is on average c

a+b
, where

c the forwarding bandwidth of node ni, a is the total legitimate
traffic rate to ni and c is the rate of the malicious traffic that can
pass the filter of ni. We also assume that the incoming bandwidth
of each overlay node is well provisioned and hard to be attacked
(e.g. the overlay nodes are deployed in the core network.)

The adversary controls a number of compromised hosts. The
aggregated attacking rate is bounded by M. The adversary
cannot predict any future filter rules based on the information
of historical filter rules. The adversary may find out the addresses
that each node accepts in the current time period by randomly
eavesdropping some legitimate traffic. However, it takes some
time (usually several seconds are needed) for it to send new
attack command and aggregate enough attacking traffic to flood
the overlay nodes. This is known as the ramp-up behavior of
multi-source flooding attacks [10]. The ramp-up behavior may
be caused by the hierarchical communication pattern between the
adversary and the compromised hosts [14]. Therefore, we assume
that the adversary needs time to adjust commands and aggregate
traffic which matches the newly updated filtering rules; the rate
of such aggregated attacking traffic is negligible before the filter
rules are updated. Based on the above, we consider the adversary
is able to launch blind attacks, following the literature [3], [8], i.e.
the adversary can flood packets to arbitrary overlay nodes using
arbitrary source addresses in the packets.

For the targeted services that SIEVE aims to protect, we as-
sume that there exist application-level credentials (e.g. passwords
or public-private keys) that the clients can use to authenticate
themselves to the server, such as the ones used in remote storage
services. We assume that legitimate clients are honest and cannot
be compromised. However, note that SIEVE can be combined
with strong and more complex authentication methods to deal
with compromised clients (see Section IV).

III. SIEVE OVERVIEW

For simplicity of the presentation, we describe SIEVE from
the perspective of one server. The method can protect multiple
servers. In SIEVE, there are three basic components: redirectors,
overlay nodes, and the protected server. All the packets to the
server should pass through the distributed filter constructed by
N overlay nodes. To support the updating of filter rules, time is
divided into periods. We use τi, i ∈ N to denote time period i.
Set S is the set of addresses of legitimate clients. In period τi, the
set of addresses from which overlay node nj accepts packets is
denoted as si,j , j ∈ {1, 2, · · · , N}. We say in τi, node nj serves
address set si,j and we have ∀i :

⋃
1≤j≤N

si,j = S. Which node

serves which address set is based on a pseudo-random function
possessed by the server and kept secret to the adversary. A client
needs to set a connection with the server to get the information
of the correct overlay node that accepts its address in each time
period.

Initially a client has no idea about the addresses of the overlay
nodes. To get such information it first sends its connection request
to one redirector. In the Internet infrastructure, the redirectors
can be DNS servers. The addresses of the overlay nodes should
be registered in the redirectors. The redirector will forward the
request to one of the overlay nodes e.g. the one nearest to the
client. Then it is the task of the overlay nodes to forward the
request to the server.

Upon receiving a connection request from one overlay node,
the server verifies the application-related credential included in the
request. This procedure depends on the service being protected,
and is up to the server. The server admits the connection request by
issuing the information of overlay nodes to which the client should
send packets in each time period. Initially, the server only grants
the client overlay nodes information for several time periods, and
after that the server informs the client about the updates through
overlay nodes until the session of the client terminates.

To avoid the possibility for the adversary to bypass the overlay
nodes and flood malicious packets directly to the server, SIEVE
adopts a method also employed in OverDose [17] to isolate the
server by placing it on a private network that the adversary cannot
reach through IP routing infrastructure. The ISP of the server can
configure tunnels between overlay nodes and the server by e.g.
Multiprotocol Label Switching (MPLS).

