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Abstract

Many software vendors use data obfuscation to make it hard for reverse engineers to

recover the layout, value and meaning of the variables in a program. The research ques-

tion in this paper is whether the state-of-the-art data obfuscations techniques are good

enough. For this purpose, we evaluate two of the most popular data obfuscation meth-

ods: (1) splitting a single variable over multiple memory location, (2) splitting and

merging two variables over multiple memory locations. While completely automated

and flawless recovery of obfuscated variables is not yet possible, the outcome of our re-

search is that the obfuscations are very vulnerable to reversing by means of automated

analysis. We were able to deobfuscate the obfuscated variables in real world programs

with false positive rates below 5%, and false negative rates typically below 10%.

1 Introduction

Both malware authors and commercial software vendors employ software obfuscation

to protect their binaries from the prying eyes of reverse engineers and crackers. The

assumption is that sensitive information is safe behind one or more layers of transfor-

mation that scramble the data and code in such a way that they become hard to analyze.

In this paper, we focus on legitimate applications written in C that vendors obfuscate

for purposes like IP protection and DRM.

By now, code and data obfuscation have evolved into mature fields, with an ac-

tive research community and commercial products like Irdeto’s Cloakware [19], Mor-

pher [26], and CodeMorph [31]. The commercial interest in obfuscation is high, es-

pecially in DRM or security-sensitive environments. Cloakware’s clients include com-

panies like Logitech/Google TV, ComCast, Netflix, Elgato, Harmonix, and Xceedium,

while Morpher has clients like Spotify and Discretix (used in Android DRM, Microsoft

PlayReady, and many other products).

The obfuscation techniques in today’s obfuscators range from limited control flow

hiding to highly advanced methods that include the data structure layouts (and values)

as well. Indeed, it is common to distinguish between control obfuscation (e.g., opaque

predicates and control flow hiding), and data and layout obfuscation (e.g., splitting a

single variable over multiple memory locations) [10, 9].

Over the years, both the blackhat and whitehat communities have shown an active

interest in probing the strength of current control obfuscation techniques. Typically,
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they show that most control obfuscation techniques are limited (or even weak) in the

face of determined attackers [21, 33, 24, 13].

We do not know of any project that addresses the recovery of obfuscated memory

layouts and data. This is remarkable, because for reverse engineers there is great value

in the recovery of the data and its layout. Real programs tend to revolve around their

data structures, and ignorance of these structures makes the already complex task of

reverse engineering even more painful [30]. In addition, deobfuscated data is a crucial

step in reversing sensitive information.

A possible reason for the lack of prior art is that extracting data structures from bi-

nary programs is exceedingly difficult even without obfuscation. If data is additionally

hidden behind sophisticated obfuscations, the hope of recovering the original data struc-

tures is close to zero. For instance, how could you detect that two bytes are really part

of the same number in a single structure, if they are not even stored together? The core

assumption that many software vendors rely on is that the obfuscation is irreversible in

practice. The research question in this paper is whether this assumption is reasonable.

Specifically, we show that the assumption is false for state-of-the-art data obfuscators

and that it is feasible to recover the data structures in an automated way. Perfect deob-

fuscation is not needed and, as we shall see, impossible in the general case. Instead, we

probe the binary’s obfuscation and consider it weak when a reverse engineer has a high

probability of finding the original data/layout.

Contributions. The research question in this paper is: are state-of-the-art data obfus-

cation techniques good enough? Specifically, we probe two of the most common and

advanced data obfuscation techniques, and show that they are vulnerable to automated

analysis. Our approach is based solely on a dynamic analysis of the program’s mem-

ory accesses and information flow. As a concrete implementation, we present Carter,

a data deobfuscator that reverses the obfuscations by tracking and analyzing the pro-

gram’s memory access patterns. We also show the usefulness of the tool in an actual

reverse engineering scenario.

Assumptions. We assume that the obfuscator may apply different data and control

obfuscations at the same time—much like state-of-the-art obfuscators such as Cloak-

ware [19]. For instance, we allow split variables in a program that also runs on a virtual-

ization obfuscator with opaque predicates. Rather than criticize a specific product, our

aim is to evaluate the advanced obfuscation techniques in general, regardless of who

sells them. Therefore, whenever we discuss data obfuscation techniques in this paper,

we refer to publications describing the techniques and not to products. The actual ob-

fuscator used for this paper is representative of the advanced data obfuscations found in

(one or more of) the commercial systems.

We also assume that the obfuscated binary is available on a machine controlled by

the attackers. They can apply any kind of static or dynamic analysis to the binary and

run it many times.

Our approach is almost exclusively dynamic. In particular, it runs the obfuscated

binaries in the PIN [18] dynamic instrumentation framework. Dynamic analysis has the

advantage that it easily handles popular control obfuscations (like opaque predicates

and return address patching, see Section 5). The drawback is that, like all dynamic
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approaches, we can only analyze what we execute. While code coverage for binaries is

a hot research topic [6], it is beyond the scope of this paper.

The paper will also show-case examples of single-threaded obfuscation, since in

practice, we never observed instances cross-thread data obfuscation. This does not limit

the ability of Carter to handle multi-threaded programs, as PIN is fully capable of per-

forming per-thread instrumentation.

Outline We describe data obfuscation techniques in Section 2, and our approach to

deobfuscation in Sections 3-4. Next, we discuss the impact of control obfuscations in

Section 5 and evaluate our work in Section 6. We then use our tool in an actual reverse

engineering example in Section 7 to demonstrate its usefulness. We discuss both lim-

itations and recommendations in Section 8 and related work in Section 9. Section 10

contains our conclusions.

