
Self-Stabilizing Byzantine Resilient
Topology Discovery and Message Delivery

(Extended Abstract)

Shlomi Dolev 1 ?, Omri Liba 1, and Elad M. Schiller 2 ??

1 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
{dolev, liba}@cs.bgu.ac.il

2 Department of Computer Science and Engineering, Chalmers University of Technology,
Goeteborg, Sweden. elad@chalmers.se

Abstract. Traditional Byzantine resilient algorithms use 2f + 1 vertex-disjoint
paths to ensure message delivery in the presence of up to f Byzantine nodes. The
question of how these paths are identified is related to the fundamental problem
of topology discovery. Distributed algorithms for topology discovery cope with a
never ending task: dealing with frequent changes in the network topology and un-
predictable transient faults. Therefore, algorithms for topology discovery should
be self-stabilizing to ensure convergence of the topology information following
any such unpredictable sequence of events. We present the first such algorithm
that can cope with Byzantine nodes. Starting in an arbitrary global state, and in
the presence of f Byzantine nodes, each node is eventually aware of all the other
non-Byzantine nodes and their connecting communication links. Using the topol-
ogy information, nodes can, for example, route messages across the network and
deliver messages from one end user to another. We present the first deterministic,
cryptographic-assumptions-free, self-stabilizing, Byzantine-resilient algorithms
for network topology discovery and end-to-end message delivery. We also con-
sider the task of r-neighborhood discovery for the case in which r and the degree
of nodes are bounded by constants. The use of r-neighborhood discovery facil-
itates polynomial time, communication and space solutions for the above tasks.
The obtained algorithms can be used to authenticate parties, in particular during
the establishment of private secrets, thus forming public key schemes that are
resistant to man-in-the-middle attacks of the compromised Byzantine nodes. A
polynomial and efficient end-to-end algorithm that is based on the established
private secrets can be employed in between periodical secret re-establishments.

? Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel Science Foundation (grant
number 428/11), Cabarnit Cyber Security MAGNET Consortium, Grant from the Institute for
Future Defense Technologies Research named for the Medvedi of the Technion, and Israeli
Internet Association.

?? Partially supported by the EC, through project FP7-STREP-288195, KARYON (Kernel-based
ARchitecture for bsafetY-critical cONtrol) and the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. 257007.

1 Introduction

Self-stabilizing Byzantine resilient topology discovery is a fundamental distributed task
that enables communication among parties in the network even if some of the compo-
nents are compromised by an adversary. Currently, such topology discovery is becom-
ing extremely important where countries’ main infrastructures, such as the electrical
smart-grid, water supply networks and intelligent transportation systems are subject to
cyber-attacks. Self-stabilizing Byzantine resilient algorithms naturally cope with mo-
bile attacks [e.g., 1]. Whenever the set of compromised components is fixed (or dy-
namic, but small) during a period that suffices for convergence of the algorithm, the
system starts demonstrating useful behavior following the convergence. For example,
consider the case in which nodes of the smart-grid are constantly compromised by an
adversary while local recovery techniques, such as local node reset and/or refresh, en-
sure the recovery of a compromised node after a bounded time. Once the current com-
promised set does not imply a partition of the communication graph, the distributed
control of the smart grid automatically recovers. Self-stabilizing Byzantine resilient al-
gorithms for topology discovery and message delivery are important for systems that
have to cope with unanticipated transient violations of the assumptions that the algo-
rithms are based upon, such as unanticipated violation of the upper number of com-
promised nodes and unanticipated transmission interferences that is beyond the error
correction code capabilities.

The dynamic and difficult-to-predict nature of electrical smart-grid and intelligent
transportation systems give rise to many fault-tolerance issues and require efficient so-
lutions. Such networks are subject to transient faults due to hardware/software temporal
malfunctions or short-lived violations of the assumed settings for the location and state
of their nodes. Fault-tolerant systems that are self-stabilizing [2] can recover after the
occurrence of transient faults, which can drive the system to an arbitrary system state.
The system designers consider all configurations as possible configurations from which
the system is started. The self-stabilization design criteria liberate the system designer
from dealing with specific fault scenarios, risking neglecting some scenarios, and hav-
ing to address each fault scenario separately.

We also consider Byzantine faults that address the possibility of a node to be com-
promised by an adversary and/or to run a corrupted program, rather than merely as-
suming that they start in an arbitrary local state. Byzantine components may behave
arbitrarily (selfishly, or even maliciously) as message senders and as relaying nodes.
E.g., Byzantine nodes may block messages, selectively omit messages, redirect mes-
sage routes, playback messages, or modify messages. Any system behavior is possible,
when all (or one third or more of) the nodes are Byzantine nodes. Thus, the number of
Byzantine nodes, f , is usually restricted to be less than one third of the nodes [2, 3].

The task of r-neighborhood network discovery allows each node to know the set of
nodes that are at most r hops away from it in the communication network. Moreover,
the task provides information about the communication links attached to these nodes.
The task topology discovery considers knowledge regarding the node’s entire connected
component. The r-neighborhood network discovery and network topology discovery
tasks are identical when r is the communication graph radius.

