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ABSTRACT
An effective Distributed Denial of Service (DDoS) defense
mechanism must guarantee legitimate users access to an In-
ternet service masking the effects of possible attacks. That
is, it must be able to detect threats and discard malicious
packets in a online fashion. Given that emerging data
streaming technology can enable such mitigation in an ef-
fective manner, in this paper we present STONE, a stream-
based DDoS defense framework, which integrates anomaly-
based DDoS detection and mitigation with scalable data
streaming technology.

With STONE, the traffic of potential targets is analyzed
via continuous data streaming queries maintaining informa-
tion used for both attack detection and mitigation. STONE
provides minimal degradation of legitimate users traffic dur-
ing DDoS attacks and it also faces effectively flash crowds.
Our preliminary evaluation based on an implemented proto-
type and conducted with real legitimate and malicious traffic
traces shows that STONE is able to provide fast detection
and precise mitigation of DDoS attacks leveraging scalable
data streaming technology.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

General Terms
Algorithms, Experimentation, Performance, Security
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DDoS Detection and Mitigation, Data Streaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

1. INTRODUCTION
A Distributed Denial of Service (DDoS) attack in commu-

nication networks attempts to exhaust the computational
resources of a server making its service unavailable to legit-
imate users. A typical attacking method is packet flooding,
conducted sending thousands of packets per second to a tar-
get host to congest its network links. The high volume of
illegitimate traffic is usually generated by controlling a col-
lection of compromised machines connected to the Internet
(botnets). DDoS detection and mitigation techniques are
challenging due to the vast and evolving range of big scale
attacks. A successful defense mechanism must filter out ma-
licious traffic effectively, minimizing legitimate users service
degradation. Furthermore, the filtering mechanism should
stand constantly to react immediately to threats and should
incur in a negligible latency overhead (especially when there
are no attacks being perpetrated). We foresee that data
streaming is the right paradigm to address the requirements
of mitigation of DDoS attacks, especially, due to the recent
advances in the field that have yielded elastic and scalable
data streaming engines [6]. In this paper we leverage such
elastic and scalable data streaming technology that enables
the creation of continuous queries that constantly process
incoming data and produce results in a real-time fashion,
scaling as needed to deal with DDoS attacks.

Prior work.
In recent years the need for effective solutions against

DDoS attacks has made it an active and important research
topic. Two main types of approaches exist for network intru-
sion detection [9]: 1) signature-based and 2) anomaly-based
solutions. Signature-based solutions [13] check each incom-
ing packet to verify its signature and decide whether to for-
ward or discard it. They have several limitations: not all the
protocols can be signed and, for each new type of attack, a
new type of signature may be necessary [11]. Contrary to
signature-based ones, anomaly-based solutions, adopted in
the context of threats where every malicious packet may
seem legitimate if analyzed individually, attempt to cover
a wider spectrum of attacks by spotting deviations between
current and reference traffic behavior [9]. Plenty of anomaly-
based solutions provide detection or mitigation of multiple
types of attacks relying on complex analysis of the traffic
features [3, 11, 15]. The challenge lies in defining a traffic

807



analysis that is amenable for on-line processing (solutions
based on mining tools as [11] are best suited to study rather
than detect threats) but accurate enough to properly miti-
gate attacks (solutions that simply look at the overall traffic
volume [1, 10, 14] provide no insights about what to discard
during an attack).

Our contribution.
We present STONE, a stream-based DDoS defense frame-

work implemented on top of StreamCloud [5, 6], an elastic
parallel-distributed Stream Processing Engine (SPE). With
STONE, network traffic features are analyzed to both detect
and mitigate threats. One of the novel features of STONE
is its smooth shaping of a host’s traffic volume even in the
presence of legitimate abrupt changes (i.e., during a flash
crowd, STONE avoids the saturation of the protected host
while prioritizing sources communicating frequently with it).
Filtering decisions are taken for groups rather than individ-
ual machines applying prefix level traffic aggregation. Thus,
all the machines that belong to a small network whose traffic
is legitimate will have equal chances of communicating with
the protected host in the presence of attacks. We provide an
evaluation of STONE conducted using data traces based on
the network traffic data from CAIDA [7] and SUNET [16,
12]. The results achieved by STONE prototype show quick
detection and effective mitigation capabilities, thus making
STONE a promising solution for mitigating DDoS attacks.
Our contributions can be summarized as follows:

1. STONE: an anomaly-based defense solution that pro-
vides both detection and mitigation of DDoS attacks.

2. A novel traffic analysis approach based on data stream-
ing and implemented on top of StreamCloud, an elastic
parallel-distributed SPE.

