
A Self-stabilizing (k,r)-clustering Algorithm with
Multiple Paths for Wireless Ad-hoc Networks

Andreas Larsson
Computer Science and Engineering,
Chalmers University of Technology

Email: larandr@chalmers.se

Philippas Tsigas
Computer Science and Engineering,
Chalmers University of Technology

Email: tsigas@chalmers.se

Abstract—Wireless Ad-hoc networks are distributed systems
that often reside in error-prone environments. Self-stabilization
lets the system recover autonomously from an arbitrary state,
making the system recover from errors and temporarily broken
assumptions. Clustering nodes within ad-hoc networks can help
forming backbones, facilitating routing, improving scaling, aggre-
gating information, saving power and much more. We present
the first self-stabilizing distributed (k,r)-clustering algorithm. A
(k,r)-clustering assigns k cluster heads within r communication
hops for all nodes in the network while trying to minimize the
total number of cluster heads. The algorithm uses synchronous
communication rounds and uses multiple paths to different clus-
ter heads for improved security, availability and fault tolerance.
The algorithm assigns, when possible, at least k cluster heads to
each node within O(r) rounds from an arbitrary configuration.
The set of cluster heads stabilizes, with high probability, to a
local minimum within O(gr log n) rounds, where n is the size of
the network and g is an upper bound on the number of nodes
within 2r hops.

I. INTRODUCTION

Starting from an arbitrary state, self stabilizing algorithms
let a system stabilize to, and stay in, a consistent state [6].
There are many reasons why a system could end up in an
inconsistent state of some kind. Assumptions that algorithms
rely on could temporarily be invalid. Memory content could be
changed by radiation or other elements of harsh environments.
Battery powered nodes could run out of batteries and new
ones could be added to the network. It is often not feasible
to manually configure large ad-hoc networks to recover from
events like this. Self-stabilization is therefore often a desirable
property of algorithms for ad-hoc networks. However, self-
stabilization comes with increased costs, so a tradeoff is made.
A self-stabilizing algorithm can never stop because you can
not know when temporary faults occur, but it can converge to a
result that holds as long as all assumptions hold. Furthermore,
there are often overheads in the algorithm tied to the need to
recover from arbitrary states. It can be added computations,
increased size of messages or increased number of needed
rounds to achieve something.

An algorithm for clustering nodes together in an ad-hoc
network serves an important role. Back bones for efficient
communication can be formed using cluster heads. Clusters
can be used for routing messages. Cluster heads can be
responsible for aggregating data, e.g. sensor readings in an
ad-hoc sensor network, into reports to decrease the number

of individual messages needed to rout through the network.
Hierarchies of clusters on different levels can be used for
improved scaling of a large network. Nodes in a cluster could
take turns doing energy costly tasks to save power over all.

Clustering is a well studied problem. Due to space con-
straints, for references to the area in general, we point to the
survey of the area with regard to wireless ad-hoc networks
by Chen, Liestam and Liu in [4] and the survey by Abbasi
and Younis in [1] for wireless sensor networks. We will focus
on self-stabilization, redundancy and some security aspects.
One way of clustering nodes in a network is for nodes to
associate themselves with one or more cluster heads. In the
(k,r)-clustering problem each node in the network should have
at least k cluster heads within r communication hops away.
This might not be possible for all nodes if the number of
nodes within r hop from them is smaller than k. In such
cases a best effort approach can be taken for getting as close
to k cluster heads as possible for those nodes. The clustering
should be achieved with as few cluster heads possible. To find
the global minimum number of cluster heads is in general
too hard, algorithms provide an approximation. The (1,r)-
clustering problem, a subset of the (k,r)-clustering problem,
can be formulated as a classical set cover problem. This was
shown to be NP complete in [10]. Assuming that the network
allows k cluster heads for each node, the set of cluster heads
forms a total (k,r)-dominating set in the network. In a total
(k,r)-dominating set the nodes in the set also need to have k
nodes in the set within r hops, in contrast to an ordinary (k,r)-
dominating set in which this is only required for nodes not in
the set.

There is a multitude of existing clustering algorithms for ad-
hoc networks of which a number is self-stabilizing. Johnen and
Nguyen present a self-stabilizing (1,1)-clustering algorithm
that converges fast in [9]. Dolev and Tzachar tackle a lot of
organizational problems in a self-stabilizing manner in [7]. As
part of this work they present a self-stabilizing (1,r)-clustering
algorithm. Caron, Datta, Depardon and Larmore present a self-
stabilizing (1,r)-clustering in [3] that takes weighted graphs
into account.

There is a number of papers that do not have self-
stabilization in mind. Fu, Wang and Li consider the (k,1)-
clustering problem in [8]. In [13] the full (k,r)-clustering
problem is considered and both a centralized and a distributed

algorithm for solving this problem are presented. Wu and Li
also consider the full (k,r)-clustering in [15].

Other algorithms do not take the cluster head approach. In
[14], sets of nodes that all can communicate directly with each
other are grouped together without assigning any cluster heads.
In this paper malicious nodes that try to disturb the protocol
are also considered, but self-stabilization is not considered.

A. Our Contribution

We have constructed the first, to the best of our knowl-
edge, self-stabilizing (k, r)-clustering algorithm for ad-hoc
networks. The algorithm is based on synchronous rounds and
makes sure that, within O(r) rounds, all nodes have at least
k cluster heads (or all nodes within r hops if a node has less
than k nodes within r hops) using a deterministic scheme.
A randomized scheme complements the deterministic scheme
and lets the set of cluster heads stabilize to a local minimum.
It stabilizes within O(gr log n) rounds with high probability,
where g is a bound on the number of nodes within 2r hops,
and n is the size of the network.

We prove quick selection of enough cluster heads. Once
the system fulfills the cluster head requirements, of k cluster
heads within r hops for all nodes, the requirements will
continue to hold from that point on. We also prove that
the set of cluster heads converges towards a local minimum.
Under the extra assumption that timers are synchronized, we
show an upper bound on the number of rounds it takes, with
high probability, for the set of cluster heads to reach a local
minimum. Furthermore, experimentally we show that without
this extra assumption used in the proof the system stabilizes
approximately equally fast. We also present experimental re-
sults on how the algorithm copes with changes to the topology
and on how our results compares with global optima.

Some initial ideas that lead to these results was previously
published in [11]. It is a brief announcement with few technical
details and without any proofs or experimental results.

B. Document Structure

Our contribution is presented as follows. In section II
we introduce the system settings. Section III describes the
algorithm. Section IV proves the properties of the algorithm.
We discuss experimental results, security and redundancy and
how different system settings would affects the properties of
the algorithm in Section V.

II. SYSTEM SETTINGS

We assume a static network. Changes in the topology are
seen as transient faults. We denote the set of all nodes in the
network P and the size of the network n = |P|. We impose no
restrictions on the network topology other than that an upper
bound, g, on the number of nodes within 2r hops of any node
is known (see below).