IV. DESIGN DETAILS

Bootstrapping connection setup: In SIEVE, the network is
divided into N subnets, where N is the number of overlay
nodes. Each subnet is called a domain. Each overlay node always
forwards requests from a specific domain. In particular, in each
time period, overlay node ni only forwards wi requests from
domain di, and

∑
i

wi = W , where W is the number of requests

that the server can handle in a time period. We say the quota
for domain di is wi. The allocation of the quota for a domain
depends on the proportion of the legitimate requests from that
domain when there is no attack. To establish a connection to the
server, a client should first send a request (the original request) to
the overlay node which is responsible for its domain. When the
overlay node receives the original request it sends back a response
to the client with a cookie, which is a key-hashed value using a
period key and a nonce which are generated by the overlay node
itself. The cookie can be expressed in the following way:

Cookie = HK [srcIP ||nonce||τi]



Client Overlay nodes

Original request

Response+Cookie

Request+Cookie

Response is
scheduled
randomly

Server

Request

Sequence of overlay nodesSequence of ovelay nodes

Data packets Data packets

Fig. 1. Cookies and random scheduling are used to protect the connection
setup phase. The client sends data packets through overlay nodes according
to the sequence of node-addresses granted by the server.

where K denotes the period key, srcIP is the client’s address; τi
denotes period, and || denotes concatenation; K and the nonce will
be changed periodically. When a client gets the response, it sends
back the request with the cookie. When the overlay node receives
the request with a valid cookie, it checks whether the quota of
the current period is exhausted, and whether the same request has
already been forwarded in the current period (one request received
by the server is enough for the client to setup a connection). If
everything is OK, the request is forwarded to the server and the
quota is decreased; otherwise the request is dropped. To bound
the overhead of keeping state of requests per period by overlay
nodes, we propose the use of Bloom Filters [15].

Using cookies can prevent the adversary from consuming the
quota by sending requests with spoofed addresses, since it will
not receive the corresponding cookies. However, the adversary
may compromise many hosts in a domain and let them keep
sending requests with their real addresses, so that at the beginning
of every period they can acquire a big proportion (could be all) of
the quota, leaving only a little chance for the legitimate requests
to get forwarded by the overlay node. To address the problem,
we propose random scheduling. Instead of sending the response
immediately after receiving an original request, the overlay node
first randomly chooses a time point within the current period. If
the time point is smaller than or equal to the current time, the
response is sent immediately. Otherwise, the response is inserted
into a sending queue and will be sent at the corresponding time
point. The time sequence diagram of the random scheduling is
shown in Figure 1. Algorithm 1 shows the pseudo-code for an
overlay node to protect the connection setup.

Lightweight traffic filtering: In SIEVE, the client-address set
S (could be e.g. the whole IP space or a subnet) is partitioned
into N subsets (which change regularly and are not the same as
the domains mentioned above) and each overlay node serves one
subset in each time period. To make the partition hard to guess,
in each time period, the server randomly chooses log2N bits in
the binary expression of the addresses, and S is partitioned by the
patterns of those log2N bits. For example, suppose S contains all
the addresses of IPv4, and N = 4, then the server will randomly
choose log2N = 2 bits from the 32 bits. By choosing the 1st

and 6th bits, the whole address set is partitioned into 4 subsets
which have the following patterns:

0****0**.********.********.********
0****1**.********.********.********
1****0**.********.********.********
1****1**.********.********.********

An overlay node filters packets according to the bit-pattern of
the address subset it serves. Note that S does not necessarily

Algorithm 1: Algorithm for an overlay node to forward
requests from a specific domain.
// When time period pi starts, i ∈ N
Pnumber++; quota← w;
clear the Bloom filter;
ts ← beginning time of pi; te ← ending time of pi;
nonce← new random nonce; K ← new key;
// When receive an original request req
if req is not from the domain then drop req;
else

if sendingQueue.hasResponse(req) then drop req;
else

response← req||HK(srcIP ||nonce||Pnumber);
random choose t ∈ (ts, te);
if t <= currenttime then send response;
else sendingQueue.insert(response,t);

end
end
// When receive a request req with cookie
if quota > 0 & cookie is valid & req is not in the Bloom filter then

add req into Bloom filter;
forward req; quota−−;

end
// Sending responses in the sendingQueue
while true do

res← sendingQueue.nextResponse;
if res.sendingtime <= currenttime then send res;

end

contain the whole IP address space, it can e.g. belong to a subnet,
depending on the service offered by the server.

