
Behind the Scenes of Online Attacks:
an Analysis of Exploitation Behaviors on the Web

Davide Canali
EURECOM, France
canali@eurecom.fr

Davide Balzarotti
EURECOM, France

balzarotti@eurecom.fr

Abstract

Web attacks are nowadays one of the major threats on the
Internet, and several studies have analyzed them, providing
details on how they are performed and how they spread.
However, no study seems to have sufficiently analyzed the
typical behavior of an attacker after a website has been
compromised.

This paper presents the design, implementation, and de-
ployment of a network of 500 fully functional honeypot web-
sites, hosting a range of different services, whose aim is to
attract attackers and collect information on what they do
during and after their attacks. In 100 days of experiments,
our system automatically collected, normalized, and clus-
tered over 85,000 files that were created during approxi-
mately 6,000 attacks. Labeling the clusters allowed us to
draw a general picture of the attack landscape, identifying
the behavior behind each action performed both during and
after the exploitation of a web application.

1 Introduction

Web attacks are one of the most important sources of
loss of financial and intellectual property. In the last years,
such attacks have been evolving in number and sophisti-
cation, targeting governments and high profile companies,
stealing valuable personal user information and causing fi-
nancial losses of millions of euros. Moreover, the number
of people browsing the web through computers, tablets and
smartphones is constantly increasing, making web-related
attacks a very appealing target for criminals.

This trend is also reflected in the topic of academic re-
search. In fact, a quick look at the papers published in the
last few years shows how a large number of them cover
web-related attacks and defenses. Some of these studies fo-
cus on common vulnerabilities related to web applications,
web servers, or web browsers, and on the way these compo-
nents get compromised. Others dissect and analyze the in-

ternals of specific attack campaigns [13, 5, 17], or propose
new protection mechanisms to mitigate existing attacks.

The result is that almost all the web infections panorama
has been studied in detail: how attackers scan the web or
use google dorks to find vulnerable applications, how they
run automated attacks, and how they deliver malicious con-
tent to the final users. However, there is still a missing piece
in the puzzle. In fact, no academic work seems to have suf-
ficiently detailed the behavior of an average attacker during
and after a website is compromised. Sometimes the attack-
ers are only after the information stored in the service it-
self, for instance when the goal is to steal user credentials
through a SQL injection. But in the majority of the cases,
the attacker wants to maintain access to the compromised
machine and include it as part of a larger malicious infras-
tructure (e.g., to act as a C&C server for a botnet or to de-
liver malicious documents to the users who visit the page).

While the recent literature often focuses on catchy top-
ics, such as drive-by-downloads and black-hat SEO, this is
just the tip of the iceberg. In fact, there is a wide variety
of malicious activities performed on the Internet on a daily
basis, with goals that are often different from those of the
high-profile cyber criminals who attract the media and the
security firms’ attention.

The main reason for which no previous work was done
in this direction of research is that almost all of the existing
projects based on web honeypots use fake, or ’mock’ appli-
cations. This means that no real attacks can be performed
and thus, in the general case, that all the steps that would
commonly be performed by the attacker after the exploita-
tion will be missed.

As a result, to better understand the motivation of the
various classes of attackers, antivirus companies have often
relied on the information reported by their clients. For ex-
ample, in a recent survey conducted by Commtouch and the
StopBadware organization [7], 600 owners of compromised
websites have been asked to fill a questionnaire to report
what the attacker did after exploiting the website. The re-
sults are interesting, but the approach cannot be automated,
it is difficult to repeat, and there is no guarantee that the



users (most of the time not experts in security) were able to
successfully distinguish one class of attack from the other.

In this paper we provide, for the first time, a compre-
hensive and aggregate study of the behavior of attackers on
the web. We focus our analysis on two separate aspects: i)
the exploitation phase, in which we investigate how attacks
are perfomed until the point where the application is com-
promised, and ii) the post-exploitation phase, in which we
examine what attackers do after they take control of the ap-
plication. The first part deals with methods and techniques
(i.e., the “how”) used to attack web applications, while the
second part tries to infer the reasons and goals (i.e., the
“why”) behind such attacks.

For this reason, in this paper we do not analyze common
SQL injections or cross-site scripting vulnerabilities. In-
stead, our honeypot is tailored to attract and monitor crimi-
nals that are interested in gaining (and maintaining) control
of web applications. Our results show interesting trends on
the way in which the majority of such attacks are performed
in the wild. For example, we identify 4 separate phases and
13 different goals that are commonly pursued by the attack-
ers. Within the limits of the available space, we also provide
some insights into a few interesting attack scenarios that we
identified during the operation of our honeypots.

The remainder of the paper is organized as follows: in
Section 2 we explore the current state of the art concerning
web honeypots and the detection and analysis of web at-
tacks. Section 3 describes the architecture of the honeypot
network we deployed for our study; Section 4 gives more
details about the deployment of the system and the way we
collected data during our experiments. Finally, Section 5
and Section 6 summarize the results of our study in term
of exploitation and post-exploitation behaviors. Section 7
concludes the paper and provides ideas on future directions
in the field.

2 Related Work

Honeypots are nowadays the tool of choice to detect at-
tacks and suspicious behaviors on the Internet. They can be
classified in two categories: client honeypots, which detect
exploits by actively visiting websites or executing files, and
server honeypots, which attract the attackers by exposing
one or more vulnerable (or apparently vulnerable) services.

In this study, we are mainly interested in the second
category, since our aim is to study the behavior of at-
tackers after a web service has been compromised. Sev-
eral server-side honeypots have been proposed in the past
years, allowing for the deployment of honeypots for virtu-
ally any possible service. In particular, we can distinguish
two main classes: high-interaction and low-interaction hon-
eypots. The first only simulate services, and thus can
observe incoming attacks but cannot be really exploited.

These honeypots usually have limited capabilities, but are
very useful to gather information about network probes and
automated attack activities. Examples of these are hon-
eyd [21], Leurre.com [20] and SGNET [16], which are able
to emulate several operating systems and services. High-
interaction honeypots [19], on the other hand, present to
the attacker a fully functional environment that can be ex-
ploited. This kind of honeypot is much more useful to get
insights into the modus operandi of attackers, but usually
comes with high setup and maintenance costs. Due to the
fact that they can be exploited, high-interaction honeypots
are usually deployed as virtual machines, allowing their
original state to be restored after a compromise.

The study of attacks against web applications is often
done through the deployment of web honeypots. Exam-
ples of low-interaction web honeypots are the Google Hack
Honeypot [3] (designed to attract attackers that use search
engines to find vulnerable web applications), Glastopf [24]
and the DShield Web Honeypot project [4], all based on the
idea of using templates or patterns in order to mimic several
vulnerable web applications. Another interesting approach
for creating low interaction web honeypots has been pro-
posed by John et al. [14]: with the aid of search engines’
logs, this system is able to identify malicious queries from
attackers and automatically generate and deploy honeypot
pages responding to the observed search criteria. Unfortu-
nately, the results that can be collected by low-interaction
solutions are limited to visits from crawlers and automated
scripts. Any manual interaction with the system will be
missed, because humans can quickly realize the system is
a trap and not a real functional application. Apart from this,
the study presented in [14] collected some interesting in-
sights about automated attacks. For example, the authors
found that the median time for honeypot pages to be at-
tacked after they have been crawled by a search engine spi-
der is 12 days, and that local file disclosure vulnerabilities
seem to be the most sought after by attackers, accounting
to more than 40% of the malicious requests received by
their heat-seeking honeypots. Other very common attack
patterns were trying to access specific files (e.g., web ap-
plication installation scripts), and looking for remote file
inclusion vulnerabilities. A common characteristic of all
these patterns is that they are very suitable for an automatic
attack, as they only require to access some fixed paths or
trying to inject precomputed data in URL query strings.
The authors also proposed a setup that is similar to the one
adopted in this paper, but they decided to not implement it
due to the their concerns about the possibility for attackers
to use infected honeypot machines as a stepping stone for
other attacks. We explain how we deal with this aspect in
Section 3.1.

If interested in studying the real behavior of attackers,
one has to take a different approach based on high interac-



tion honeypots. A first attempt in this direction was done
by the HIHAT toolkit [18]. Unfortunately, the evaluation
of the tool did not contain any interesting finding, as it was
run for few days only and the honeypot received only 8000
hits, mostly from benign crawlers. To the best of our knowl-
edge, our study is the first large scale evaluation of the post-
exploitation behavior of attackers on the web.