The set of neighbors, Ni, of a node pi is all the nodes
that can communicate directly with node pi. In other words,
a node pj ∈ Ni is one hop from node pi. We assume a
bidirectional connection graph, i.e. that pi ∈ Nj iff pj ∈ Ni.

Constants:
i : id of executing processor.
r : number of hops within we consider a neighborhood.
k : the number of clusterheads to elect.
g : upper bound on the number of nodes within 2r hop.
T = 8gr : length of an escape period.

Variables:
state ∈ {HEAD, ESCAPING, SLAVE} :

The state of the node. Initially set to SLAVE.
timer : Integer. Timer for escape attempts. Initially set to T-1.
estart : Integer. The escape schedule. Initially set to 0.
estate ∈ {SLEEP, INIT, FLOOD, HOPE} :

State for escape attempts. Initially set to SLEEP.
heads : Set of Id:s. Initially set to ∅.
S & Z: Sets of < Id,State> tuples.

Initially set to {< i,state> }.

External functions and macros:
LBcast(m) : Broadcasts message m to direct neighbors.
LBrecv(m) : Receives a message from direct neighbor.
smallest(a,A) : Returns the min(|A|,a) smallest id:s in A.
cds(A): {< j,s,t> ∈ A : t = maxτ {τ : < j,s,τ> ∈ A}}
cdj(B): {< j,t> ∈ B : t = maxτ {τ : < j,τ> ∈ B}}

Fig. 1. Constants, variables, external functions and macros for the algorithm
in Fig. 2.

The neighborhood, Gr
i of a node pi is all the nodes (including

itself) at most r hops away from pi. Let g ≥ maxj |G2r
j | be

a bound, known by the nodes, on the number of nodes within
2r hops.

The system is synchronous and progresses in rounds. Each
round has two phases. First in the receipt phase each node pi
receives messages from all of its immediate neighbors pj ∈
Ni. Then in the step phase each node pi after performing
the appropriate calculations broadcasts a message to all nodes
pj ∈ Ni. We assume that a broadcast by a node pi is received
reliably by all processors pj ∈ Ni in the receipt phase of
the respective round. In our proofs for convergence times of
our algorithm we use an assumption of synchronized timers.
Synchronized timers is not an assumption of the algorithm
itself and is not needed for the algorithm to work correctly.
Furthermore, we demonstrate experimentally that it does not
significantly affect convergence times either.

III. SELF-STABILIZING ALGORITHM FOR
(k, r)-CLUSTERING

The goal of the algorithm is, using as few cluster heads as
possible, for each node pi in the network to have a set of at
least k cluster heads within its r-hop neighborhood Gr

i . This is
not possible if a node pi has |Gr

i | < k. Therefore, we require
that |Cr

i | ≤ ki, where Cr
i ⊆ Gr

i is the set of cluster heads in
the neighborhood of pi and ki = min(k, |Gr

i |) is the closest
number of cluster heads to k that node pi can achieve. We
do not strive for a global minimum. That is too costly. We
achieve a local minimum, i.e. a set of cluster heads in which
no cluster head can be removed without violating the (k, r)
goal.

1 on step phase:
2 if timer < 0 ∨ timer ≥ T-1
3 timer ← 0
4 else
5 timer ← timer + 1
6 S ← Z
7 heads ← {j : < j, HEAD> ∈ S}
8 /* Escaping */
9 if state in {HEAD, ESCAPING}

10 updateestate()
11 if estate = INIT ∧ state = HEAD ∧ |heads| > k
12 state ← ESCAPING
13 heads ← heads \ {i}
14 else if estate = SLEEP ∧ state = ESCAPING
15 state ← SLAVE
16 if state = SLAVE
17 estate ← SLEEP
18 estart ← 0
19 /* Add heads */
20 if |heads| < k
21 let a = k -|heads|
22 let A = {j: < j, ·> ∈ S} \ heads
23 heads ← heads ∪ smallest(a, A)
24 /* Join and send state */
25 for each j ∈ heads
26 if j 6= i
27 forwardjoin(< j, r>)
28 else
29 state ← HEAD
30 Z ← {< i,state> }
31 sendstate(< i, state, r>)
32

33 function updateestate:
34 if timer = 0
35 estart ← uniformlyrandom({0, 1, . . . T-2r-2})
36 if timer ∈ [0, estart-1]:
37 estate ← SLEEP
38 else if timer ∈ [estart, estart]
39 estate ← INIT
40 else if timer ∈ [estart+1, estart+2r-1]
41 estate ← FLOOD
42 else if timer ∈ [estart+2r, estart+2r]
43 estate ← HOPE
44 else if timer ∈ [estart+2r+1, T-1]
45 estate ← SLEEP

47 function receivedstate(< j, jstate, ttl>), i 6= j:
48 js ← jstate
49 if js = ESCAPING ∧ j ∈ heads
50 if |heads| ≤ k
51 js ← HEAD
52 else
53 heads ← heads \ {j}
54 let ss = {s : < j, s> ∈ Z} ∪ {js}
55 if HEAD ∈ ss:
56 js ← HEAD
57 else if ESCAPING ∈ ss
58 js ← ESCAPING
59 else
60 js ← SLAVE
61 Z ← {< o, s> : < o, s> ∈ Z ∧ o 6= j}∪ {< j, js> }
62

63 ttl ← max(1, min(r, ttl))
64 if ttl > 1:
65 forwardstate(< j, jstate, ttl-1>)
66

67 function receivedjoin(< j, ttl>):
68 ttl ← max(0, min(r, ttl))
69 if j = i ∧ estate /∈ {INIT, FLOOD}
70 state ← HEAD
71 else if ttl > 1
72 forwardjoin(< j, ttl -1>)
73

74 on LBrecv(< j, jstateset, jjoinset>):
75 for each < o,ostate,ottl> ∈ jstateset
76 if o 6= i:
77 receivedstate(< o,ostate,ottl>)
78 for each < o,ostate,ottl> ∈ jjoinset
79 receivedjoin(< o,ottl>)
80

81 function forwardstate(tuple):
82 stateset ← stateset ∪ tuple
83

84 function forwardjoin(tuple):
85 joinset ← joinset ∪ tuple
86

87 function sendstate(tuple):
88 forwardstate(tuple)
89 stateset ← cds(stateset)
90 joinset ← cdj(joinset)
91 LBcast(< i,stateset,joinset>)
92 stateset ← ∅
93 joinset ← ∅

Fig. 2. Pseudocode for the self-stabilizing clustering algorithm.