2 Data obfuscation

In the next three sections, we focus on data obfuscation. In Section 5, we also show what

happens if data and control obfuscation are combined. Our focus is solely on obfusca-

tion rather than, say, encryption1. Specifically, we evaluate two of the most prevalent

and advanced data obfuscations described in the literature:

• Variable splitting: the program scatters variables (like integers) over multiple loca-

tions.

• Splitting and merging: besides splitting variables, the program merges them by us-

ing a single location for multiple variables. While we are not aware of any current

obfuscator that provides a flexible manner to add such data obfuscation, and we

were able to perform only a partial evaluation, we think it represents an interesting

extreme case.

We now discuss these techniques in detail and focus on transformations that obscure

the built-in data types [11].

Splitting variables Integers and boolean variables are common data types that often

carry sensitive information. A popular and complex transformation is known as variable

splitting. Splitting a variable breaks it up into several smaller components. Wherever

possible, the program will access the constituent components rather than the actual

parameter. For reverse engineers it will be very difficult to guess the meaning of the

components.

To introduce the concept formally, assume that the obfuscator splits a variable x into

variables x1 and x2, with the transformation defined by functions E(x1,x2) and D(x).

We say that E encodes x as a function of x1 and x2, while D decodes x (maps x on the

corresponding values of x1 and x2). Figure 1 shows an example.

Given E and D, we still have to devise operations to perform on the new representa-

tion of x. A simple solution would be to compute the value of x, perform the original

1 Variable encryption is not normally seen as obfuscation as it involves secret keys rather than

key-less obfuscation algorithms. Thus, it is the subject of cryptanalysis rather than deobfusca-

tion.
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Fig. 1. An example variable split transformation.

operation on x, and encode it as x1 and x2 again. However, doing so reveals the variable

x to the attacker. Split transformations try to perform the operations solely on the new

representation of the variable and avoid computing x even as an intermediate value.

Figure 1 shows an example that maps additions on operations on x1 and x2.

Of course, we cannot always hide x completely. When the program passes x as an

argument to a library function or a system call, it needs to compute its value. In general,

all interactions with non-obfuscated code require x’s original value. Also, while the

potency of the split obfuscation grows with the number of new variables introduced, so

does the cost of the transformation. In practice, a variable is split into just 2 or 3 other

variables [11].

Splitting and merging variables To add to the confusion, the obfuscator may combine

splitting and merging on the same variables: given unrelated variables x and y, the

transformation first splits x into {x1, x2}, and y into {y1, y2}. Next, it merges x2 with

y1 into z, so the obfuscated program uses only variables x1, z, and y2.

2.1 Goal: tractable deobfuscation

Carter aims to make data deobfuscation tractable—to give reverse engineers a high

probability of finding the original data. Without knowing the original intention of the

programmer, it is not always possible to decide whether a variable is obfuscated, or

encoded in a certain way for other reasons. For example, to access a two-dimensional

array, arr, a programmer may use either one or two subscripts, i.e., arr[x][y] or

arr[i]where i = x∗N+y. Thus, when we observe such array accesses in a binary, we

cannot tell whether the programmer chose the encoding for convenience, or to obfuscate

the variable i by splitting it into variables x and y.

In our analysis, we just aim to discover that x and y are used interchangeably with

i. After the analysis, we will then explicitly compare our results with the ground truth

and report the variables that were not really obfuscated as false positives (Section 6).

We stress that perfect deobfuscation is not needed. Specifically, we can tolerate

false positives (where we say that data was obfuscated, when in reality it was not) and

even false negatives (where we miss the obfuscation), as long as these cases do not oc-

cur too often. The reason is that the number of variables in a program may be large,
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but it is only a fraction of the total SLOC count. For instance, the lighttpd web-

server used by YouTube counts about 2k variable/field definitions on 40K lines of code.

Even if we incur a false positive rate of 5%, the number of false positives for programs

like lighttpd is probably tractable for a motivated attacker. Phrased differently, the

base-rate fallacy [3] is less of an issue than for, say, most intrusion detection systems.

Similarly, a false negative rate of 10% means that we miss obfuscated variables, but

the remaining 90% are important results. Thus, the real question is whether a reverse

engineer can use automated techniques to get a handle on the data and layout.

3 Variable split detection

To detect a split variable, we build on two observations. First, when an obfuscator splits

a variable z into x and y, it needs to perform a semantically equivalent operation on

x and y for all operations on z (whether they be reads, writes, or ALU operations).

Second, although the obfuscator works on x and y independently as much as possible,

their values are combined occasionally. For instance, during an interaction with non-

obfuscated components, such as the operating system.

Carter therefore analyzes the program’s memory access trace, and looks for vari-

ables that are used together and exchange their data locally—in a short logical time

interval. The question is how to determine the right level of affinity. For this we devel-

oped a new approach that hails from a technique in cache optimization.

Reference affinity grouping [37] restructures arrays and data structures to place el-

ements that are always used together on the same cache line. It measures how ‘close in

logical time’ the program accesses groups of data, and proposes a partition based on the

outcome. Likewise, Carter looks for candidate data items that together may make up a

split variable by tracking items that are used close together in logical time. Whenever

Carter finds such items, it classifies them for a grouping.

