
CluB: A Cluster Based Framework for Mitigating
Distributed Denial of Service Attacks

Zhang Fu, Marina Papatriantafilou, Philippas Tsigas

Chalmers University of Technology, 42196 Gothenburg Sweden. Email: {zhafu,ptrianta,tsigas}@chalmers.se

ABSTRACT
Distributed Denial of Service (DDoS) attacks are threats
not only for the direct targets but also for the core of the
network. They are also hard to detect in advance, hence
methods to deal with them need to be proactive. By build-
ing on earlier work and improving on distribution of control
aspects, we propose a Cluster Based framework, which is
called CluB, to mitigate DDoS attacks; the method balances
the effectiveness-overhead trade-off by addressing the issue
of granularity of control in the network. CluB can collabo-
rate with different routing policies in the network, including
contemporary datagram options. We estimate the effective-
ness of the framework and also study a set of factors for
tuning the granularity of control.

Categories and Subject Descriptors
C.2 [Computer–Communications Networks]: Security
and Design; C.2.1 [Network Architecture and Design]:
Network Communications

General Terms
Security, Design

Keywords
Cluster-Based, Distributed Denial of Service, Granularity of
Control

1. INTRODUCTION
Distributed Denial of Service (DDoS) attacks can be so

powerful that they can easily aggregate high volume mali-
cious traffic and deplete the computing resources or band-
width of the potential targets. Preventing or mitigating
DDoS attacks is quite hard, since the key feature of today’s
networks is openness –any pair of Internet end points can
communicate freely. This leads to the lack of effective net-
work infrastructures for distinguishing and dropping mali-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

cious traffic in real time. When the attacker controls mil-
lions of zombie machines, it can easily launch a big volume
of malicious traffic by having each of the zombie machines
contribute only a small volume of packet flow. This is chal-
lenging not only for the target of the attack, but also for
the network, as large volumes of illegitimate traffic share
the same network resources as legitimate traffic and can
furthermore cause congestion phenomena and performance
degradation. Although there is large amount of literature on
congestion control [5], the methods do not apply well to the
DDoS situation, as they did not take malicious traffic into
consideration. Considering malicious traffic, it is desirable
to prevent it completely from consuming network resources.
This is essentially the motivation of the recent research work
on this theme (cf. section 2), focusing on controlling the ma-
licious traffic as close to the attacker(s) as possible.

Ideally, in an imaginary world, if we have a global net-
work monitor which can observe and control the flow be-
tween any pair of hosts, DDoS attacks could be mitigated
by having this monitor identify every potential DDoS attack
and stop the corresponding traffic as early as possible. How-
ever, it is well-understood that such a centralized counter-
measure is practically impossible due to huge implied over-
head —it would actually resemble a DoS attack itself! On
the other hand, a completely distributed, low-overhead solu-
tion, where every entity has only local information, can have
limited effect in stopping malicious traffic at some distance
from the target. Viewing the problem from this perspective,
we observe a trade-off in the achievable protection level of
the network and the efficiency/overhead of the protecting
framework, depending on the granularity of control.

Roughly speaking, to balance this trade-off, we would wish
to have some distribution of control, with some sort of dis-
tributed authority present for coordination purposes. This
observation led us to think of an analogy in real-life; namely
the exit and entry control problem between countries in the
world. A citizen of one country needs a passport and the
corresponding visa to go to another country. The passport
is a permission that the local country allows this person to
go abroad and recognizes this person as a good citizen. The
visa is the permission from the destination country to allow
this person to enter.

Inspired by the above idea, we propose CluB: a Cluster-
Based framework against DDoS attacks. In CluB the net-
work consists of a set of clusters (in the Internet, these can be
e.g. Autonomous Systems (AS), or neighborhoods of ASes;
in cloud computing, these can be different clouds to provide
secure routing services.) Packets need permissions to exit,

enter, or pass-by different clusters. Several challenges need
to be addressed, including what is the right level of distri-
bution so that this can be feasible and scalable, how the
permissions are issued, how the permission-control is car-
ried out, how the permissions are implemented so that they
are hard to be faked, and what is the level of protection
that can be achieved. In section 3 we describe solutions
in CluB, addressing the above questions. Briefly, the prop-
erties of CluB are that each of the sending permissions is
path-independent within the clusters, the packets forwarded
through clusters are checked in a distributed way and only
some particular routers keep the states of valid traffic flows.
We also suggest implementation options, involving the ap-
propriate cryptographic tools, and periodic updates of com-
ponents in the architecture as well. This limits the possibil-
ity of a powerful attacker to obtain means to launch direct
attacks to the checking entities. In section 4, we analyze
the proposed framework and show the guarantees of CluB
in filtering malicious traffic. Furthermore, in section 5, we
study how to choose the size of clusters, aiming at balancing
the granularity-of-control trade-off. We further discuss the
proposed framework in section 6, and give conclusion and
future work in section 7.

2. RELATED WORK
Solutions proposed to defend DoS attacks can be mainly

categorized into reactive solutions and proactive solutions.
Generally speaking, reactive solutions usually rely on the
targets to detect the attacks, and identify the malicious traf-
fic by the path through which it is forwarded [21, 20, 16, 4,
15]. Proactive solutions aim at mitigating or preventing the
DDoS attacks before they happen. Some proposals of proac-
tive defense are based on Secure Overlay Networks [14, 22].
The basic idea is to use a secure overlay network as a proxy
for the server that needs to be protected. Communication
between clients and the server is via secure overlay nodes,
the legitimate traffic is spread and the corresponding service
becomes DDoS-resilient. But this mechanism is expensive
for deployment. It is only worth using this mechanism to
protect some very important services.

