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Abstract. Recovering from attacks is hard and gets harder as the time between
the initial infection and its detection increases. Which files did the attackers mod-
ify? Did any of user data depend on malicious inputs? Can I still trust my own
documents or binaries? When malcode has been active for some time andits ac-
tions are mixed with those of benign applications, these questions are impossible
to answer on current systems. In this paper, we describeDiskDuster, an attack
analysis and recovery system capable of recovering from complicatedattacks in
a semi-automated manner.DiskDuster traces malcode at byte-level granularity
both in memory and on disk in a modified version of QEMU. Using taint analy-
sis,DiskDuster also tracks all bytes written by the malcode, to provide a detailed
view on what (bytes in) files derive from malicious data. Next, it uses this infor-
mation to remove malicious actions at recovery time.

Keywords: Attack recovery, dynamic taint analysis

1 Introduction

We describeDiskDuster, a semi-automated system to help recover from intrusions. In-
trusions may result from remote attacks, open network shares, exploits (Conficker [22]),
user-installed Trojans (some versions of Torpig [27]), etc. However it spreads, the mali-
cious code may interfere in deep and involved ways with the system state and removing
the infection and its effects is difficult. For instance, Torpig turns off anti-virus scanners,
modifies data, steals confidential information, and downloads/installs more malware on
the victim’s computer. Other attacks destroy data, or encrypt files for ransom.

Our recovery procedure aims to return the system to a sane state, as existed just be-
fore the attack, while retaining as much of the recent user data as possible. We show that
we can undo most of the effects of complicated attacks. As an example, we demonstrate
the usefulness of our approach for drive-by-downloads thatfetch and execute malware
that subsequently modifies the registry, and infects other programs that, in turn, modify
system state. And so on. See Figure 2 for a full description ofour running example. We
evaluate our solution with several real attacks on Windows.

Recovering from attacksDespite a plethora of defense mechanisms, attackers still man-
age to compromise computer systems. Sometimes they do so by corrupting memory
and injecting a small amount of shellcode to download and install the real malware.
Sometimes the users themselves install trojanized software. To make matters worse, the
malware may be active for days before it is discovered.
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Upon discovery of a compromised machine, one of the most challenging questions
is: what did the malware do? Which files has it modified? Did the attackers change or
corrupt my financial records? Can I still trust any of the filescreated after the compro-
mise, or should I check each and every one manually? Did the initial attack spread to
other programs? And, most importantly, can Iundo the malicious actions and restore
the system to a sane state, without losing my recent data?

Currently, the only sane state a system can revert to is the last known good backup.
This leaves the question of what to do with the changes to the system that occurred
since then. Ignoring them completely is safe, but often unacceptable—losing valuable
data generally is. Accepting them blindly is easy, but not safe—modifications may be
the result of the malware’s actions. However, the alternative of sifting through each of
the files (or even blocks) on disk one by one to see whether it can still be trusted may be
too time-consuming. Thus, we developedDiskDuster to automate most of this process.

High-level overviewFigure 1 illustratesDiskDuster’s main flow of operations. The cir-
cled numbers in the text below correspond to the numbers in the figure. To minimize the
performance impact, and to retain as much of information about the attack as possible,
we decouple the analysis and recovery from the production machine. Thus,DiskDuster
records the execution on the live production machine1© and replays it2© on a dedicated
security server with additional security checks and recovery operations3©.
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Fig. 1. Intrusion recovery in a decoupled security model.

To recover the user data after an infection, we assume the presence of at least one
detection method4©. The nature of the detection method is not important. The prototype
in this paper works with dynamic taint analysis (DTA) and AV scanning, but we can
easily add system call analysis or other techniques.

As soon asDiskDuster detects an intrusion in the replay, the user shuts down the
original machine, while the security server continues to replay the trace, using DTA to
monitor all the malcode’s actions5©, tainting all writes by the malcode to memory and
disk as malicious. Taint propagates whenever the maliciousbytes are read, copied, or
used in ALU operations. If malicious bytes compromise otherprocesses,DiskDuster
traces those also. Finally,DiskDuster cleans up the system by replaying benign disk
writes up to the moment of infection. For the time between theinfection moment and
the detection moment,DiskDuster classifies all disk writes as ‘benign’ (not affected
by the attack), ‘malicious’ (written by a malicious process) and ‘suspicious’ (possibly
affected by the attack). Only suspicious data requires manual intervention.

Contributions Most existing intrusion recovery approaches assume that the infection
cannot spread to the kernelitself [15, 3, 14]—a very strong assumption that typically
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does not hold in practice. Others provide very limited protection (e.g., modification, but
not removal, of system state and a few system files only [20]),or require users to define
trusted data and malware manually [3]. Finally, existing approaches are typically tied
to specific operating systems (often Linux, to have access tosource code) [11, 28, 14].

In contrast,DiskDuster operates at the level of the (virtual) hardware and the ap-
proach can be applied to any OS. Throughout this paper, we focus on Windows, as it
is (still) easily the most popular attack target. In addition, DiskDuster protects both the
kernel and user processes and handles modification and removal of any file.

Thus, the contribution of this paper is an intrusion analysis and recovery system on
top of a hardware emulator that works withunmodifiedOSs and applications and pro-
tects both kernel and user processes against complicated attacks. Our goal is to recover
userdata, but the system helps to recover other files and folders also.