The basic idea of the algorithm is for cluster heads to
constantly broadcast the fact that they are cluster heads and for
all nodes to constantly broadcast a list of nodes they consider
to be cluster heads. This list of cluster heads consists both
of nodes that are known to be cluster heads and, additionally,
nodes that are elected to become cluster heads. The content
of the broadcasts are forwarded r hops, but in an aggregated
form to keep message sizes down. The election process
might establish too many cluster heads. Therefore, there is
a mechanism for cluster heads to drop their cluster head roles,
to escape, eventually establishing a local minimum of cluster
heads forming a total (k,r)-dominating set (or, if not possible
given the topology, fulfilling |Cr

j | ≥ kj for any node pj). The

choice of which nodes to pick when electing cluster heads is
based on node ID in order to limit the number of unneeded
cluster heads that are elected when new cluster heads are
needed.

One could imagine an algorithm that in a first phase adds
cluster heads and thereafter in a second phase removes cluster
heads that are not needed. To achieve self-stabilization how-
ever, we cannot rely on starting in a predefined state. Recovery
from an inconsistent state might start at any time. Therefore,
in our algorithm there are no phases and the mechanism for
adding cluster heads runs in parallel with the mechanism for
removing cluster heads and none of them ever stops.

In each round each node sends out its state and forwards

states of others. A cluster head node normally has the state
HEAD and a non cluster head node always has state SLAVE.
If a node pi in any round finds out that it has less than k
cluster heads it selects a set of other nodes that it decides to
elect as cluster heads. Node pi then elects established cluster
head nodes and any newly picked nodes by sending a join
message to them. Any node that is not a cluster head becomes
a cluster head if it receives a join addressed to it.

We take a randomized approach for letting nodes try to drop
their cluster head responsibility. Time is divided into periods
of T rounds. A cluster head node pi picks uniformly at random
one round out of the T − 2r − 1 first rounds in the period as
a possible starting round, estarti, for an escape attempt. If pi
has more than k cluster heads in round estarti, then it will
start an escape attempt. When starting an escape attempt a
node sets it state to ESCAPING and keeps it that way for a
number of rounds to make sure that all the nodes in Gr

i will
eventually know that it tries to escape. A node pj ∈ Gr

i that
would get fewer than k cluster heads if pi would stop being a
cluster head can veto against the escape attempt. This is done
by recording the state of pi as HEAD and thus continuing
to send joins addressed to it. If pj , on the other hand, has
more than k cluster heads it would not need to veto. Thus, by
accepting the state of pi as ESCAPING, pj will not send any
join to pi. After a number of rounds all nodes Gi \ {i} will
have had the opportunity to veto the escape attempt. If none
of them objected, at that point pi will get no joins and can set
its state to SLAVE.

If an escape attempt by pi does not overlap in time
with another escape attempt it will succeed if and only if
minpj∈Gr

i
|Cr

j | > k. If there are overlaps by other escape at-
tempts, the escape attempt by pi might fail even in cases where
minpj∈Gr

i
|Cr

j | > k. The random escape attempt schedule
therefore aims to minimize the risk of overlapping attempts.

The pseudocode for the algorithm is described in Fig. 2
with accompanying constants, variables, external functions and
macros in Fig. 1. In the step phase of each round lines 1-31
are executed. The code for the receipt phase can be found in
lines 47-72. To have only one message for each node sent per
round, all forwarding and sending of messages in lines 1-72
use the functions in lines 74-93 that collect everything that is
to be sent until the end of the step phase where one message
is sent out.

IV. CORRECTNESS

In Section IV-A we will show that within O(r) rounds we
will have |Cr

i | ≥ ki for any node pi. First we show that this
holds while temporarily disregarding the escaping mechanism,
and then that it holds for the general case in Theorem 1.

In Section IV-B we will show that a cluster head node pi
can become slave if it is not needed and if it tries to escape
undisturbed by other nodes in G2r

i . We continue to show that
the set of nodes converges, with high probability, to a local
minimum within O(gr logn) rounds under the assumption that
the timers of all nodes in the network are synchronized in
Theorem 2.

Finally we present the message complexity in Theorem 3
in section IV-C.

Definition 1: If all assumptions about the network hold and
all nodes follow the protocol throughout the entire round s then
round s is called a legal round.

Definition 2: For a node pi to be a cluster head is equivalent
to statei ∈ {HEAD,ESCAPING}. For a node pi to be a slave
is equivalent to statei = SLAVE. For a node pj , we define
Cr

j as the set of cluster heads in Gr
j . Furthermore, we define

Hx to be the set of cluster heads in the network in a round x.
Definition 3: A node initiates an escape attempt in round

s if lines 12-13 are executed in round s. In other words in
round s node pi has statei = HEAD at line 1, |headsi| > k
after executing line 7 and then line 10 sets estatei to INIT.
Thereafter, the condition holds at line 11 and lines 12-13 are
executed.

A. Getting Enough Cluster Heads

In this section we build up a case showing that the algorithm
will elect enough cluster heads. We show that nodes get to
know their neighborhood (Lemma 1), that they get to know the
state of nodes in their neighborhoods (Lemma 2), that cluster
heads are elected (Lemmas 3, 4 and 5). Finally, in Theorem 1,
we show that within a O(r) rounds each node in the network
have enough cluster heads within r hops (topology allowing).

We begin by showing that nodes get to learn their neigh-
borhood, Gr

i .
Lemma 1: Assume that round s and all following rounds

are legal. For any node pi, {pj : < pj , · >∈ Si} = Gr
i holds in

the step phase of round s+r and throughout rounds s+r+1+t
for any non-negative t.

Proof: In every round any node pj broadcasts its id and
state (line 31) with ttl set to r. The ttl is a time to live
value that denotes how many more hops a message should be
forwarded and is decreased by one every time the associated
message is received. When ttl reaches 1 the message is not
forwarded any more. Therefore, during the following r rounds
the id and the state is forwarded r hops away (lines 63-65).
Consider a node pj ∈ Gr

i (i 6= j) that is r̂ hops away from
pi. At round s+ r + t node pi gets the id and state message
that originated from node pj at round s + r − r̂ + t. As t is
non-negative and r̂ ≤ r we know that pj sent a message with
its state and id at round s+ r− r̂+ t ≥ s. For node pi itself:
(1) it adds itself to Z during each round (line 30), and (2)
the only other line that could change Z is line 61 and is not
executed in case j = i and (3) S is set to Z at the beginning
of the step phase. Therefore Gr

i ⊆ {pj : < pj , · >∈ Si} in
the step phase of round s+ r and thereafter.

A message with id and state of a node pj /∈ Gr
i that is

being received by some node pi in round s could potentially
lead to an id in Si that is not in Gr

i However such a message
can not be sent out in round s with a ttl greater than t − 1
(lines 63-65) and Z is cleared from nodes pj 6= pi in every
round in line 30. Therefore pj could reach pi in rounds s+1
to s + r − 1, but not as late as s + r + t for a non-negative

t. Therefore Gr
i ⊇ {pj : < pj , · >∈ Si} in the step phase of

round s+ r and thereafter.