Capability-based mechanisms [2, 23, 24] against DDoS
were proposed as an alternative. The essential component
in this kind of solutions is a token (capability) which indi-
cates the validity of the messages. Every router along the
path will check this capability. Every capability is path-
dependent, which implies that if the path is broken, the ca-
pability should be regenerated. Also, intermediate routers
do not have the right to decide which traffic can pass through
them. This implies that malicious hosts can allow each other
to send traffic and flood a part of the network. Another im-
portant issue is that attackers can flood capability-request
packets to the request channel to prevent the legitimate re-
quests from being delivered. The attack against the initial
capability requests was referred to as Denial of Capability
(DoC) [3], i.e. capabilities need to be used together with
mechanisms against DoC [18, 12].

Other related work includes the methods for traffic control
across different organization boundaries using visas in [8]
and the Platypus routing architecture [19]. Although the
basic metaphor is similar (i.e. use of visa-like permissions),
the mechanisms presented in these two papers are not de-
signed to solve the DDoS problem. So naturally, the chal-
lenges mentioned in the introduction, which are necessary to

be addressed in order to apply the intuitive metaphor into
solving the DDoS problem, are not addressed in that work.

3. THE CluB FRAMEWORK
In this section, we will first give the system model, and

in section 3.2 and 3.3 the key components and the basic
protocol of CluB will be shown.

3.1 System Model
Network nodes (routers or end-hosts) are organized into

disjoint clusters. All end entities (or hosts) are associated
with clusters where they are located. Clusters that forward
traffic between other clusters have backbone routers which
do the job of forwarding transit traffic. We also assume that
the deviation of the clock values of any pair of different nodes
is bounded in a small range; this helps synchronize the peri-
odic updates; the algorithm can also be extended to work for
bounded clock drifts (implying unbounded deviation of clock
values, as described in [10]). In this paper, bounded offsets
are assumed for simplicity of the presentation. The attacker
is modeled as an adaptive adversary which can eavesdrop
and launch a bounded number of directed attacks (i.e. flood
packets to a set of specific hosts/routers). There is an as-
sumed bound of the time that it takes for the adversary to
get the information on a possible target (e.g. some impor-
tant router) and launch a directed (distributed) attack to it.
We call this exposure delay.

We say a router is compromised, if the attacker can break
into the router’s system and get all its information. For the
sake of the presentation, we first consider that the attacker
cannot control the behavior of the compromised routers. In
section 6, we will present and discuss mechanisms against
malicious behavior of the compromised routers.

Depending on whether the source and the destination of
packets are within the same cluster, traffic can be classified
into intra-cluster traffic and inter-cluster traffic. Control-
ling intra-cluster traffic, due to the limited number of hosts
and paths in one cluster, can be done e.g. via flow filtering
based on fairness[5]. Each cluster can adopt its own method
to prevent intra-cluster traffic flooding. In this paper, we
concentrate on controlling inter-cluster traffic.

3.2 Key Components in The Framework
Each cluster Ci mainly controls three types of inter-cluster

traffic I) outbound traffic i.e. from Ci to other clusters, II)
inbound traffic i.e. from other clusters to Ci; III) transit
traffic i.e. traffic that passes through Ci and goes to an-
other cluster. In order to go out/in or pass through a clus-
ter, packets need to have some permissions which are called
authentication tokens. To control the validity of the authen-
tication tokens, in each cluster there are designated Egress
Checking Routers (ECR), Ingress Checking Routers (ICR).
Transit traffic is controlled by backbone routers. Tokens and
the checking routers are changed periodically. Section 3.2.2
and 3.2.3 show the details.

3.2.1 Coordination Authorities
Every cluster needs a coordination entity, which can be

implemented in a centralized manner by a single node, pro-
tected by a secure overlay as in [14, 22]. We present the pro-
posed solution with a single coordinator per cluster. This
coordinator is publicly trusted and well protected, e.g. via a
secure overlay as mentioned above, to avoid turning it to a

DoS attack target. The coordinator maintains security poli-
cies of its cluster and cooperates with coordinators in other
clusters. Generally, each coordinator has the duty for the
following tasks:
(I) It decides whether to allow a host in the cluster to send
outbound traffic out of this cluster, or to allow a host of
another cluster to send inbound and transit traffic to/via its
cluster. The coordinator grants the authentication code of
the cluster to the hosts of the approved requests.
(II) It generates new authentication codes for the cluster pe-
riodically; and gives the codes to the corresponding routers
for checking the validity of traffic.
(III) As mentioned in the preceding paragraphs, not only
the tokens, but also the routers for checking them are changed
periodically. It is the coordinator that appoints the checking
routers for each period of time. We describe this process in
more detail in section 3.2.3.

Considering potential attacks to the permission request-
ing stage, these can be referred to the DoC problem (cf. sec-
tion 2) and can be mitigated in two levels: In intra-cluster
level, a secure overlay can be used to protect the coordinator,
hence mitigating the potential attempts by the attacker to
prevent the requests of legitimate hosts from being received
by the coordinator. In inter-cluster level, coordinators may
control the sending rate when they forward requests, accord-
ing to policies agreed among clusters.