This work presents the first deterministic self-stabilizing algorithms for r-
neighborhood discovery in the presence of Byzantine nodes. We assume that every
r-neighborhood cannot be partitioned by the Byzantine nodes. In particular, we assume
the existence of at least 2f + 1 vertex-disjoint paths in the r-neighborhood, between
any two non-Byzantine nodes, where at most f Byzantine nodes are present in the
r-neighborhood, rather than in the entire network. 3 Note that by the self-stabilizing
nature of our algorithms, recovery is guaranteed after a temporal violation of the above
assumption. When r is defined to be the communication graph radius, our assumptions
are equivalent to the standard assumption for Byzantine agreement in general (rather
than only complete) communication graphs. In particular the standard assumption is
that 2f + 1 vertex disjoint paths exist and are known (see e.g., [3]) while we present
distributed algorithms to find these paths starting in an arbitrary state.
Related work. Self-stabilizing algorithms for finding vertex-disjoint paths for at
most two paths between any pair of nodes, and for all vertex-disjoint paths in anony-
mous mesh networks appear in [4] and in [5], respectively. We propose self-stabilizing
Byzantine resilient procedures for finding f+1 vertex-disjoint paths in 2f+1-connected
graphs. In [6], the authors study the problem of spanning tree construction in the pres-
ence of Byzantine nodes. Nesterenko and Tixeuil [7] presented preliminary ideas for a
non-stabilizing algorithm for topology discovery in the presence of Byzantine nodes.
Awerbuch and Sipser [8] consider algorithms that were designed for synchronous static
network and give topology update as an example. They show how to use such algo-
rithms in asynchronous dynamic networks. Unfortunately, their scheme starts from a
consistent state and cannot cope with transient faults or Byzantine nodes.

The problems of Byzantine gossip [9–14] and Byzantine Broadcast [15, 16] con-
sider the dissemination of information in the presence of Byzantine nodes rather than
self-stabilizing topology discovery. Non-self-stabilizing Byzantine resilient gossip in
the presence of one selfish node is considered in [10, 12]. In [11] the authors study
oblivious deterministic gossip algorithms for multi-channel radio networks with a ma-
licious adversary. They assume that the adversary can disrupt one channel per round,
preventing communication on that channel. In [13] the authors consider probabilistic
gossip mechanisms for reducing the redundant transmissions of flooding algorithms.
They present several protocols that exploit local connectivity to adaptively correct prop-
agation failures and protect against Byzantine attacks. Probabilistic gossip mechanisms
in the context of recommendations and social networks are considered in [14]. In [9] the
authors consider rules for avoiding a combinatorial explosion in (non-self-stabilizing)
gossip protocol. Note that deterministic and self-stabilizing solutions are not presented
in [9–14]. Drabkin et al. [15] consider non-self-stabilizing broadcast protocols that over-
come Byzantine failures by using digital signatures, message signature gossiping, and
failure detectors. Our deterministic self-stabilizing algorithm merely use the topological
properties of the communication graph to ensure correct message delivery to the appli-
cation layer in the presence of message omission, modifications and Byzantine nodes.

3 Section 4 considers cases in which r and an upper bound on the node degree, ∆, are con-
stants. For these cases, we have O(n) disjoint r-neighborhoods. Each of these (disjoint) r-
neighborhoods may have up to f Byzantine nodes, and yet the above assumptions about at
least 2f + 1 vertex-disjoint paths in the r-neighborhood, hold.

A non-self-stabilizing broadcasting algorithm is considered in [16]. The authors assume
the restricted case in which links and nodes of a communication network are subject to
Byzantine failures, and that faults are distributed randomly and independently. We note
that our result can serve as a base for a compiler that convert non-stabilizing algorithm
to a stabilizing algorithm. We facilitate communication among participants that enables
(repeatedly) run of a non-stabilizing algorithm that copes with Byzantine processors,
using the standard re-synchronization technique that is based on self-stabilizing Byzan-
tine clock synchronization [2, 17].
Our contribution. We present two cryptographic-assumptions-free yet secure algo-
rithms that are deterministic, self-stabilizing and Byzantine resilient.

We start by showing the existence of deterministic, self-stabilizing, Byzantine re-
silient algorithms for network topology discovery and end-to-end message delivery. The
algorithms convergence time is inO(n). They take in to account every possible path and
requiring bounded (yet exponential) memory and bounded (yet exponential) communi-
cation costs. Therefore, we also consider the task of r-neighborhood discovery, where
r is a constant. We assume that if the r-neighborhood of a node has f Byzantine nodes,
there are 2f+1 vertex independent paths between the node and any non-Byzantine node
in its r-neighborhood. The obtained r-neighborhood discovery algorithm requires poly-
nomial memory and communication costs and supports deterministic, self-stabilizing,
Byzantine-resilient algorithm for end-to-end message delivery across the network. Un-
like topology update, the proposed end-to-end message delivery algorithm establishes
message exchange synchronization between end-users that is based on message recep-
tion acknowledgments. Detailed proofs appear in [18].

2 Preliminaries

We consider settings of a standard asynchronous system [cf. 2]. The system consists of
a set, N = {pi}, of communicating entities, chosen from a set, P , which we call nodes.
The upper bound on the number of nodes in the system is n = |P |. Each node has a
unique identifier. Sometime we refer to a set, P \ N , of nonexisting nodes that a false
indication on their existence can be recorded in the system. A node pi can directly com-
municate with its neighbors, Ni ⊆ N . The system can be represented by an undirected
network of directly communicating nodes, G = (N,E), named the communication
graph, where E = {(pi, pj) ∈ N × N : pj ∈ Ni}. We denote Nk’s set of indices by
indices(Nk) = {m : pm ∈ Nk} and Nk’s set of edges by edges(Nj) = {pj} ×Nj .

The r-neighborhood of a node pi ∈ N is the connected component that includes pi
and all nodes that can be reached from pi by a path of length r or less. The problem
of r-neighborhood topology discovery considers communication graphs in which pi’s
degree, δi, is bounded by a constant ∆. Hence, when both the neighborhood radius, r,
and the node degree, ∆, are constants the number of nodes in the r-neighborhood is
also bounded by a constant, namely by O(∆r+1).

We model the communication channel, queuei,j , from node pi to node pj ∈ Ni as a
FIFO queuing list of the messages that pi has sent to pj and pj is about to receive. When
pi sends message m, the operation send inserts a copy of m to the queue queuei,j of
the one destination pj , such that pj ∈ Ni. We assume that the number of messages in

transit, i.e., stored in queuei,j , is at most capacity. Oncem arrives, pj executes receive
and m is dequeued.