We continue with showing that nodes within r hops get to
know the state of a node that stays in one state.

Lemma 2: If a node pi has the same state σ in rounds s to
s+ r− 1, then any node pj ∈ Gr

i \ {pi} will receive the state
σ and only state σ for pi in round s+ r.

Proof: Node pi sends out its state with a ttl of r in each
round (line 31). Nodes that receive this state message with a
ttl greater than 1 will forward the state with a ttl of one less
(lines 64-65). Thus a message from pi originating in round
s − t (for a positive t) can possibly be received by nodes in
Gr

i in the rounds s− t+1 to s+ r− t, but not in round s+ r
as that would need an original ttl of r+ t. Furthermore a state
σ′ sent in round s+r−1+ t (for a positive t) can be received
earliest in round s+r+ t. Thus only states sent in rounds s to
s+ r − 1 can be received by a node pj ∈ Gr

i in round s+ r.
Now consider any node pj ∈ Gr

i \{pi}. Let r̂ ∈ [1, r] be the
smallest number of hops between pi and pj . By the Lemma
statement node pi sends out state σ in round s+ r − r̂. That
message is forwarded one step each round and r̂ rounds later
in round s+ r it reaches node pj .

We now look how the addition of cluster heads work
while temporarily disregarding the escaping mechanism. In
this setting we will show that within a finite number of rounds
we will have |Cr

i | ≥ ki for any node pi. Later on we will lift
this restriction and show that |Cr

i | ≥ ki will still hold even
when regarding the more general case.

Lemma 3: Let round s and all following rounds be legal.
Assume that the state of a node can never be ESCAPING,
estate is always SLEEP and that lines 8-18 are not going to
be executed. With these assumption after round s+2r+ t for
a non-negative t any node pi will have ki cluster heads within
r hops.

Proof: The limiting assumptions leave only one way for
the state to change, namely by the execution of line 70 where
state is set to HEAD.

From Lemma 1 we know that in round s+ r, at the latest,
node pi will have all nodes in Gr

i in Si. We also know that
|Gr

i | ≥ ki. Let’s look at round s+r. At line 20, headsi might
already contain nodes. We have the one case where |headsi| ≥
k ≥ ki already and one case where |headsi| < k. In the
second case lines 21-23 will be executed. Out of the set A of
nodes in Gr

i that are not in headsi, the smallest min(|A|, k−
|headsi|) nodes will be added to headsi in line 23. Thus after
execution of line 23 headsi will contain min(|Gr

i |, k) = ki
nodes and at line 25 |headsi| ≥ ki.

For each node pj ∈ headsi either a join message with a ttl
of r is sent out (at line 27, when j 6= i) or the state is set to
HEAD directly (at line 29, when j = i). For the nodes pj 6= pi
the join messages are forwarded (line 72) to all nodes in Gr

i

within r hops in r rounds (in a similar fashion as forwarded
state as discussed in the proof of Lemma 1).

Each node pj ∈ headsi thus gets a join addressed to itself

at the latest in round s+2r and it will become a cluster head
by setting its state to HEAD at line 70. Thus after round s+2r
any node pi will have ki cluster heads within r hops.

Now we consider the full escape mechanisms and show that
a node that receive joins become a cluster head.

Lemma 4: Consider a node pi that receives a join during
the receipt phase of the legal round z that follows the legal
round z−1. Then node pi is a cluster head at the end of round
z. Furthermore, if node pi is a cluster at the end of round z−1
then it is a cluster head throughout the entire round z.

Proof: Let σ be statei and e be estatei at the reception
of a join from any node in a legal round z which follows a
legal round z − 1. We begin by showing that the only thing
that can happen with statei during the receipt phase of round
z is for it to either change to HEAD or to stay HEAD or
ESCAPING. We have four different cases for different e and
σ.

Case 1 e ∈ {INIT,FLOOD} ∧ σ = SLAVE: This cannot
happen as (1) node pi in the previous round (the legal round
z − 1) could not have statei = SLAVE without having
executed line 17 that sets estatei to SLEEP and (2) there
is no way for estatei to change during the receipt phase of a
round.

Case 2 e ∈ {INIT,FLOOD} ∧ σ = HEAD: No change to
statei, that remains HEAD.

Case 3 e ∈ {INIT,FLOOD}∧σ = ESCAPING: No change
to statei, that remains ESCAPING.

Case 4 e /∈ {INIT,FLOOD}: Here statei is set to HEAD.
Furthermore, the only way for statei to be ESCAPING at

the start of the step phase of round z is if e ∈ {INIT,FLOOD}.
In that case estatei must have been set to FLOOD after
line 10 in round z − 1 from which it follows that estatei ∈
{FLOOD,HOPE} after execution of line 10 in round z. Thus,
the condition in line 14 does not hold in round z and line 15,
the only line that can set statei to SLAVE, is not executed.
Therefore, node pi is a cluster head at the end of round z and
if it were a cluster head at the beginning of round z it was so
throughout the round.

In the following Lemma we show that a node that is
continuously wanted as a cluster head eventually becomes one.

Lemma 5: Let s and all following rounds be legal rounds
and assume a node pj wants a node pi ∈ Gr

j to be cluster head
as soon as it knows about it and is never willing to let it escape.
In other words (1) if pi /∈ headsj after line 7 the condition in
line 21 would always hold and pi ∈ A after executing line 22
and (2) the condition in line 50 would always hold.

Then node pi will be a cluster head after round y ≤ s+2r
and throughout all following rounds.

Proof: Let r̂ be the number of hops between pi and pj and
let round x be the first round ≥ s in which node pj receives a
state from pi. We know that s ≤ x ≤ s+ r̂. Furthermore, let
y be the round in which pi gets the join from pj that was sent
in round x. We know that y = x + r̂ and thus s + 1 ≤ y ≤

s+ 2r̂ and thus both round x− 1 and x are legal. According
to Lemma 4, pi will be a cluster head at the end of round y.

According to the assumptions, pi ∈ headsj at line 25 in
every round ≥ x and thus pj sends a join to pi in every such
round. This means that pi will receive a join in every round
≥ y, and thus, by Lemma 4, be a cluster head in the step
phase of round y and throughout the following rounds.

Now we can show that within 2r + 1 legal rounds from
an arbitrary configuration all nodes pi have at least ki cluster
heads and that the set of cluster heads in the network can only
stay the same or shrink from that point on.

Theorem 1: Let round s and all following rounds be legal.
Then any node pj will have kj cluster heads within r hops in
the step phase of round s+ 2r and throughout any following
rounds. Moreover, a node that is not in Hx in a round x ≥ s+
2r can not be in Hx+t for a non-negative t and consequently
|Hx+t| ≤ |Hx|.