Moreover, where modern tainting systems typically detect or track an attack on a
single process,DiskDuster tracks the attack and all related processes, as well as their
spread throughout the system. For instance, we track all disk writes of the malicious
code, and take appropriate action when a benign process reads such bytes. Likewise,
we treat processes that are started by a malicious process asmalicious also. The same
is true for threads injected by malicious code in a benign program. We are not aware of
other systems with the same comprehensive tracking of malicious activity.

Tracking infections requires tracking the actions and datagenerated by the attack.
Specifically, we need to know where this data ends up and what actions and data depend
on it. Where almost all state-of-the-art intrusion recoverysolutions [14, 20] construct
dependency graphs explicitly,DiskDuster tracks dependencies directly, by means of
dynamic information flow tracking (taint analysis) and at byte-level granularity. Doing
so is simpler and potentially weaker. But as it requires verylittle knowledge of the OS, it
enables us to (a) support different OSs, and (b) handle kernel infections also. Moreover,
we will see that the wayDiskDuster handles implicit flows is very simple and yet very
powerful. It allows it to limit taint tracking to explicit flows during analysis, while not
losing even a byte of implicitly modified data (although overtainting may well occur).

Clearly, recovery cannot be complete if the attack had side effects beyond this sys-
tem. For instance, if the malware sent spam, or leaked information to an external party,
there is no way to undo this. We do revert changes on the file systems. We think this
is sufficient for cleaning up infections locally. Even if some (memory-resident) attacks
do not themselves leave any presence on disk, this is not a problem forDiskDuster. As
long as it can detect the attack (e.g., using taint analysis), it will remove all disk writes
that the malware influenced, while the malware itself will disappear after the reboot.

2 Threat model and assumptions

The ideal intrusion recovery system, upon detecting an attack, removes all harmful ac-
tions related to the attack automatically, leaving only changes to the system unaffected
by the attack. Fundamentally, this is not possible—at least not in the general case. For
instance, after an attack deletes the AV binary, a legitimate user may write a memo: “No
AV scanner present”. Automated recovery may restore the AV scanner, but cannot spot
the relation with the memo, resulting in inconsistencies (see also Section 5).
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A nasty attack

The effects of real-world attacks like Torpig and Conficker have been complex and devastat-
ing. In this paper, we combine in our running example the effects of theseand a number of
others to create a complicated attack:

1. A drive-by-download infects the browser.
2. The attack immediately migrates to another running process on the same machine—

infecting this process also. The migration complicates the tracking, since thesecond pro-
cess did not connect to a malicious website.

3. The attack deletes the antivirus program.
4. Next, the shellcode in the second process downloads and executes thereal malware and

adds a registry key to make itself persistent across reboots.
5. Later, the malware encrypts the ‘Documents’ folder on disk, for ransom purposes, while

deleting itself to prevent security experts from reverse engineering it.

Goal: to clean up the system and remove all traces of the attack.

Fig. 2.Attack scenario used as a running example.

In practice, however, (semi-)automated recovery can be a powerful tool in post-hoc
sanitization. By tracing what data was directly or indirectly generated by the attack, we
reduce the load on the administrator significantly. We do notclaim thatDiskDuster is
perfect. While it represents a significant improvement over the state of the art, and often
restores systems automatically, we require human intervention in some cases. Still, even
hereDiskDuster indicates in detail which (parts of) files need further scrutiny.

AssumptionsIn this paper, we assume the following:
1. Intrusions occur at arbitrary points in time and may not bedetected until later.
2. Attacks can infect both user processes and the kernel.
3. Attacks may hide themselves root-kit style and turn off AVscanners and other

defensive mechanisms on the guest OS.
4. DiskDuster can detect the attack and trace it back to the moment of infection. Given

a recorded execution trace, we believe this is a reasonable assumption. A rootkit
may hide itself, but it cannot remove itself from the execution trace, which means
that AV scanners, taint trackers and other detection methods have a chance to detect
it eventually. Once an AV scanner detects a trojan on the system, we skip backwards
through the trace until we find a snapshot without the trojan binary, and then replay
the execution until it is created and executed for the first time.

5. Attacks cannot tamper with the recording process undetected. As the recorder runs
at the level of virtual hardware, this is a reasonable assumption.

Decoupled securityWhile it is possibleto runDiskDuster on a stand-alone system, we
designed it for decoupled security [4]. Decoupled securityrecords the execution on a
live production machine and replays it on a dedicated security server with additional
security checks and recovery operations (see Fig.1). In other words, all security checks
and recovery operations run on the server.

Decoupled security hides the overhead of security checks from the production sys-
tem. At a small, constant cost of recording on the productionsystem, we can apply
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anysecurity check on the replay side, including those too expensive to run on produc-
tion systems. Since we use full-system DTA, the overhead of our analysis is very high
(about 20x), we prefer to run it devolved from the productionmachine. Also, it is not
possible for malware to hide ‘rootkit-style’ after the infection. As the initial point of
infection is preserved in the execution trace, it can be found by periodic rescanning of
older traces with new signatures. Finally, recording provides automatic backup, fine-
grained versioning, and audit trails. Not surprisingly, decoupled security has become a
popular security model [8, 4, 24, 33]. Moreover, vendors like VMWare now offer record
and replay functionality in their products [31].

Of course, recording and storing execution traces is not free, but in practice, the
costs are low (a few percent increase of CPU overhead and minimal log sizes [4, 24]).
A more serious drawback of decoupled security is that attacks are always detecteda
posteriori. The same is true for traditional AV scanners. If a new trojancomes out, it
takes a while before AV databases contain a signature for it.In either case, the challenge
is to clean up the system and remove all traces of the attack.