3.2.2 Authentication Tokens
When a packet is being forwarded in/via a cluster, the

latter could be source, intermediate or destination cluster.
Hence CluB has three kinds of authentication tokens for le-
gitimate packets, which are computed using the correspond-
ing authentication codes:
Outbound-authentication token is used for packets go-
ing out of the source cluster. This kind of token is generated
with the outbound-authentication code of the source cluster.
Inbound-authentication token is used for packets being
forwarded within the destination cluster. This kind of to-
ken is generated with the inbound-authentication code of the
destination cluster.
Transient-authentication token is used for packets pass-
ing through intermediate clusters. Each token is generated
with the transient-authentication code of the corresponding
intermediate cluster.

Every cluster has it own authentication codes, and all au-
thentication codes are changed periodically. A host that
wants to send packets to another cluster, in order to gener-
ate valid authentication tokens for its packets, it needs the
current outbound-authentication code of the local cluster,
the current inbound-authentication code of the destination
cluster, and the current transit authentication code of each
intermediate cluster. Considering that a host may get the
authentication codes and share them with other hosts, which
is referred as colluding, the authentication codes are given in
a hash format binding with specific IP addresses and check-
ing routers. When the host gets authentication codes, it will
generate authentication tokens for every outbound packet in
the following way:

HASH (ℎasℎ⊕ SeqNumber∣∣ℎasℎ) , (1)

where ℎasℎ = HASH (SrcIP ∣∣DesIP ∣∣AutℎCode∣∣PID∣∣RID)

which is given by the coordinator, SeqNumber is the packet’s
sequence number, “∣∣” denotes concatenation, PID is the

Host

Backbone Router

C1

C2

C4

C3

ℎ1
1

ℎ3
1

r11

b21

Egress Checking RouterIngress Checking Router

b22

r31

Figure 1: Example for describing CluB’s architecture and

packet forwarding

period-number, RID is the checking router’s identity and
HASH can be an one-way hash function, such as MD5,
SHA.

In each period, each outbound packet of this host has a
unique sequence number. Generating authentication tokens
with packet sequence numbers is to prevent the attacker
from “replaying” legitimate packets.

3.2.3 Egress/Ingress Checking Routers
In CluB each cluster has one or more ordinary routers

that act as the logical exit control of the cluster, called the
Egress Checking Routers (ECRs). All the packets generated
from this cluster to other clusters are supposed to be routed
via some ECRs where the packets’ outbound-authentication
tokens are checked.

In addition to ECRs, Ingress Checking Routers (ICRs)
also exist in each cluster. All the packets whose destinations
are in this cluster are supposed to pass through some ICRs
where their inbound-authentication tokens are checked.

In the beginning of every time period, the cluster coor-
dinator computes the new ECRs and ICRs for this period
using a pseudo-random function, and then sends a notifica-
tion message to every router in the cluster. There could be
more than one checking routers, considering fault-tolerance
and load balancing issues. The notification message to a spe-
cific router only tells whether this router is a checking router
or not in the current time period. If it is, the outbound/in-
bound authentication code for the current time period is
included in the notification message. Since a notification
message should only be readable by the corresponding re-
ceiver, the coordinator encrypts it with the receiver’s public
key and patches its digital signature in it. Due to the pos-
sible time offsets and packet delivery latency, each checking
router has to serve a number of time units longer than a
time period.

Besides, recall that we have the backbone router(s) in each
cluster, responsible for checking packets in transit. These
are assumed to be part of the underlying routing protocol
(e.g. they can be the same as the backbone routers in the
autonomous systems) or can be appointed in CluB.

3.3 The Basic Protocol
The protocol consists of three main parts, namely per-

Algorithm 1 Algorithm for a router (can be ECR router) pro-
cessing an outbound packet.

i n i t i a t e isECR ;
AutℎCode← (Outbound authen t i c a t i on code) ;
PID ← the number o f cur r ent per iod ;

−−When r e c e i v e an outbound packet PKout

routerECR← PKout.ECR ;

/∗check whether i t should check th i s packet∗/
i f (isECR =true & myID == routerECR)

i f (checked be f o r e) drop PKout ;
else

SeqNum← PKout.SeqNumber ;
ℎasℎ← HASH(srcIP ∣∣desIP ∣∣AutℎCode∣∣PID∣∣myID);
i f (HASH(ℎasℎ⊕ SeqNum∣∣ℎasℎ) == PKout.AutℎToken)

PKout.outBit = 1 ;
route the packet out o f the c l u s t e r ;

else drop PKout ;
else i f (isECR != true & myID == routerECR)

drop PKout ;
else i f (isECR = true & myID != routerECR)

i f (!PKout.outBit)
route PKout to routerECR ;

else i f (PKout is received directly from a host)
drop PKout ;

else route the packet out of the cluster;

mission requesting, packet encapsulation, packet forwarding,
which are explained in detail below. Algorithm 1 shows
the pseudocode for ECRs and ordinary routers processing
outbound packets. The pseudocode for ICRs and inbound
packet processing is symmetric.