Proof:
From Lemma 3 we have seen that as long as the escape

mechanism does not allow nodes to change its state to SLAVE
after being a cluster head, any node pj will have kj cluster
heads within r hops in the step phase of round s + 2r and
throughout any following rounds.

Furthermore, from Lemma 5 and its proof we have seen
that as long as a node pj wants to have node pi as a cluster
head pi will remain a cluster head. Now we will look in what
situations pj does not want pi as a cluster head even though
it did at some earlier point in time.

If |headsj | < k at line 20 in a round s, then node pj finds
up to k − |headsj | nodes in {pi : < pi, · >∈ Sj} \ headsj
and sends a join to them in a round s. Assume pi ∈ Gr

j is
one of the newly picked nodes in A after executing line 22 in
round s. We call this set A in round s for Â. Node pi does
not get the join until round s + r̂ where r̂ is the number of
hops between nodes pi and pj .

As we saw in the proof of Lemma 4, if statei =
ESCAPING ∧ estatei ∈ {INIT,FLOOD} does not hold in
round s+ r̂ then pi will send out HEAD. That will reach pj in
round s+2r̂ and consequently pi ∈ headsj in round s+2r̂. If
statei = ESCAPING and estatei ∈ {INIT,FLOOD} in round
s+ r̂, node pi will not send out HEAD in that round and pj
might not get HEAD from pi in round s+2r̂. If pj got HEAD
from some other node pl ∈ Gr

j in a round x ∈ [s+ 1, s+ 2r̂]
node pj might not want pi as a cluster head any more. Node
pj will not send join to pi in round x if (1) |headsj | ≥ k
at line 20 or (2) pi has received HEAD from enough nodes
not in Â so that pi is not among the smallest nodes picked
out in line 22 in round s + 2r̂. On the other hand if none of
these cases hold pj will continue to send joins to pi and by
Lemma 5 node pj will remain a cluster head.

The second way for a node pi ∈ Gr
j to be SLAVE even

though it earlier were in headsj is to escape using the
escape mechanism. In other words in some round z node pi
initiates an escape attempt. When receiving different states for
a node, HEAD takes precedence over ESCAPING that takes

precedence over SLAVE (lines 55-60). This combined with
Lemma 2 means that in some round y ∈ [z + 1, z + r] node
pi get the state ESCAPING from pi and that in the previous
round y − 1 pj got HEAD from pj .

Node pj will have pi ∈ headsj after executing line 7 in
round y − 1 as pj receives HEAD from pi in round y − 1.
Thus pi ∈ headsj at line 47 in round y when pj receives
ESCAPING from pi. If |headsj | ≤ k at that point then pj
will interpret the state as HEAD for all purposes other than
forwarding the message (lines 50-51). Thus pi ∈ headsj after
executing line 7 in round y as well, and pj will send a join.
By Lemma 5 and its proof, node pi will remain cluster head
in that case. If on the other hand |headsj | > k for node pj
at line 47 in round y then pj removes pi from heads and
will consequently not send any join in round y. When pj gets
ESCAPING from pi in the coming rounds y + 1, y + 2, . . .,
then pi will not be in headsj and thus no joins will be sent in
those rounds either. If node pj receives ESCAPING for more
than one node pl ∈ headsj in rounds y, y+1, . . . then pj will
let them go in first come first served fashion. When node pj
decides to let a node pl go it is immediately removed from
headsj in line 53. Thus, node pi will not let so many nodes
go that |headsj | ≥ k would not be fulfilled (if kj < k no
node is ever allowed to go).

Finally, a node pi /∈ Gr
j might be in headsi in a round

z ∈ [s, s + r − 1] but by Lemma 1 such a node is not in Sj

in round s + r and thus node pi will pick some other node
instead of such a pj to send join to in round s+r if not earlier.

So any node pj will have kj cluster heads within r hops in
the step phase of round s+ 2r and throughout any following
rounds. Therefore in any of these rounds no node will fulfill
the condition in line 20. Hence, no node pi that is not a cluster
head at the beginning of the state phase of round s+ 2r can
be picked by any node pj in line 22. Therefore no such node
pi can become a cluster head in the state phase of round of
round s+ 2r or thereafter.

Thus a node that is not in set of cluster heads in the entire
network at round x, Hx, for a round x ≥ s+2r can never be
in Hx+t for a non-negative t. Moreover, |Hx+t| ≤ |Hx| for
any x ≥ s+ 2r and any non-negative t.

B. Convergence to a Local Minimum

In this section we show that the set of cluster heads con-
verges to a local minimum. We show that a cluster head node
that is not needed can escape the cluster head responsibility
if not interfered by other escape attempts (Lemma 6). We
show that an unneeded cluster head node escapes within
O(gr) rounds with high probability under assumptions of
synchronized timers (Lemma 7). Finally, in Theorem 2, we
show that with high probability the entire network reaches
a local minimum within O(gr logn) rounds. We begin by
looking at the escape of an uninterfered node.

Lemma 6: Consider a round s for which all rounds from s−
2r−1 and forward are legal. Assume that node pi initiates an
escape attempt in round s and assume that in rounds [s, s+ r]

all nodes pj ∈ Gr
i have |Cr

j | > k. If no other node pl ∈
G2r

i than node pi initiates an escape attempt in any round
∈ [s−2r−1, s+r−1] then node pi will set statei to SLAVE
in round s+2r+1 and have statei = SLAVE throughout any
round s+ 2r + 1 + t for a positive t.

Proof: Assume that a node pl initiates an escape attempt
in round x. In round x+2r node pl will set estatel to HOPE.
In all rounds in [x, x + 2r] node pl will send out statel =
ESCAPING. If node pl gets a join to itself in the receipt phase
of round x+2r+1 it sets statei to HEAD in line 70. Otherwise
pl sets statel to SLAVE in line 15 in round x+ 2r + 1. Let
σ be the statei that is sent out by pl in round x + 2r + 1.
We know that σ 6= ESCAPING. We assume that node pl does
not initiate any more escape attempts in the time span we are
looking at. Therefore node pl sends out σ in the rounds in
[x + 2r + 1, x + 3r]. By Lemma 2, in round x + 3r + 1 all
nodes pj′ ∈ Gr

l \ {pl} receives σ and only σ for pl in the
receipt phase. Therefore, either all nodes pj ∈ Gr

l (including
pl) have pl ∈ headsj (if σ = HEAD) or none of them have
pl ∈ headsj (if σ = SLAVE) after executing line 7 in the
step phase of round x+ 3r+ 1. This continues to hold in the
receive phase of round x+3r+2. Thus in round x+3r+1+t,
for a positive t, no node pj ∈ Gr

l can have pl ∈ Cr
j without

having pl ∈ headsj .
Now if node pi initiates an escape attempt in round s, by

Lemma 2, all nodes pj ∈ Gr
i will receive ESCAPING and only

ESCAPING for node pi in round s+ r. As we saw above no
node pl initiating an escape attempt in a round ≤ s−2r−2 can
in round s + r be in Cr

j , for a node pj ∈ Gr
l , without being

in headsj . By the Lemma assumptions, no node pl ∈ G2r
i

makes an escape attempt in a round in [s− 2r− 1, s+ r− 1].
In addition, consider a node p′l that initiates an escape attempt
in a round s+ r− 1+ t for a positive t. A node pj ∈ Gr

i can
only receive ESCAPING from that escape attempt in rounds
≥ s + r + t. Therefore a node pj ∈ Gr

i will in round s + r
receive ESCAPING for node pi but not for any other node.