We assume that pi is completely aware of Ni, as in [7]. In particular, we assume
that the identity of the sending node is known to the receiving one. In the context of the
studied problem, we say that node pi ∈ N is correct if it reports on its genuine neigh-
borhood, Ni. A Byzantine node, pb ∈ N , is a node that can send arbitrarily corrupted
messages. Byzantine nodes can introduce new messages and modify or omit messages
that pass through them. This way they can, e.g., disinform correct nodes about their
neighborhoods, about the neighborhood of other correct nodes, or the path through
which messages travel, to name a very few specific misleading actions that Byzantine
nodes may exhibit. Note that our assumptions do not restrict system settings in which
a duplicitous Byzantine node, pb, reports about Nb differently to its correct neighbors.
In particular, pb can have {Nb1 , . . . Nbδb

} reports, such that pb’s identity in Nbi is dif-
ferent than the one in Nbj , where δx is the degree of node px. One may use a set of
non-duplicitous Byzantine nodes, {pb1 , . . . pbδ}, to model each of pb’s reports. Thus,
for a 2k + 1 connected graph, the system tolerates no more than bk/∆c duplicitous
Byzantine nodes, where ∆ is an upper bound on the node degree.

We denote C and B to be, respectively, the set of correct and Byzantine nodes. We
assume that |B| = f , the identity of B’s nodes is unknown to the ones in C, and B is
fixed throughout the considered execution segment. These execution segments are long
enough for convergence and then for obtaining sufficient useful work. We assume that
between any pair of correct nodes there are at least 2f + 1 vertex-disjoints paths. We
denote by Gc = (C,E ∩C ×C) the correct graph induced by the set of correct nodes.

Self-stabilizing algorithms never terminate [2]. The non-termination property can
be easily identified in the code of a self-stabilizing algorithm: the code is usually a do
forever loop that contains communication operations with the neighbors. An iteration
is said to be complete if it starts in the loop’s first line and ends at the last (regardless of
whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. For ease of
description, we assume the interleaving model with atomic step execution; a single step
at any given time. An input event can either be the receipt of a message or a periodic
timer going off triggering pi to send. Note that the system is totally asynchronous and
the (non-fixed) node processing rates are irrelevant to the correctness proof.

The state si of a node pi consists of the value of all the variables of the node (in-
cluding the set of all incoming communication channels, {queuej,i|pj ∈ Ni}. The
execution of a step in the algorithm can change the state of a node. The term (sys-
tem) configuration is used for a tuple of the form (s1, s2, · · · , sn), where each si is
the state of node pi (including messages in transit for pi). We define an execution
E = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations c[x]
and steps a[x], such that each configuration c[x + 1] (except the initial configuration
c[0]) is obtained from the preceding configuration c[x] by the execution of the step a[x].
We often associate the notation of a step with its executing node pi using a subscript,
e.g., ai. An execution R (run) is fair if every correct node, pi ∈ C, executes a step
infinitely often in R. Time (e.g. needed for convergence) is measured by the number of
asynchronous rounds, where the first asynchronous round is the minimal prefix of the

execution in which every node takes at least one step. The second asynchronous round
is the first asynchronous round in the suffix of the run that follows the first asynchronous
round, and so on. The message complexity (e.g. needed for convergence) is the number
of messages measured in the specific case of synchronous execution.

We define the system’s task by a set of executions called legal executions (LE) in
which the task’s requirements hold. A configuration c is a safe configuration for an
algorithm and the task of LE provided that any execution that starts in c is a legal
execution (belongs to LE). An algorithm is self-stabilizing with relation to the task LE
when every infinite execution of the algorithm reaches a safe configuration with relation
to the algorithm and the task.

3 Topology Discovery

The algorithm learns about the neighborhoods that the nodes report. Each report mes-
sage contains an ordered list of nodes it passed so far, starting in a source node. These
lists are used for verifying that the reports are sent over f + 1 vertex-disjoint paths.

When a report message, m, arrives to pi, it inserts m to the queue
informedTopologyi, and tests the queue consistency until there is enough indepen-
dent evidence to support the report. The consistency test of pi iterates over each node
pk such that, pk appears in at least one of the messages stored in informedTopologyi.
For each such node pk, node pi checks whether there are at least f + 1 messages from
the same source node that have mutually vertex-disjoint paths and report on the same
neighborhood. The neighborhood of each such pk, that has at least f +1 vertex-disjoint
paths with identical neighborhood, is stored in the array Resulti[k] and the total num-
ber of paths that relayed this neighborhood is kept in Count[k].

We note that there may still be nodes pfake ∈ P \ (N), for which there is an
entry Result[fake]. For example, informedTopology may contain f messages, all
originated from different Byzantine nodes, and a message m′ that appears in the initial
configuration and supports the (false) neighborhood the Byzantine messages refer to.
These f + 1 messages can contain mutually vertex-disjoint paths, and thus during the
consistency test, a result will be found for Result[fake]. We show that during the next
computations, the message m′ will be identified and ignored. The Result array should
include two reports for each (undirected) edge; the two nodes that are attached to the
edge, each send a report. Hence, Result includes a set of directed (report) edges. The
term contradicting edge is needed when examining the Result set consistency.
Definition 1 (Contradicting edges). Given two nodes, pi, pj ∈ P , we say that the edge
(pi, pj) is contradicting with the set evidence ⊆ edges(Nj), if (pi, pj) 6∈ evidence.