Implicit flows One of the most difficult problems for dynamic taint analysisis that of
implicit flows [2, 26], and we do not pretend to solve it in thispaper. An implicit flow
occurs when an assignment depends on a tainted value in a condition. For instance,
consider the following code:

int y=0; if (x==1) y=1;

If x is tainted, perhapsy should be tainted also? After all, its value is completely
determined byx. The problem is that implicit flows often lead to overtainting [2, 26].
Recent work by Kang et al. [13] presents an interesting approach to curtail overtainting
for certain applications, but for now implicit flows cannot be handled reliably. We do
not try to solve them at all, but we cannot afford to ignore them either, as skipping them
leads to false negatives.DiskDuster simply takes a conservative approach for malicious
data on disk; whenever a process has read malicious or suspicious bytes, all subsequent
writes are marked ‘suspicious’. As a result, taint laundering is impossible. We discuss
more interesting/problematic scenarios related to implicit flows in Section 5.

3 Architecture

After detecting an attack,DiskDuster traces it back to find the point of infection. It
then uses DTA to track the malicious code’s actions and undo the malicious effects.
DiskDuster tries to remove these effects by restoring the disk to a pre-infection state,
while presenting a user with lists of files and folders that became malicious or suspicious
in the period between the attack and the detection. While the user can safely assume that
files classified as benign are intact, they need to scrutinizethe suspicious ones. Refer to
Fig. 3 for a timeline illustrating the course of actions performed byDiskDuster.

In addition,DiskDuster supports investigators by analyzing the attack. For instance,
for drive-by-downloads,DiskDuster separates the shellcode from its packers, and when
the shellcode downloads malware, it traces what bytes on disk change.
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Fig. 3. DiskDuster timeline. Upon detecting an attack,DiskDuster restores the disk to a pre-
infection state1©, removes all malicious data, and presents a list of all suspicious files/folders 2©.

3.1 Decoupling DiskDuster: recording and replaying execution traces

Recording and replaying executions is hardly novel. In our lab, we have implemented
and written about several such systems ourselves, both at full-system [10] and pro-
cess [24] granularity. Others built similar solutions [8, 1, 30, 19, 33]. Moreover, VMware
Workstation 6.5 introduced replaying as standard feature.

By recording only a minimum of non-deterministic events, the overhead of record-
ing is small both in speed (a few percent) and storage (a few hundred Bps) [4]. More-
over, even with expensive detection methods like DTA, thelag between the original
execution and the replica is minimal. In fact, the replayer typically has no problem
keeping up with the recorder, mainly because it does not needto wait (e.g., for reads
from the network or file system, or in idle loops). This is known as ‘idle boost’.

While the best fit forDiskDuster is clearly our tailor-made Qemu-based full system
replayer [10], we believe that with some effort other recorders, including VMWare’s
could be used also. Indeed, VMWare showed that one can recordon VMWare and
replay on Qemu in Aftersight [4]. In this paper, however, we focus on recovery.

3.2 Tracking, logging, and snapshotting

Figure 4 illustrates theDiskDuster components. We briefly enumerate each of the mod-
ules here, and describe them in more detail in subsequent sections. All these modules
operate at the level of the emulated hardware and work with unmodified OSs.

OS

process

monitor

disk

monitor

logger snapshot

recovery

taint

tracking

benign

process

malicious

process

Fig. 4.DiskDuster architecture

Tainting At the core of our architecture is a dy-
namictaint tracking module, capable of tracking
data in memory and on disk. The module is based
on Argos [23] and the propagation rules are sim-
ilar to those of TaintCheck [18] and Minos [6]:
(a) taint propagates to the destination (register or
memory) whenever tainted data is copied, or used
as a source operand in an arithmetic operation,
(b) we clean the destination whenever an opera-
tion has a constant output (i.e., the output does not
depend on the instruction’s inputs), and (c) like
most systems, we do not propagate taint on deref-
erences of tainted pointers.
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Taint tracking inDiskDuster serves two different purposes. First, we use it just like
most other DTA solutions—to detect control flow diversion andcode injection attacks.
For instance,DiskDuster taints all data coming from the network and raises an alarm
whenever such bytes modify the control flow of the program directly (e.g., by over-
writing the return address). Since we do not track indirect flows,DiskDuster may miss
attacks that corrupt memory by means of bytes propagated through indirect transfers,
be it tainted dereferences in translation tables, or implicit flows in conditions. It simply
means thatDiskDuster is not a pefect detector, but we do not see this as a serious limita-
tion. We can easily complementDiskDuster with other detectors, such as AV scanners,
but perhaps also more powerful taint trackers. After we detect an attack, the implicit
flow is no longer a problem, because we conservatively track everything that could be
influenced by malicious data.

Second, and much more essential, is that DTA allows us to monitor malicious pro-
grams. For instance, once we know that a process is malicious, we mark all bytes written
by the process as malicious also—until we reach the end of the execution trace. Doing
so allows us to separate good data from bad data at recovery time. These two uses re-
quire different types of taint. Thus, besides the clean/untainted tag, we distinguishthree
types of taint inDiskDuster, corresponding to three sources of taint:

Untrusted (Ū) We assign̄U tags to all data from untrusted sources (like the network).
Malicious (M̄) We assign̄M tags to all bytes written by malicious processes.
Suspicious (¯S) When a benign process readsM̄ bytes, we propagate that tag through

the execution (see above). Thus, all writes ofM̄ bytes to disk are also tagged̄M.
However, even if the written data does not derive directly from M̄ data, it may have
been influenced by it via an implicit flow. Thus, after a benignprocess reads̄M or
¯S bytes, we label all its writes not already taggedM̄ with the ¯S tag.