In rounds [s, s+r] all nodes pj ∈ Gr
i \{pi} have |Cr

j | > k.
Therefore, when pj receives ESCAPING for pi in round s+r
either (1) pi /∈ headsj because pj received ESCAPING and
had |headsj | > k in some round in [s + 1, s + r − 1] or (2)
pi ∈ headsj and |headsj | > k in which case pj removes pi
from headsj at line 53. Thus in the step phase of rounds in
[s+ r, s+2r] no node pj sends a join to pi. Therefore, in the
round s + 2r + 1 no join is received by pi and therefore pi
sets statei to SLAVE in round s+ 2r+ 1. There is no round
≥ s in which pi sends out HEAD and, by Theorem 1, no node
will need to add new nodes as cluster heads in any round ≥ s.
Hence, node pi will have statei = SLAVE in the step phase
of round s+ 2r+ 1 and throughout any round s+ 2r+ 1+ t
for a positive t.

Definition 4: We say that the timers of the nodes in the
network are synchronized if timeri = timerj for all pair of
nodes pi, pj ∈ P for all legal rounds.

Under the added assumption of synchronized timers we
show that an unneeded cluster head node either escapes within
O(gr) rounds, unless it becomes needed due to other escaped
cluster heads.

Lemma 7: Let round s and all following rounds be legal.
Furthermore, let g = maxj |G2r

j | be a bound on the number
of nodes within 2r hops. Consider a node pi that is a cluster
head in any round ≥ s. Assume that |Cr

j | > k holds for all
nodes pj ∈ Gr

i from round s+ 2r and as long as pi remains
a cluster head. If the timers of all nodes in the network are
synchronized and T = 8gr, node pi will be SLAVE in any
round s+ 2r + 8(β + 1)gr − 2 + t for a non-negative t with
probability at least 1− 2−β .

Proof: From Theorem 1 we know that from round s+2r
nodes can only go from being cluster heads to being slaves.
Consider a cluster head node pi. Let x0

i be the first round
≥ s + 2r in which timeri = 0 at line 8. As long as node
pi remain a cluster head it will execute line 35 every round
xt
i = x0

i +tT , for a non-negative t and a given T , and schedule
an escape attempt in the period Πt

i = [xi + tT, xi + (t +
1)T − 1]. Node pi picks one of the first T − 2r− 1 rounds in
the period, uniformly at random and independently from any
other random choice, to initiate an escape attempt in. Thus
the probability that node pi initiates an escape attempt in any
given round is ≤ 1/(T − 2r − 1).

Now consider a period Πt
i in which pi initiates an escape

attempt. Let Dt
i be the set of rounds [xt

i − 2r− 1, xt
i + r− 1].

The number of nodes that could be cluster heads in G2r
i is

bounded by g. If F t
i,l is the event that a node pl ∈ G2r initiates

an escape attempt in any round in Dt
i then P [F t

i,l] ≤ (3r +
1)/(T − 2r − 1) =: ρ. Let At

i be the event that none of the
nodes in G2r

i initiate an escape attempt in a round in Dt
i .

We say that At
i is the event that node pi gets an uninterfered

escape attempt in period Πt
i. Then we get

P [At
i] ≥ (1− ρ)

g−1
= [µ :=

1

ρ
]

=

((
1− 1

µ

)µ−1
)(g−1)/(µ−1)

>

(
1

e

)(g−1)/(µ−1)

= exp

(
− g − 1

µ− 1

)
=exp

(
− g − 1

T−2r−1
3r+1 − 1

)
. (1)

We can simplify this, using the fact that r ≥ 1, to get that
for T = 8gr we have P [At

i] > 1/2.
According to the Lemma assumption the timers of all nodes

in the network are synchronized. Thus we have a global
xt = xt

i and Πt = Πt
i holding for all nodes pi ∈ P .

Consider a period starting in round z. The earliest in a
period a node pi can initiate an escape attempt is in round
z when estarti = 0. The latest a node pj could initiate an
escape attempt in the period starting in z − T is in round
(z − T) + (T − 2r − 2) = z − 2r − 2. Thus by Lemma 6 an
escape attempt initiated in an earlier period cannot affect an

escape attempt in this period. The latest in a period a node pi
can initiate an escape attempt is in round z+T −2r−2 when
estarti = T − 2r − 2. However z + T − 2r − 2 + r − 1 < T
and therefore, by Lemma 6, no escape attempt in a later period
could affect this period. This together with the fact that the
random choices in different executions of the line 35 are all
mutually independent would make what happens in different
rounds mutually independent. However if a node pi becomes
SLAVE in a round t it is not doing an escape attempt in
round t + 1 which only increases the probability for At+1

j

for another node pj . Therefore, by assuming independence the
calculated lower bound on the probability of an undisturbed
escape attempt gets worse.

Consider the β periods Π0 to Πβ−1 and let Ai =
⋃β−1

t=0 At
i.

Thus with the assumption of period independence that gives
us a worse bound we get

P [Ai] =P

[
β−1⋃
t=0

At
i

]
= 1− P

[
β−1⋂
t=0

Āt
i

]
= 1−

β−1∏
t=0

P [Ai]

>1−
β−1∏
t=0

1

2
= 1− 2−β . (2)

The latest period Π0 could start is s + 2r + T − 1 in which
case Πβ−1 ends in round s+2r+T −1+βT −1 = s+2r+
8(β + 1)gr − 2.

From Theorem 1 we got that all nodes pi have at least ki
cluster heads within r hops in 2r rounds after an arbitrary
configuration.

Assuming that the timers of all nodes in the network are
synchronized, we show that with at least probability 1− 2−α

the set of cluster heads in the network stabilizes to a local
minimum within O((α+ log n)gr) rounds.

Theorem 2: Let round s and all following rounds be legal.
Consider round f = s+2r+8(α+log n+1)gr−2, where n
is the number of nodes in the network. Assume that the timers
of all nodes in the network are synchronized. Then, with at
least probability 1− 2−α, in round f there will be no cluster
head node pi in the network for which minpj∈Gi |Cr

j | > k
holds and Hf+t = Hf holds for any positive t.

Proof: We use the notations Πt, xt and Ai and the
concept of uninterfered escape attempts from the proof of
Lemma 7.