Following the consistency test, pi examines the Result array for contradictions.
Node pi checks the path of each message m ∈ informedTopologyi with source pr,
neighborhood neighborhoodr and Pathr. If every edge (ps, pj) on the path appears
in Result[s] and Result[j], then we move to the next message. Otherwise, we found a
fake supporter, and therefore we reduce Count[r] by one. If the resulting Count[r] is
smaller than f +1, we nullify the r’th entry of the Result array. Once all messages are
processed, theResult array consisting of the (confirmed) local topologies is the output.
At the end, pi forwards the arriving message, m, to each neighbor that does not appear

in the path of m. The message sent by pi includes the node from which m arrived as
part of the visited path contained within m.
The pseudocode of Algorithm 1 In every iteration of the infinite loop, pi starts
to compute its preliminary topology view by calling ComputeResults in line 2.
Then, every node pk in the queue InformedTopology, node pi goes over the mes-
sages in the queue from head to bottom. While iterating the queue, for every mes-
sage m with source pk, neighborhood Nk and visited path Pathk, pi inserts Pathk to
opinion[Nk], see line 18. After inserting, pi checks if there is a neighborhood Neigk
for which opinion[Neigk] contains at least f + 1 vertex-disjoint paths, see line 19.
When such a neighborhood is found, it is stored in the Result array (line 19). In
line 20, pi stores the number of vertex disjoint paths relayed messages that contained
the selected neighborhood for pk. After computing an initial topology view (line 3),
pi removes non-existing nodes from the computed topology. For every message m in
InformedTopology, node pi aims at validating its visited path. In line 24, pi checks
if there exists a node pk whose neighborhood contradicts the visited path of m. If
such a node exists, pi decreases the associated entry in the Count array (line 25).
This decrease may cause Count[r] to be smaller than f + 1, in this case pi con-
siders pk to be fake and deletes the local topology of pk from Result[r] (line 26).

• Insert(m): Insert item m to the queue head.
•Remove(Messagem): Remove item m from the queue.
• Iterator(): Returns an pointer for iterating over the queue’s
items by their residence order in the queue.
•HasNext(): Tests whether the Iterator is at the queue end.
•Next() Returns the next element to iterate over.
• SizeOf() Returns the number of elements in the calling set.
•MoveToHead(m): Move item m to the queue head.
• IsAfter(m,S): Test that item m is after the items m′ ∈
S, where S is the queue item set.

Fig. 1. Queue: general purpose data structure for
queuing items, and its operation list.

Upon receiving a message m, node
pi inserts the message to the queue,
in case it does not already exist, and
just moves it to the queue top in case
it does. The node pi now needs to re-
lay the message pi got to all neigh-
bors that are not on the message
visited path (line 9). When send-
ing, pi also attaches the node iden-
tifier, from which the message was
received, to the message visited path.
Algorithm’s correctness proof. We now prove that within a linear amount of asyn-
chronous rounds, the system stabilizes and every output is legal. The proof considers an
arbitrary starting configuration with arbitrary messages in transit that could be actually
in the communication channel or already stored in pj’s message queue and will be for-
warded in the next steps of pj . Each message in transit that traverse correct nodes can
be forwarded within less thanO(|C|) asynchronous rounds. Note that any message that
traverses Byzantine nodes and arrives to a correct node that has at least one Byzantine
node in its path. The reason is that the correct neighbor to the last Byzantine in the path
lists the Byzantine node when forwarding the message. Thus, f is at most the number
of messages that encode vertex-disjoint paths from a certain source that are initiated or
corrupted by a Byzantine node. Since there are at least f + 1 vertex-disjoint paths with
no Byzantine nodes from any source pk to any node pi and since pk repeatedly sends
messages to all nodes on all possible paths, pi receives at least f +1 messages from pk
with vertex-disjoint paths.

The FIFO queue usage and the repeated send operations of pk ensure that the most
recent f + 1 messages with vertex-disjoint paths in InformedTopology queue are

Algorithm 1: Topology discovery (code for node pi)
Input: Neighborhoodi: The ids of the nodes with which node pi can communicate directly;
Output: ConfirmedTopology ⊂ P × P : Discovered topology, which is represent by a directed edge set;
Variable InformedTopology : Queue, see Figure 1: topological messages,

〈node, neighborhood, path〉;
Function: NodeDisjointPaths(S): Test S = {〈node, neighborhood, path〉} to encode at least f + 1

vertex-disjoint paths;
Function: PathContradictsNeighborhood(k,Neighborhoodk, path): Test that there is no node

pj ∈ N for which there is an edge (pk, pj) in the message’s visited path, path ⊆ P ×N , such that
(pk, pj) is contradicting with Neighborhoodk;

1 while true do
2 Result← ComputeResults()
3 let Result← RemoveContradictions(Result)
4 RemoveGarbage(Result)
5 ConfirmedTopology ← ConfirmedTopology ∪ (

⋃
pk∈P Result[k])

6 foreach pk ∈ Ni do send(i, Neighborhoodi, ∅) to pk

7 Upon Receive (〈`,Neighborhood`, V isitedPath`〉) from pj ;
begin

8 Insert(p`, Neighborhood`, V isitedPath` ∪ {j})
9 foreach pk ∈ Ni do if k 6∈ V isitedPath` then send(p`, Neighborhood`, V isitedPath` ∪ {j})

to pk

10 Procedure: Insert(k,Neighborhoodk, V isitedPathk);
begin

11 if 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology then
InformedTopology.MoveToHead(m)

12 else if pk ∈ N ∧Neighborhoodk ⊆ indices(N) ∧ V isitedPathk ⊆ indices(N) then
InformedTopology.Insert(〈k,Neighborhoodk, V isitedPathk〉)

13 Function: ComputeResults();
begin

14 foreach pk ∈ P : 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology do
15 let (FirstDisjointPathsFound,Message, opinion[])←

(false, InformedTopology.Iterator(), [∅])
16 while Message.hasNext() do
17 〈`,Neighborhood`, V isitedPath`〉 ←Message.Next()
18 if ` = k then opinion[Neighborhood`].Insert(〈 `, Neighborhood`,