However, some similar work has been done on catego-
rizing the attackers’ behavior on interactive shells of high-
interaction honeypots running SSH [19, 23]. Some inter-
esting findings of these studies are that attackers seem to
specialize their machines for some specific tasks (i.e., scans
and SSH bruteforce attacks are run from machines that are
different from the ones used for intrusion), and that many
of them do not act as knowledgeable users, using very simi-
lar attack methods and sequences of commands, suggesting
that most attackers are actually following cookbooks that
can be found on the Internet. Also, the commands issued
on these SSH honeypots highlight that the main activities
performed on the systems were checking the software con-
figuration, and trying to install malicious software, such as
botnet scripts. As we describe in Section 6, we also ob-
served similar behaviors in our study.

Finally, part of our study concerns the categorization of
files uploaded to our honeypots. Several papers have been
published on how to detect similarities between source code
files, especially for plagiarism detection [6, 26]. Other sim-
ilarity frameworks have been proposed for the detection
of similarities between images and other multimedia for-
mats, mostly for the same purpose. Unfortunately, we saw
a great variety of files uploaded to our honeypots, and many
of them consisted in obfuscated source code (that renders
most plagiarism detection methods useless), binary data or
archives. Also, many of the proposed plagiarism detection
tools and algorithms are very resource-demanding, and dif-
ficult to apply to large datasets. These reasons make the
plagiarism detection approaches unsuitable for our needs.
The problem of classifying and fingerprinting files of any
type has, however, been studied in the area of forensics.
In particular, some studies based on the idea of similarity
digest have been published in the last few years [15, 25].
These approaches have been proven to be reliable and fast
with regard to the detection of similarities between files of
any kind, being based on the byte-stream representation of
data. We chose to follow this approach, and use the two
tools proposed in [15, 25], for our work.

3 HoneyProxy

Our honeypot system is composed of a number of web-
sites (500 in our experiments), each containing the instal-
lation of five among the most common - and notoriously
vulnerable - content management systems, 17 pre-installed

PHP web shells, and a static web site.
We mitigated the problem of managing a large number

of independent installations by hosting all the web appli-
cations in our facilities, in seven isolated virtual machines
running on a VMWare Server. On the hosting provider side
we installed only an ad-hoc proxy script (HoneyProxy) in
charge of forwarding all the received traffic to the right VM
on our server. This allowed us to centralize the data collec-
tion while still being able to distinguish the requests from
distinct hosts. A high-level overview of the system is shown
in Figure 1.

The PHP proxy adds two custom headers to each request
it receives from a visitor:

• X-Forwarded-For: this standard header, which is used
in general by proxies, is set to the real IP address of
the client. In case the client arrives with this header
already set, the final X-Forwarded-For will list all the
previous IPs seen, keeping thus track of all the proxies
traversed by the client.

• X-Server-Path: this custom header is set by the PHP
proxy in order to make it possible, for us, to under-
stand the domain of provenance of the request when
analyzing the request logs on the virtual machines.
An example of such an entry is: X-Server-Path:
http://sub1.site.com/

These two headers are transmitted for tracking purposes
only between the hosting provider’s webserver and the hon-
eypot VM’s webserver, and thus are not visible to the users
of the HoneyProxy.

3.1 Containment

Each virtual machine was properly set up to contain the
attackers and prevent them from causing any harm outside
our honeypot. In particular, we blocked outgoing connec-
tions (which could otherwise result in attacks to external
hosts), patched the source code of the vulnerable blog and
forum applications to hide messages posted by spammers
(that could result in advertising malicious links), and tuned
the filesystem privileges to allow attackers to perpetrate
their attacks, but not to take control of the machine or to
modify the main source files of each application. Still, the
danger of hosting malicious files uploaded by attackers ex-
ists, and we tackle this problem by restoring every virtual
machine to its pristine state at regular time intervals.

In the following lines, we briefly explain the possible
abuses that can be perpetrated on a honeypot machine and
present our way to prevent or mitigate them.

• Gaining high privileges on the machine. We tackle
this problem by using virtual machines with up-to-
date software and security patches. In each virtual



http://www.site.com

www.site.com Link 1

Link 2

(a) Architecture of the system - high level. (b) Architecture of the system - detail.

Figure 1. High-level architecture of the system.

machine, the web server and all exposed services
run as non privileged user. Of course, this solu-
tion does not guarantee a protection against new 0-
day attacks, but we did our best to limit the attack
surface, having only 3 services running on the ma-
chine (apache,sshd,mysqld), among which only the
web server is exposed to the Internet. We considered
the possibility of a 0-day attack against apache fairly
remote, and, may it happen, a vast majority of the In-
ternet will be exposed to it as well.

• Using the honeypot machine as a stepping stone to
launch attacks or email campaigns. This is probably
the most important concern that has to be addressed
before deploying a fully functional honeypot machine.
In our case, we used regular iptables rules to block
(and log) all outgoing traffic from the virtual machines,
except for already established connections. One ex-
ception to this rule is the IRC port (6667). We will
explain this in more detail in sections 4 and 6.

• Hosting and distributing illegal content(e.g., phishing
pages). It is difficult to prevent this threat when appli-
cations have remote file upload vulnerabilities. How-
ever, it is possible to mitigate the risk of distributing il-
legal content by limiting the privileges of directories in
which files can be uploaded and preventing the modifi-
cation of all the existing HTML and PHP files. In addi-
tion, we also monitor every change on the VM file sys-
tems, and whenever a file change is detected, the sys-
tem takes a snapshot of it. The virtual machine is then
restored, at regular intervals, to its original snapshot,
thus preventing potentially harmful content from be-
ing delivered to victims or indexed by search engines.

• Illegally promoting goods or services (e.g., spam
links). Another issue is raised by applications that, as
part of their basic way of working, allow users to write
and publish comments or posts. This is the case for
any blog or forum CMS. These applications are often
an easy target for spammers, as we will show in sec-

tion 5.3.1, and when hosting an honeypot it is impor-
tant to make sure that links and posts that are posted
by bots do not reach any end user or do not get in-
dexed by search engines. We solved this problem by
modifying the source code of the blog and forum ap-
plications (namely, Wordpress and Simple Machines
Forum), commenting out the snippets of code respon-
sible of showing the content of posts. With this modi-
fication, it was still possible for attackers to post mes-
sages (and for us to collect them), but navigating the
posts or comments will only show blank messages.

These countermeasures are limiting the information we
can collect with our honeypot (e.g., in the case in which
an attacker uploads a back-connect script that is blocked by
our firewall), but we believe they are necessary to prevent
our infrastructure to be misused for malicious purposes.

3.2 Data Collection and Analysis

Our analysis of the attackers’ behavior is based on two
sources of information: the logs of the incoming HTTP re-
quests, and the files that are modified or generated by the
attackers after they obtain access to the compromised ma-
chines.

We built some tools for the analysis of HTTP request
logs, allowing us to identify known benign crawlers, known
attacks on our web applications, as well as obtaining de-
tailed statistics (number and type of requests received, User-
Agent, IP address and geolocalization of every visitor, anal-
ysis of the ’Referer’ header, and analysis of the inter-arrival
time between requests). Our analysis tools also allow us to
normalize the time of attack relatively to the timezone of the
attacker, and to detect possible correlations between attacks
(e.g., an automated script infecting a web application up-
loading a file, followed by another IP visiting the uploaded
file from another IP address). We also developed a parser
for the HTTP request logs of the most commonly used PHP
web shells, allowing us to extract the requested commands
and understand what the attacker was doing on our systems.



We employed two sources of uploaded or modified files:
webserver logs and file snapshots from monitored directo-
ries. Webserver logs are the primary source of uploaded
files, as every file upload processed by our honeypots is
fully logged on the apache mod security logs. File snap-
shots from monitored directories on the virtual machines,
instead, are the primary source for files that are modified or
generated on the machine, or about archives or encrypted
files that are decompressed on the system. The total num-
ber of files we were able to extract from these sources was
85,567, of which 34,259 unique.

Given the high number of unique files we collected, a
manual file analysis was practically infeasible. Therefore,
in order to ease the analysis of the collected data, we first
separate files according to their types, and then apply sim-
ilarity clustering to see how many of them actually dif-
fer from each other in a substantial way. This allows us
to identify common practices in the underground commu-
nities, such as redistributing the same attack or phishing
scripts after changing the owner’s name, the login creden-
tials, or after inserting a backdoor.

First of all we employed the file Linux utility to cate-
gorize files and group them in 10 macro-categories: source
code, picture, executable, data, archive, text, HTML docu-
ment, link, multimedia, and other.

We then observed that many files in the same cate-
gory only differ for few bytes (often whitespaces due to
cut&paste) or to different text included in source code com-
ments. Therefore, to improve the results of our compari-
son, we first pre-processed each file and transformed it to a
normalized form. As part of the normalization process, we
removed all double spaces, tabs and new line characters,
we removed all comments (both C-style and bash-style),
and we normalized new lines and stripped out email ad-
dresses appearing in the code. For HTML files, we used
the html2text utility to strip out all HTML tags as well.