The server generates the partition bits used for each period
according to some pseudo-random function. In each time period,
the server informs the overlay nodes which bits are used in the
address partition, and which node serves which subset of S. Note
that such information can also be given for a bunch of periods,
for cost amortization. Pseudo-code for the server to generate this
information is shown in Algorithm 2.

Algorithm 2: Algorithm for the server to generate partition
bits for Φ periods.
// Generate partition bits for Φ periods
Pnumber ← current period number;
Listbits ; Listnodes ; /* Each item in Listbits is a
set of bits used for one period. Each item in
Listnodes is an address of an overlay node. */
for i← 0 to Φ− 1 do

Listbits[i] = Frand(seed, Pnumber) ; /* Frand is the
pseudo random function for generating log2N
indexes indicating address bits. */
Pnumber++;

end
Randomly reorder the items in Listnodes;
subset = 0;
for node ∈ Listnodes do

keep information of (node, subset);
inform 〈node, Listbits, subset,Φ〉;
subset ++;

end

Cost of packet authentication: Filtering packets according to
source addresses is quite easy and does not need extra CPU
time especially, when routers are used as the overlay nodes, since
anyway they will check the addresses for routing packets. Usually
checking some bits in the address field only costs 2 to 3 CPU
cycles per packet. The cost for message authentication codes
(MACs) depends on the hash algorithms used in the method and
the packet sizes. According to the simulation results in [21], taking



UMAC-64 as example (since it is advocated for balancing the
security and performance trade-off), it needs 1433 CPU cycles
per packet with size of 1024 bytes, which is around 600 times
the cost of the method in SIEVE. If SHA-1 is used as the hash
algorithm to produce MACs, then it costs 24166 CPU cycles per
packet with size of 1024 bytes, which is around 10000 times the
cost of the method in SIEVE.

Setting forwarding bandwidth: The forwarding bandwidth
from each overlay node to the server can be set using probability
estimations. Since the bits for partitioning S are generated
randomly, on average each client has the same probability to
belong to each address subset. This implies that the expected
number of clients that each overlay node serves is the same.
Let X denote the number of the clients served by an overlay
node, µ be the expectation of X . By applying Chernoff Bounds,
we have Pr (X ≤ (1 + δ)µ) > 1 −

(
eδ

(1+δ)(1+δ)

)µ
, where

δ > 0. Suppose there are 10000 clients and 10 overlay nodes,
then each node is expected to serve µ = 1000 clients. Suppose
each client sends traffic of rate 100Kbps, then the total rate of
legitimate traffic goes through each overlay node is expected to be
100Mbps. If we set δ = 0.1, then the probability that one node
serves less than (1+δ)µ = 1100 clients is more than 0.9922. This
implies that the total rate of legitimate traffic that goes through
each overlay node can hardly exceed 110Mbps. So by allocating
the forwarding bandwidth of an overlay node to 110Mbps, it
is safe to support the legitimate traffic that goes through that node.

Using SIEVE as a complementary filter: SIEVE offers a
standalone and lightweight anti-DDoS method under a moderate
adversary model. However, when the adversary is more powerful
(e.g. it can quickly “replay” legitimate packets snooped from
the network or it can compromise legitimate clients), using
MACs (message authentication codes) for checking the validity
of packets and keeping states for legitimate flows may be indeed
necessary. To balance the trade-off between cost and protection,
SIEVE can be used as a complementary filter to enhance the
performance of stronger and more complex methods to fight
against stronger adversary. For example when MACs are used
in the filtering mechanism in SIEVE, the overlay nodes can
generate the symmetric key shared with a client (for generating
and verifying the MACs of the client’s packets). The key can
be piggybacked (encrypted with the client’s public key) on the
connection reply message to the client. Note that overlay nodes
check the MACs of packets only when necessary. So when overlay
nodes observe abnormal big volumes of traffic that can pass the
lightweight filter, the MAC validation procedure can be invoked
and the clients will be informed to include MACs in their packets.
In that case, overlay nodes will first check the source address
of each incoming packet and then the MAC. In this way, the
lightweight filter is the first level filter which can efficiently reduce
the amount of packets that the second level filter needs to check.