3. An evaluation based on a real prototype and conducted
using real legitimate and malicious traffic traces.

The rest of the paper is organized as follows: the system
model is introduced in Section 2. In Section 3, we discuss
the architecture of STONE. The evaluation is presented in
Section 4. Finally, conclusions are presented in Section 5.

2. SYSTEM MODEL
In this section, we introduce the network and stream model,

we define the adversary model and state the problem STONE
aims to solve.

Network and Stream model. The network comprises
four kinds of entities: (1) protected entities, network hosts
that can be attacked; (2) legitimate hosts, end-hosts who
consume protected entities services; (3) STONE machines,
used to run STONE ; and (4) bots, network hosts controlled
by the attacker. The protected entities, legitimate hosts and
the bots are connected via network links and routers, while
STONE machines form a separated private network that
cannot be reached by the attacker. Note that STONE can
be used for protection of both single host and multiple hosts.
It can also be extended for deployment in the framework for
traffic control and isolation against DDoS problem and pro-
tecting network resources [4]. Due to the space constraint,
we do not address such issue in this paper. In the following,
we study how STONE behaves considering only the traffic
being sent to a specific protected entity.

STONE defines two input data streams: network stream
S and aggregated network stream Sa. S represents the flow
of packets sent to a protected entity; each packet can be seen
as a tuple 〈srcIP, bytes〉. Attributes srcIP and bytes repre-
sent the source IP address and the size of the packet, respec-
tively. Sa tuples contain aggregated information of S packets
on a per-srcIP basis over periods of time and are composed
by attributes 〈srcIP, tsA, tsB , packets, bytes〉 (e.g., given pe-
riod 8:00:00-8:00:30, tuple 〈A, 8:00:12, 8:00:25, 5, 250〉 states
that A sent 5 packets -250 bytes- starting from 8:00:12 to
8:00:25). Stream Sa can be created from S using moni-
toring applications such as Cisco Netflow, which is widely
supported by network devices or ISPs.

In data streaming, incoming data (tuples) is processed
on-the-fly by continuous queries, defined as directed acyclic
graphs of operators. Results are computed over the most
recent window of tuples (e.g., tuples received in the last 5
minutes). Windows cover overlapping periods of size time,
advance time units far from each other. For instance, a win-
dow of size and advance of 30 and 10 minutes, respectively,
will cover periods [8:00:00-8:30:00), [8:10:00-8:40:00) and so
on.

Adversary model. STONE aims at defending against
packet-flooding based DDoS attacks, e.g., SYN flood and
UDP flood attacks. The adversary can use different types of
packets in the attacks, such as TCP packets, UDP packets,
ICMP packets, etc. However, we assume that the adver-
sary has no knowledge about the characteristics of the traf-
fic to the victim, such as distribution of source addresses,
the number of flows and the rates of flows. In other words,
the adversary can hardly launch an attack without dispro-
portional changes of the victim’s traffic features. With re-
spect to the reference information maintained by STONE,
we assume that the attacker cannot modify nor pollute it.
We stress that preventing the pollution of the reference in-
formation is orthogonal to the task of using it in order to
detect attacks.