V isitedPath`〉)
19 if FirstDisjointPathsFound = false ∧

NodeDisjointPaths(opinion[Neighborhood`]) then
(Result[k], F irstDisjointPathsFound)← (Neighborhood`, true)

20 Count[k]← opinion[k][Result[k.SizeOf()

21 return Result

22 Function: RemoveContradictions(Result);
begin

23 foreach 〈r,Neighborhoodr, V isitedPathr〉 ∈ InformedTopology do
24 if ∃pk ∈ P : PathContradictsNeighborhood(pk, Result[k], V isitedPathr) = true

then
25 if Neighborhoodr = Result[r] then Count[r]← Count[r]− 1
26 if Count[r] ≤ f then Result[r]← ∅

27 return Result

28 Procedure: RemoveGarbage(Result);
begin

29 foreach pk ∈ N do
30 foreach m = 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology :

{k} ∪Neighborhoodk ∪ V isitedPathk 6⊆ P ∨ InformedTopology.IsAfter(m,
opinion[k][Result[k]]) do InformedTopology.Remove(m)

uncorrupted messages. Namely, misleading messages that were present in the initial
configuration will be pushed to appear below the new f + 1 uncorrupted messages.

Thus, each node pi eventually has the local topology of each correct node (stored in
the Resulti array). The opposite is however not correct as local topologies of non-
existing nodes may still appear in the result array. For example, InformedTopologyi
may include in the first configuration f + 1 messages with vertex-disjoint paths for a
non-existing node. Since after ComputeResults we know the correct neighborhood
of each correct node pk, we may try to ensure the validity of all messages. For every
message that encodes a non-existing source node, there must be a node p` on the mes-
sage path, such that p` is correct and p`’s neighbor is non-existing, this is true since pi
itself is correct. Thus, we may identify these messages and ignore them. Furthermore,
no valid messages are ignored because of this validity check.

We also note that, since we assume that the nodes of the system are a subset of P ,
the size of the queue InformedTopology is bounded. Lemma 1 bounds the needed
amount of node memory (the proof details appear in [18]).
Lemma 1 (Bounded memory). At any time, there are at most n · 22n messages in
InformedTopologyi, where pi ∈ C, n = |P | and O(n log(n)) is the message size.

r-neighborhood discovery. Algorithm 1 demonstrates the existence of a deterministic
self-stabilizing Byzantine resilient algorithm for topology discovery. Lemma 1 shows
that the memory costs are high when the entire system topology is to be discovered.
We note that one may consider the task of r-neighborhood discovery. Recall that in
the r-neighborhood discovery task, it is assumed that every r-neighborhood cannot be
partitioned by Byzantine nodes. Therefore, it is sufficient to constrain the maximal path
length in line 9. The correctness proof of the algorithm for the r-neighborhood discov-
ery follows similar arguments to the correctness proof of Algorithm 1.

4 End-to-End Delivery

We present a design for a self-stabilizing Byzantine resilient algorithm for the transport
layer protocol that uses the output of Algorithm 1. The design is based on a function
(named getDisjointPaths()) for selecting vertex-disjoint paths that contain a set of
f +1 correct vertex-disjoint paths. We use getDisjointPaths() and ARQ (Automatic
Repeat reQuest) techniques for designing Algorithm 2, which ensures safe delivery
between sender and receiver.
Exchanging messages over f+1 correct vertex-disjoint paths We guarantee correct
message exchange by sending messages over a polynomial number of vertex-disjoint
paths between the sender and the receiver. We consider a set, CorrectPaths, that in-
cludes f +1 correct vertex-disjoint paths. Suppose that ConfirmedTopology (see the
output of Algorithm 1) encodes a set, Paths, of 2f + 1 vertex-disjoint paths between
the sender and the receiver. It can be shown that Paths includes at most f incorrect
paths that each contain at least one Byzantine node, i.e., Paths ⊇ CorrectPaths. As
we see next, ConfirmedTopology does not always encode Paths, thus, one needs to
circumvent this difficultly.

Note that even though 2f + 1 vertex-disjoint paths between the sender and
the receiver are present in the communication graph, the discovered topology in
ConfirmedTopology may not encode the set Paths, because f of the paths in the set

The case of constant r and∆. The sender and the receiver exchange messages by using all
possible paths between them; feasible considering r-neighborhoods, where the neighborhood
radius, r, and the node degree ∆ are constants.
The case of constant f . For each possible choice of f system nodes, p1, p2, . . . pf ,
the sender and the reciter compute a new graph G(p1, p2, . . . pf) that is the result of re-
moving p1, p2, . . . pf , from Gout, which is the graph defined by the discovered topology,
ConfirmedTopology. Let P(p1, p2, . . . pf) be a set of f + 1 vertex-disjoint paths in
G(p1, p2, . . . pf) (or the empty set when P(p1, p2, . . . pf) does not exists) and Paths =⋃

p1,p2,...pf
P(p1, p2, . . . pf). The sender and the receiver can exchange messages over

Paths, because |Paths| is polynomial at least one choice of p1, p2, . . . pf , has a corre-
sponding set P(p1, p2, . . . pf) that contains CorrectPaths, see [18].
The case of no Byzantine neighbors The procedure assumes that any Byzantine node
has no directly connected Byzantine neighbor in the communication graph. Specifically, this
polynomial cost solution considers the (extended) graph, Gext, that includes all the edges in
confirmedTopology and suspicious edges. Given three nodes, pi, pj , pk ∈ P , we say that
node pi considers the undirected edge (pk, pj) suspicious, if the edge appears as a directed
edge in ConfirmedTopologyi for only one direction, e.g., (pj , pk).
The extended graph, Gext, may contain fake edges that do not exists in the communication
graph, but Byzantine nodes reports on their existence. Nevertheless, Gext includes all the
correct paths of the communication graph, G. Therefore, the 2f + 1 vertex-disjoint paths
that exists in G also exists in Gext and they can facilitate a polynomial cost solution for the
message exchange task, see [18].