Although we were inspired by the original work on reference affinity grouping [37],

we devised our own method for approximating the solution. Picking an appropriate

method is important, because Ding et al. [15] proved that finding the optimal partition

is NP-hard. The concept of temporal reuse intervals, which we propose in Section 3.3,

provides a practical way to identify memory locations that are accessed together.

Once the grouping algorithm has proposed candidates for split variables, we refine

the results by data flow analysis (Section 3.4). Intuitively, data items in a split variable

share data on reads.

Running example We illustrate the whole procedure with a simple obfuscated func-

tion, which serves as a running example. For the sake of clarity, all examples are in C.

However, we perform the real analysis on binaries.

The code in Fig. 2.a computes the factorial of the input variable n. We apply the

transformation in Fig. 1 to split the loop variable i into j and k (Fig. 2.b). The obfusca-

tion is admittedly simple (and thus easy to understand), but the analysis works exactly

the same for more complex connections between j and k. After all, regardless of the

exact obfuscation, the code would still use j and k “together” and they would exchange

information to interact with non obfuscated parts of the environment.
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(b) The function after obfuscation. The numbers on the right count 
access instructions. E.g., in line [3], we have accesses to: j: 3, k: 4, n: 5.

    int factorial (int n) {
[1]  int f = 1, i;
[2]  for (i = 0; i < n; i++)
[3]    f = f * (i + 1); 
[4]  printf("factorial(%d)=%d\n", n, f);
[5]  return f;
    }

(a) The function before obfuscation.

    int factorial (int n) {
[1]  int f = 1;                
[2]  int j = 0, k = 0;      
[3]  while (2*j+k<n){   
[4]    k = (k+1)%2;       
[5]    if (!k) j++;            
[6]    f = f*(2*j+k);         
[7]  }  
[8]  printf("factorial(%d)=%d\n", n, f);                       
[9]  return f;                   
    }

  

f: 0,
j: 1. k:2,
j:3, k:4, n:5,
k:6, k: 7,
k:8, j:9, 
f:10, j:11, k:12, f:13,

n:14, f:15,
f:16 

Access instructions:

Fig. 2. An example of the variable split detection procedure.

3.1 Usage patterns

Carter’s detection procedure revolves around usage patterns—sets of memory locations

accessed together. Consider the following memory accesses by factorial(): fjkjknkkkfjkfjkn...

(Fig. 2.c). Depending on the input, this sequence might grow arbitrary large, and contain

a lot of redundant information. Once the loop has started, we expect cycles of accesses

jknkkkfjkf, possibly including an access to j. A useful and compact representation

would indicate {j,k} or {j,k,f} as common usage patterns. Likewise, we can make

a pattern with n, which is less common.

In the beginning of this section, we observed that the components of a split variable

are accessed close to each other. To find split variables, we therefore look for usage

patterns. Carter treats these patterns as crude candidates for a split transformation.

3.2 Reference affinity grouping

We now formalize the concept of usage patterns by means of the reference affinity

model [37].

An access trace T is a sequence of memory accesses over time; we assign a logical

time to each of its elements. For instance, factorial in Fig. (2.c) may access the

following sequence of variables fjkjknkkkfjkfjkn... in its access trace. We use

af to denote an access to f, and trace element T[af] represents the logical time of af.
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Given two accesses ax and ay in a trace T, we define the volume distance as the

number of distinct data elements accessed in times T[ax], T[ax]+1,. . ., T[ay]-1, and

we write dist(ax,ay). Observe that the volume distance differs from the time distance.

For example, the volume distance between the accesses to x and y in the trace xfooy

is 3 (elements: x, f, o), dist(ax,ay) = 3, while the time distance is 4.

Definition 1. We define a linked path with link length k as a sequence of accesses to

distinct data elements where the volume distance between each two consecutive ac-

cesses is less than k.

Later, we will restrict the elements of a linked path to be members of a set S, as in

the following definition of strict reference affinity.

Definition 2. Given an access trace T, a set S of memory locations is a strict reference

affinity group with link length k if and only if (1) for each location x ∈ S, all its accesses

ax have a linked path from ax to an access to y, for any y ∈ S, and (2) the set S is

maximum, i.e., it cannot be extended without invalidating condition (1).

Intuitively, all members of an affinity group are always accessed together, they are

“close” to each other – for each memory access, we can find a path linking it to an

access to any other element in the set. As shown in [37], for a given access trace and a

link length k, the affinity groups form a unique partition of the program data.

Since the memory locations that are the result of a split operation are always used

together, we expect that even for small values of k, we will consider them as a part

of the same group. Ideally, we would like to obtain the k-affinity groups. However,

as accurately computing the reference affinity groups is an NP-hard problem [15], in

Sections 3.3-3.4 we propose a new heuristic to find them.

3.3 Temporal reuse intervals (TRIs)

In this section, we introduce temporal reuse intervals. We additionally illustrate the

novel concepts with the access trace of Fig. 2. Later, in Section 3.4, we use temporal

reuse intervals to approximate the reference affinity groups for a memory access trace.

Given an access trace T, and a link length k, consider accesses to memory locations

x and y. An access ax is a remote usage if it is “far” from the previous access to x.

More formally, if we denote the previous access to x by āx, then dist(āx, ax) > k.

Definition 3. A reuse interval RI of x is a maximal sequence of accesses to x where

(only) the first is a remote usage.

Intuitively, a reuse interval is a set of “all” accesses to x that are close to each other.