PHP files underwent an additional pre-processing step.
We noticed that a large amount of PHP files that were up-
loaded to our honeypots as result of an exploitation were
obfuscated. For files in this form it is very difficult, even
with automated tools, to detect similarities among similar
files encoded in different ways. In order to overcome this
issue, we built an automatic PHP deobfuscation tool based
on the evalhook PHP extension [10], a module that hooks
every call to dynamic code evaluation functions, allowing
for step-by-step deobfuscation of PHP code. We deployed
our tool on a virtual machine with no network access (to
avoid launching attacks or scans against remote machines,
as some obfuscated scripts could start remote connections
or attacks upon execution) and, for each file with at least
one level of deobfuscation (i.e., nested call to eval()), we
saved its deobfuscated code.

Our approach allowed us to deobfuscate almost all the

PHP files that were obfuscated using regular built-in fea-
tures of the language (e.g., gzip and base64 encoding and
decoding, dynamic code evaluation using the eval() func-
tion). The only obfuscated PHP files we were not able to
decode were those terminating with an error (often because
of syntax errors) and those encoded with specialized com-
mercial tools, such as Zend Optimizer or ionCube PHP En-
coder. However, we observed only three samples encoded
with these tools.

In total, we successfully deobfuscated 1,217 distinct
files, accounting for 24% of the source code we collected.
Interestingly, each file was normally encoded multiple times
and required an average of 9 rounds of de-obfuscation to re-
trieve the original PHP code (with few samples that required
a stunning 101 rounds).

3.2.1 Similarity Clustering. Once the normalization
step was completed, we computed two similarity measures
between any given couple of files in the same category, us-
ing two state-of-the-art tools for (binary data) similarity de-
tection: ssdeep [15] and sdhash [25]. We then applied a
simple agglomerative clustering algorithm to cluster all files
whose similarity score was greater than 0.5 into the same
group.

We discarded files for which our analysis was not able
to find any similar element. For the remaining part, we per-
formed a manual analysis to categorize each cluster accord-
ing to its purpose. Since files had already been grouped
by similarity, only the analysis (i.e., opening and inspecting
the content) of one file per group was necessary. During this
phase, we were able to define several file categories, allow-
ing us to better understand the intentions of the attackers.
Moreover, this step allowed us to gain some insights on a
number of interesting attack cases, some of which are re-
ported in the following sections as short in-depth examples.

4 System Deployment

The 500 honeyproxy have been deployed on shared host-
ing plans1 chosen from eight of the most popular interna-
tional web hosting providers on the Internet (from USA,
France, Germany, and the Netherlands). In order for our
HoneyProxy to work properly, each provider had to support
the use of the cURL libraries through PHP, and allow out-
going connections to ports other than 80 and 443.

To make our honeypots reachable from web users, we
purchased 100 bulk domain names on GoDaddy.com with
privacy protection. The domains were equally distributed
among the .com, .org, and .net TLDs, and assigned
evenly across the hosting providers. On each hosting

1This is usually the most economical hosting option, and consists in
having a website hosted on a web server where many other websites reside
and share the machine’s resources.



provider, we configured 4 additional subdomains for ev-
ery domain, thus having 5 distinct websites (to preserve
the anonymity of our honeypot, hereinafter we will sim-
ply call them www.site.com, sub1.site.com, sub2.site.com,
sub3.site.com, sub4.site.com) Finally, we advertised the
500 domains on the home page of the authors and on the
research group’s website by means of transparent links, as
already proposed by Müter et al. [18] for a similar purpose.

We used a modified version of the ftp-deploy script [11]
to upload, in batch, a customized PHP proxy to each of the
500 websites in our possession. This simplified the deploy-
ment and update of the PHP proxy, and uniformed the way
in which we upload files to each hosting service2, Thanks
to a combination of .htaccess, ModRewrite, and cURL,
we were able to transparently forward the user requests to
the appropriate URL on the corresponding virtual machine.
Any attempt to read a non-existing resource, or to access the
proxy page itself would result in a blank error page shown
to the user. Not taking into account possible timing attacks
or intrusions on the web hosting provider’s servers, there
was no way for a visitor to understand that he was talking
to a proxy.

The HoneyProxy system installed on every website is
composed of an index file, the PHP proxy script itself and
a configuration file. The index file is the home page of the
website, and it links to the vulnerable web applications and
to other honeypot websites, based on the contents of the
configuration file.

The linking structure is not the same for every subdo-
main, as can be noticed taking a closer look at Figure 1(a).
Indeed, each subdomain links to at most 2 different subdo-
mains under its same domain. We put in place this small
linking graph with the aim of detecting possible malicious
traffic from systems that automatically follow links and per-
form automated attacks or scans.

4.1 Installed Web Applications

We installed a total of 5 vulnerable CMSs on 7 distinct
Virtual Machines. The Content Management Systems were
chosen among the most known and vulnerable ones at the
time we started our deployment. For each CMS, we chose a
version with a high number of reported vulnerabilities, or at
least with a critical one that would allow the attacker to take
full control of the application. We also limited our choice
to version no more than 5 years old in order to ensure our
websites are still of interest to attackers.

Our choice was guided by the belief that attackers are
always looking for low-hanging fruits. On the other hand,

2Shared web hosting services from different providers usually come
with their own custom administrative web interface and directory structure,
and very few of them offer ssh access or other ’advanced’ management
options. Thus, the only possible way to automate the deployment of the
websites was to use FTP, the only protocol supported by every provider.

our honeypots will probably miss sophisticated and uncon-
ventional attacks, mostly targeted to high profile organiza-
tions or well known websites. However, these attacks are
not easy to study with simple honeypot infrastructures and
are therefore outside the scope of our study.

Table 1 describes the vulnerable applications installed on
the 7 virtual machines, along with their publication date
and the list of their known and exploitable vulnerabilities.
We have installed two instances of WordPress 2.8, one
with CAPTCHA protection on comments, and one without
CAPTCHA protection, in order to see if there are attack-
ers that register fake accounts by hand, or systems that are
capable of automatically solve CAPTCHAs. This does not
seem to be the case, since we did not receive any post on the
CAPTCHA-protected blog. Therefore, we will not discuss
it any further in the rest of the paper.

4.2 Data Collection

We collected 100 days of logs on our virtual machines,
starting December 23rd, 2011. All the results presented in
our work derive from the analysis of the logs of these 7
machines.

Overall, we collected 9.5 Gb of raw HTTP requests, con-
sisting in approximately 11.0M GET and 1.9M POST. Our
honeypots were visited by more than 73,000 different IP ad-
dresses, spanning 178 countries and presenting themselves
with more than 11,000 distinct User-Agents. This is over
one order of magnitude larger than what has been observed
in the previous study by John et al. on low interaction web-
application honeypots [14]. Moreover, we also extracted
over 85,000 files that were uploaded or modified during at-
tacks against our web sites.

There are two different ways to look at the data we col-
lected: one is to identify and study the attacks looking at
the web server logs, and the other one is to try to associate
a goal to each of them by analyzing the uploaded and mod-
ified files. These two views are described in more detail in
the next two Sections.

5 Exploitation and Post-Exploitation Behav-
iors

In order to better analyze the behavior of attackers lured
by our honeypots, we decided to divide each attack in four
different phases: discovery, reconnaissance, exploitation,
and post-exploitation. The Discovery phase describes how
attackers find their targets, e.g. by querying a search engine
or by simply scanning IP addresses. The Reconnaissance
phase contains information related to the way in which
the pages were visited, for instance by using automated
crawlers or by manual access through an anonymization
proxy. In the Exploitation phase we describe the number



VM # CMS, version Plugins Description Vulnerabilities

1 phpMyAdmin, 3.0.1.1 - MySQL database PHP code injectionmanager

2 osCommerce, 2.2-RC2a - Online shop 2 remote file upload, arbitrary
admin password modification

3 Joomla, 1.5.0 com graphics,
tinymce

Generic/multipurpose
portal

XSS, arbitrary admin password
modification, remote file

upload, local file inclusion

4 Wordpress, 2.8 kino, Blog (non moderated Remote file include,
amphion lite theme comments) admin password reset

5 Simple Machines - Forum (non moderated
posts)

HTML injection in posts, stored

Forum (SMF), 1.1.3 XSS, blind SQL injection, local
file include (partially working)

6
PHP web shells,

static site -
Static site and 17 PHP shells allow to run any

kind of commands on the hostPHP shells (reachable
through hidden links)

7 Wordpress, 2.8 kino, Blog (captcha-protected Remote file include,
amphion lite theme comments) admin password reset

Table 1. Applications installed on the honeypot virtual machines, together with a brief description
and a list of their known and exploitable vulnerabilities.

and types of actual attacks performed against our web ap-
plications. Some of the attacks reach their final goal them-
selves (for instance by changing a page to redirect to a ma-
licious website), while others are only uploading a second
stage. In this case, the uploaded file is often a web shell that
is later used by the attacker to manually log in to the com-
promised system and continue the attack. We refer to this
later stage as the Post-Exploitation phase.