Problem formulation. Given a protected entity and its
maximum load L, the goal of STONE is to monitor its traf-
fic to (a) detect possible threats and (b) to shape its volume
when it exceeds a threshold load αL. Whenever filtering
is applied, STONE must maximize the percentage of legiti-
mate traffic forwarded to the protected entity. As discussed
in the introduction, STONE can be used to protect the host
from real threats as well as legitimate peak loads (e.g., flash-
crowds). For this reason, we use the term legitimate traffic
in a global way to refer to sources that are either frequently
communicating with the victim host or that were communi-
cating with it before the attack or peak load started. That
is, during a peak load, the legitimate traffic is the one gener-
ated by the usual clients of the host. The defense mechanism
must ensure that the malicious IPs that reach the protected
entity before detecting the attack have no way to exceed its
maximum load. The challenge lies in which criteria to use to
discard packets in S guaranteeing that the overall traffic vol-
ume does not exceed L while forwarding as much legitimate
traffic as possible.

The reason why STONE filters traffic only if it exceeds
αL is two-fold: on one hand, our solution is not intended to
analyze the cause of the anomaly and does not distinguish
between legitimate or illegitimate traffic spikes; on the other
hand, forwarding potentially malicious traffic when αL is not
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exceeded makes harder for the attacker to adapt the attack
depending on how the system is reacting to it.

3. STONE ARCHITECTURE
In this section we present the components in charge of

analyzing the protected host traffic in order to the detect
possible threats and in charge of shaping its traffic volume
when it exceeds αL.

Figure 1 shows STONE architecture. The Detection Con-
trol Center (DCC) is the subsystem in charge of detecting at-
tacks. It consumes Sa and compares its current features with
the reference features maintained at the Historic Dataset
(HD). The Mitigation Center (MC) is placed between the in-
coming stream S and the protected entity and takes care
of filtering the traffic if it exceeds αL. Its output stream
Sm is equal to S whenever the incoming load is lower than
αL or a subset of S when filtering is applied. The filtering
criterion is determined by the DCC. Whenever the traffic of
the protected entity is below αL, the MC is not active and
simply forwards S packets, resulting therefore in a negligible
overhead for the protected entity.

Sa

S
Sm

STONE

Figure 1: STONE architecture

STONE computes traffic features aggregating together in-
formation of multiple IPs. More precisely, information is
maintained for groups of source IPs, referred as source clus-
ters (srcCL), sharing the same prefix of b bits of the IP
addresses. The reason why features are not maintained on a
per-srcIP basis is threefold: (a) the huge number of IPs con-
necting to an entity might render the protocol impractical,
(b) the traffic exchanged by individual IPs might be negli-
gible with respect to the overall traffic, making thus com-
parison between current and reference features not reliable
and (c) decisions taken for source clusters (i.e., physically
close machines for small source clusters) allow for smoother
mitigation (e.g., forwarding traffic from all the nodes of a
legitimate network rather than only a subset of them).

3.1 Detection Control Center (DCC)
The DCC is fed with the tuples of stream Sa. The fea-

tures of sources belonging to the same source cluster are
aggregated together so that each source cluster i (srcCLi)
is represented by features fi = (φi, ωi, τi) , where φi repre-
sents the average number of packets per flow, ωi represents
the average amount of bytes per flow and τi represents the
average elapsed time per flow. We remark that, being based
on temporal windows, this information refers to the most
recent fraction of data. For instance, φi could represent the
average number of packets per flow sent to the protected
entity from srcCLi during the last hour.

STONE analyzes how source clusters behave by parti-
tioning them into groups and studying how the frequency
of each group evolves over time. Concretely, STONE splits
the space into eight different groups {G0, . . . , G7} and main-
tains the number of source clusters belonging to each group.
Source clusters are partitioned into groups comparing their
features with the reference point O = (Oφ, Oω, Oτ ) (Fig-
ure 2). The reference point cannot be fixed as an absolute
value but must be instead computed depending on the traf-
fic features of the entity being protected. For this reason,
the reference point O is computed over past features (main-
tained at the HD) as the 0.95-quantile value of each feature.
The 0.95 value is motivated by previous studies [8] stating
that more than 90% of the traffic flows are mice flows with
small number of packets. In our approach, source clusters
sending mice flows to the protected entity belong to group
G0 (low number of packets and bytes sent during short pe-
riods of time), which includes most of the source clusters
(95%× 95%× 95% ≈ 85% of them if the three features are
independent).