Let β = α + log n, where n = |P|. Let A be the event
all nodes in the network get at least one uninterfered escape
attempt in the periods Π0 to Πβ−1. We get that

P [A] =1− P [Ā] = 1− P [
⋃

pi∈P

Āi] ≥ [Boole’s inequality]

≥1−
∑
pi∈P

P [Āi] ≥ [Lemma 7] ≥ 1−
∑
pi∈P

2−β

=1− n2−β = 1− 2logn−β = 1− 2−α. (3)

Thus by the proof of Lemma 7 all nodes in the network gets an
uninterfered escape attempt with at least probability 1− 2−α

by the round f = s+ 2r + 8(α+ log n+ 1)gr − 2. Together

with Lemma 7 This concludes that with high probability all
nodes pi for which |Cr

i | > k holds at their uninterfered
escape attempt will have set statei to SLAVE by round f .
From this follows that at round f there is no node for which
minpj∈Gi |Cr

j | > k holds. Hence, by Lemma 1, no node pi
that is cluster head in round f can ever set statei to SLAVE
in a round ≥ f and Hf+t = Hf holds for any positive t.

C. Message Complexity

We now show the message complexity for the algorithm.
Theorem 3: Let round s and all following rounds be legal.

Then the size, in bits, of the message sent by a node pi in any
round ≥ s+ r is in O(|Gi| · (log n+ log r)).

Proof: By Lemma 1 we have that for any node pi, {pj : <
pj , · >∈ Si} = Gr

i holds in the step phase of round s + r
and throughout rounds s + r + 1 + t for any non-negative t.
Following the proof steps of that Lemma, we can conclude
that the only nodes represented in stateseti and joinseti are
the ones in Gr

i .
The only message a node pi transmits in a round, is

transmitted in line 91. Before that, stateseti is shrunk in
line 89 so that, for every possible pair of node id j and state s,
only the maximum ttl is kept. Similarly, joinseti is shrunk in
line 90, so that for every possible node id j, only the maximum
ttl is kept.

Each stateset entry contains a node id which is encoded in
log n bits, one of three possible states that is encoded in 2 bits
and a ttl value that is encoded in log r bits. Each joinset entry
contains a node id and a ttl value. Thus the number of bits
transmitted per node in Gr

i is in O(log n+ log r). Therefore,
the size, in bits, of the message sent by a node pi in any round
≥ s+ r is in O(|Gi| · (log n+ log r)).

V. DISCUSSION

We prove convergence within O(gr log n) rounds with high
probability under the assumption of independent rounds (apart
from the obvious dependence that nodes that escape are out
of the contention for uninterfered escape attempts). To see
if the timers really need to be synchronized to achieve this
performance we did simulations of the algorithm for various
settings of k and r and network densities. We placed n nodes
with a communication radius of 1 uniformly at random in a 5
by 5 rectangular area, with varying n for different experiments.

From our experiments we concluded that when T = 8gr
we get a much faster convergence than the upper bound we
have proved. Setting T even lower decrease the convergence
time even further.

A representative picture of the general results can be seen
in Fig. 3. The experiments show that when all timerj are
independently and uniformly distributed in [0, T −1] at begin-
ning of the experiment the convergence time is not far from
what it is in the case with synchronized timers. We also see
that if the nodes starts up with random information in their
variables the convergence time is faster than for an initialized

 0

 100

 200

 300

 400

 500

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

a
ge

 c
on

v
er

ge
n
ce

 t
im

e
in

 r
ou

n
d
s

Setting for (k,r)

Synchronized timers, initialized start
Unsynchronized timers, initialized start
Synchronized timers, random start
Unsynchronized timers, random start

Fig. 3. Simulation results of the algorithm indicating that synchronization
of timers is not needed. Here T = gr/2, n = 39.

start where each node pi does not know Gi and sets itself
as cluster head in the first round. To conclude we can with
good margin use the result of convergence within O(gr logn)
rounds from Theorem 2 for the unsynchronized setting.

For the rest of the experiments we did a small change to the
algorithm. A node that is added to the network do not elect
new cluster head nodes for the first r full rounds. It performs
all parts of the algorithm except that the condition in line 20
is always regarded as false in those rounds and lines 21 to
23 are not executed. It is trivial to make this mechanism self-
stabilizing.

In Fig. 4 we can see the convergence behavior of the set of
cluster towards local minima over time. The same trend can
be seen for other choices of k and n.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 250 500 750 1000 1250 1500

R
a
t
io

 o
f
c
lu

s
t
e
r
 h

e
a
d
s
 o

v
e
r
 r

e
a
c
h
e
d
 m

in
im

a

Round

r=1 r=2 r=3 r=4 r=5 r=6

Fig. 4. Cluster head overhead over time as a ratio between number of cluster
heads in given round over the eventually reached local minimum number of
cluster heads. Here T = gr, k = 2 and n = 39.

We have performed experiments to investigate the range of
possible results regarding the (k,r)-dominating sets generated
by our algorithm on random graphs. We compare the global
minima with results given by our algorithm and with the worst
(i.e., largest) possible local minima in Fig. 5. The results of
our algorithm is in general placed in the middle between the
global minima and the worst possible local minima. We can
also see that even the worst possible local minima are still
quite close to the global minima. Thus even if our algorithm

 0

 5

 10

 15

 20

 25

 30

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9)

N
u
m

b
er

 o
f
cl

u
st

er
 h

ea
d
s

Setting for (k,r)

Optimal Our Worst

Fig. 5. Comparison between global optima, results of our algorithm and
worst possible local minima for n = 31

 0

 50

 100

 150

 200

 250

 300

 350

 400

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,2) (3,3) (4,3)

A
v
er

ag
e

co
n
v
er

ge
n
ce

 t
im

e
in

 r
o
u
n
d
s

Setting for (k,r)

Start Add Remove Move

Fig. 6. Convergence times from a fresh start, after 5% node additions, after
5% node removes and after 5% node moves. Here T = gr and n = 39.

is “unlucky” it provides a good result. This trend holds true
for other choices of n and k as well.

We also performed experiments on recovery from small
changes to the topology from a converged state. The con-
vergence times from a newly started network (“Start”) is
compared in Fig. 6 with the convergence times after a change
to a initially converged network. We investigate 5% added
nodes (“Add”), 5% removed nodes (“Remove”) or 5% moved
nodes (“Move”). We achieve similar results for other choices
of n as well.

We can see that the least obtrusive change to the topology
is added nodes. The chance is good that a new node ends
up in a position in the network were there already is enough
or close to enough cluster heads already. Remove is more
expensive than add. Cluster heads could be among the nodes
that are removed. Additionally removed nodes can also have
been used as links between nodes and their cluster heads. A
move is like both a remove and an add (without the rounds of
abstaining from electing new cluster heads). Therefore, it is
anticipated that this case converges slower than the ones with
only adds or only removes.