It is hard to present all possible combinations of behav-
iors. Not all phases are always present in each attack (e.g.,
reconnaissance and exploitation can be performed in a sin-
gle monolithic step), some of the visits never lead to any
actual attack, and sometimes it is just impossible to link to-
gether different actions performed by the same attacker with
different IP addresses. However, by extracting the most
common patterns from the data collected at each stage, we
can identify the “typical attack profile” observed in our ex-
periment. Such profile can be summarized as follows:

1. 69.8% of the attacks start with a scout bot visiting the
page. The scout often tries to hide its User Agent
or disguise as a legitimate browser or search engine
crawler.

2. Few seconds after the scout has identified the page as
an interesting target, a second automated system (here-
inafter exploitation bot) visits the page and executes
the real exploit. This is often a separate script that does
not fake the user agent, therefore often appearing with
strings such as libwww/perl.

3. If the vulnerability allows the attacker to upload a file,
in 46% of the cases the exploitation bot uploads a web
shell. Moreover, the majority of the attacks upload the
same file multiple times (in average 9, and sometimes
up to 30), probably to be sure that the attack was suc-
cessful.

4. After an average of 3 hours and 26 minutes, the at-
tacker logs into the machine using the previously up-
loaded shell. The average login time for an attacker
interactive session is 5 minutes and 37 seconds.

While this represents the most common behavior ex-
tracted from our dataset, many other combinations were ob-
served as well - some of which are described in the rest of
the section. Finally, it is important to mention that the attack
behavior may change depending on the application and on
the vulnerability that is exploited. Therefore, we should say
that the previous description summarizes the most common
behavior of attacks against osCommerce 2.2 (the web ap-
plication that received by far the largest number of attacks
among our honeypots).

Figure 2 shows a quick summary of some of the charac-
teristics of each phase.3 More information and statistics are
reported in the rest of the section. Then, based on the anal-
ysis of the files uploaded or modified during the exploita-
tion and post-exploitation phases, in Section 6 we will try

3The picture does not count the traffic towards the open forum, because
its extremely large number of connections compared with other attacks
would have completely dominated the statistics.



Figure 2. Overview of the four phases of an attack

Figure 3. Volume of HTTP requests received
by out honeypots during the study.

to summarize the different goals and motivations behind the
attacks we observed in our experiments.

5.1 Discovery

The very first HTTP request hit our honeypot proxies
only 10 minutes after the deployment, from Googlebot. The
first direct request on one IP address of our virtual machines
(running on port 8002) came after 1 hour and 50 minutes.

During the first few days, most of the traffic was caused
by benign web crawlers. Therefore, we designed a sim-
ple solution to filter out benign crawler-generated traffic
from the remaining traffic. Since HTTP headers alone are
not trustable (e.g., attackers often use User Agents such
as ’Googlebot’ in their scripts) we collected public infor-
mation available on bots [2, 1] and we combined them

Figure 4. Amount of requests, by issuing
country.

with information extracted from our logs and validated with
WHOIS results in order to identify crawlers from known
companies. By combining UserAgent strings and the IP ad-
dress ranges associated to known companies, we were able
to identify with certainty 14 different crawlers, originating
from 1965 different IPs. Even though this is not a complete
list (e.g, John et al. [14] used a more complex technique to
identify 16 web crawlers), it was able to successfully filter
out most of the traffic generated by benign crawlers.

Some statistics about the origin of the requests is shown
in Figure 3. The amount of legitimate crawler requests is
more or less stable in time, while, as time goes by and the
honeypot websites get indexed by search engines and linked
on hacking forums or on link farming networks, the number
of requests by malicious bots or non-crawlers has an almost



linear increase.
When plotting these general statistics we also identified

a number of suspicious spikes in the access patterns. In sev-
eral cases, one of our web applications was visited, in few
hours, by several thousands of unique IP addresses (com-
pared with an average of 192 per day), a clear indication
that a botnet was used to scan our sites.

Interestingly, we observed the first suspicious activity
only 2 hours and 10 minutes after the deployment of our
system, when our forum web application started receiving
few automated registrations. However, the first posts on the
forum appeared only four days later, on December 27th.
Even more surprising was the fact that the first visit from a
non-crawler coincided with the first attack: 4 hours 30 min-
utes after the deployment of the honeypots, a browser with
Polish locale visited our osCommerce web application 4 and
exploited a file upload vulnerability to upload a malicious
PHP script to the honeypot. Figure 4 summarizes the vis-
its received by our honeypot (benign crawlers excluded),
grouped by their geolocalization.

5.1.1 Referer Analysis. The analysis of the Referer
HTTP header (whenever available) helped us identify how
visitors were able to find our honeypots on the web. Based
on the results, we can distinguish two main categories of
users: criminals using search engines to find vulnerable ap-
plications, and victims of phishing attacks following links
posted in emails and public forums (an example of this phe-
nomenon is discussed in Section 6.8).

A total of 66,449 visitors reached our honeypot pages
with the Referer header set. The domains that appear most
frequently as referrers are search engines, followed by web
mails and public forums. Google is leading with 17,156 en-
tries. Other important search engines used by the attackers
to locate our websites, were Yandex (1,016), Bing (263),
and Yahoo (98). A total of 7,325 visitors arrived from web
mail services (4,776 from SFR, 972 from Facebook, 944
were from Yahoo!Mail, 493 from Live.com, 407 from AOL
Mail, and 108 from comcast.net). Finally, 15,746 requests
originated from several public web forums, partially be-
longing to hacking communities, and partially just targeted
by spam bots.

Finally, we extracted search queries (also known as
‘dorks’, when used for malicious purposes) from Referer
headers set by the most common web search engines. Our
analysis shows that the search terms used by attackers
highly depend on the application deployed on the honeypot.
For example, the most common dork that was used to reach
our Joomla web application contained the words ’joomla
allows you’, while the Simple Machines Forum was often

4Since UserAgent information can be easily spoofed, we cannot prove
our assumptions about the browser and tools run by the attacker, and his or
her locale, are correct.

reached by searching ’powered by smf’. Our machine con-
taining public web shells was often reached via dorks like
’inurl:c99.php’, ’[cyber anarchy shell]’ or even ’[ftp bute-
forcer] [security info] [processes] [mysql] [php-code] [en-
coder] [backdoor] [back-connection] [home] [enumerate]
[md5-lookup] [word-lists] [milw0rm it!] [search] [self-
kill] [about]’. The latter query, even though very long,
was used more than 150 times to reach our machine with
web shells. It was probably preferred to searching via
’intitle:’ or ’inurl:’ because script names and
titles are often customized by attackers and as such search-
ing for their textual content may return more results than
searching for fixed url patterns or page titles. Some special-
ized search engines appear to be used as well, such as dev-
ilfinder.com, which was adopted in 141 cases to reach some
of the shells on our machines. This search engine claims
to show more low-ranking results than common search en-
gines, not to store any search data, and to return up to 300
results on the same web page, making it very suitable for
attackers willing to search for dorks and collect long lists of
vulnerable websites.

5.2 Reconnaissance

After removing the legitimate crawlers, the largest part
of the traffic received by our honeypots was from uniden-
tified sources, many of which were responsible of sending
automated HTTP requests. We found these sources to be
responsible for the majority of attacks and spam messages
targeting our honeypots during the study.

However, distinguishing attackers that manually visited
our applications from the ones that employed automated
scout bots is not easy. We applied the following three rules
to flag the automated requests:

• Inter-arrival time. If requests from the same IP address
arrive at a frequency higher than a certain threshold,
we consider the traffic as originated from a possible
malicious bot.

• Request of images. Automated systems, and especially
those having to optimize their speed, almost never
request images or other presentation-related content
from websites. Scanning web logs for visitors that
never request images or CSS content is thus an easy
way of spotting possible automated scanners.

• Subdomain visit pattern. As described in Section 4,
each web site we deployed consisted in a number of
sub-domains linked together according to a predeter-
mined pattern. If the same IP accesses them in a short
time frame, following our patterns, then it is likely to
be an automated crawler.



For example, after removing the benign crawlers, a to-
tal of 9.5M hits were received by systems who did not re-
quest any image, against 1.8M from system that also re-
quested images and presentation content. On the contrary,
only 641 IP addresses (responsible for 13.4K hits) visited
our websites by following our links in a precise access pat-
tern. Among them, 60% followed a breadth first approach.