Since reuse intervals relate to single memory locations, we combine them so that

we can reason about multiple locations at the same time. This combination is known

as a temporal reuse interval (TRI). We first define it, and next we show the connection

between reuse intervals and temporal reuse intervals: we construct a TRI from an RI,

and we explain how to merge two TRIs.
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Definition 4. A temporal reuse interval TRI = (I, S, P) is a tuple of a time interval I, a

set S of memory locations, and a set P of instruction addresses such that

- for each access az in the time interval I (i.e., T[az] ∈ I), where z may or may not

be ∈ S, and

- for each memory location x in S (i.e., x ∈ S),

there exists ax, an access to x, realized by an instruction p ∈ P, such that the accesses

are close to each other, i.e., dist(az,ax)≤ k.

In other words, a TRI guarantees that all accesses in the time interval I are close to

all memory locations in S.

Given a reuse interval RI of x, we can construct a TRI. Let I be the time interval

associated with RI, and P the set of instructions that access x in RI. We extend I back-

ward and forward as long as all accesses in the new interval Ī are close to an access to

x. That is, for each access az, T[az] ∈ Ī, there is an access to x such that dist(az,ax)

≤ k. Finally, (̄I, {x}, P) is the new TRI. Refer to Fig. 2.e for an example.

We now explain how we merge two TRIs which overlap in time. Given (I0, S0, P0)

and (I1, S1, P1), we combine them to obtain the following new ones: (I0 \ I1, S0, P0),

(I0∩ I1, S0∪S1, P0∪P1), and (I1 \ I0, S1, P1). We discard the empty sets. For an intuitive

explanation refer to Fig. 2.f.

3.4 From TRIs to split variable detection

To propose candidates for split variables, Carter computes temporal reuse intervals.

Next, it refines the results by selecting the candidates that are always accessed together,

and not only in some of the instructions. Finally, we confirm that a fitting dataflow exists

between the candidates, and we output the resulting split variables.

Generating candidate sets Carter classifies memory locations according to their allo-

cation time, and calculates temporal reuse intervals for each of these groups individu-

ally. It assigns a unique allocation time to each function frame on the stack, each object

allocated on the heap, and the data segment of a binary. We never consider memory

locations with different allocation times for a TRI grouping.

To construct TRIs, Carter first calculates reuse distances and remote usages for all

memory locations, so that it can determine reuse intervals. Incidentally, since precise

reuse distance computation would be expensive in terms of memory, we implemented

the approximation proposed by Ding et al [16], which yields very good results while

requiring only logarithmic space.

Having determined the reuse intervals, Carter extends them backward and forward,

and constructs temporal reuse intervals. Next, it merges TRIs that are not disjoint and

drops TRIs for which the memory locations and instruction addresses are already in-

cluded in other TRIs2. Fig. 2.f-2.g illustrate the procedure.

Refining the candidate sets The previous step computes sets of memory locations that

the program accessed within a bounded (volume) distance. Carter refines the sets by

discarding these ones whose elements are at times accessed individually, far from other

2 At this point, we care about candidates, not time intervals anymore
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group members. It makes sense as we expect the program to access the components of

a split variable together.

Dataflow confirmation Memory locations that originate from a single variable share

data on interactions with the unobfuscated components of the system. For example, the

binary combines their values before they turn into an argument to a system call or a

library function. Thus, generating the candidates for a split, Carter confirms that a flow

of data exists between them.

When the obfuscator decodes the original variable, it combines values of the split

components. To detect this transformation, Carter assigns colors to the split candidates

determined in Section 3.4, and employs dynamic taint analysis [20] to check if the

colors are combined.

Fig. 2.h presents the variables classified by Carter as split. Observe that in this case,

j and k are not combined during an interaction with a non-obfuscated component, but

during the comparison with n.

4 Combined split and merge

In theory, we can make variable splitting more powerful by also merging variables.

Given unrelated variables x and y, the transformation first splits x into {x1, x2}, and y

into {y1, y2}. Next, it merges x2 with y1 into z, so the obfuscated program uses only

variables x1, z, and y2. In other words, x and y ’share’ a component variable z.

Even though we are not aware of any current obfuscator that provides a flexible

manner to implement such (complex) data obfuscations, we added a detection module

for it and verified that it works on a limited set of examples. However, as we were not

able to combine this obfuscation with Control obfuscations (refer to Section 5), we did

not evaluate the strength of the split+merge obfuscation extensively.

To detect the combined split+merge obfuscation, we use a technique that is similar

to that of split detection. The main departure is that it looks for different usage patterns,

but all steps up to and including itemset selection are the same. However, rather than

simply eliminating all patterns that contain elements that do not always appear together,

the split+merge detection module uses selection criterion that is slightly different.

We say that x ≺ y if y is also accessed when x is accessed. If x ≺ y and y ≺ x

we say that x = y. A pattern xyz is valid if x � z and y � z. In split+merge, Carter

eliminates all patterns that cannot be written in this way. After this, we keep (only) the

maximal patterns that reach this point. So if S1 is a subset of S2, we eliminate S2. The

final step is again the dataflow confirmation, which is exactly the same as for the split

obfuscation.

5 Adding control obfuscation

Obfuscators often combine data obfuscation with control obfuscation such as opaque

predicates, return address patching, and virtualization with instruction set modification.

We do not target control obfuscations at all, but we briefly discuss the influence of

some popular techniques that an obfuscator may apply in combination with the above

data obfuscations.
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5.1 Control obfuscation

In addition to data obfuscation, obfuscators often apply one or more of the following

control obfuscation techniques:

• Opaque predicates are code sequences that are hard/impossible to analyze stati-

cally, but always produce the same results at runtime. The static analyzer is obliged

to consider a huge number of possible outcomes. As a result, the analysis becomes

inaccurate and often intractable. For instance, the program may calculate a jump tar-

get using an opaque predicate. If it cannot determine the outcome, a static analyzer

has to consider all possible addresses as jump targets.