3.3.1 Permission Requesting
Before a host sends packets to other clusters, it should

send a request to the coordinator in the local cluster. Upon
receiving the request, the coordinator checks whether this
host misbehaved before according to local policy, e.g. black-
listing as using in the capability-based mechanisms. If ev-
erything is OK, the coordinator forwards this request to the
coordinator of the destination cluster, while each coordina-
tor of the intermediate clusters also gets it. They too, decide
whether to grant the permissions to the host according to
their local policies. If everything is OK, the destination co-
ordinator provides the address of one of its ICRs and its
inbound-authentication codes; similarly, all the intermedi-
ate coordinators provide their transit authentication codes.
After the local coordinator gets the (encrypted) reply mes-
sages, it hashes each of the authentication codes as well as
the outbound-authentication code (cf. section 3.2.2). Then
the local coordinator will put these hash values and the ad-
dresses of ECR and ICR into one message and return it to
the requesting host, encrypted using the host’s public key.

3.3.2 Packet Encapsulation
After successfully getting the reply, the requesting host

can generate the authentication tokens (cf. section 3.2.2)
for its packets. In CluB, the regular packets have more
header fields than the normal (e.g. IP) packets. These ex-
tra fields form a data structure, called routing vector. The
first entry of the vector contains the address of an ECR of
the source cluster and the cluster’s outbound authentica-
tion token. The last entry of the vector contains one of the
ICRs of the destination cluster and corresponding inbound-

authentication token. The intermediate entries contain the
corresponding transit-authentication tokens. Each entry also
contains one bit, called checking bit, indicating whether the
packet has been checked by the checking router.

We can use an example to illustrate the routing vector.
As shown in Figure 1, host ℎ1

1 wants to send packets to ℎ3
1

in cluster C3. The routing vector is like this:{〈
C1, r

1
1, 0, tok1

〉
, ⟨C2, backbone, 0, tok2⟩ ,

〈
C3, r

3
1, 0, tok3

〉}
,

where tok1, tok2, tok3 are the outbound, transit and inbound
authentication tokens, and r1

1 is an ECR in C1, r3
1 is an ICR

in C3. Initially, all the checking bits are set to 0. We describe
how the packets are routed from ℎ1

1 to ℎ3
1 in the next section.

3.3.3 Packet Forwarding
An outbound packet is forwarded through the source clus-

ter, intermediate clusters and destination cluster. Each au-
thentication token is checked by the corresponding checking
routers. If everything is valid, the packet will reach its desti-
nation. Consider the example illustrated by Fig. 1: A packet
from ℎ1

1 to ℎ3
1 will be first routed to router r1

1 for checking
the outbound authentication token, then it will be routed
out of cluster C1, with next hop C2. In C2 the packet will
be forwarded by the backbone router(s) where the transit
authentication token is checked. After passing through C2,
the packet will enter into C3 and be routed to router r3

1

(ICR). After r3
1 checks the inbound authentication token,

the packet can be finally routed to its destination ℎ3
1. Below

we detail some important steps of the forwarding process us-
ing our running example. For the sake of space limitation,
we only show the forwarding process within the source clus-
ter, the situations for intermediate and destination clusters
are analogous.

When a non-checking router gets an outbound packet (it
can tell that from the source and destination addresses), it
checks whether this packet has been already checked. If the
packet has not been checked by some ECR in the current
cluster (i.e. its checking bit in the first entry of is 0), then
the packet will be routed to this ECR. If the checking bit is
1, then the packet will be routed to exit the cluster When
an ECR receives an outbound packet, it checks whether the
router’s identity in the first entry of the packet’s routing
vector is equal to its own identity. If not, then it will behave
as an ordinary router. If yes and it did not check this packet
before, it will check the validity of the packet, i.e. redo the
computing for the outbound authentication token and com-
pare it with the corresponding value contained in the packet;
if they match, then the router will flip the checking bit and
route the packet towards out of the cluster. The packets
having invalid tokens will be dropped. Identifying the re-
played packets needs the checking routers to keep states for
the received packets, which would be a big overhead. To re-
duce this overhead, each ECR/ICR can also employ a Bloom
Filter [17]. Details about how to use Bloom Filters are pre-
sented in an extended version of this paper [11].

Given that the attacker may not know which router is
ECR, it may guess and fill an arbitrary router’s IP in the
routing vector. So if a non-ECR router receives an out-
bound packet and finds its IP address in the first entry of
the routing vector, it will drop the packet. Routing a regu-
lar outbound packet from its host to its assigned ECR can
be done using common routing protocols, such as RIP and
OSPF.

Figure 2: Probability that an AS resides exactly ℎ hops

away from a reference AS [6]

Dealing with malicious packets whose checking bits
are set: The adversary may let the compromised hosts send
packets whose checking bits are 1. Such packets might reach
the destination without being checked. Since the checking
bits should be changed only by the corresponding checking
routers, if a router receives a packet whose checking bits are
1 directly from a host, this packet is definitely malicious and
will be dropped. Given the assumption that the routers do
not misbehave, this mechanism can prevent the malicious
packets from avoiding the checking process. In section 6, we
extend the method and discuss solutions against malicious
behavior of compromised routers.
Token-Refreshing: Since the ECRs, ICRs and all authen-
tication codes change periodically, a host has to renew them
periodically, thus repeats the initial steps. Considering the
cost in the requesting process, we let the coordinator of
each cluster give the information about its ICRs, inbound
and transit authentication codes to the coordinators of other
clusters. So upon receiving a refresh request from a host who
got the sending permission before, the coordinator does not
have to forward the request to the other coordinator(s) that
may be involved. If the host did not misbehave so far, new
information will be granted to the host.