85% of the automated requests were directed to our fo-
rum web application, and were responsible for registering
fake user profiles and posting spam messages. Of the re-
maining 1.4M requests directed to the six remaining hon-
eypot applications, 95K were mimicking the User-Agent of
known search engines, and 264K switched between mul-
tiple User-Agents over time. The remaining requests did
not contain any suspicious User-Agent string, did not fol-
low paths between domains, neither requested images. As
such, we classified them as unknown (possibly benign) bots.

5.3 Exploitation

The first important activity to do in order to detect ex-
ploitation attempts was parsing the log files in search of
attack traces. Luckily, knowing already the vulnerabilities
affecting our web applications allowed us to quickly and
reliably scan for attacks in our logs using a set of regular
expressions.

Overall, we logged 444 distinct exploitation sessions.
An interesting finding is that 310 of them adopted two or
more different User-Agent strings, appearing in short se-
quence from the same IP address. As explained in the
beginning of Section 5, this often happens when attackers
employ a combination of scout bots and automatic attack
scripts in order to speed up attacks and quickly find new
targets. In particular, in two thirds (294) of the total ex-
ploitation sessions we observed, the User-Agent used for
the exploitation was the one associated to the LibWWW
Perl library (libwww/perl).

In some of these exploitation sessions, the attacker tried
to disguise her tools and browser as known benign bots.
Some crawler User-Agent strings that were often used
during exploitation sessions were: FreeWebMonitoring,
Gigabot/3.0, gsa-crawler, IlTrovatore-Setaccio/1.2, bing-
bot/2.0;, and Googlebot/2.1.

The most remarkable side effect of every exploitation
session is the upload or modification of files on the vic-
tim machine. Quite surprisingly, we noticed that when an
exploitation session uploads a file, the file is uploaded in
average 9.75 times. This strange behavior can be explained
by the fact that most of the exploitation tools are automated,
and since the attacker does not check in real-time whether
each exploit succeeded or not, uploading the same file mul-
tiple times can increase the chance for the file to be success-
fully uploaded at least once.

Figure 5. Normalized times distribution for at-
tack sessions

Using the approach presented in Section 3.2, we auto-
matically categorized the files uploaded to our honeypots as
a result of exploiting vulnerable services. We then corre-
lated information about each attack session with the catego-
rization results for the collected files. Results of this phase
show that the files uploaded during attack sessions consist,
in 45.75% of the cases, in web shells, in 17.25% of the cases
in phishing files (single HTML pages or complete phishing
kits), in 1.75% of the cases in scripts that automatically try
to download and execute files from remote URLs, and in
1.5% of the cases in scripts for local information gather-
ing. Finally, 32.75% of the uploaded files were not catego-
rized by our system, either because they were not similar to
anything else that we observed, or because they were mul-
timedia files and pictures (e.g., images or soundtracks for
defacement pages) that were not relevant for our study.

Figure 5 shows the normalized times of the attacks re-
ceived by our honeypots. The values were computed by
adjusting the actual time of the attack with the timezone
extracted from the IP geolocalization. As such, our normal-
ization does not reflect the correct value in case the attacker
is proxying its connection through an IP in a different part
of the world. However, the graph shows a clear daylight
trend for both the exploitation and post-exploitation phases.
In particular, for the interactive sessions we observed fewer
attacks performed between 4am and 10am, when probably
also the criminals need to get some sleep. Interestingly, also
the exploitation phase, that is mostly automated, shows a
similar trend (even though not as clear). This could be the
consequence of scans performed through botnet infected



machines, some of which are probably turned off by their
users during the night.

Searching our attack logs for information about attack-
ers reaching directly our virtual machines, without passing
through the honeypot proxies, we found that a small, but
still significant number of attacks were carried out directly
against the ip:port of our honeypots. In particular, we found
25 of such attack sessions against our e-commerce web hon-
eypot and 19 against our machine hosting the web shells
and the static website. In both cases, the attacker may have
used a previous exploit to extract the IP of our machines
(stored in a osCommerce configuration file that was often
downloaded by many attackers, or by inspecting the ma-
chine through an interactive shell) and use this information
in the following attacks.

5.3.1 Posts. Since the 1st day of operation, our forum ap-
plication received a very large amount of traffic. Most of it
was from automated spamming bots that kept flooding the
forum with fake registrations and spam messages. We ana-
lyzed every snapshot of the machine’s database in order to
extract information about the forum’s posts and the URLs
that were embedded in each of them. This allowed us to
identify and categorize several spam and link farming cam-
paigns, as well as finding some rogue practices such as sell-
ing forum accounts.

A total of 68,201 unique messages were posted on the
forum during our study, by 15,753 users using 3,144 unique
IP addresses. Daily statistics on the forum show trends that
are typical of medium to high traffic message boards: an
average of 604 posts per day (with a max of 3085), with an
average of 232 online users during peak hours (max 403).

Even more surprising than the number of posts is the
number of new users registered to the forum: 1907 per day
in average, and reaching a peak of 14,400 on March 23,
2012. This phenomenon was so common that 33.8% of the
IP addresses that performed actions on our forum were re-
sponsible of creating at least one fake account, but never
posted any message. This finding suggests there are some
incentives for criminals to perform automatic user registra-
tions, perhaps making this task even more profitable than
the spamming activity itself. Our hypothesis is that, in some
cases, forum accounts can be sold in bulk to other actors
in the black market. We indeed found 1,260 fake accounts
that were created from an IP address and then used few days
later by other, different IPs, to post messages. This does not
necessarily validate our hypothesis, but shows at least that
forum spamming has become a complex ecosystem and it
is difficult, nowadays, to find only a single actor behind a
spam or link farming campaign.

A closer look at the geolocation of IP addresses responsi-
ble for registering users and posting to the forum shows that
most of them are from the United States or Eastern Europe

countries (mostly Russia, Ukraine, Poland, Latvia, Roma-
nia). A total of 6687 distinct IP addresses were active on our
forum (that is, posted at least one message or registered one
or more accounts). Among these, 36.8% were associated to
locations in the US, while 24.6% came from Eastern Euro-
pean countries. The country coverage drastically changes if
we consider only IP addresses that posted at least one mes-
sage to the forum. In this case, IPs from the United States
represent, alone, 62.3% of all the IP addresses responsible
for posting messages (Eastern Europe IPs in this case rep-
resent 21.2% of the total).

Finally, we performed a simple categorization on all the
messages posted on the forum, based on the presence of
certain keywords. This allowed us to quickly identify com-
mon spam topics and campaigns. Thanks to this method,
we were able to automatically categorize 63,763 messages
(93.5% of the total).

The trends we extracted from message topics show
clearly that the most common category is drugs (55% of the
categorized messages, and showing peaks of 2000 messages
per day), followed by search engine optimization (SEO) and
electronics (11%), adult content (8%), health care and home
safety (6%).

All the links inserted in the forum posts underwent an in-
depth analysis using two automated, state-of-the-art tools
for the detection of malicious web pages, namely Google
Safe Browsing [22] and Wepawet [8]. The detection results
of these two tools show that, on the 221,423 URLs we ex-
tracted from the forum posts, a small but not insignificant
fraction (2248, roughly 1 out of 100) consisted in malicious
or possibly harmful links.

5.4 Post-Exploitation

The post-exploitation phase includes the analysis of the
interaction between the attackers and the compromised ma-
chines. In our case, this is done through the web shells in-
stalled during the exploitation phase or, to increase the col-
lected data, through the access to the public shells that we
already pre-installed in our virtual machines.

The analysis of the post-exploitation phase deserves spe-
cial attention since it is made of interactive sessions in
which the attackers can issue arbitrary commands. How-
ever, these web shells do not have any notion of session:
they just receive commands via HTTP requests and provide
the responses in a state-less fashion.

During our experiments we received a total of 74,497
shell commands. These varied from simple file system nav-
igation commands, to file inspection and editing, up to com-
plex tasks as uploading new files or performing network
scans.

To better understand what this number represents, we de-
cided to group together individual commands in virtual “in-



teractive sessions” every time they are issued from the same
IP, and the idle time between consecutive commands is less
than 5 minutes.

According to this definition, we registered 232 interac-
tive sessions as a consequence of one of the exploited ser-
vices, and 8268 in our pre-installed shells5. The average
session duration was of 5 minutes and 37 seconds, however,
we registered 9 sessions lasting more than one hour each.
The longest, in terms of commands issued to the system,
was from a user in Saudi Arabia that sent 663 commands to
the shell, including the manual editing of several files.