Monitor modulesThe two monitor modules trace both process execution and disk in-
put/output. Specifically, thedisk monitor keeps track of all reads and writes to disk,
while theprocess monitor tracks running processes. WhenDiskDuster detects an at-
tack, it marks the compromised process as ‘malicious’ and notifies the disk monitor.
From now on, all writes by this process receive anM̄ tag. In the process monitor, ma-
licious processes are handled in a special manner. For instance, when they start a new
process, the created process will be marked malicious also.

Logging, snapshotting and recoveryTheloggerstores all information generated by the
two monitor modules. The logs always include each write and read on disk, and in the
case of a compromised process, they also contain detailed information about the context
of the process. Thesnapshotmodule takes snapshots of the disk drive according to user-
specified policies. Snapshotting allows us to skip backwards and forwards through an
execution trace quickly. Therecoverymodule, finally, sanitizes the system by replaying
write operations from the last snapshot until the moment of infection.

3.3 Attack detection

In our current prototype,DiskDuster detects attacks in one of two ways. First, it detects
memory corruption and code injection attacks by means of dynamic taint analysis. The
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process is similar to other full system taint trackers like Argos [23] and Minos [6]. All
data arriving from the network is marked ‘untrusted’ (Ū). Whenever such data modifies
a process’ control flow (e.g., when it ends up in the program counter), the process
monitor treats it as an attack.

Second, when an external AV scanner detects new malware, we explicitly contact
the process monitor to mark the corresponding process as malicious. The AV scanner
is useful for attacks that do not compromise an existing program. For instance, a trojan
installed by the user. Other detection methods can be plugged in easily. Regardless
of how we detect the attack, from that point onwards, the process monitor tracks the
malicious process.

3.4 The process monitor: tracking attacks at thread granularity

Upon detecting an attack, the process monitor closely monitors the offending pro-
cess(es) to track which files and processes it influences and how. In the process, the
process monitor classifies threads and processes as malicious, suspicious or benign.
First, we explain these categories, and then we focus on technical challenges to support
them. By default, all processes and threads arebenignand the only exceptions are the
malicious and suspicuous threads listed below.

Malicious threadsDiskDuster marks all processes corresponding to attacks reported
by the AV scanner or DTA module asmalicious. DiskDuster also treats a thread as
malicious if it is attacked by local processes—for instance,when it uses a DLL provided
by a malicious process, or when its parent is malicious. Oncea thread has become
malicious, all its writes are labeled with thēM tag. We say that a process is malicious if
it has a malicious thread.

Thus, the process monitor should both identify the malicious thread, and inspect
its execution context, such as the loaded dynamic libraries. Additionally, it tracks the
creation of new processes by malicious threads and marks them malicious also.

Suspicious threadsAs discussed in Section 2, accurate tracking of implicit dependen-
cies is difficult, if not impossible. However, ignoring themcauses false negatives. We
take a conservative approach, and tracksuspiciousthreads—threadspossiblyinfluenced
by malware—and ask users to verify the contents of suspiciousfiles during recovery.

A benign thread becomes suspicious when we can no longer guarantee that malware
does not influence its actions. First, whenever a benign thread has read a suspicious or
malicious byte using I/O routines (e.g., from a file, the registry, or through interprocess
communication), we consider it suspicious. Second, when a process has a malicious
thread, we cannot rule out implicit flows between the malicious and benign threads.
DiskDuster therefore considers all benign threads in this process suspicious. Finally,
a child of a suspicious thread is also suspicious. We label all ostensibly clean data
written by suspicious threads with the¯S tag. We call any process with suspicious threads
suspicious also.

Thus, the process monitor again collects all information necessary to identify a sus-
picious thread, and tracks the creation of its children. It also monitors the data passed
through the I/O routines (e.g., file reads and writes).
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Low level tracking to classify processesSince the monitor resides at the (emulated)
hardware level, process tracking is not trivial—normal process semantics as defined
by the operating system are not readily available. The problem of extracting high-level
semantic information from low-level data sources is known as the semantic gap, and has
sparked much research activity in recent years [7, 21]. We now discuss howDiskDuster
bridges it.

Process and thread identificationTo identify threads and processes at the level of a
processor emulator, we use the solution proposed in Antfarm[12]. It tracks changes of
thecr3 (or page directory base) register, which stores the physical address of the page
directory. As a rule, a context switch implies changing the set of active page tables, and
thus loadingcr3 with the value stored in the descriptor of the process to be executed.
DiskDuster usescr3 as a unique process identifier.

However, since all threads of a process share the page table directory, this mech-
anism does not distinguish between threads. To increase thegranularity of tracking,
the process monitor additionally looks up kernel-level data structures that hold process
information. In 32-bit Windows, the Thread Environment Block (TEB), pointed to by
the FS register, stores information about the currently running thread. AsDiskDuster
can easily reach this data structure from the emulator usingthe register, we extract all
relevant thread information directly from the TEB.

Tracking semanticsIn 32-bit Windows, the process monitor tracks the necessaryse-
mantic information by intercepting a number of functions from thekernel32 library.
These include the process creation functions, and the I/O routines, such as the file and
registry read functions, or the interprocess communication functions. To determine ad-
dresses of these functions, the process monitor implementsa solution typically used
by shellcode. Using the TEB,DiskDuster identifies first the Process Execution Block
(PEB), and then the loaded modules. Each loaded module contains the addresses and
symbol names of available functions.DiskDuster uses this information during calls,
jumps, and returns, and checks (at the level of the emulated hardware) if the program
counter indicates the entry point of a function we intercept. If so, it calls a registered
hook.