• Return address patching is a technique whereby functions dynamically change their

return addresses, so that they return not to the instructions following the call, but a

few bytes further. The modified control flow confuses advanced disassemblers like

IDA Pro.

• Control flow flattening transforms the program’s well-structured control flow graph.

Thus is typically done by replacing all call instructions by indirect jumps and adding

a single dispatcher that maintains all control flow.

• Virtualization means that the program consists of bytecode that is interpreted by a

tailored VM. Thus, the code in the binary file has no correspondence to the program

code itself. Moreover, the bytecode’s instruction set may be different from that of

the host. Well-known commercial virtualization obfuscators include VMProtect and

Code Virtualizer [1].

5.2 Preventive transformation

Preventive transformation are not obfuscations per se, but they make it harder to recover

the original data. Besides the proper obfuscations, we augment the obfuscator with a

preventive transformation that is specifically tailored to derail Carter.

• Memory access injection adds instructions that introduce spurious data accesses

and calculations. As Carter relies on memory access pattern analysis, such accesses

make our analysis more difficult and less precise.

5.3 Impact of control obfuscation

In this section, we discuss to what extent the preventive transformation and control

obfuscation hinder Carter.

Since Carter builds on dynamic analysis rather than static analysis, Carter does not

really suffer from the first two control obfuscations at all. At runtime, we encounter

solely the actual outcomes of opaque predicates and return addresses—there can be

no confusion. The only effect that may occur is that the opaque predicates introduce

new memory accesses that modify the memory access patterns that serve as inputs for

Carter’s analysis, specifically for the detection of split variables.

Control flow flattening also has little effect on our analysis as Carter has no interest

in the control flow graphs itself. Instead, it considers only the program’s memory ac-

cesses to read or write data. Again, there may be a small effect if the flattened control

flow introduces new memory accesses.
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Virtualization makes it harder to analyze the instructions and their meanings. How-

ever, previous work has shown how to identify instructions that are part of the original

code [13]. This is good enough for Carter. Our analysis relies solely on the program’s

memory access patterns. As long as we can identify accesses to data that are due to the

program’s instructions (rather than the interpreter), our method still works.

Of course, the interpreter may well generate additional data accesses that we cannot

easily filter out. Again, such ‘spurious’ memory accesses may confuse our analysis.

Phrased differently, virtualization itself is not really a problem for our analysis, but the

spurious memory accesses might be.

We conclude that in all cases, the modified and added memory access patterns do

influence Carter’s detection of split, or split and merged variables, but the control flow

itself is not important. Memory access injection is a program transformation that en-

capsulates exactly this effect. It is specifically tailored to derailing Carter’s analysis. In

Section 6 we evaluate the effect of spurious memory accesses (introduced by whatever

obfuscation or transformation) on our analysis.

6 Evaluation

To evaluate our approach, we apply it to a set of eight stripped and obfuscated Linux

applications. Since we use dynamic analysis, we can classify only the memory that the

program accesses during the experiments. We use the applications’ normal test suites as

inputs and combine the results of multiple runs of the binaries to increase the coverage

of both the code and the data. Our experiments include four real world applications

(lighttpd [40K LoC3], wget [36K LoC], grep [21K LoC], and gzip [19K LoC]), and

four CoreUtils (ls, base64, expr and factor).

To determine whether or not Carter helps reverse engineers to recover obfuscated

data structures, we focus our evaluation on the number of variables Carter recovers, as

well as the number of false positives and negatives.

By design, the obfuscator used in this paper applies obfuscations at compile time

to stack and global variables. It does not obfuscate heap variables, even though it

would make no difference to Carter. For the selected variables it uses split obfusca-

tions (“split”) where it splits to either two, four or eight memory locations. As splits in

more than 3 components are rare in practice [11], we limit ourselves to two in the eval-

uation. To our knowledge, combined split+merge obfuscations that also allow adding

spurious memory accesses are not available in any of the obfuscators today. For this

reason, we limited the evaluation of the split+merge obfuscation to the simpler cases –

without control obfuscation.

Analysis modes

Carter’s split variable deobfuscation depends primarily on two things: (a) the value

of the link length parameter k, and (b) the number of additional memory accesses due to

control obfuscation between the accesses to the different components of a split variable.

Since parameter k determines how close together the accesses should be in order to

classify as candidates, increasing k may lead to more false positives and fewer false

3 according to D. Wheeler’s sloccount [35]: www.dwheeler.com/sloccount
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negatives. Phrased differently, we should use the highest value of k that does not yet

incur too many false positives. In the tests, we vary k between two and twelve.

We estimate Carter’s sensitivity to spurious memory accesses due to control obfus-

cations by using the preventive transformation that injects spurious data accesses, as

discussed in Section 5. For the split obfuscation, the obfuscator allows us to control

exactly the number of additional (data) memory accesses between every two accesses

to the components of a split variable. The actual pattern injected by the obfuscator con-

sists of a load, some operations on the data (e.g., an increment), and a store. Carter only

cares about the data accesses, so each pattern counts for two accesses. We varied the

number of additional memory accesses between two and eight.

The evaluation of Carter’s split+merge deobfuscation is limited to the data-flow ob-

fuscation. As we explained above, in this case, we did not have means to insert spurious

memory accesses. Similarly to the variable split deobfuscation, we vary k between two

and twelve. Both obfuscation modes modified the same variables.