The flooding of messages makes sure that if there exist
multiple paths of at most length r between a node pi and a
node pj then joins and state updates will traverse all possible
paths. This can give us higher fault tolerance if there are

communication disturbances on some links (i.e. between some
immediate neighbors) and also higher availability for nodes to
reach their cluster heads.

The multiple paths can also give applications higher security
if some nodes in the network can be compromised. If there
is at least one path of at most r hops between a node pi
and a node pj that is not passing through any compromised
nodes then the flooding makes sure that node pi and pj gets
to know about each other. Moreover, if pj wants pi to be
cluster head then the compromised nodes cannot stop that.
If nodes add information to the messages about the paths
they have taken during message forwarding then the nodes get
to know about the multiple paths. With this knowledge they
can in an application layer use as diverse paths as possible
to communicate with their cluster heads. Thus even if a
compromised node is on the path to one cluster head and
drops messages or do other malicious behavior there can be
other cluster heads for where there is no compromised nodes
on the chosen paths.

Consider a compromised node pc that can lie and not follow
protocol. First assume that pc cannot introduce node id:s that
does not exist (Sybil attacks, [12]) or node id:s for nodes that
are not within Gr

c (wormhole attacks, [5]) and that pc cannot
do denial of service attacks. Then pc can make any or all
nodes within Gr

c become and stay cluster heads by sending
joins to them or having them repeatedly go on and off cluster
head duty over time by alternating between sending joins and
letting the node escape. Consider a node pi that is a cluster
head and has a path to a node pj of length ≤ r hops that
does not pass through pc. In this situation pc can not give
the false impression that pi is not a cluster head as HEAD
takes precedence over ESCAPING that takes precedence over
SLAVE at message receipt. If pc on the other hand is in a
bottleneck between nodes without any other paths between
them then it can lie about a node pl being a cluster heads and
refuse to forward any joins to pl. Now if we assume that pc is
not restricted in what id:s it can include in false messages it
can convince a node pl that nodes not in Gr

l are cluster heads.
In the worst case it can eventually make pl rely exclusively
on non-existent cluster heads with paths that all go through
pc. In any case the influence by a compromised node pc is
contained within G2r

c as the maximum ttl of a message is r
and is enforced at message receipt.

The flooding of messages might make the algorithm too
expensive in some sensor networks with limited battery power.
If that is the case the algorithm might be run on an overlay
network for which the flooding becomes much cheaper. For
instance a self-stabilizing spanning tree algorithm like the one
in [2] might be used to set up this overlay network. This on the
other hand effectively removes all the pros of having multiple
paths so it is a trade off between redundant paths and message
costs.

VI. CONCLUSIONS

We have presented the first self-stabilizing (k, r)-clustering
algorithm for ad-hoc networks. A deterministic mechanism

guarantees that all nodes, if possible for the given topology,
have k cluster heads within r hops. A randomized mechanism
lets the set of cluster heads stabilize to a local minimum.
We have shown, under the extra assumption of synchronized
timers, that the set of cluster heads converges, with high
probability, to a local minimum within O(gr log n) rounds,
where g is an upper bound on number of nodes within 2r
hops, and n is the size of the network. With simulations we
have shown that even without this extra assumption the system
converges much faster than the proved bounds and that g does
not have to be known very accurately. We have also discussed
how the algorithm can help us with fault tolerance and security
and that the algorithm can be run on an overlay network, e.g.
a spanning tree, if message costs needs to be reduced.

REFERENCES

[1] Ameer Ahmed Abbasi and Mohamed Younis. A survey on clustering
algorithms for wireless sensor networks. Comput. Commun., 30(14-
15):2826–2841, 2007.

[2] Sudhanshu Aggarwal and Shay Kutten. Time optimal self-stabilizing
spanning tree algorithms. In Proceedings of the 13th Conference on
Foundations of Software Technology and Theoretical Computer Science,
pages 400–410, London, UK, 1993. Springer-Verlag.

[3] Eddy Caron, Ajoy Kumar Datta, Benjamin Depardon, and Lawrence L.
Larmore. A self-stabilizing k-clustering algorithm using an arbitrary
metric. In Euro-Par, pages 602–614, 2009.

[4] Yuanzhu Peter Chen, Arthur L. Liestman, and Jiangchuan Liu. Clus-
tering Algorithms for Ad Hoc Wireless Networks, volume 2, chapter 7,
pages 154–164. Nova Science Publishers, 2004.

[5] Yih chun Hu, Adrian Perrig, and David B. Johnson. Wormhole
detection in wireless ad hoc networks. Technical report, Rice University,
Department of Computer Science, 2002.

[6] Shlomi Dolev. Self-Stabilization. MIT Press, March 2000.
[7] Shlomi Dolev and Nir Tzachar. Empire of colonies: Self-stabilizing

and self-organizing distributed algorithm. Theor. Comput. Sci., 410(6-
7):514–532, 2009.

[8] Yongsheng Fu, Xinyu Wang, and Shanping Li. Construction k-
dominating set with multiple relaying technique in wireless mobile ad
hoc networks. In CMC ’09: Proceedings of the 2009 WRI International
Conference on Communications and Mobile Computing, pages 42–46,
Washington, DC, USA, 2009. IEEE Computer Society.

[9] Colette Johnen and Le Huy Nguyen. Robust self-stabilizing weight-
based clustering algorithm. Theor. Comput. Sci., 410(6-7):581–594,
2009.

[10] R. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972.

[11] Andreas Larsson and Philippas Tsigas. Self-stabilizing (k,r)-clustering
in wireless ad-hoc networks with multiple paths. In OPODIS’10, 14th
International Conference On Principles Of Distributed Systems, Tozeur,
Tunisia, December 2010.

[12] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig. The sybil
attack in sensor networks: analysis & defenses. In IPSN ’04: Proceed-
ings of the 3rd international symposium on Information processing in
sensor networks, pages 259–268, New York, NY, USA, 2004. ACM.

[13] Marco Aurélio Spohn and J. J. Garcia-Luna-Aceves. Bounded-distance
multi-clusterhead formation in wireless ad hoc networks. Ad Hoc Netw.,
5(4):504–530, 2007.

[14] Kun Sun, Pai Peng, Peng Ning, and Cliff Wang. Secure distributed
cluster formation in wireless sensor networks. In ACSAC ’06: Proceed-
ings of the 22nd Annual Computer Security Applications Conference
on Annual Computer Security Applications Conference, pages 131–140,
Washington, DC, USA, 2006. IEEE Computer Society.

[15] Yiwei Wu and Yingshu Li. Construction algorithms for k-connected
m-dominating sets in wireless sensor networks. In MobiHoc ’08:
Proceedings of the 9th ACM international symposium on Mobile ad hoc
networking and computing, pages 83–90, New York, NY, USA, 2008.
ACM.