Fig. 2. Implementation proposals for the function getDisjointPaths().

Paths can be controlled by Byzantine nodes. Namely, the information about at least
one edge in f of the paths in the set Paths, can be missing in ConfirmedTopology.

We consider the problem of relaying messages over the set CorrectPaths when
only ConfirmedTopology is known, and propose three implementations to the func-
tion getDisjointPaths() in Figure 2. The value of ConfirmedTopology is a set of
directed edges (pi, pj). An undirected edge is approved if both (pi, pj) and (pj , pi)
appear in ConfirmedTopology. Other edges in ConfirmedTopology are said to be
suspicious. For each of the proposed implementations, we show in [18] that a polyno-
mial number of paths are used and that they contain CorrectPaths. Thus, the sender
and the receiver can exchange messages using a polynomial number of paths and mes-
sage send operations, because each path is of linear length.
Ensuring safe message delivery We propose a way for the sender and the receiver,
that exchange a message over the paths in getDisjointPaths(), to stop considering
messages and acknowledgments sent by Byzantine nodes. They repeatedly send mes-
sages and acknowledgments over the selected vertex-disjoint paths. Before message
or acknowledgment delivery, the sender and the receiver expect to receive each mes-
sage and acknowledgment at least (capacity · n + 1) consecutive times over at least
f + 1 vertex independent paths, and by that provide evidence that their messages and
acknowledgments were indeed sent by them.

We employ techniques for labeling the messages (in an ARQ style), recording vis-
ited path of each message, and counting the number of received message over each

path. The sender sends messages to the receiver, and the receiver responds with ac-
knowledgments after these messages are delivered to the application layer. Once the
sender receives the acknowledgment, it can fetch the next message that should be sent
to the receiver. The difficulty here is to guarantee that the sender and receiver can in-
deed exchange messages and acknowledgments between them, and stop considering
messages and acknowledgments sent by Byzantine nodes.

The sender repeatedly sends message m, which is identified by m.ARQLabel, to
the receiver over all selected paths. The sender does not stop sending m before it is
guaranteed thatmwas delivered to the application layer of the receiving-side. When the
receiver receives the message, the setm.V isitedPath encodes the path along whichm
was relayed over. Before delivery, the receiver expects to receive m at least (capacity ·
n + 1) consecutive times from at least f + 1 vertex independent paths. Waiting for
(capacity · n + 1) consecutive messages on each path, ensures that the receiver gets
at least one message which was actually sent recently by the sender. Once the receiver
delivers m to the application layer, the receiver starts to repeatedly acknowledge with
the label m.ARQLabel over the selected paths (while recording the visited path). The
sender expects to receivem’s acknowledgment at least capacity·n+1 consecutive times
from at least f +1 vertex independent paths before concluding that m was delivered to
the application layer of the receiving-side.

Once the receiver delivers a message to the application layer, the receiver starts to
repeatedly acknowledge the recently delivered message over the selected paths. In ad-
dition, the receiver also restarts its counters and the log of received messages upon a
message delivery to the application layer. Similarly the sender count acknowledgments
to the current label used, when the sender receives at least capacity · n + 1 acknowl-
edgments over f +1 vertex-disjoint paths, the sender fetches the next message from the
application layer, changes the label and starts to send the new message.
The pseudocode of Algorithm 2 In every iteration of the infinite loop, pi fetches
Message, prepares Message’s label (line 3) and starts sending Message over the
selected paths, see the procedure ByzantineFaultTolerantSend(Message). When
pi gets enough acknowledgments for Message (line 4), pi stops sending the current
message and fetches the next. Upon receiving a message msg, node pi tests msg’s des-
tination (line 6). When pi is not msg’s destination, it forwards msg to the next node on
msg’s intended path, after updating msg’s visited path. When pi is msg’s destination,
pi checks msg’s type (line 9). When msg’s type is Data, pi inserts the message pay-
load and label to the part of the data structure associated with the message source, i.e.,
the sender, and the message visited path (line 10). In line 12, node pi checks whether
f + 1 vertex-disjoint paths relayed the message at least capacity · n + 1 times, where
capacity is an upper bound on the number of messages in transit over a communication
link. If so, pi delivers the msg to the application layer (line 20), clears the entire data
structure and finally sends acknowledgments on the selected paths until a new message
is confirmed. Moreover, in line 21 we signal that we are ready to receive a new mes-
sage. When msg’s type is ACK, we act almost as when the message is of type Data.
When the condition in line 18 holds, we signal that the message was confirmed at the
receiver by setting Approved to be true, in line 18. We note that the code of Algo-
rithm 2 considers only one possible pair of source and destination. A many-source to

Algorithm 2: Self-stabilizing Byzantine resilient end-to-end delivery (pi’s code)
Interface: FetchMessage(): Gets messages from the upper layer. We denote by InputMessageQueue the

unbounded queue of all messages that are to be delivered to the destination;
Interface: DeliverMessage(Source,Message): Deliver an arriving message to the higher layer. We

denote by OutputMessageQueue the unbounded queue of all messages that are to be delivered to
the higher layer. We assume that it always contains at least the last message inserted to it;

Input: ConfirmedTopology: The discovered topology (represented by a directed edge set, see Algorithm 1);
Data Structure: Transport layer messages: 〈Source, Destination, V isitedPath, IntentedPath,

ARQLabel, Type, Payload〉, where Source is the sending node, Destination is the
target node, V isitedPath is the actual relay path, IntentedPath is the planned relay path,
ARQLabel is the sequence number of the stop-and-wait ARQ protocol, and Type ∈ {Data,
ACK} message type, where DATA and ACK are constant;