Results of split detection Table 1 shows the result of our deobfuscation of split vari-

ables for k = 6. It is the simplest possible case, with no further obfuscations.

Total TPs Part. OA. FPs FNs

base64 24 19 (79) 5 (21%) 0 (0%) 0 (0%) 0 (0%)

expr 11 11 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

factor 36 22 (61%) 14 (39%) 0 (0%) 4 (1.48%) 0 (0%)

grep 84 74 (88%) 1 (1%) 8 (10%) 6 (0.82%) 1 (1%)

gzip 15 14 (93%) 0 (0%) 0 (0%) 0 (0%) 1 (0%)

lighttpd 175 170 (97%) 4 (2%) 1 (1%) 0 (0%) 0 (0%)

ls 31 29 (94%) 1 (3%) 1 (3%) 0 (0%) 0 (0%)

wget 159 133 (84%) 18 (11%) 1 (1%) 10 (0.63%) 7 (4%)

Table 1. Results for deobfuscation of split variables (k=6).

• Total in run (Total): The total number of split variables accessed during the ex-

periment.

• True Positives (TP): the variables correctly classified as split.

• Partial (Part): Carter correctly identifies the split, but fails to detect all compo-

nents that make up the variable (e.g., because one part is not really used in calcu-

lations) forming a split. While we cannot classify this category as correct, it does

provide most of the information required by the cracker.

• Over-approximated (OA): Carter correctly identifies the split and all the compo-

nents, but adds an additional (unrelated) component in the item set. Again, this is

not completely correct, but probably quite useful for the attacker.

• False Positives (FP): the variables incorrectly classified as split. The percentage

represents the rate of erroneously classified variables in the set of all unobfuscated

and accessed ones.

• False Negatives (FN): Carter did not classify the variables as split, even though it

should have.

Figure (3.a) graphically shows the same results for all values of k. We see that in

the absence of further obfuscations, Carter is able to detect most of the split variables
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with low false positives and low false negatives. Moreover, even for high values of k

the number of false positives typically remains below 2%.

Next, we evaluate the impact of spurious data memory accesses on our analysis.

In principle, we do not know which control obfuscation or preventive transformation

is present in the obfuscated binary, and so we do not know the cause of the memory

accesses. In our evaluation, we therefore add increasing numbers of spurious memory

access between each two accesses to split variables to see what the impact is on our

results.

The results are shown in Figures (3.b)-(3.e). They also contain Expected FNs (ExFNs),

i.e., split variables that Carter had no means to identify. If k is smaller than the number

of injected accesses, the detection module cannot normally detect the split. Observe

that we still find variables occasionally even for small k and many injected accesses

(e.g., for factor when k = 4 and 6 injected accesses). The reason is that the obfus-

cator injects instructions between two accesses x1 and x2 of a split variable x. It may

happen that in the original program two accesses to x occurred close together in logical

time. As a result, the accesses to x2 and x1 may also still occur close together, in spite

of the extra instructions. For instance, assume the program exhibited an access pattern

as follows: x1x2yzx1x2. If the obfuscator subsequently injects 6 additional references

(A..F), the pattern becomes: x1ABCDEFx2abx1ABCDEFx2. In this case, the x2

of the first accesses will still be grouped with the x1 of the second.

Nevertheless, we conclude that for small values of k, the detection module becomes

unreliable as the distance between accesses to the components of a split variable in-

creases. However, we will show in the next section that we cannot keep injecting more

memory accesses, unless we are willing to pay a huge penalty in performance.

Finally, many of the false positives in the split variable deobfuscation were cases

where the program accessed a two-dimensional array A using either one or two sub-

scripts, i.e., A[x][y] or A[i] where i = x×N + y. Clearly, even these false positives

may contain very useful information for a reverse engineer! For instance, in the previous

example: if x and y always access a buffer together, it may suggest a two-dimensional

array.

Overhead of preventive transformation Adding spurious memory accesses forces us

toward higher values of k. The question is how far we can take this defense. Clearly,

adding additional code and memory accesses hurts performance. In this section, we

evaluate this cost by running SPECint with and without obfuscations. Specifically, the

obfuscator splits the stack variables, after compiler optimizations, of the SPECint ap-

plications and we measure the performance relative to non-obfuscated code. Next, it

injects increasing numbers of data accesses such that we can we measure their influ-

ence. Figure 4 presents the results for the SPECint 2006 benchmark.

We see that the performance really suffers from the additional accesses. The actual

slowdown depends on the number of accesses to the obfuscated variables, but may be

as high as an order of magnitude. In almost all cases, the slowdown is more than 2x for

just 6 injected accesses. We speculate that in many application domains, this would be

too high a price to pay.

Results of split+merge detection Figure 3f shows the result of our detection of split

and merged variables. As we said before, we limit this part of the evaluation to data-
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(a) Variable split: no spurious data accesses (b) Variable split: 2 spurious data accesses
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(c) Variable split: 4 spurious data accesses (d) Variable split: 6 spurious data accesses
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(e) Variable split: 8 spurious data accesses (f) Variable split+merge: no spurious data accesses

Fig. 3. Plots (a)-(e) contain ’variable split’ recovery results for k ∈ {4, 6, 8, 10, 12} for N spu-

rious data accesses between the accesses to components of a split variable. Plot (f) contains

’variable split+merge’ recovery results for k ∈ {4, 6, 8, 10, 12} with no spurious data accesses.