3.5 The disk monitor

As illustrated in Fig. 3, the disk monitor tracks all reads and writes to disk to support
two of DiskDuster’s main tasks: (1) restore the disk drive to a pre-infection state, (2) for
all post-infection disk activity, present the user with an analysis of clean and suspicious
files (so that she can safely keep the clean ones, and verify the suspicious ones).

The first task requires a replay of all disk writes that took place in the period between
the last uncorrupted snapshot and the attack. The disk monitor simply logs all operations
which modify data on disk, so that they can be repeated later.

Since the analysis phase requires precise information about clean, suspicious, and
malicious parts of the disk,DiskDuster extends its taint tracking module to handle disk
operations, and stores taint values of the disk contents in adisk shadow map. Whenever
a process stores data to disk, the disk monitor checks whether it should label these bytes



10

with a tag. If the process is listed as suspicious or malicious, the data is labelled with
¯S or M̄, respectively. Similarly, if the bytes carry āU, ¯S, or M̄ tag already,DiskDuster
simply propagates it to the disk map. Conversely, when the program reads data from
disk, the disk monitor propagates tags from the disk map intothe main memory map.
For instance, when a program reads tainted bytes from disk into memory,DiskDuster
tags the corresponding bytes with a tainted tag in the memorymap.

The diskmap can store the disk taint information at block level or at byte level,
depending on the user’s needs. The block level would provideinformation about which
files were touched by an attack, while the byte level would be more specific and show
which exact bytes in the files were changed by the malicious process. In the evaluation
we used a byte level map. The taint propagation between the disk map and the main
memory map is done at the level of the IDE emulator of the VM.

3.6 Snapshots

OnceDiskDuster detects an attack, it reverts the disk to a pre-infection state by replay-
ing disk writes that took place before the infection. Since replaying the execution from
boot time would incur a high overhead,DiskDuster uses disk snapshots. Upon detecting
an attack, it searches for the last snapshot before the infection, and replays only the
disk writes that happened since.DiskDuster’s snapshots are subject to simple policies,
like “snapshot at fixed time intervals”, or “snapshot aftern disk writes”. For our exper-
iments, we use the second option, and snapshot when the totalnumber of writes equals
10% of the disk size1. In practice, this occurred approximately every 10 hours.

Suspending the execution may lead to undesired consequences, such as time-outs on
network connections. To avoid such problems,DiskDuster implements live snapshots of
disk drives. Once it triggers a snapshot,DiskDuster creates a copy of the drive in the
background while the VM keeps running. During this process,all writes to disk generate
a copy of the modified blocks to the snapshot before they are committed to disk.

3.7 Recovery and analysis

System recovery begins when the user has shut down the machine. As illustrated in
Fig. 3,DiskDuster starts by reverting the disk to a pre-infection state, then closely mon-
itors infected processes to find out which files, folders and processes they influenced.

First, DiskDuster determines the initial intrusion moment, or more specifically, the
first disk write by a malicious process. In the case of an attack detected by DTA, the
intrusion moment is fixed exactly at the point where a good process turns into a bad one.
If an AV software detects the infection,DiskDuster scans the logs for an operation that
modifies a disk block corresponding to a file matching the AV signature. In either case,
DiskDuster replays disk operations which took place before the first malicious write,
and it provides the user with a disk in a benign state.

Next, DiskDuster monitors offensive processes to log the data they influence (Sec-
tions 3.4-3.5), and presents a user with a list of clean, and suspicious (¯S) files (malicious

1 The blocks need not be unique, so we snapshot also if the same 2GB of a200GB drive are
written 10 times.
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data is removed automatically). To map clean and suspiciousdisk blocks to file names,
we use an ntfs library [25] to read the filesystem metadata from the physical disk. We
extract the semantics of the filesystem to find the file name corresponding to a block.

As the disk monitor works at the physical level, a block on disk can be located in
one of the following regions: (a) inside the filesystem and belonging to the data runs2

of a file, (b) inside the filesystem but in a free region (i.e. not used by any file), (c) in the
filesystem’s metadata, or (d) outside the filesystem (e.g., the region of physical sectors
0-63 used by the bootloader). The reason for tracking writesoutside the file system
regions, is that these sectors are used by advanced malware like TDL4.

The DiskDuster resolver provides a list of filenames for the blocks that belong to
filesystem objects like files, folders or metadata, and keepsadditional information (like
region mappings) for the other blocks. Normal users will be interested mainly in the file
names, but security professionals may be interested also inthe other information.

4 Evaluation

We now evaluate the effectiveness ofDiskDuster in recovering from attacks. We do not
focus on performance, other than to say that the slowdown of 20x during analysis on the
replay side is no worse than that of other full-system DTA solutions [4, 23, 6]. Moreover,
the overhead is sufficiently small to make the replay side keep up (in fact, previous
experiments in decoupled security show that even with DTA slowdowns of 100x, the
replayer keeps up with the production system, because of theidle time boost [4, 10]).

In the remainder of this section, we useDiskDuster to recover from a variety of
attacks.

4.1 Experimental Setup

We ranDiskDuster on a machine with an Intel(R) Core(TM)2 Duo CPU E8400 @
3.00GHz, with 6MB cache, 4GB of RAM memory, and a SATA disk drive. The oper-
ating system running on the host was Linux with kernel version 2.6.32. As the guest
we ran Windows XP with RAM memory size of 1GB, and a disk drive of 3GB with an
NTFS partition stored in theraw format.