≤ Oφ > Oφ

G0

≤ Oτ > Oτ

G1 G2

≤ Oτ > Oτ

G3 G4

≤ Oτ > Oτ

G5 G6

≤ Oτ > Oτ

G7

≤ Oω > Oω ≤ Oω > Oω

fi = (φi, ωi, τi)

For example:

f = (φ, ω, τ) ∈ G3 ↔ φ ≤ Oφ, ω > Oω and τ > Oτ

Figure 2: Group description

STONE detects an anomaly if the difference between the
reference frequency of each group and the current one is
higher than a threshold parameter. The number of source
clusters belonging to each group in the current traffic are re-
ferred as {n̂0, . . . , n̂7} while the reference number of source
clusters are referred as {n0, . . . , n7}. STONE uses these
counters to compute the current ratio per group
r̂i = n̂i/

∑
j n̂j and the reference ratio ri = ni/

∑
j nj . A

traffic anomaly is detected if the distance between reference
and current values exceeds a threshold tol, i.e., maxi |ri −
r̂i| ≥ tol.

The information maintained at the HD is used to com-
pute the reference point O and the reference ratios r0, . . . , r7.
These values are based on the traffic features observed over
D intervals (e.g., Wednesday, 10:00:00-11:00:00) in the past.

The reference ratio ri is computed as
∑
d n

(d)
i /

∑
j,d n

(d)
j ,

where n
(d)
i is the counter of group i at interval d. The ref-

erence point O is computed as the weighted 0.95-quantile
of each feature of the source clusters communicating with
the protected entity during the previous D intervals. Source
clusters contribution to O is proportional to the number
of times they appear during the reference period. For this
purpose, we weight the contribution of each srcCLi in O
defining wi as the number of intervals in which it appears
divided by the total number of intervals (which is D). The
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features of srcCLi, referred as fi = (φi, ωi, τi), are com-
puted as the average of the features observed over the last
D intervals. For all srcCLi with weight wi and average fea-
tures fi, the weighted 0.95-quantile of feature φ (resp. ω
and τ) is computed by ordering all the source clusters aver-
age feature {φi}i (resp. {ωi}i and {τi}i) and selecting the
one with weighted position 0.95

∑
i wi. While monitoring

the traffic of a protected entity, an anomaly is detected each
time the distribution of the source clusters to groups changes
abruptly; for instance, when a flooding-packet attack intro-
duces a large number of new source clusters.

3.2 Mitigation Center (MC)
MC is responsible for mitigating an attack to the protected

entity filtering malicious traffic while minimizing the degra-
dation of the legitimate one. Figure 3 shows the sequence of
steps taken to decide which packets to forward to the pro-
tected entity and which to discard. If the maximum load
of the protected entity has not been exceeded and mitiga-
tion is not activated, packets are forwarded. If the traffic
is being mitigated, the MC must ensure the maximum load
L is not exceeded while prioritizing legitimate traffic. Fil-
tering of traffic belonging to group G0 (i.e., mice flows) pri-
oritizes source clusters that were communicating with the
protected entity just before detecting the threat. Due to
the large number of source clusters that might belong to
G0, its filtering relies on a Bloom Filter [2]. On the other
hand, filtering of traffic belonging to groups G1, . . . , G7 (i.e.,
elephant flows) prioritizes source clusters that communicate
frequently with the protected entity. In this case, filtering is
applied on a per-source cluster basis, depending on the infor-
mation maintained in the Acquaintance-List (AL). Besides,
packets forwarding decisions are taken partitioning the load
into channels (one for each group), so that the proportion
of load consumed by each group resembles the one observed
processing only legitimate traffic. Packets that refer to un-
known source clusters (i.e., traffic that could be either from
the attack or a flash crowd) are forwarded using a proba-
bilistic function that depends on the available capacity.

G0

G1, . . . , G7

No

Yes

S

Yes

Yes

Yes

No

Yes
unkown

Yes

No

No

No

Figure 3: Mitigation Center

The Bloom-Filter (BF), used to filter packets sent by
sources cluster belonging to group G0, is a space-efficient

probabilistic data structure used to check the membership
of elements in a set [2]. While BFs allow for new elements
to be added to the set, removal of elements is not trivial.
In STONE we improve the base BF defining a time-based
BF where elements belonging to the set are associated to
timestamps that specify when they have been added (time-
based BF have the same time and space complexity of the
base one [2]). Doing this, STONE is able to maintain the
source clusters belonging to group G0 over periods of time
(over the last 5 minutes in our mitigation mechanism).