Each value of k is represented by a separate bar. False positives are in a separate plot above the

main plot.

flow obfuscation only. In summary, the split+merge detection relaxes the assumptions

made by the split detection, to allow the components of merged variables to be accessed

separately (refer to Section 4).

The results indicate that the policy for split+merge handles the obfuscation tech-

nique successfully, typically detecting more than 50% of the variables perfectly. This

percentage is reduced, compared to the split only obfuscation technique, since the re-

laxed assumptions imply additional uncertainty. This manifests itself as a significant

increase in the number of reported partial and over-approximated results. These cate-

gories show that Carter successfully identifies the presence of the split components, but

does not always precisely infer the boundaries between them.

Finally, the number of false negatives typically remains below 10%, and the number

of false positives – below 5%. It means that Carter accurately identifies the obfuscated

variables, which is very helpful for the attacker.

Analysis time Running the test suites and analyzing all memory accesses for the ap-

propriate item sets is a fairly labor-intensive operation. Moreover, our current imple-

mentation is by no means optimal in terms of performance. Even so, the deobfuscation



15

 0
 2
 4
 6
 8

 10
 12
 14

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

0 spurious accesses
2 spurious accesses

4 spurious accesses
6 spurious accesses

8 spurious accesses

Fig. 4. Performance overhead for SPECint 2006.

procedure is fast enough even for the larger applications. Small applications like ls take

a few minutes to analyze, larger applications like wget take as long as four hours, while

SPECint consumes easily twelve hours.

Summary We conclude that for all applications, Carter provides a significant boost

when recovering obfuscated variables. Even if the obfuscator spaces accesses to the

different split components further apart, Carter still detects the transformation in most

cases. If needed, reverse engineers can play with the parameters during the analysis,

selecting values that lead to few false positives initially and gradually increasing k. The

main message is that for a particular obfuscator, it is relatively straightforward to select

good values for these parameters.

7 Application of Carter: binary analysis

To demonstrate the usefulness of Carter, we present the impact of obfuscated variables

on the process of reverse engineering. Suppose a reverse engineer is interested in the

fd write function in wget and its buffer argument. For illustration purposes, we show

the relevant parts of the source code in Fig. (5a). In reality, the reverse engineer has

access neither to the source, nor to the debug symbols. In the original code, we see

that the buffer argument is sent to sock write which in turn calls the underlying write

function. Besides being an argument to the sock write function, buf is also updated

inside the function.

We now strip all debug symbols and apply the obfuscation model of Section 2 to all

integer and pointer variables in the binary. Since the obfuscator works interprocedurally,

the function arguments will also be split into two components. As a consequence, it will

split the buffer argument into the third and fourth argument positions of both fd write

and sock write—shown as arg 8 and arg C in the IDA Pro disassembler output in

Fig. (5b). Similarly, the update of the variable buf , shown in Fig. (5c), will follow the

split rules presented in Section 2.

Now that we have presented the setup of the experiment, let us change our perspec-

tive to that of the reverse engineer trying to extract semantics from the stripped binary.

Just by looking at the code in Fig. (5a) and (5c), it is impossible to extract semantics for

argument positions arg 8 and arg C, since the buffer pointer is never dereferenced in

the code. The reverse engineer is obliged to follow the progress of the argument inside

the sock write sub-function.
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Fig. (5d) shows that the two arguments are combined using arithmetic operations,

before being sent to the external write call. Disassemblers can identify that the result of

the arithmetic operations has the semantics of the buf argument from the libc prototype.

Intuitively, if a pointer results from the arithmetic combination of two variables,

one of them represents a base pointer, and the other the offset. To confirm it, the reverse

engineer executes the binary in GDB and checks the value of the two variables just

before the update occurs in the original function. The GDB session is presented in

Fig. (5e) and shows that one of the variables is a really big integer, but points to invalid

memory, while the other has the value of 0. This doesn’t correspond to the reverse

engineer’s intuition about pointer arithmetics at all!

In contrast, by using Carter, the reverse engineer is able to discover the obfuscated

memory locations a priori. Specifically, Carter presents the reverse engineer with an

annotated binary that highlights the possible split locations, making it clear that two

memory locations belong together and should be inspected as a group. Moreover, it is

now trivial to identify the exact split semantics by checking the (unavoidable) deobfus-

cation that takes place when the data is used in external library functions–as in Fig. (5d).

Using this information, the reverse engineer can now inspect the value of the variable

anywhere in the code, by applying the transformation to the given memory locations

Fig. (5f).

int fd_write (int fd, char *buf, int bufsize, double timeout)

{

    while (bufsize > 0)

    {

        int res = sock_write (fd, buf, bufsize);

        buf += res;

        bufsize -= res;    

    }

}

SPLIT components of buf

d Body of sock_write

b Call to sock_write 

c Update of buf 

f

c

By looking at     , we derive the formula for the deobfuscation: 

2x[EBP+ARG_8] + [EBP+ARG_C]. 

We apply it to inspect the pointer value before the update in     . 

d

a Source code of fd_write

e When we try to inspect the pointer 

components before the update in     , 

we see that they are meaningless. 

Observe that, [ebp+arg_8] in the IDA  

disassembler above corresponds to 

($ebp+0x10) in the gdb below, 

and [ebp+arg_C]- to ($ebp+0x14).  

c

Fig. 5. Reverse engineering a binary with split variables.