4.2 Workloads

To evaluateDiskDuster, we observe how well it recovers from an attack which has hap-
pened at a point in the past. We assume that malware is active for a while, and observe
how much data modified by the user in the time between the infection and the attack
DiskDuster can restore. To test with workloads that are both realistic and repeatable, we
recorded several real Windows XP sessions using ReMouse3, and replayed them once
the machine has been infected. The workloads contain the active use of a variety of
applications, including the Internet Explorer 6.0 web browser, the FoxIT PDF reader,

2 File content is made of data runs—lists of disk blocks with the actual content of the file
3 www.remouse.com



12

the standard Windows Picture and Fax Viewer photo editor, and the Notepad++4 source
code editor. For the experiments in Sections 4.3-4.4, we usefive workloads, four short
ones (denotedWS-x), and one long one (denotedWL-1). The short ones are one hour
each with different activities with detailed descriptions(see below), while the long one
captures three working days of a researcher in our lab.

• WS-1 - the user visits a number of webpages using IE 6.0 and stores the content of
several of them, only to reload them from disk later.

• WS-2 - using the FoxIT PDF reader, the user loads and reads severalPDF docu-
ments.

• WS-3 - the user writes and sends an email, downloads several pictures from the web
(IE 6.0) and edits them with the Windows Picture and Fax Viewer photo editor.

• WS-4 - in this session, the user writes a program using the Notepad++ source code
editor and makes a drawing using MS Paint. In both cases, the user stores, reloads,
modifies and saves the work in several files.

• WL-1 - in this session, the user engages in a wide variety of activities corresponding
to three full days of work.

4.3 Single step attacks

We first runDiskDuster with a set of straightforward attacks that do one or two things
only—to verify that it can recover from malicious actions in isolation. For this purpose,
we compromised the system using a drive-by-download from Metasploit (version 3.8.0-
dev) and ran the following test attacks at the start of the short workloads:WS-1,...,WS-4
(in each case, we “detect” the compromised process after exactly one hour):

(A) Binary patch. The malware binary downloaded modifies the executable file ofa
benign application (in this case, the IE 6.0 web browser, theFoxIT PDF reader,
and MS Paint binaries).DiskDuster performs the analysis, and reverts the binary to
its state before the attack.

(B) Persistent drive-by download.This time the malware adds a registry key to make
itself persistent across reboots.DiskDuster performs the analysis, removes the bi-
nary, and restores the registry to its state before the attack.

(C) File deletion. The downloaded malware deletes a file from disk.DiskDuster per-
forms the analysis, removes the binary, and reverts the deletion operation.

To evaluate the effectiveness ofDiskDuster, we perform two sets of measurements:
infection rates, andrecovery results. Infection rates illustrate how quickly taint spreads
over the disk. We present the amounts of suspicious, malicious, and untrusted disk data
over time. Recovery results show the status of the disk afterDiskDuster performed the
analysis. We discuss how many benign files and folders a user can safely keep, and how
many suspicious ones she needs to scrutinize. We focus on user data, but present results
for both\Documents and Settings, and\WINDOWS.

Fig. 5–7 show the result of these tests. The graphs present the spread of malicious,
suspicious and untrusted data on the whole disk over time (at5 min intervals), while the

4 http://notepad-plus-plus.org/
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tables count the files containing malicious and suspicious bytes. The files are gathered
into two categories:need review, andtemporary. The user needs to scrutinize the for-
mer, while temporary files indicate data which she can flush, without any loss of work,
for example, the cache and theHistory folder of IE 6.0, or thedllcache folder of
the\WINDOWS \system32 directory.
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Fig. 5.The binary patch attack: infection rates and recovery results for four 60 minute workloads.
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Fig. 6. The drive-by-download attack: infection rates and recovery results for four 60 minute
workloads.
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Fig. 7.The file deletion attack: infection rates and recovery results for four 60 minute workloads.

We make a few observations. First,WS-3 is more aggressive in spreading suspicious
and untrusted bytes. This makes sense, as the user downloadsa fair amount of data and
then edits it. All these bytes are at least untrusted, and if the browser was malicious,
then all the edits and subsequent writes of these benign processes are suspicious. Sec-
ond, the three attacks have very different profiles in the waythey spread malicious,
suspicious and untrusted bytes. This makes sense also, as some attacks make multiple
applications malicious, and thus spread more malicious bytes (e.g., the binary patch),
while others do not contain much malicious data at all (e.g.,the file delete). Finally, we
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see that the number of files left malicious or suspicious is small—typically, these are
files downloaded by a malicious process and processed by another process. Most of the
user data was recovered.

4.4 Complicated, real-world attacks

In this section, we useDiskDuster to recover from four complex attacks involving real
world malware, including the Win32/Sality virus [29], the Win32/Alureon trojan [17]
and the Win32/Hupigon backdoor [16]. We follow the advancedattack scenario of
Fig. 2, and test four malicious binaries in step 4. After launching an attack, we replay
the long workloadWL-1, which captures three working days (Section 4.2). We again
detect the attack at the end of the workload, promptingDiskDuster to start its analysis.

In each experiment, the user first infects IE 6.0 by visiting amalicious website. We
use Metasploit’s meterpreter to migrate the attack from thebrowser to another appli-
cation (e.g., the calculator). It deletes the antivirus program, downloads new malware
to disk, and executes it. Apart from its normal malicious activities, the malware adds a
registry key to make itself persistent across reboots, encrypts the Documents folder on
disk, for ransom purposes, and deletes itself from disk5. In all cases,DiskDuster was
able to restore the disk, undo the encryption, recover the AVscanner, etc.