Interestingly, one of the most common actions per-
formed by users during an attack is the upload of a cus-
tom shell, even if the attacker broke into the system using
a shell that was already available on the website. The rea-
son for this is that attackers know that, with a high proba-
bility, shells installed by others will contain backdoors and
most likely leak information to their owner. In addition to
the 17 web shells supported by our tools, we also identified
the HTTP patterns associated to the most common custom
shells uploaded by the attackers, so that we could parse the
majority of commands issued to them.

In 83% of the cases, attackers tried to use at least one
active command (uploading or editing a file, changing file
permissions, creating files or directories, scanning hosts,
killing a process, connecting to a database, sending emails,
etc.). The remaining sessions were purely passive, with the
attackers only browsing our system and downloading source
and configuration files.

Finally, in 61% of the sessions the attackers uploaded a
new file, and in 50% of them they tried to modify a file al-
ready on the machine (in 13% of the cases to perform a de-
facement). Regarding individual commands, the most com-
monly executed were the ones related to listing and read-
ing files and directories, followed by editing files, uploading
files, running commands on the system, listing the processes
running on the system, and downloading files.

6 Attackers Goals

In this section we shift the focus from the way the at-
tacks are performed to the motivation behind them. In other
words, we try to understand what criminals do after they
compromise a web application. Do they install a botnet?
Do they try to gain administrator privileges on the host? Do
they modify the code of the application and insert backdoors
or malicious iFrames?

5For the pre-installed shells, we also removed sessions that contained
very fast sequences of commands or that did not fetch images on the pages,
because they could have been the result of crawlers visiting our public
pages. Since shells uploaded by attackers were not linked from any page,
we did not apply this filtering to them.

File Type Clustered Not Clustered Clusters
Archive 335 (82.6%) 71 (17.4%) 159
Data 221 (62.5%) 133 (37.5%) 87
Executable 102 (82.3%) 22 (17.7%) 41
HTML doc 4341 (100.0%) 0 (0%) 822
Image 1703 (81.9%) 374 (18.1%) 811
Source code 3791 (100.0%) 0 (0%) 482
Text 886 (43.8%) 1138 (56.2%) 219
Various 118 (65.9%) 61 (34.1%) 42
Total 11,497 (86.5%) 1799 (13.5%) 2663

Table 2. Results of clustering

Figure 6. Attack behavior, based on unique
files uploaded

To answer these questions, we analyzed the files up-
loaded during the exploitation phase, and the ones created
or modified during the post-exploitation phase. We normal-
ized each file content as explained in Section 3, and we clus-
tered them together according to their similarity. Finally, we
manually labeled each cluster, to identify the “purpose” of
the files. The results of the clustering are summarized in
table 2 and cover, in total, 86.4% of the unique files col-
lected by our honeypots. For them, Figure 6 shows the dis-
tribution of the file categories6. For example, 1.7% of the
unique files we observed in our experiments were used to
try to escalate the privileges on the compromised machine.
This is different from saying that 1.7% of the attackers tried
to escalate the privileges of the machine. Unfortunately,
linking the files to the attacks in which they were used is
not always possible. Therefore, we computed an estimation
of the attackers that performed a certain action by identi-
fying each unique IP that uploaded a certain file during an

6We removed from the graph the irrelevant and damaged documents,
that accounted in total for 10% of the files.



attack. Identifying an attacker only based on his or her IP
address is not always correct, but still provides a reasonable
approximation. Thus, if we say that a certain category has
an estimated attackers ratio of 20%, it means that 1 attacker
out of 5 uploaded at least one file of that category during his
or her operation.

Only 14% of the attackers uploaded multiple files be-
longing at least to two separate categories. This means that
most of the attacks have a precise goal, or that attackers of-
ten change their IP addresses, making it very hard for us to
track them.

In the rest of the section, we briefly introduce each of the
13 categories.

6.1 Information gathering

Unique files ratio 1.8%
Estimated attackers ratio 2.2%

These files consist mainly in automated scripts for the
analysis of the compromised system, and are often used as
a first stage of a manual attack, in which the attacker tries to
gather information on the attacked system before proceed-
ing with other malicious actions. In general, we observed
a number of attackers using scripts to search, archive, and
download several system configuration files.

For example, an attack using such tools hit our honey-
pots on April 7, 2012. The attacker, using a normal browser
and coming from a Malaysian IP address, uploaded a script
called allsoft.pl. Once executed, the script scans the
system for a list of directories containing configuration files
of known CMSs (e.g., Wordpress, Joomla, WHM, phpBB,
vBulletin, . . . ), creates a tar archive containing all the files
it was able to find, and returns to the attacker a link to the
created archive, that can thus be easily downloaded. The
script iterates on both the users and the possible multiple
home directories in the system trying to gather information
from as many accounts as possible on the attacked machine.

6.2 Drive-by Downloads

Unique files ratio 1.2%
Estimated attackers ratio 1.1%

We have witnessed few attacks that aimed at creating
drive-by download webpages, by inserting custom exploit
code in the HTML source of the web pages of our hon-
eypots, or by uploading documents that contain exploits
for known browser vulnerabilities. This kind of activity is
aimed at exploiting users visiting the website, typically to
convert their machines in bots that can be later used for a
large spectrum of illicit activity.

An example of such attacks was the intu.html web page
uploaded to one of our honeypots on February 28th, 2012.

When opened, the page shows ’Intuit Market. Loading
your order, please wait...’. Behind the scenes, a malicious
javascript loads an iframe pointing to a document hosted at
twistedtarts.net. This document is malicious and
contains two exploits, for CVE-2010-0188 and CVE-2010-
1885. Wepawet [8] reported the document as malicious on
the same day this webpage was uploaded to our honeypots.

6.3 Second Stages

Unique files ratio 37.2%
Estimated attackers ratio 49.4%

This category includes downloaders (programs designed
to download and execute another file), uploaders (web
pages that can be used to remotely upload other files), web
shells, and backdoors included in already existing docu-
ments. These are the tools of choice for attackers to per-
form manual web-based attacks. The reason is that such
tools allow either to upload any file to the victim machine,
or to issue arbitrary commands as if the attacker was logged
in to one of the server’s terminals. The majority of the at-
tacks logged by our honeypot adopted a mix of web shells
and custom scripts to try to hack the machine and install
malicious software on it.

An example of this behavior is the attack that started
at 6:50 am (GMT) on January 1st, 2012. An IP address
from Englewood, Colorado, with an User-Agent set to
’blackberry8520 ver1 subvodafone’ connected directly to
our honeypot virtual machine running osCommerce and ex-
ploited a file upload vulnerability, uploading several differ-
ent PHP scripts, all of them launching IRC bots connecting
to different IRC servers. The same person also uploaded a
PHP shell, and used it to download the configuration file of
the CMS installed on the machine.

The fact that the attacker was not connecting through
our HoneyProxy infrastructure but directly to our IP ad-
dress was unusual, and attracted our attention. Searching
backwards in our logs starting the date of the attack, we
found out that less than 24 hours before, an automated sys-
tem with an User-Agent set to ’bingbot/2.0’ connected to
one of our websites from another IP address from Engle-
wood, Colorado, exploited a vulnerability and downloaded
the osCommerce configuration file, which contains the real
IP of our virtual machine hosting the e-commerce web ap-
plication.

6.4 Privilege Escalation

Unique files ratio 1.7%
Estimated attackers ratio 2.2%

Privilege escalation exploits are among the oldest types
of exploits in the computer security history, but are still



among the most sought after, as they allow an attacker to
gain administrator privileges and thus full control of vul-
nerable machines. Successfully executing a privilege esca-
lation exploit on server machines used in a shared web host-
ing environment would make the attacker in the position to
modify the files of every website hosted on the server, pos-
sibly allowing for mass exploitations of hundreds or even
thousands of websites at the same time.

An example of such kind of attack hit our honeypots on
February 9, 2012. An attacker with an Hungarian IP ad-
dress uploaded a file called mempodipper.c to our ma-
chine hosting the web shells, and used one of the shells
to try to compile its source code with gcc. The machine
had no available compiler, thus, less than 5 minutes later,
the attacker uploaded a pre-compiled ELF binary named
mempodipper, and tried to execute it through one of the
shells. We found this exploit to be for a very recent vul-
nerability, the CVE-2012-0056, published less than 20 days
before this attack. At the time of the attack, the exploit for
this vulnerability, titled Linux Local Privilege Escalation
via SUID /proc/pid/mem Write was already publicly avail-
able [27]. However, the kernel of our virtual machines was
not vulnerable to it.

6.5 Scanners

Unique files ratio 2.3%
Estimated attackers ratio 2.8%

This kind of activity is performed to find other local or
remote vulnerable target websites that could possibly be ex-
ploited by the attacker. For example, FTP scanning, query-
ing search engines using ’dorks’, or trying to list all the do-
main names being hosted on the machine belong to this cat-
egory.