V. ANALYSIS

We analyze the effectiveness of the protection of connection
setup and the lightweight filtering through a series of lemmas. Due
to space limitations, all of the proofs and comments are omitted
and the reader is redirected to [7].

Lemma 1. Within a time period, a compromised host has to send
the original request at the beginning of the period so that the
expectation of the time that it gets the response is minimized.

Lemma 2. Consider a domain whose quota is w per period. There
are ζ compromised hosts in the domain, and the arrival events

of original legitimate requests form a Poisson process with rate
λ, SIEVE guarantees that the proportion of legitimate requests

forwarded by the overlay node is at least
w−ζ

√
4λw+ζ2−ζ

2λ
λ

.

Lemma 3. The expectation of the waiting time for a specific
response to be sent back to the client is T

6
, where T is the length

of a time period.

Lemma 4. Regarding the legitimate traffic served by node ni, if
Li is the rate of this traffic, then the expected proportion of this
traffic that can pass through ni is at least Ci

Li+
mi
N

, where Ci is
forwarding bandwidth from overlay node ni to the server, mi is
the traffic rate that the adversary floods to node ni.

Lemma 5. The proportion of total legitimate traffic that can pass
through the distributed filter is

P ≥
∑

i|ni /∈NA

Li

L
+

∑
i|ni∈NA

Ci

Li + M
N|NA|

·
Li

L
,

where NA={ni|mi > 0, i ∈ {1, 2, · · · , N}},
∑N
i=1 Li = L,∑N

i=1mi =M.

Lemma 6. The proportion of legitimate traffic that can pass
through the distributed filter is at least C

L+M
N

Corollary 1. Given the total attacking rate M, to achieve a
specific filtering quality that the proportion of the legitimate traffic
received by the server is at least P , there should be

⌈
M
C
P−L

⌉
overlay nodes deployed in SIEVE, where C is the receiving
capacity of the server and L is the total rate of the legitimate
traffic.

Corollary 1 actually provides a guideline for balancing the
trade off between cost and protection (i.e. the filer effectiveness).
The analysis shows that SIEVE can filter out malicious traffic
by the order of Ω(N), meaning that at most 1

N
of the malicious

traffic can really compete for the server’s bandwidth with the
legitimate traffic. So according to different protection demands,
the protection provider can decide the number of nodes used in
the protection. E.g. consider a server whose incoming bandwidth
is 100Mbps, wants to be protected. Assume that the total rate
of the legitimate traffic to that server is 50Mbps. To withstand
10Gbps attacking traffic and guarantee that the server receives
at least 90% of the legitimate traffic, 164 overlay nodes are
needed to be deployed in SIEVE, which is a reasonable number
for a protection provider, such as Akamai [1], which has several
thousands overlay nodes.

Induced latency by routing via overlay nodes: Routing packets
through overlay nodes may induce extra latencies, since the
overlay nodes may not reside in the optimal path between the
hosts and the server. To have an exact estimation of the induced
latency is rather complex, involving several parameters, such as
network topology and the network conditions. We provide an
illustrative example to study how the number of hops affects
the latency. We compare the shortest path length via overlay
nodes with the original shortest path length between a host and
the server in power-law network topologies motivated by earlier
results [6]. Figure 2 shows the corresponding ratio. It is claimed
that Phalanx [5] can control the induced latencies to 20% by
using iPlane [12] to choose overlay nodes for the legitimate
clients. iPlane can be definitely used also by SIEVE for the same
purpose, since it can provide accurate predictions of Internet path
performance.



0 50 100 150 200 250 300
Number of overlay nodes

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Av
er

ag
e 

la
te

nc
y 

ra
tio

2000 nodes
3000 nodes
5000 nodes

Fig. 2. Induced latency by routing through over-
lay. The network graph has power-law topology
with β = 2 (β is the exponent in the power-
law model), and the total number of nodes in
the graph ranges in (2000,3000,5000).