In the remaining part of this section, we discuss the tested attacks in detail.

(I) Hupigon backdoor Win32/Hupigon [16] is a backdoor, which provides an at-
tacker with access to, and control of, an infected machine. Hupigon registers its
component as a service.

(II) Sality virus Win32/Sality [29] infects executable files. It replaces theoriginal
host code at the entry point of the executable to redirect execution to the poly-
morphic viral code, which has been encrypted and inserted inthe last section
of the host file. In addition, W32/Sality searches for specificregistry subkeys to
infect the executable files that run when Windows starts.

(III) Alureon trojan Win32/Alureon [17] is a trojan that allows attackers intercept
Internet traffic in order to gather confidential informationsuch as user names,
passwords, and credit card data. It may also allow to transmit malicious data to
the infected computer.

(IV) Zhelatin email worm / rootkit Zhelatin [9] spreads in e-mails with war-related
subjects as an attachment named ”video.exe”, ”movie.exe”,”click me.exe” and
so on. After start-up, it drops a randomly named file into the same folder where
it was started from and runs it; this file installs a rootkit and p2p (peer-to-peer)
component into the Windows System folder. In addition, it kills processes corre-
sponding to virus scanners.

Fig. 8-13 show the results of these tests. The graphs presentthe spread of tainted
data on the whole disk over time. The tables count the files containing malicious and
suspicious bytes for two attacks which perform lots of system activities: the Win32/Sality
virus and the Win32/Zhelatin email worm/rootkit. Observe that similarly to Section 4.3,

5 In record/replay, AV scanners can still detect it, as the full execution trace is available.
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taint spreads quite aggressively, and it is again expected.For example, all files a mali-
cious IE 6.0 process stores in theTemporary Internet Files folder, become ma-
licious as well. Next, sinceDiskDuster reverts the disk to a pre-infection state (while
keeping most recent changes in the user directory), we are not so concerned about the
taint in the system files. Finally, observe that the number ofother files is small—these
are again typically files downloaded by a malicious process,and modified by another
one.
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Fig. 8.The Win/32 Hupigon backdoor: infection rates for theWL-1 workload.
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Fig. 9. The Win/32 Sality virus: infection rates for theWL-1 workload.

Documents and Settings\diskduster WINDOWS

File info Malicious Suspicious File info Malicious Suspicious
Files KB Files KB Files KB Files KB

Need review
My Documents 11 25253.30 0 0 repair 2 14.33 1 0.21
Local Settings\Application Data 3 7.18 0 0 Microsoft.NET 24 104.66 1 3.21
Documents and Settings 9 950.50 1 53.98 system32 53 927.13 7 16.30
- - - - - WINDOWS 32 173.08 6 113.24

Temporary files
Local Settings\Temporary Internet Files65 566.79 1 16 system32\dllcache 14 87.18 1 1.19
Local Settings\Temp 34 74.75 2 6.52 - - - - -
Local Settings\History 3 23.85 1 0.62 - - - - -
Recent 5 4.16 1 1.19 - - - - -

Fig. 10.The Win/32 Sality virus: recovery results for theWL-1 workload. L S = Local Settings;
T I F = Temporary Internet Files

5 Limitations

As DiskDuster automatically recovers in the majority of cases and for verycomplicated
attacks, a valid question is: why not in all cases, and why do we recover user data only—
rather than the full system state? The answer is that there are subtle scenarios that are
problematic or impossible forDiskDuster to solve. They are related to implicit flows.
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Fig. 11.The Win/32 Alureon trojan: infection rates for theWL-1 workload. (Due to some prob-
lems with the replaying software, we limit the results to one working day.)
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Fig. 12.The Win/32 Zhelatin email worm/rootkit: infection rates for theWL-1 workload.

The first problematic scenario concerns implicit flow in the user’s head. We already
discussed it in Section 2: a user makes a note (in a memo, say) about the absence of an
AV scanner. As the information flows via the user’s mind,DiskDuster cannot detect it.

The second problematic scenario concerns checksums on datastructures with ma-
licious data. While not too common, the system occasionally performs a calculation
over data structures that contain malicious (M̄) data. For instance, consider an OS-
level linked list with a checksum. Both malicious processesand benign applications add
nodes to the list and update the checksum. WheneverDiskDuster detects malware, the
recovery process removes all malicious nodes from the list.However, doing so corrupts
both the list and its corresponding checksum. The correct action would be to remove
the malicious nodes and all nodes dependent on the maliciousnodes, and then to restore
the checksum. This is not possible without detailed semantic knowledge about the list.
Unfortunately, since the OS sometimes stores such data structures on disk, we may end
up with a corrupt system.

To ensure correctness in the presence of implicit flows,DiskDuster currently restores
the entire file to an benign version if any part of the file is flagged malicious. This results
in correct recovery, but drops more benign writes than strictly necessary.