The Acquaintance-List AL is used to maintain the source
clusters that belong to groups G1, . . . , G7. Each source clus-
ter is paired with a probability that specifies the proportion
of the packets coming from each source cluster should be
forwarded while mitigating an attack. Packets belonging
to source clusters appearing to be frequently communicat-
ing with the protected entity will have a higher probability
to be forwarded than the ones sent by source clusters that
connect sporadically.

It should be noticed that, either using the BF or the AL,
we are still not guaranteeing that a single source cluster (or
a group of them) whose traffic is being forwarded to the
protected entity is unable to exceed its maximum load L.
Although the attacker has no knowledge about the traffic of
the protected entity, if a set of the source addresses overlaps
with the ones maintained by the BF and the AL, we need a
mechanism to ensure that the traffic of these sources will not
saturate the capacity of the protected entity. For this reason,
we assign to each group a fraction of the maximum load
proportional with the one that each group usually injects.

3.3 Parallel Data Stream Computation
In this section, we present how STONE has been imple-

mented by means of a data streaming continuous query and
how its execution is parallelized by the StreamCloud SPE.

As shown in Figure 4, STONE ’s query is defined by 7
operators: OP1, . . . , OP6 compose the DCC while OP7

composes the MC. For each operator input stream, Figure
4 shows its tuples schema. In the following, we provide a
short description of each operator. Operator OP1 is used to
compute the source cluster to which each tuple of Sa refers
to. For each tuple t forwarded by OP1, OP2 outputs a tu-
ple containing the features of the source cluster maintained
by OP2 before processing t (fold) and after updating them
(fnew). Group Gold, representing the group to which the
source cluster belongs based on fold, and group Gnew, rep-
resenting the one to which the source cluster belongs based
on fnew, are computed by OP3 and, if Gold 6= Gnew, a tuple
is sent to OP4 to update groups counters nold and nnew.
If Gold = NULL (i.e., the source cluster appears in Gnew),
only counter nnew is updated. Similarly, If Gnew = NULL

(i.e., the source cluster disappears from Gold), only counter
nold is updated. Group counters are forwarded from OP4 to
OP5 in order to compute observed ratios {r̂0, . . . , r̂7}, which
are subsequently forwarded to OP6 in order to be compared
with the reference ones. Mitigation is invoked by OP6 each
time maxi |ri − r̂i| > tol. When activated, OP7 is used to
shape the protected entity traffic maximizing the forwarding
of legitimate packets.

We discuss now how the query execution is parallelized
by StreamCloud, where each operator can be executed at
an arbitrary number of STONE machines. On one hand,
stateful operator OP2 (maintaining a window of tuples) is
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〈srcCL, tsA, tsB , packets, bytes〉 〈srcCL, tsA, Gold, Gnew〉

〈srcCL, tsA, fold, fnew〉〈srcIP, tsA, tsB , packets, bytes〉 〈tsA, n̂0, . . . , n̂7〉

〈tsA, r̂0, . . . , r̂7〉

...

OP3
OP5OP2OP1 ... ... ... ...OP4

OP7

...

〈srcIP, tsA, bytes〉

OP6

...

Figure 4: Implementation as a continuous query

parallelized using semantic-aware routing (i.e., tuples refer-
ring to the same source cluster are forwarded to the same
machine). On the other hand, stateless operators OP1, OP3,
OP4 and OP7 that do not maintain windows are parallelized
using round-robin routing. In order to compute the current
ratios, all the information maintained by OP4 nodes must
be processed together; for this reason, operator OP5, and
subsequently OP6, are centralized.