0 5 10 15 20 25 30 35
Number of compromized hosts in a domain

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 le
gi

tim
at

e 
re

qu
es

ts
 th

at
 a

re
 fo

rw
ar

de
d

desired proportion
analytical result of lemma 2
SIEVE
NonRAN

Fig. 3. The proportion of legitimate requests
that can be forwarded by the overlay node. The
quota for the domain is 32, which is equal to
the number of legitimate hosts. The number of
compromised hosts ranges from 0 to 32.

Fig. 4. The average waiting time for a response
of a legitimate request to be sent, compared with
the result in lemma 3.

VI. SIMULATION STUDY

We study SIEVE’s performance in two aspects: protecting
connection setup and lightweight traffic filtering. In particular,
we measure the proportion of legitimate requests that can be
forwarded, the latency induced by the random scheduling and
the proportion of legitimate traffic that can be received by the
server. In order to validate our analysis results, we associate each
simulation result with the corresponding lemma in Section V. All
the simulations are performed in Ns2 [20]; and for each simulation
scenario, we run the simulation for 10 times and take the average.

Connection setup simulation: We create a network with 128
nodes for hosts, and assume that they are in the same domain.
The quota for the domain is 32 per period. We vary the number
of compromised hosts from 0 to 32. From the rest of the hosts
that are not compromised by the adversary, we select 32 hosts to
act as legitimate clients. In each period, the time for a legitimate
client to send a request is uniformly distributed among the period,
and each legitimate client only sends one request per period.
To model a worst case scenario, the compromised hosts send
their requests at the beginning of each time period, following the
conclusion of lemma 1. We measure the proportion of legitimate
requests forwarded by the overlay node, and compare it with the
desired proportion, which is defined as quota

number of hosts sending requests .
The desired proportion is the optimal fairness (i.e. per-host
fairness) that can be achieved when the malicious requests
cannot be distinguished. In order to see the benefit from random
scheduling, we also measure the performance of SIEVE without
random scheduling, called NonRAN. In NonRAN, the overlay
node immediately sends a response with a cookie when it
receives a request. Figure 3 shows the simulation results and
the comparisons. We can see that the curve follows closely the
analytical result of lemma 2. Random scheduling used in SIEVE
may cause the clients to wait for the responses for some time.
Lemma 3 shows that the expected induced latency is bounded by
T
6

. Figure 4 shows the simulation result which conforms well to
the analytical result.

Traffic filtering simulation: We measure the percentage of
legitimate traffic and also the percentage of attack traffic that
can pass through the filtering of SIEVE. We keep the previous
configuration, which has 128 client nodes. The total incoming
bandwidth of the server is 32Mbps. Each of the client sends UDP
packets with constant rate 0.25Mbps, so the total legitimate traffic
rate is 32Mbps. The adversary’s strength is simulated through the

total attacking rate which ranges from 96Mbps to 256Mbps, i.e.
3 to 8 times the legitimate traffic rate. To measure the filtering
performance of SIEVE, we measure the percentage of legitimate
packets that can be received by the server. We set the length
of time period to 1 second. The simulation time consists of 10
periods. We choose the number of overlay nodes to be 32 and 64.

When there are 32 overlay nodes used in SIEVE, the address
space of the 128 legitimate clients is divided into 32 subsets,
each has 4 legitimate clients. Thus each overlay node serves 4
clients with 1Mbps of the total legitimate traffic rate. To perform
stress test on SIEVE, we let each overlay node have a link to the
server with bandwidth 1Mbps. So the forwarding bandwidth of
each overlay node is just enough for forwarding the legitimate
traffic sent to it. To associate with the analysis of lemma 4
and lemma 6, we vary the number of overlay nodes that the
adversary attacks. During the attack, the adversary floods packets
with its total attacking rate. Each malicious packet is randomly
assigned an address of a legitimate client, and the packet is sent
randomly to one of the overlay nodes that the adversary wants
to attack. Figure 5 shows the percentage of legitimate packets
received by the server when there are 32 overlay nodes in SIEVE.
It is observed that the measured percentage decreases when
the adversary attacks more overlay nodes. When the adversary
attacks all the overlay nodes, the measured percentage reaches its
minimum value. For the analytical study of this observation, we
refer to the proof of lemma 6 [7].