4. ANALYSIS AND EVALUATION
In this section, we analyze the proposed methods from

two perspectives. First, the effectiveness of filtering dis-
tributed malicious traffic is studied, also in connection to
the capability-based mechanism. Second, we analyze the
influence of malicious packets flooding to legitimate traffic.

4.1 Filtering Effectiveness
We consider that the attacker, who does not know any of

the authentication codes, randomly piggybacks some hash
values in the routing vector. The expectation of the amount
of malicious traffic reaching the target is estimated below.

Proposition 1. Assume that the proportion of the ma-
licious traffic that is generated at the clusters ℎ hops (at
cluster-level) away from the target is �ℎ. Suppose the to-
tal amount of the malicious traffic is M , then the expecta-
tion of the amount of malicious traffic reaching the target is:∑�
ℎ=1 �ℎ ⋅M ⋅pin ⋅peg ⋅p

ℎ−1
tr , where pin, peg, ptr are the prob-

abilities that the attacker finds out one cluster’s outbound,
inbound and transit authentication code respectively and � is
the diameter of the network in cluster-level.

To reflect on what the above implies, let us consider a case
where the clusters in CluB are autonomous systems (AS) in
the Internet. Suppose also that the amount of the malicious
traffic generated from each AS to a specific AS is the same,
and pin = peg = ptr = p. We use the data of neighbor ASes
distribution of a specific AS mentioned in [6], which is shown
in Fig. 2. Then the proportion of the malicious traffic that
can reach the target is estimated as:

∑6
ℎ=1 p

ℎ+1pℎ, where
pℎ is the probability that an AS resides exactly ℎ hops away
from the given AS. Here we choose the diameter as 6, since

most of the ASes reside within 6 hops away from the ref-
erence AS. If each kind of authentication code has 32 bits,
then the probability to guess out each of the authentication
codes is 1

232 . Due to the time offsets and packet delivery la-
tency, at any given time there could be more than one codes
valid for each kind of authentication tokens. Let x be the
number of outbound/inbound/transit authentication codes
valid in each cluster at a given time. So in this example,
p = 1 −

(
1− 1

232

)x
. Considering that usually the time off-

sets and the packet delivery latency are quite small, e.g. we
choose x = 2, then the percentage of the malicious traffic
that can reach the target is smaller than 10−18.
Comparison with the capability-based mechanism:
To put the filtering properties of CluB in perspective, it is
worthwhile to study them in connection to the capability-
based method. Assuming CluB can use the same procedure
of black-listing as that used in the capability-based mecha-
nisms, we can study the potential effect of the difference be-
tween the two distributions of control. In the case study, we

(a) Each compromised host in cluster C1 has probabil-

ity 0.2 to attack each of the other clusters

(b) Each compromised host in cluster C1 has probability

0.5 to attack each of the other clusters

Figure 3: Filtering effectiveness comparison between CluB

and the capability-based mechanism. The number of com-

promised hosts in cluster C1 (in fig.1) that can attack hosts

in cluster C3 in different periods is shown.

created 4 clusters with topology as shown in Fig.1. There
are 1000 hosts in cluster C1, all of which are considered
as compromised. In every simulation period, each of the
compromised hosts attacks each of the other three clusters
with probability 0.2 (shown in Fig. 3(a)) or 0.5 (shown in
Fig. 3(b)). Initially, none of the compromised hosts are pre-
vented from sending packets to the other three clusters. We
count the number of compromised hosts that can send traffic
from cluster C1 to cluster C3 for 5 periods. From Fig.3, we
can see that this number drops faster in CluB compared with
the capability-based mechanism. This is because when some
compromised hosts attack cluster C2 and C4 before attack-
ing cluster C3, they cannot send traffic to cluster C3 later,
since they are blacklisted in C2 and C4 and cannot get the

transit authentication codes. In the capability mechanism,
since the responsibility for issuing capabilities is assigned to
the end-server, those compromised hosts (who attacked C2

and C4 before) can still get capabilities from C3 and send
traffic to it as long as they are not blacklisted in C3.

4.2 Packets Flooding to The Checking Routers
By keeping the length of the periods less than the expo-

sure delay, we may prevent the adversary from attacking the
checking routers directly. For the unlikely event that an at-
tacker is able to launch a directed attack in a shorter time,
we would like to know the harm that this may cause, i.e.
to analyze the effect of the directed flooding attacks to the
checking routers. We show this for the outbound packets
flooding; the situation of inbound packets flooding is sym-
metric. Proofs of lemmas are omitted here due to space
constraints and can be found in [11]. Let us first give the
following definition:

Definition 1. The pass-through probability PE−tℎ is the
probability that a legitimate outbound packet is processed by
the ECR which is indicated in the routing vector of the packet.