Finally, there may be implicit dependencies on restored files. Consider again a
linked list manipulated by both malicious and benign processes and a benign process
that reads a few benign nodes from the list and writes them outto a log. As it does not

Documents and Settings\diskduster WINDOWS

File info Malicious Suspicious File info Malicious Suspicious
Files KB Files KB Files KB Files KB

Need review
My Documents 1 17.50 1 4.80 repair 0 0 2 8.75
UserInfo 0 0 1 32.06 Microsoft .NET 3 28.00 15 57.85
Cookies 0 0 2 72.95 system32 23 1283.74 13 43.07
NTUSER.DAT 1 1.20 0 0 WINDOWS 16 122.55 20 105.78

Temporary files
Local Settings\Temporary Internet Files 0 0 50 702.98 system32\dllcache 9 77.00 2 0.69
Local Settings\History 0 0 2 13.99 - - - - -
Local Settings\Application Data 0 0 1 1.59 - - - - -
Recent 0 0 5 3.88 - - - - -
Fig. 13.The Win/32 Zhelatin email worm/rootkit: recovery results for theWL-1 workload.
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readM̄ or ¯S data, it remains benign throughout its lifetime. At some point, DiskDuster
restores the file with the linked list to a previous safe state, as explained above.

The problem is: what do we do with the benign process’ log file?Because of the
implicit dependency on the file (and its malicious contents), we cannot keep it as is,
lest we introduce inconsistencies. Thus, we track the fact that the read accessed a file
thatDiskDuster restored, thus making the log file a candidate for restoration also. And
so on. The additional roll-backs keep the system consistent, but again lead to possibly
dropping a few more benign writes than strictly needed.

6 Related Work

Decoupled security checksRecording and replaying is used in many research projects [8,
1, 19]. Full decoupled security for virtual machines was introduced by VMware [4],
and the model was quickly picked up by others (e.g., for mobile phones [24] and fast
Xen VMs [33]). AfterSight [4] comes closest in spirit to the record and replay side of
DiskDuster. However, all these systems differ fromDiskDuster in that they limit them-
selves to attack detection and leave remediation to the administrator.

Data recoveryMost automated attack recovery systems either focus solelyon data on
disks (much like advanced versioning systems), or rely on the support of the target
OS—either in the form of a module inside the victim’s machine [15, 5, 11, 28, 32, 20,
14, 3], or a proxy [34, 28].

Many of these projects depend on external methods to indicate the root cause of an
infection, and to obtain high level semantics (e.g., the wayin which the OS uses the
password file, the dependencies between OS-level operations, etc.). Such information
facilitates the process of intrusion recovery, and aids in building dependency graphs [15,
11, 32, 14], and behavior models [20]. As a result, the analysis becomes more detailed
than in systems which operate at the machine level, likeDiskDuster.

However, since we cannot assume the integrity of the kernel of a monitored system,
it is possible that attacks hinder the analysis, for exampleby modifying the logs or
the dependency graphs. In contrast,DiskDuster carries out a comprehensive analysis
without relying on any kernel support whatsoever, and is still able to recover from very
sophisticated attacks. We now discuss the most related projects in more detail.

In Wayback [5] versioning is automatic at the write level: each write to the file cre-
ates a new version, so that access to any previous version is possible. Wayback needs
knowledge about the filesystem and modifies the monitored system. Similarly, Back-
Tracker [15] is implemented inside the OS and tracks OS objects. It extracts dependen-
cies between different components as the attack evolves andcan produce dependency
graphs.

Taser [11] uses a kernel module to log kernel operations on processes, filesystems
and the network for Linux systems. The analysis is decoupledand assumes that the
kernel of the monitored host is not compromised. Using the semantic information it
constructs detailed dependency graphs to track data flows.

SEE [28] explores one way isolation for Linux processes—processes do not share
the disk, and all their commits are written in different locations. It achieves such iso-
lation by interpositioning at the level of system calls and the virtual filesystem layer,
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using copy on write implemented as file copy operations. Essentially, it is a filesystem
proxy implemented as kernel modules that creates a shadow drive for the process. At
the end of execution, it either commits or discards the changes based on user input.
Thus, the user must reviewall changes. WithDiskDuster users review only suspicious
data, whileDiskDuster restores the malicious bytes.

Paleari et al. [20] aim to generate remediation procedures to purge infections from
a system, but the system can only recover system state and some system files of Win-
dows, and cannot handle deleted files. The system records system calls executed in the
emulated environment and infers behavior models based on sequences of the system
calls and their parameters.

Retro [14] is a recovery system for Linux that relies on a kernel module to generate
action history graphs. The design assumes that the kernel, filesystem, checkpoints or
logs are always safe. Another crucial assumption is that theinfection is discovered very
quickly, otherwise the graphs become too hard to manage. After detecting an infection,
the system reexecutes processes and may block if user input is needed and wait for the
input in order to continue. In contrast,DiskDuster successfully recovers from attacks
that have been active for days.

Back to the Future [3] removes malware and helps users repairsystems after an at-
tack. The implementation is Windows specific and requires significant user interaction.
The user needs to definea priori which is the trusted data and only modifications of this
data are logged. Moreover, the user has to decide what to do whenever an untrusted pro-
gram interferes with a trusted program. The framework is selective about the monitored
system calls and may also decide to terminate a process and inform the user.

7 Conclusion

We have describedDiskDuster, an attack analysis and recovery system capable of re-
moving all traces from complicated attacks.DiskDuster relies on execution trace record-
ing, snapshotting, and especially taint analysis to track amalcode’s actions. Although
an attack may be detected long after the infection,DiskDuster is able to roll back to the
initial point of infection and restore the disk to that state.We demonstrated the power of
our system with complicated and real-world attacks.

DiskDuster greatly helps the analysis of an attack by the classificationof bytes lo-
cated on the physical drive into trusted, malicious and suspicious(which may be the
result of implicit flows). UsingDiskDuster, the user can recover all post-attack data
which was not touched by the attack and is still clean.
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