8 Limitations and recommendations

We have shown that Carter is effective against state-of-the-art data obfuscation tech-

niques, even if they are combined with state-of-the-art control obfuscation. The ques-

tion we ask in this section is: what can software vendors do to protect their data better?

To do so, we suggest measures for obfuscators to increase their potency. Unfortunately,
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none of them are free and they always increase the cost of a transformation. Worse, few

of them appear robust against more advanced deobfuscators.

Carter detects split variables by selecting memory locations that (1) are accessed

“together”, and (2) exchange data. It will be difficult for an obfuscator to avoid the data

exchange altogether unless the whole environment is aware of the transformation. The

only (intriguing) solution we can think of are covert channels that hide the information

exchange from the DIFT module (Section 3.4). Covert channels would significantly

increase the complexity of the obfuscation.

A less radical direction is to increase the distance between the accesses to the com-

ponents of a split variable—in an attempt to exceed the link length parameter k—just

like we did when we injected spurious memory accesses. We have already seen that do-

ing so is expensive due to the extra memory accesses (and the corresponding reduction

of locality of reference). We also saw that the results are limited as the adversary can

increase k, at the cost of some more false positives and negatives.

The best way to increase the distance while reducing the overhead is to make only

certain accesses distant by means of instructions. However, even in this case adversaries

may benefit from Carter’s analysis by relaxing the requirement that the variables need

to be always accessed together—again at the cost of additional false positives.

Finally, as Carter looks for variables with the same allocation time, it would be ad-

visable to give components of a split variable different allocation times. For instance,

by allocating one part as a static variable in the data segment, and another in the func-

tion frame. Doing so requires Carter to relax another one of its constraints. Again, the

reduction of locality would probably lead to additional overhead (due to cache and TLB

pollution). Also, it does not invalidate the method, but makes it less precise.

9 Related Work

Program obfuscation is a mature field. Many commercial obfuscators work by trans-

forming source code. Examples include Stunnix [32] and Semantic Designs’ frame-

work [28]. However, software developers may also opt for compiler-driven obfuscation

like Morpher [26] and CodeMorph [31], or even the multi-layer defense offered by

Irdeto’s Cloakware [19].

Perfect obfuscation is impossible in general [4], but practical reverse engineering

of obfuscated code is still difficult. To the best of our knowledge, all existing work on

deobfuscation targets code, rather than data obfuscation. To illustrate this, we briefly

review existing work on deobfuscation of compiled code.

Most of the work on obfuscation, like [23, 36], strives for resistance against static

analysis. The authors do not try to defend against the use of non-conservative, (partially)

automated, dynamic analyses. For a long time, the same was true for attackers, but

Madou et al. [24] illustrate the potential of hybrid static-dynamic attacks through a case

study of an algorithm for software watermarking [8].

A popular branch of code deobfuscation is concerned with recovering the sequences

of instructions intended by a programmer. Kruegel et al. [21] present an analysis to

disassemble an obfuscated binary. Lakhotia et al. [22] apply stack shape analysis to

spot when an obfuscated binary makes library calls even if it does not use the call and
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ret instructions. Finally, Udupa et al. [33] examine the resilience of the control flow

flattening obfuscation technique [34, 7] against attacks based on combinations of static

and dynamic analyses.

Opaque predicates also attracted much research. The simplest method to break them

is dynamic analysis. However, due to the code coverage problem, it does not always pro-

vide complete or reliable solutions. Madou et al. [24] propose a hybrid static-dynamic

mechanism. They statically identify basic blocks that contain opaque predicates, and

dynamically execute them on all possible inputs. Some obfuscators [11, 12, 25] hinder

this approach by tricking the program into returning an artificially large slice to be an-

alyzed. Dalla Preda et al. [14] present an abstract interpretation-based methodology for

removing certain types of opaque predicates from programs. None of these solutions

solve the problem in general.

Metasm [17] is a framework to assist a reverse engineer by disassembling a bi-

nary, and building its control flow graph, even in the presence of control obfuscation.

Saidi et al. [27] developed an IDA Pro plugin to help deobfuscate malware instances.

The tool tackles a few categories of obfuscations, e.g., malware packing, anti analysis

techniques, and Windows API obfuscation.

To deal with advanced control obfuscations like virtualization, Coogan et al. [13]

identify instructions that interact with the system by system calls. Next, they determine

which instructions affect this interaction. The resulting set of instructions is an approxi-

mation of the original code. Sharif et al. [29] also target virtualized malware and record

a full execution trace and dynamic taint and data flow analysis to identify data buffers

containing the bytecode program, so they can reconstruct the control flow graph.

Anckaert and Ceccato worked on the evaluation of obfuscating transformations [2,

5]. They assess both code metrics, such as the computational complexity of static anal-

ysis, and the difficulty of understanding the obfuscated code by human analysts.

The most important outcome of our literature study, is that there is, to our knowl-

edge, no work on the recovery of obfuscated data.

10 Conclusion

In this paper, we evaluated the strength of data obfuscation techniques. In our evalua-

tion, we included common and powerful techniques: splitting, and splitting and merging

variables over multiple memory locations. We showed that dynamic analysis of mem-

ory access patterns is a useful way for semi-automated deobfuscation of the data. With

false positive rates below 5%, and false negative rates typically below 10%, a deter-

mined cracker can successfully use them to recover the original data. We conclude that

the obfuscations are at least vulnerable. So much so, that we believe that the data ob-

fuscations examined in this paper should no longer be considered safe. Finally, we have

shown that we can raise the bar for crackers by taking additional measures, but we doubt

that these measures will be safe in the long run.
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