Next we will analyze the pass-through probability when
the attacker launches outbound packets flooding to the ECRs.
Consider that there are Φ ECRs in a cluster and each ECR
can process B outbound packets per time unit. If an ECR
has to process more than B outbound packets per time
unit, then it randomly processes B packets from them (by
sampling over small time intervals). When the attacker
knows the information about the current ECRs in the clus-
ter, it may control the compromised hosts to attack ECRs,
 ≤ Φ. We use si, 1 ≤ i ≤ , to denote the number of mali-
cious outbound packets that are sent to the itℎ ECR that is
under attack. And we assume that ∀i, si ≥ 1. For the sake
of the analysis, we assume that in each time unit, each ECR
receives the same number of legitimate outbound packets.
We use Q to denote this number. Here to avoid non-trivial
options, we assume Q ≤ B < Q + si.

Given the itℎ ECR that is under attack, the pass-through
probability for a legitimate outbound packet assigned to this
ECR is B

Q+si
. When a legitimate outbound packets is sent

to an ECR that is not under attack, the pass-through prob-
ability of this packet is 1. Since each ECR receives the same
amount of legitimate outbound packets, we assume the prob-
ability that a legitimate outbound packet is send to a specific
ECR is 1

Φ
. We have the following lemma:

Lemma 1. For fixed Φ and , the pass-through probability
is: PE−tℎ = Φ−

Φ
+ 1

Φ

∑
i=1

B
Q+si

.

We use m to denote the number of compromised hosts
in the cluster. Each compromised host can at most send
b outbound packets per time unit. It can be shown that
the attacking strategy to minimize PE−tℎ with ECRs un-
der attack is to let si = mb

for all i ∈ {1, ⋅ ⋅ ⋅ }. Further-

more, when the capacity of each ECR for processing the out-
bound packets is just enough for processing the legitimate
outbound packets, that is B = Q, the attacker’s option for
minimizing PE−tℎ is to attack all the ECRs, i.e. = Φ, and
∀i : si = mb

Φ
. The corresponding PE−tℎ is ΦB

mb+ΦB
. When

each ECR has more capacity for processing outbound pack-
ets, that is B > Q (i.e. there is over provision in each ECR’s
capacity by B −Q), the strategy to minimize PE−tℎ for the

attacker is to attack
mb
(√

B
B−Q

−1
)

Q
ECRs. Note that, since

is at most Φ, if
mb
(√

B
B−Q

−1
)

Q
> Φ then PE−tℎ is minimized

when = Φ. We have the following lemmas as summary:

Lemma 2. If B = Q, then PE−tℎ ≥ ΦB
mb+ΦB

.

Lemma 3. If B > Q: if
mb
(√

B
B−Q

−1
)

Q
≤ Φ, then PE−tℎ ≥

B−
√
B(B−Q)

Q
; if

mb
(√

B
B−Q

−1
)

Q
> Φ, then PE−tℎ ≥ ΦB

ΦQ+mb
.

Plug in some real parameters, suppose each ECR can han-
dle 1M outbound packets per second and the number of le-
gitimate outbound packets sent to each ECR is also 1M , that
is B = Q = 1M . If there are 10 ECRs and the attacker can
at most flood 10M packets per second, that is mb = 10M ,
then PE−tℎ ≥ 0.5. Now suppose each ECR can handle more
packets per second, say B = 1.1M , then PE−tℎ ≥ 0.55; if
now we have more ECRs, say 20, then PE−tℎ ≥ 0.768.

5. SIZE OF CLUSTERS
Optimizing the granularity of clusters involves many fac-

tors. In this section, we will discuss the factors that play
significant roles in choosing the granularity of control.

Security and Processing Load.
Note that if some of the ECRs/ICRs are compromised,

then the outbound/inbound authentication code may be re-
vealed. If we assume that each router has a certain proba-
bility to be compromised, then each cluster should not have
many ECRs(ICRs), since this may increase the probabil-
ity of the revelation of the authentication codes. Given a
router, we use � to denote the probability it is compromised
(assuming that each router has the same probability to be
compromised). Then the probability that at least one of the
ECRs is compromised is:

Pcomp = 1− (1− �)Φ , (2)

If we want to control Pcomp under a threshold, say Γ, then
Φ ≤ log1−� (1− Γ).

However, one cluster should have enough ECRs to handle
its outbound traffic. If we use SHA-1 as the hashing function
for the authentication tokens, according to Crypto++5.6.0
benchmarks [1], it can be processed at 153 MiB/sec on a
1.83 GHz Inter Core2 machine. Some off-the-shelf routers
such as Cisco 7600 series have processors of 1.2 GHz, tak-
ing a conservative estimation that they can process the out-
bound packets with speed 50 MiB/Sec. If the volume of
legitimate outbound traffic is 10 Gbps, then there should be

10Gbps
50MiB/Sec

≈ 25 ECRs. This is a constraint that we have

to consider, since generally the amount of outbound traffic
grows with the size of the cluster.

Traffic Stretch.
In the source cluster, an outbound packet is forwarded

out of the source cluster via one of the ECRs. The shortest
path length from the source to the neighbor clusters via one
ECR is usually bigger than the shortest path length (which
is the distance) between the source and the boundary of
clusters, unless the ECR is on the shortest path. We use
traffic stretch to measure this phenomenon. Here we define
the stretch for the outbound traffic being forwarded in the
source cluster (definition for inbound traffic is symmetric).

Definition 2. Traffic stretch of an outbound packet is
the ratio between the shortest path length from the source of

the packet to the next cluster via one ECR and the original
shortest path length from the source to the next cluster.