A concrete example is the trdomain.php page, uploaded
to one of our honeypots on December 26th, from a Turkish
IP address. It contains a local domain name scanner, that
pulls the domain names configured on the machine from
the local configuration files (such as named.conf), gets their
PageRank from Google, as well as their document root and
their owner’s username, and returns a web page with a list
containing all this information. The title of the page is ’Do-
main ve User ListeLiyici — by W£ßRooT ’; as of today,
searching such title on the web still yields many results,
showing that this kind of attack is very common and wide
spread.

6.6 Defacements

Unique files ratio 28.1%
Estimated attackers ratio 27.7%

Attacks of this kind are among the most frequent ones on

our honeypots. In this kind of attack, the attackers modify
existing web pages on the honeypot, or upload new pages
with the purpose of claiming their responsibility for hack-
ing the website. Usually, but not always, the claims are ac-
companied by religious or politic propaganda, or by funny
or shocking images. Many of the attackers performing such
attacks even insert links to their personal website or Face-
book page, where one can see they are mainly teenagers
looking for fame and bragging in front of their friends.

One of the many defacements attacks that hit our hon-
eypots happened around 8 pm GMT on the 6th of March.
Somebody connecting from a German IP address found one
of the hidden shells in our machine hosting the static web-
site, and used it to edit one of the static html pages hosted
on the machine. The code of the page was thus uploaded
using copy-and-paste in a textarea provided by the web
shell. The defacement page contained a short slogan from
the author, an animated javascript text slowly unveiling a
Portuguese quote, and a set of links to the personal Twitter
pages of each member of the hacking crew, some of which
had more than 1000 tweets and several hundred followers.
Quickly looking at these Twitter profiles, we found out that
all the members are actively posting their defacements on
their profile pages. Apparently, they do so in order to build
some sort of reputation. This is confirmed by the URL they
posted as a personal webpage on Twitter, a web page from
the zone-h.org website, reporting statistics about previ-
ous defacements of the crew. The statistics are quite impres-
sive: at the time of writing the whole crew has claimed more
than 41,600 defacements starting July 20, 2011, of which
almost 500 are on important websites with high reputation
(governative websites, universities, multinational corpora-
tions, etc.).

Thanks to attacks like this we found out that it is com-
mon practice among attackers to advertise their deface-
ments on publicly accessible ’defacement’ showcases, such
as the one on the zone-h.orgwebsite. It seems that some
of these people are really in a sort of competition in order
to show off their presumed skills at hacking websites, and
our honeypot domains were often reported as trophies by
several groups.

6.7 Botnets

Unique files ratio 28.1%
Estimated attackers ratio 27.7%

Several attackers, after exploiting our honeypots, tried to
make our servers join an IRC botnet by uploading dedicated
PHP or Perl scripts.

Two of the honeypot virtual machines, and specifically
those with the most severe vulnerabilities, allowing attack-
ers to upload and run arbitrary files on the server, have been
set up to allow outgoing connections to port 6667 (IRC). We



did so in order to monitor IRC botnet activity launched by
an eventual attacker on our machines. We allowed connec-
tions only to port 6667, allowing thus only botnets running
on the standard IRC port to connect to their management
chat rooms. To avoid being tracked down by bot masters,
every connection to the IRC port was tunneled through a
privacy-protected VPN that anonymized our real IP address.
No other outgoing connections were allowed from the ma-
chines, in order to avoid the possibility for our machines to
launch attacks or scans against other hosts.

Our expectations proved to be correct, and we indeed
logged several connections from our two machines to IRC
command and control servers. The analysis of the packet
traces showed some interesting information.

First of all, we were expecting IRC botnets to be quite
rare nowadays, given the relatively high number of web-
based exploit packs circulating on the black market. How-
ever, the analysis of the files that were uploaded on our hon-
eypots showed an opposite trend, with about 200 distinct
scripts launching IRC bots.

Another interesting observation is that, apparently, most
of these IRC botnets are operated by young teenagers, as
some IRC logs show. Some of the bot masters even put links
to their Facebook or Twitter profiles in order to show off
with their friends. Despite being run by youngsters, how-
ever, most of our connection logs show IRC rooms with
hundreds to thousands of bots (the biggest IRC botnet we
observed was comprised of 11900 bots).

While some logs showed us some of the bot masters at-
tacking rivals on other IRC servers (which we considered
a typical script-kiddie behavior), we were interested to see
that these young people already deal with money and are
able to use (and probably develop themselves) automated
tools for searching on search engines and exploiting web
vulnerabilities. We received a number of commands to per-
form DoS attacks, search engines scans using dorks, au-
tomatic mass exploitations, and instructions to report back
usernames and passwords, as well as credit card credentials,
stolen from exploited websites.

A final interesting finding, supported by the language
used in the IRC logs and by an analysis of the IP addresses
used for the upload of the IRC script, was that the majority
of these IRC botnets were installed by users from South-
Eastern asian countries (mostly Malaysia and Indonesia).

6.8 Phishing

Unique files ratio 7.3%
Estimated attackers ratio 6.3%

Phishing is one of the most dangerous activities that on-
line criminals perform nowadays. We found proof of many
attempts to install phishing pages or phishing kits on our
honeypots. This kind of activity is always profit-driven;

the vast majority of phishing websites are replicas of on-
line banking websites, but we also collected few examples
of online email portal phishing and even a handful of web
pages mimicking ISPs and airline companies’ websites.

During the 100 days of operation, our honeypots col-
lected a total of 470 phishing-related files, 129 of which
were complete phishing packages (archives often contain-
ing a full phishing website installation, including images,
CSS files, and the phishing scripts themselves). Suspris-
ingly, Nigeria seems to be a very active country for this
kind of attacks, with Nigerian IP addresses responsible for
approximately 45% of the phishing attacks logged by our
honeypots.

An interesting case was logged by our honeypots start-
ing on March 27th. Analyzing the Referer header of the
requests received by our websites, we found 4776 requests,
from 1762 different IP addresses, reaching our pages with
the referer set to the mail servers of sfr.fr, one of the ma-
jor French ISPs. Inspecting the webserver logs, we found
out that all the HTTP requests having a Referer from sfr.fr
requested only two png images. Both files had been up-
loaded to our honeypots on the 24th of March; when the
first hit from SFR arrived, the virtual machines had already
been cleaned up several times, but we found the original
version of the pictures in our snapshots of uploaded files.
Surprisingly, the pictures showed a message resembling a
regular communication from SFR’s customer service. All
the users that hit our honeypots with a Referer from sfr.fr
had thus received a phishing email containing links to the
two png files, and their web client was only trying to down-
load and show them the contents of the email.

6.9 Spamming and message flooding

Unique files ratio 7.8%
Estimated attackers ratio 9.3%

Many users still seem to use spam as a technique to make
profit on the Internet. Some of the scripts we found are in-
deed mailers, i.e., scripts used to send out spam to a large
number of recipients in an automated way. Some other
scripts were email or SMS flooders, that are instead used
for launching DoS attacks.

Our honeypots collected around 600 such scripts. As an
example, on February 21st, a script called a1.php was up-
loaded from a Nigerian IP address. This script is a highly
customizable mailer, and allows sending spam to a list of
recipients in plain text or HTML format, with many op-
tions. It can also be configured to log in to a remote SMTP
server in order to send spam through an authenticated ac-
count, and to disconnect and reconnect to the server after
a certain threshold of sent emails is reached, probably with
the purpose of avoiding bans.



6.10 Link Farming & Black Hat SEO

Unique files ratio 2.7%
Estimated attackers ratio 1.0%

Link farms are groups of web sites linking to each other,
usually creating web pages with a very dense link structure,
whose aim is to boost the search engine ranking of the web
sites of the group. Black-hat SEO, instead, refers to using
illicit or unethical techniques, such as cloaking, to boost the
search engine ranking of a website, or to manipulate the way
in which search engines and their spiders see and categorize
a web pages. If we exclude automated posts on the forum
web application, where a high percentage of posts contained
links to link farming networks, this kind of behavior has not
been observed very frequently on our honeypots.

An interesting attack that created a big amount of web
pages on our honeypots was launched on March 19th.
Somebody installed an fully functional CMS, comprising
hundreds of static html pages, to one of our honeypots. All
the generated pages were installed on the images/rf/ subdi-
rectory of our e-commerce web application, and contained
russian text, along with images, CSS and JavaScript files
used for presentation purposes. This page structure seems
to be generated through a blog or CMS creation engine, as
all the pages have a very dense link structure and point one
another using absolute links (that had been customized and
contained our honeypot website’s domain name). We ex-
pect this to be part of an attempt to create a link farming
network, or simply to be a marketing campaign for some
counterfeit goods, as most of the pages we analyzed were
actually advertising the sale of replica watches.