By repeating the simulation with a larger number of overlay
nodes (64 nodes) and the same client set, we observe better filter
effectiveness. Figure 6 shows the corresponding result. Figure 7
shows the bandwidth utilization of the server’s incoming link. We
can see that SIEVE saves most of the server’s bandwidth (above
90% when SIEVE has 64 nodes) for legitimate traffic. To contrast
this with the situation that the server has no protection, note that
in the latter case only little (around 10% when attacking rate is
256Mbps) of the bandwidth can be used by legitimate traffic.
Figure 8 shows the fraction of the attack traffic passing through
the filter.

VII. RELATED WORK

Since we use an overlay to build a lightweight distributed filter,
we mainly focus on solutions that also adopt overlays to deal with
DDoS attacks.

SOS [11] is the first solution that uses an overlay network
to mitigate DDoS attacks. SOS and its generalized version
Mayday [2] focus on protecting the traffic of confirmed users,



Fig. 5. The percentage of legitimate
packets received by the server, when
there are 32 overlay nodes.

Fig. 6. The percentage of legitimate
packets received by the server, when
there are 64 overlay nodes.

96 160 256 96 160 256 96 160 256
Attacker strength (Mbps)

0

4

8

12

16

20

24

28

32

Ba
nd

w
id

th
 u

se
d 

(M
bp

s)

32 nodes protection 64 nodes protection no protection

Legitimate traffic
Attack traffic

Fig. 7. Bandwidth utilization of the
server’s incoming link.

0 50 100 150 200 250
Attacker strength (Mbps)

0.00

0.01

0.02

0.03

0.04

0.05

Fr
ac

tio
n 

of
 a

tt
ac

k 
tr

af
fic

 p
as

si
ng

 th
ro

ug
h 

th
e 

fil
te

r

32 nodes protection
64 nodes protection

Fig. 8. Fraction of the attack traffic
that can pass through the lightweight
filter

which by assumption have prior permissions to communicate
with the server. The issues of securing connection setup phase
addressed in SIEVE are not considered in the work. MOVE [19]
and Multipath-Overlay [18] provide MAC-based mechanisms for
the overlay nodes to filter out illegitimate packets. These two
solutions also suggest to use Graphic Turing Test (GTT) for
filtering out requests from remotely controlled zombie machines.
However, GTT needs humans involved and is not transparent
to users. OverDose [17] protects the connection setup phase
by using crypto-puzzles. Each request packet should contain a
correct solution of a puzzle generated with the current puzzle seed
(which is changed periodically), and packets with correct solutions
of puzzles in higher levels have priority for being forwarded.
However, in OverDose there is no mechanism to prevent a host
from reusing solutions of the same puzzle. Furthermore, the
adversary can always flood spurious request packets with puzzle
level higher than the legitimate requests, in order to keep the
overlay node busy with checking puzzle solutions with that level.
So legitimate clients always have to solve puzzle of level as high
as possible, which costs more computation resources and induces
high latency. As shown in the analysis and simulation sections,
the induced latency by SIEVE is bounded.

Like the method in SIEVE, Phalanx [5] also tries to provide a
system that is easy to deploy, yet is powerful enough to mitigate
DDoS attacks. Phalanx uses puzzle-based solution as OverDose to
protect connection setup phase. Instead of using overlay nodes to
filter malicious packets, Phalanx uses overlay nodes as temporary
mailboxes of the server. Legitimate clients send different packets
to different overlay nodes according to a pseudo-random pattern.
In order to get legitimate packets, the server has to know which
client sends which packet to which overlay node, and has to send
requests to the correct overlay nodes as soon as possible to get the
packets before the buffer of the overlay node becomes overloaded.
With big number of clients, the overhead can be too high for
the server to perform those operations for each packet from each
client.