Generally, the more ECRs a cluster has, the less the aver-
age traffic stretch will be. This is because more ECRs imply
higher probability that the shortest path length via one of
the them is close to the original shortest path length. The
relationship between the traffic stretch and the number of
ECRs depends on the intra-cluster topology. To illustrate
this issue, we present a study on several intra-cluster topolo-
gies. In particular, we illustrate the traffic stretch as a func-
tion of the density of ECRs in the cluster. The first topology
is a balanced tree (height of 4 and each internal node has
6 child nodes, 1555 nodes in total). The second topology is
a (33 × 33) grid. The third topology is a power-law topol-
ogy (with 1000 nodes). The fraction of ECRs among all the
routers of the cluster is between 0.001 and 0.03. Figure 4
depicts the stretch of different intra-cluster topologies. Fig-
ure 5 shows the stretch of power-law topologies with different
sizes. In both figures, the average stretch is decreased when
the fraction of ECRs grows. It is interesting to see that in
both figures, the decreasing speed of the average stretch is
quite fast before the fraction of ECRs reaches 0.005; and af-
ter the fraction of ECRs reaching 0.01 the decreasing speed
of the average stretch is quite slow. Given the trade-off be-
tween security and the traffic stretch, one could use such
diagrams to decide on the ECR density (e.g. with the stud-
ied system settings, the optimal fraction of ECRs is between
0.005 to 0.01.)

Figure 4: Average traffic stretch for routing packets via

ECRs.

Figure 5: Average traffic stretch for routing packets via

ECRs in the clusters of power-law topology.

Path Failures.
The forwarding path between one cluster to another may

change in the cluster level due to the link failures or routing

policy changes, then the sending hosts have to require transit
authentication codes of the new clusters in the path. Next
we will discuss the relation between the cluster sizes and the
probability of path changing as a result of link failures.

We assume that the number of physical links between two
neighbor clusters is proportional to the size of the clusters,
e.g. f (n) = log logn, to denote the number of physical links
between two neighbor clusters (we assume that every cluster
has the same size n). We say the connection between two
neighbor clusters fails when all the physical links between
them fail. Given a physical link, we use � to denote the
probability that this link fails (we assume that each link has
the same probability to fail). We say that a path fails when
there exists at least one pair of two consecutive clusters in
the path whose connection fails. We use Ppatℎ−f to denote
the probability that a path fails, L is the path length in
cluster level. Hence, we have:

Ppatℎ−f = 1− Pr[no connections fail in the path]

= 1−ΠL−1
i=0 (1− Pr[connection between ciand ci+1fails])

If assume that every cluster has the same size, we have:

Ppatℎ−f = 1−
(

1− �f(n)
)L

. (3)

Note that generally the length of a path decreases when the
size of the clusters increases (for example if we merge two
neighbor clusters together then the length of the path is
L − 1) and since ax is a monotonically decreasing function

when 0 < a < 1 and x > 1, the value of
(

1− �f(n)
)L

will

increase when n grows. Previous work (such as [9]) shows
that the AS-level topology is complied to power-law. Chung
et al. [7] showed that in common Internet graphs, where the
topology is power-law with powers ranging from 2.1 to 2.45,
the average distance between two ASes is log log (N), where
N is the number of autonomous systems. Since a cluster can
be naturally mapped to one or a group of autonomous sys-
tems, if we assume the topology of cluster-level also follows
power-law, then L can be estimated as log log (NC), where
NC is the number of clusters. Figure 6 illustrates the trade-
off between Pcomp and Ppatℎ−f using formula 2 and 3. We
let the total number of routers equal to 100000, n ranges
from 100 to 3000. From Figure 6 we observe that Pcomp
decreases when Ppatℎ−f increases, this is because increasing
the size of a cluster will increase the amount of outbound
traffic; then more ECRs/ICRs are needed, which leads to
the decrease of Pcomp. Fig. 6(a) illustrates the trade-off with
fixed value of � and varying �; while Fig. 6(b) illustrates the
trade-off with fixed value of � and varying �.

6. FURTHER DISCUSSION
Taking algorithm 1 into consideration, if the compromised

routers can set the checking bits to 1 in the malicious pack-
ets, these packets can be forwarded to the destination with-
out actually being checked. In this more aggressive threat
model, to make sure that each packet is checked, we may
use signatures. When a checking router finishes checking a
valid packet, it fills its signature in the packet header. When
other routers get this packet, they verify this signature, and
the packet will be forwarded accordingly.

However, a compromised router can pretend to be a check-
ing router and gives its signature to non-legitimate packets,
then these packets can be forwarded by other routers. To

(a) � ranges from 0.001 to 0.0001, � is fixed to 0.1

(b) � ranges from 0.1 to 0.05, � is fixed to 0.001

Figure 6: Trade-off between the probability that at least one

ECR is compromised and the probability of path changing in

cluster level. X axis presents the logarithmic value of Ppatℎ−f .

solve this problem, the coordinator can broadcast the check-
ing router list for the previous period in the notification mes-
sages. Now, the identifications of the compromised routers
who pretended to be checking routers can be revealed and
they can be black-listed. To reduce the computing overhead
induced by digital signatures, we may use probabilistic veri-
fication: the router tries to verify each signature with prob-
ability �ℎ which is inversely proportional to ℎ (the number
of hops between the current router to the checking router).
It is also possible to use one time signature in conjunction
with a hash tree to achieve fast verification and a small size
of the public key as used in [13].