Variable Message: the current message being sent;
Variable ReceivedMessages[j][Path] : queue of pj ’s messages that were relayed over path Path;
Variable Confirmations[j][Path] : pj ’s acknowledgment queue for messages that were relayed over Path;
Variable label: the current sequence number of the stop-and-wait ARQ protocol;
Variable Approved: A Boolean variable indicating whether Message was accepted at the destination;
Function: NodeDisjointPaths(S): Test S, a set of paths, to encode at least f + 1 vertex-disjoint paths;
Function: FloodedPath(MessageQueue,m) : Test whether m is encoded by the first capacity · n + 1

messages in MessageQueue.;
Function: getDisjointPaths(ReportedTopology, Source,Destination) : Get a set of vertex-disjoint

paths between Source and Destination in the discovered graph, ReportedTopology (Figure 2).;
Function: ClearQueue(Source) : Delete all data in ReceivedMessages[Source][∗];
Function: ClearAckQueue(Destination) : Delete all data in Confirmations[Destination][∗];

1 while true do
2 ClearAckQueue(Message.Destination)
3 (Message, label)← (FetchMessage(), label + 1 modulo 3)
4 while Approved = false do ByzantineFaultTolerantSend(Message)

5 Upon Receive (msg) From pj ;
begin

6 if msg.Destination 6= i then
7 msg.V isitedPath← msg.V isitedPath ∪ {j}
8 send(msg) to next (msg.IntendedPath)

9 else if msg.Type = Data then
10 ReceivedMessages[msg.Source][msg.V isitedPath].insert(〈msg.Payload,

msg.ARQLabel 〉)
11 let Paths← {Path : FloodedPath(Confirmations[msg.Source][Path], msg)}
12 if NodeDisjointPaths(Paths) then
13 NewMesssage← true
14 Confirm(msg.Source,m.ARQLabel,m.Payload)

15 else if msg.Type = ACK then
16 if label = msg.ARQLabel then

Confirmations[msg.Source][msg.V isitedPath].insert(〈msg.Payload,
msg.ARQLabel〉)

17 let Paths← {Path : FloodedPath(Confirmations[msg.Source][Path],
〈msg.Payload, msg.ARQLabel 〉)}

18 if NodeDisjointPaths(Paths) then Approved← true

19 Function: Confirm(Source, ARQLabel, Payload);
begin

20 if CurrentLabel 6= ARQLabel then DeliverMessage(Source, Payload)
21 (CurrentLabel, NewMessage)← (ARQLabel, false)
22 ClearQueue(Source)
23 while NewMessage = false do ByzantineFaultTolerantSend(〈 Source, ARQLabel,

ACK, Payload〉)
24 Function: ByzantineFaultTolerantSend(〈Destination,ARQLabel, Type, Payload〉);

begin
25 let Paths← getDisjointPaths(ConfirmedTopology, i,Destination)
26 foreach Path ∈ Paths do send(〈i,Destination, ∅, Path,ARQLabel, Type, Payload〉) to

first(Path)

many-destination version of this algorithm can simply use a separate instantiation of
this algorithm for each pair of source and destination.
Correctness proof. We show that message delivery guarantees hold after a bounded
convergence period. The proof is based on the system’s ability to relay messages over
f + 1 correct vertex-disjoint messages (Figure 2), and focuses on showing safe mes-
sage delivery between the sender and the receiver. After proving that the sender fetches
messages infinitely often, we show that within four such fetches, the message delivery
guarantees hold; receiver-side delivers all of the sender’s messages and just them. The
proof in detail appears in [18]. Let us consider messages, m, and their acknowledge-
ments, that arrive at least (capacity ·n+1) times over f +1 vertex-independent paths,
to the receiver-side, and respectively the sender-side, with identical payloads and labels.
The receiver, and respectively the sender, has the evidence that m was indeed sent by
the sender, and respectively, acknowledged by the receiver. The sender and the receiver
clear their logs whenever they have such evidences about m. The proof shows that, af-
ter a finite convergence period, the system reaches an execution in which the following
events reoccur: (Fetch) the sender clears its log, fetches message m, and sends it to the
receiver, (R-Get) the receiver gets the evidence that m was indeed sent by the sender,
(Deliver) the receiver clears its log, delivers m, and acknowledge it to the sender, and
(S-Get) the sender gets the evidence thatmwas acknowledged by the receiver. Namely,
the system reaches a legal execution.

First we prove that event Fetch occurs infinitely often, in the way of proof by con-
tradiction. Let us assume (towards a contradiction) that the sender fetches message m
and then never fetches another message m′. The sender sends m and counts acknowl-
edgments that has m’s label. According to the algorithm, the sender can fetch the next
message, m′ 6= m, when it has the evidence that m was indeed acknowledged by the
receiver. The receiver acknowledges m’s reception when it has the evidence that m was
indeed sent by the sender. After nullifying its logs, the receiver repeatedly sends m’s
acknowledgments until it has evidences for other messages, m′, that were indeed sent
by the sender after m. By the assumption that the sender never fetches m′ 6= m, we
have that the receiver keeps on acknowledgingm untilm′ 6= m arrives from the sender.
Therefore, m arrives from the sender to the receiver, and the receiver acknowledges m
to the sender. Thus, a contradiction that the sender never fetches m′ 6= m.

The rest of the proof shows that (eventually) between every two event of type Fetch,
also the events R-Get, Deliver and S-Get occur (and in that order). We show that this
is guaranteed within four occurrences of event Fetch. Following the fetch of each of
the first three messages and before the next one, the sender must have evidence that
the receiver executed event Deliver, i.e., clearing the receiver’s log. Note that during
convergence, this may surely be false evidence. Just before fetching a new message in
event Fetch, the sender must clear its logs and reassign a label value, say, the value is
0. There must be a subsequent fetch with label 1, because, as explained above, event
Fetch occurs (infinitely often). Since the sender clears its logs in event Fetch, from
now on and until the next event Fetch, any corrupted message found in the sender’s log
must be of Byzantine origin. Therefore, the next time sender gets the evidence that m
was acknowledged by the receiver, the receiver has truly done so. Note that between any
such two (truthful) acknowledgments (with different labels), say with label, 1, 2, . . ., the

receiver must execute event Deliver and clean its log, see Algorithm 2, line 22. Since
the sender sends over f+1 correct paths, and the receiver’s logs are clear, eventually the
receiver will have evidence for the message with label 0. As corrupted messages origi-
nate only from Byzantine nodes and there are at most f such nodes, the receiver’s log
may not contain evidence for non-sender messages. To conclude, starting from the 4-th
message, the receiver will confirm all of the sender’s messages, and will not confirm
non-sender messages.