VIII. CONCLUSION

In this paper, we proposed SIEVE, which uses overlay nodes
to form a lightweight distributed filtering system against DDoS
attacks. SIEVE uses resource isolation and randomization to
address the connection setup challenge, and provides guaranteed
chance for the legitimate clients to set connections. SIEVE uses
source addresses as lightweight authenticators to filter malicious
traffic; this saves several orders of magnitude of computing power
compared with common message authentication algorithms. By
both analytical and simulation study, we showed that SIEVE can
efficiently filter out attack traffic and save server’s and router’s
bandwidth for legitimate traffic.

REFERENCES

[1] Akamai Technology. http://www.akamai.com/, 2011.
[2] David G. Andersen. Mayday: distributed filtering for internet

services. In USITS’03, pages 3–3, 2003.
[3] G. Badishi, A. Herzberg, and I. Keidar. Keeping denial-of-service

attackers in the dark. IEEE Trans. Dependable Secur. Comput.,
4(3):191–204, 2007.

[4] Jean-Yves Le Boudec. Rate adaptation, congestion control and
fairness: A tutorial, EPFL, December 2000.

[5] C. Dixon, T. Anderson, and A. Krishnamurthy. Phalanx: withstand-
ing multimillion-node botnets. In NSDI’08, pages 45–58, 2008.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the internet topology. In SIGCOMM ’99, pages 251–262,
1999.

[7] Z. Fu and M. Papatriantafilou. Off the wall: Lightweight distributed
filtering to mitigate distributed denial of service attacks. Tech-
nical report 2011-20, Chalmers University of Technology, pages
http://www.cse.chalmers.se/∼zhafu/Tech–2011–20.pdf, 2011.

[8] Z. Fu, M. Papatriantafilou, and P. Tsigas. Mitigating distributed
denial of service attacks in multiparty applications in the presence
of clock drifts. In SRDS’08, 2008.

[9] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: clustering
analysis of network traffic for protocol- and structure-independent
botnet detection. In CCS’08, pages 139–154, 2008.

[10] A. Hussain, John S. Heidemann, and C. Papadopoulos. A framework
for classifying denial of service attacks. In SIGCOMM, pages 99–
110, 2003.

[11] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: secure overlay
services. SIGCOMM Comput. Commun. Rev., 32(4):61–72, 2002.

[12] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iplane: an information
plane for distributed services. In OSDI ’06, pages 367–380, 2006.

[13] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker. Controlling high bandwidth aggregates in the network.
SIGCOMM Comput. Commun. Rev., 32(3):62–73, 2002.

[14] Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and
DDoS defense mechanisms. SIGCOMM Comput. Commun. Rev.,
34(2):39–53, 2004.

[15] Andrei Broder I Michael Mitzenmacher. Network applications of
bloom filters: A survey. In Internet Mathematics, pages 636–646,
2002.

[16] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson.
Practical network support for ip traceback. SIGCOMM Comput.
Commun. Rev., 30(4):295–306, 2000.

[17] Elaine Shi, Ion Stoica, David Andersen, and Adrian Perrig. Over-
dose: A generic ddos protection service using an overlay network.
Technical report, Carnegie Mellon University, CMU-CS-06-114,
2006.

[18] A. Stavrou and A. D. Keromytis. Countering dos attacks with
stateless multipath overlays. In CCS’05, pages 249–259, 2005.

[19] Angelos Stavrou, Angelos D. Keromytis, Jason Nieh, Vishal Misra,
and Dan Rubenstein. MOVE: An end-to-end solution to network
denial of service. In NDSS’05, pages 81–96, 2005.

[20] The Network Simulator. http://isi.edu/nsnam/ns/, 2011.
[21] UMAC Performance. http://fastcrypto.org/umac/2004/perf04.html,

2004.
[22] Xiaowei Yang, David Wetherall, and Thomas Anderson. A DoS-

limiting network architecture. In SIGCOMM ’05, pages 241–252,
2005.