7. CONCLUSION AND FUTURE WORK
CluB is a proactive framework proposed here for mitigat-

ing DDoS attacks. In this paper we estimate the effective-
ness of the framework as well as the impact of some potential
attacks against the framework. CluB offers the possibility
of adjusting the granularity of traffic control in the network,
thus providing the possibility to tune the trade-off between
overhead and effectiveness in stopping malicious traffic. This
paper studies some important factors involved in this trade-
off, including cluster size, density of ECRs/ICRs, confiden-
tiality risk, processing load, traffic stretch, path connectivity
and failures. A useful continuation can be a holistic study
that investigates the impact of distribution level of the co-
ordinating authority, period length, clock drifts, signature
methods. It is also worth investigating the option of different
clusters adopting different policies, which can be modeled as
a game.

Acknowledgments
The research leading to these results has received funding
from the Swedish Civil Contingencies Agency (MSB) and
from European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No.257007.

8. REFERENCES
[1] Crypto++ 5.6.0 benchmarks

http://www.cryptopp.com/benchmarks.html, 2009.

[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet
denial-of-service with capabilities. SIGCOMM Comput.
Commun. Rev., 34(1):39–44, 2004.

[3] K. Argyraki and D. Cheriton. Network capability: The good,
the bad and the ugly. In In Proceedings of Workshop on Hot
Topics in Networks (HotNets-IV), November 2005.

[4] K. Argyraki and D. R. Cheriton. Active internet traffic filtering:
real-time response to denial-of-service attacks. In Proceedings
of the annual conference on USENIX Annual Technical
Conference, pages 10–10. USENIX Association, 2005.

[5] J.-Y. L. Boudec. Rate adaptation, congestion control and
fairness: A tutorial, EPFL, December 2000.

[6] Y. Chen, K. Hwang, and W.-S. Ku. Collaborative detection of
DDoS attacks over multiple network domains. IEEE Trans.
Parallel Distrib. Syst., 18(12):1649–1662, 2007.

[7] F. Chung and L. Lu. The average distances in random graphs
with given expected degrees. Internet Mathematics,
1:15879–15882, 2002.

[8] D. Estrin, J. Mogul, and G. Tsudik. Visa protocols for
controlling interorganizational datagram flow. Selected Areas in
Communications, IEEE Journal on, 7(4):486–498, May 1989.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM ’99, pages
251–262. ACM, 1999.

[10] Z. Fu, M. Papatriantafilou, and P. Tsigas. Mitigating
distributed denial of service attacks in multiparty applications
in the presence of clock drifts. In Proceedings of IEEE SRDS,
pages 63–72. IEEE Computer Society, 2008.

[11] Z. Fu, M. Papatriantafilou, and P. Tsigas. CluB: A cluster
based method for mitigating distributed denial of service
attacks, Technical Report 2009-09, Chalmers University of
Technology, 2009. www.cse.chalmers.se/ ˜ zhafu/CluB.pdf.

[12] Z. Fu, M. Papatriantafilou, P. Tsigas, and W. Wei. Mitigating
denial of capability attacks using sink tree based quota
allocation. In Proceedings of SAC 2010, pages 713–718. ACM,
2010.

[13] Y.-C. Hu, A. Perrig, and M. Sirbu. Spv: secure path vector
routing for securing bgp. In SIGCOMM ’04, pages 179–192.
ACM, 2004.

[14] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: secure
overlay services. SIGCOMM Comput. Commun. Rev.,
32(4):61–72, 2002.

[15] X. Liu, X. Yang, and Y. Lu. To filter or to authorize:
network-layer DoS defense against multimillion-node botnets.
In SIGCOMM ’08, pages 195–206. ACM, 2008.

[16] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling high bandwidth aggregates in the
network. SIGCOMM Comput. Commun. Rev., 32(3):62–73,
2002.

[17] A. B. I. M. Mitzenmacher. Network applications of bloom
filters: A survey. In Internet Mathematics, pages 636–646,
2002.

[18] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and
Y.-C. Hu. Portcullis: protecting connection setup from
denial-of-capability attacks. In SIGCOMM ’07, pages 289–300.
ACM, 2007.

[19] B. Raghavan and A. C. Snoeren. A system for authenticated
policy-compliant routing. SIGCOMM Comput. Commun.
Rev., 34(4):167–178, 2004.

[20] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
network support for ip traceback. SIGCOMM Comput.
Commun. Rev., 30(4):295–306, 2000.

[21] D. X. Song and A. Perrig. Advanced and authenticated
marking schemes for ip traceback. In IEEE INFOCOM 2001.,
volume 2, pages 878–886 vol.2, 2001.

[22] A. Stavrou and A. D. Keromytis. Countering dos attacks with
stateless multipath overlays. In Proceedings of ACM CCS,
pages 249–259, New York, NY, USA, 2005. ACM.

[23] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet flow
filter to mitigate DDoS flooding attacks. IEEE Security and
Privacy Symposium, page 130, 2004.

[24] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. In SIGCOMM ’05, pages 241–252. ACM,
2005.