5 Extensions and Conclusions

As an extension to this work, we suggest to combine the algorithms for r-neighborhood
network discovery and the end-to-end capabilities in order to allow the use of end-
to-end message delivery within the r-neighborhoods. These two algorithms can be
used by the nodes, under reasonable node density assumptions, for discovering their r-
neighborhoods, and, subsequently, extending the scope of their end-to-end capabilities
beyond their r-neighborhood, as we describe in the following. We instruct further re-
mote nodes to relay topology information, and in this way collect information on remote
neighborhoods. One can consider an algorithm for studying specific remote neighbor-
hoods that are defined, for example, by their geographic region, assuming the usage of
GPS inputs; a specific direction and distance from the topology exploring node defines
the exploration goal. The algorithm nominates 2f + 1 nodes in the specific direction
to return further information towards the desired direction. The sender uses end-to-end
communication to the current 2f + 1 nodes in the front of the current exploration, asks
them for their r-neighborhood, and chooses a new set of 2f + 1 nodes for forming a
new front. It then instructs each of the current nodes in the current front to communicate
with each node in the chosen new front, to nominate the new front nodes to form the
exploration front.

To ensure stabilization, this interactive process of remote information collection
should never stop. Whenever the current collection process investigates beyond the
closest r-neighborhood, we concurrently start a new collection process in a pipeline
fashion. The output is the result of the last finalized collection process. Thus, having a
correct output after the first time a complete topology investigation is finalized.

In this work we presented two deterministic, self-stabilizing Byzantine-resilience al-
gorithms for topology discovery and end-to-end message delivery. We have also consid-
ered an algorithm for discovering r-neighborhood in polynomial time, communication
and space. Lastly, we mentioned a possible extension for exploring and communicating
with remote r-neighborhoods using polynomial resources as well.

The obtained end-to-end capabilities can be used for communicating the public keys
of parties and establish private keys, in spite of f corrupted nodes that may try to con-
duct man-in-the-middle attacks, an attack that the classical Public key infrastructure
(PKI) does not cope with. Once private keys are established encrypted messages can
be forwarded over any specific f + 1 node independent paths, one of which must be
Byzantine free. The Byzantine free path will forward the encrypted message to the
receiver while all corrupted messages will be discarded. Since our system should be
self-stabilizing, the common private secret should be re-established periodically.

Bibliography

[1] Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: 10th Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 19-21, 1991. (1991) 51–59

[2] Dolev, S.: Self-Stabilization. MIT Press (2000)
[3] Lynch, N.: Distributed Computing. Morgan Kaufmann Publishers (1996)
[4] Al-Azemi, F.M., Karaata, M.H.: A stabilizing algorithm for finding two edge-

disjoint paths in arbitrary graphs. In: 13th Stabilization, Safety, and Security of
Distributed Systems (SSS’11). (2011) 433–434

[5] Hadid, R., Karaata, M.H.: An adaptive stabilizing algorithm for finding all disjoint
paths in anonymous mesh networks. Comp. Comm. 32(5) (2009) 858–866

[6] Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum metric spanning tree made
byzantine tolerant. In: DISC. (2011) 150–164

[7] Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of
byzantine faults. IEEE Trans. Parallel Distrib. Syst. 20(12) (2009) 1777–1789
see errata via http://vega.cs.kent.edu/˜mikhail/Research/
topology.errata.html.

[8] Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks (pre-
liminary version). In: FOCS, IEEE Computer Society (1988) 206–220

[9] Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Computing
16(1) (2003) 49–68

[10] Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.:
Bar gossip. In: 7th symposium on Operating systems design and implementation.
OSDI ’06, Berkeley, CA, USA, USENIX Association (2006) 191–204

[11] Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-
channel radio network. In: Distributed Computing, 21st International Symposium
(DISC’07). (2007) 208–222

[12] Alvisi, L., Doumen, J., Guerraoui, R., Koldehofe, B., Li, H.C., van Renesse, R.,
Trédan, G.: How robust are gossip-based communication protocols? Operating
Systems Review 41(5) (2007) 14–18

[13] Burmester, M., Le, T.V., Yasinsac, A.: Adaptive gossip protocols: Managing secu-
rity and redundancy in dense ad hoc networks. Ad Hoc Net. 5(3) (2007) 313–323

[14] Fernandess, Y., Malkhi, D.: On spreading recommendations via social gossip. In
Meyer auf der Heide, F., Shavit, N., eds.: SPAA, ACM (2008) 91–97

[15] Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless
ad-hoc networks. In: DSN, IEEE Computer Society (2005) 160–169

[16] Paquette, M., Pelc, A.: Fast broadcasting with byzantine faults. Int. J. Found.
Comput. Sci. 17(6) (2006) 1423–1440

[17] Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for build-
ing self-stabilizing distributed protocols (extended abstract). In: FOCS, IEEE
Computer Society (1991) 258–267

[18] Dolev, S., Liba, O., Schiller, E.M.: Self-stabilizing byzantine resilient topology
discovery and message delivery. CoRR abs/1208.5620 (2012)

http://vega.cs.kent.edu/~mikhail/Research/topology.errata.html
http://vega.cs.kent.edu/~mikhail/Research/topology.errata.html