4. EVALUATION
In this section we provide an evaluation of STONE detec-

tion and mitigation capabilities. As aforementioned, an ef-
fective DDoS defense mechanism must detect attacks quickly
and mitigate them minimizing the filtering impact on the le-
gitimate users. For this reason, we evaluate three metrics,
namely, (1) detection time, the time elapsed between the at-
tack start and the attack detection, (2) mitigation precision,
the quantification of the degradation of the legitimate user
traffic and (3) traffic volume shaping, the quantification of
how much traffic is discarded during the attack.

Evaluation setup. The legitimate traffic is derived from
real anonymized data traces from an OC-192 (10Gbits/s)
backbone link of OptoSUNET [16]. The data traces are ex-
cerpts of the traffic happening on Thursdays (during 9 weeks
in 2010) during the period 11:00-12:00. Tuples belonging to
Sa are generated for intervals of 5 minutes. Among the des-
tination hosts that appeared in the data traces, we selected
the one with higher traffic as the protected entity. The HD is
populated using the features of the traffic in the first 8 days,
while the last day trace is used as legitimate data trace. The
attack data trace is taken from CAIDA [7] and contains ap-
proximately one hour of anonymized packets from a DDoS
attack. The attack data trace has been mixed with the le-
gitimate data trace simulating an attack starting after 20
minutes (1200 sec). In our evaluation we use a set of nodes
equipped with a quad-core Xeon X3220@2.40GHz, 8GB of
RAM and 1Gbit Ethernet.

Detection time. A fast detection of an incoming DDoS
attack is crucial for the mitigation effectiveness. Figure 5
shows the maximum difference between the reference and
current ratio (maxi |ri − r̂i|) for any group i during the pe-
riod of time when the attack is taking place. This difference

increases rapidly when the attack starts. An anomaly is de-
tected if this maximum exceeds the tolerance. For instance,
given a tolerance tol = 0.05, STONE detects the attack
after 18 seconds.
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Figure 5: Detection time

Mitigation precision. This experiment studies how ef-
fective the BF and the AL are in preventing the forward-
ing of illegitimate traffic to the protected entity. In order
to do this, upon detection of the injected attack (happen-
ing at second 1218 in the experiment), the system discards
all the packets that do not belong to the BF or the AL.
We first measure the precision with which the MC compo-
nent forwards legitimate traffic and discards illegitimate one.
Figure 6 presents the percentage of legitimate traffic with
respect to the overall legitimate traffic and the percentage
of illegitimate traffic with respect to the overall illegitimate
traffic forwarded to the protected entity. It can be noticed
that, during the attack, the percentage of legitimate traffic
that is forwarded is around 90%. The illegitimate traffic is
forwarded entirely to the protected entity before the attack
detection, but once the mitigation is activated more than
99% is discarded.

Traffic volume shaping. Together with the mitiga-
tion precision evaluation, we now evaluate how effective the
BF and the AL are when shaping the victim traffic volume
(Figure 7). The load is expressed in KBit/second using a
logarithmic scale for the y axis. The solid line represents
the overall traffic load injected during the attack while the
dashed line represents the output traffic forwarded by the
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Figure 6: Mitigation precision

MC to the protected entity. While the mitigation is not ac-
tive, all the input traffic is forwarded to the protected entity.
Once the attack is detected, most of the traffic (≈ 97%) is
discarded by the BF and the AL. That is, the BF and the
AL together are able to reduce drastically the amount of
suspicious traffic, leading to an effective mitigation in the
presence of legitimate load peaks (e.g., flash crowds).
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Figure 7: Forwarded traffic load

5. CONCLUSIONS
In this paper we have proposed STONE, an anomaly de-

tection DDoS defense framework that leverages data stream-
ing to attain the real-time requirements of this kind of ap-
plication. STONE detects packet-flooding attacks by main-
taining traffic features extracted by means of continuous
data streaming queries that are also used to mitigate the
attack masking it to the legitimate users. Our mitigation
mechanism is also beneficial in the presence of flash crowds
as it can be used to prioritize usual clients while trying
to distribute the remaining capacity among all the clients.
The system has been implemented on top of StreamCloud,
an elastic parallel-distributed SPE. Our evaluation shows
STONE ’s effectiveness both in terms of detection and miti-
gation.
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