Finally, on a smaller scale, we also saw some attackers
creating pages with ads or inserting links to partner sites
on their uploaded pages. The reason for this is still mak-
ing profit out of ads, or improving their or their partners’
ranking on search engines.

6.11 Proxying and traffic redirection

Unique files ratio 0.6%
Estimated attackers ratio 0.6%

Online criminals always look for reliable ways to hide
their tracks, and as time goes by, it becomes more and more
difficult to rely only on open proxy networks, the TOR net-
work, or open redirection web pages to conduct malicious
activities. In fact, these services are often overloaded with
(malicious) traffic and as such have very bad average per-
formances and are very likely to be monitored by the au-
thorities. In this scenario, the possibility of tunneling traffic
on infected hosts seems idyllic, as it is quite easy to turn
a webserver into a proxy, and often webservers running on
hosting providers premises have high bandwidths, making

them a very valuable target. We saw some attackers up-
loading proxy scripts or traffic redirection systems (TDS) to
our honeypots, for the purpose of redirecting traffic anony-
mously (proxies) or redirecting users to malicious sources
or affiliate websites (TDSs).

As an example, an archive of 504KB was uploaded on
one of our honeypots on February 22, 2012. The archive
contained a proxy tool called VPSProxy, publicly available
at http://wonted.ru/programms/vpsproxy/ ; it is a PHP proxy
fully controllable through a GUI client. Apparently, among
all its features, if installed on more than one server, the tool
makes it easy for the person using it to bounce between dif-
ferent connections. We believe tools like this can be very
useful to criminals trying to hide their traces on the Inter-
net.

6.12 Custom attacks

Unique files ratio 1.9%
Estimated attackers ratio 2.6%

This category groups all attacks that were either built on
purpose for exploiting specific services, or that had no other
matching category. For example, attacks in this category in-
clude programs whose aim is to scan and exploit vulnerable
web services running on the server, such as the config.php
script that was uploaded to one of our websites on April
the 9th. This PHP script presents a panel for finding and
attacking 9 of the most known Content Management Sys-
tems: if any of these is found on the machine, the attacker
can automatically tamper with its configuration. The tool
also contained other scripts to launch local and remote ex-
ploits.

6.13 DOS & Bruteforcing tools

Unique files ratio 4.6%
Estimated attackers ratio 2.9%

This category includes programs that launch Denial of
Service or bruteforce attacks against specific applications
and services (e.g., bruteforcing tools for FTP or web ser-
vices, UDP and TCP flooding scripts).

An interesting example of this kind of behavior was the
email bruteforce script that was uploaded to one of our hon-
eypots on April 7, 2012. An IP address from Azerbaijan
used a web shell to upload a file called n.php and a wordlist
containing 1508 words, called word.txt. The n.php file, once
executed, uses the cURL PHP libraries to connect to the
box.az email portal and the uses the wordlist to brute-
force the password for a specific username that was hard-
coded in the program. Our honeypots actually logged the
upload of n.php several times, to three different domains.
The attacker tried multiple times to execute the script (10



times in 16 minutes) and to edit it (4 times) as if looking for
an error in the code. In reality, the script traffic was simply
blocked by our firewall.

7 Conclusions

In this paper we described the implementation and de-
ployment of a honeypot network based on a number of real,
vulnerable web applications. Using the collected data, we
studied the behavior of the attackers before, during, and af-
ter they compromise their targets.

The results of our study provide interesting insights on
the current state of exploitation behaviors on the web. On
one side, we were able to confirm known trends for certain
classes of attacks, such as the prevalence of eastern Euro-
pean countries in comment spamming activity, and the fact
that many of the scam and phishing campaigns are still op-
erated by criminals in African countries [12]. Pharmaceuti-
cal ads appear to be the most common subject among spam
and comment spamming activities, as found by other recent
studies [9].

On the other hand, we were also able to observe and
study a large number of manual attacks, as well as many
infections aimed at turning webservers into IRC bots. This
suggests that some of the threats that are often considered
outdated are actually still very popular (in particular be-
tween young criminals) and are still responsible for a large
fraction of the attacks against vulnerable websites.

We are currently working toward a completely auto-
mated system that can monitor the honeypot in realtime,
identify and categorize each attack, and update a dashboard
with the most recent trends and exploitation goals.

8 Acknowledgements

The research leading to these results was partially funded
from the EU Seventh Framework Programme (FP7/2007-
2013) under grant agreement n◦257007.

References

[1] IP Addresses of Search Engine Spiders. http://www.
iplists.com/.

[2] Robots IP Address Ranges. http://chceme.info/
ips/.

[3] Google Hack Honeypot. http://ghh.sourceforge.
net/, 2005.

[4] Dshield web honeypot project. https://sites.
google.com/site/webhoneypotsite/, 2009.

[5] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measur-
ing pay-per-install: The commoditization of malware distri-
bution. In Proceedings of the USENIX Security Symposium,
2011.

[6] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker.
Shared information and program plagiarism detection. In-
formation Theory, IEEE Transactions on, 50(7):1545–1551,
2004.

[7] s. Commtouch. Compromised Websites: An Owner’s
Perspective. http://stopbadware.org/
pdfs/compromised-websites-an-owners-
perspective.pdf, february 2012.

[8] M. Cova, C. Kruegel, and G. Vigna. Detection and Analy-
sis of Drive-by-Download Attacks and Malicious JavaScript
Code. In Proceedings of the International World Wide Web
Conference (WWW), 2010.

[9] Cyberoam Technologies and Commtouch. In-
ternet Threats Trend Report October 2012.
http://www.cyberoam.com/downloads/
ThreatReports/Q32012InternetThreats.pdf,
october 2012.

[10] S. Esser. evalhook. http://www.php-security.
org/downloads/evalhook-0.1.tar.gz, may
2010.

[11] M. Hofer and S. Hofer. ftp-deploy. http://
bitgarten.ch/projects/ftp-deploy/, 2007.

[12] Imperva Inc. Imperva’s Web Application Attack Re-
port. http://www.imperva.com/docs/HII_Web_
Application_Attack_Report_Ed2.pdf, january
2012.

[13] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
deSEO: Combating Search-Result Poisoning. In Proceed-
ings of the USENIX Security Symposium, 2011.

[14] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
Heat-seeking honeypots: design and experience. In Pro-
ceedings of the International World Wide Web Conference
(WWW), 2011.

[15] J. Kornblum. Identifying almost identical files using con-
text triggered piecewise hashing. Digital Investigation, 3,
Supplement(0):91 – 97, 2006.

[16] C. Leita and M. Dacier. Sgnet: A worldwide deployable
framework to support the analysis of malware threat models.
In Dependable Computing Conference, 2008. EDCC 2008.
Seventh European, may 2008.

[17] T. Moore and R. Clayton. Evil searching: Compromise and
recompromise of internet hosts for phishing. In Financial
Cryptography, pages 256–272, 2009.

[18] M. Müter, F. Freiling, T. Holz, and J. Matthews. A generic
toolkit for converting web applications into high-interaction
honeypots, 2007.

[19] V. Nicomette, M. Kaâniche, E. Alata, and M. Herrb. Set-up
and deployment of a high-interaction honeypot: experiment
and lessons learned. Journal in Computer Virology, june
2010.

[20] F. Pouget, M. Dacier, and V. H. Pham. V.h.: Leurre.com: on
the advantages of deploying a large scale distributed honey-
pot platform. In In: ECCE 2005, E-Crime and Computer
Conference, pages 29–30, 2005.

[21] N. Provos. A virtual honeypot framework. In Proceedings
of the USENIX Security Symposium, pages 1–14, 2004.

[22] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.
All Your iFrames Point to Us. In Proceedings of the USENIX
Security Symposium, 2008.



[23] D. Ramsbrock, R. Berthier, and M. Cukier. Profiling attacker
behavior following ssh compromises. In in Proceedings of
the 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, 2007.

[24] L. Rist, S. Vetsch, M. Koßin, and M. Mauer. Glastopf.
http://honeynet.org/files/KYT-Glastopf-
Final_v1.pdf, november 2010.

[25] V. Roussev. Data fingerprinting with similarity digests. In
K.-P. Chow and S. Shenoi, editors, Advances in Digital
Forensics VI, volume 337 of IFIP Advances in Information
and Communication Technology, pages 207–226. Springer
Boston, 2010.

[26] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su. Detecting code clones in binary executables. In
Proceedings of the eighteenth international symposium on
Software testing and analysis, ISSTA ’09, pages 117–128.
ACM, 2009.

[27] zx2c4. Linux Local Privilege Escalation via SUID
/proc/pid/mem Write. http://blog.zx2c4.com/
749, january 2012.


