
A Security Analysis of
Amazon’s Elastic Compute Cloud Service

– Long Version –

Marco Balduzzi
EURECOM

marco.balduzzi@madlab.it

Jonas Zaddach
EURECOM

zaddach@eurecom.fr
Davide Balzarotti

EURECOM
balzarotti@eurecom.fr

Engin Kirda
Northeastern University

ek@ccs.neu.edu

Sergio Loureiro
SecludIT

sergio@secludit.com

ABSTRACT
Cloud services such as Amazon’s Elastic Compute Cloud and
IBM’s SmartCloud are quickly changing the way organiza-
tions are dealing with IT infrastructures and are providing
online services. Today, if an organization needs computing
power, it can simply buy it online by instantiating a virtual
server image on the cloud. Servers can be quickly launched
and shut down via application programming interfaces, of-
fering the user a greater flexibility compared to traditional
server rooms. A popular approach in cloud-based services is
to allow users to create and share virtual images with other
users. In addition to these user-shared images, the cloud
providers also often provide virtual images that have been
pre-configured with popular software such as open source
databases and web servers.

This paper explores the general security risks associated
with using virtual server images from the public catalogs
of cloud service providers. In particular, we investigate in
detail the security problems of public images that are avail-
able on the Amazon EC2 service. We describe the design
and implementation of an automated system that we used to
instantiate and analyze the security of public AMIs on the
Amazon EC2 platform, and provide detailed descriptions of
the security tests that we performed on each image. Our
findings demonstrate that both the users and the providers
of public AMIs may be vulnerable to security risks such as
unauthorized access, malware infections, and loss of sensi-
tive information. The Amazon Web Services Security Team
has acknowledged our findings, and has already taken steps
to properly address all the security risks we present in this
paper.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

General Terms

Security, Design, Experimentation

Keywords

Cloud Computing, Elastic Compute Cloud Service, Security,
AMI, Amazon

1 Introduction

Cloud computing has changed the view on IT as a pre-paid
asset to a pay-as-you-go service. Several companies such
as Amazon Elastic Compute Cloud [7] (EC2), Rackspace[9],
IBM SmartCloud [12], Joyent Smart Data Center [14] or Ter-
remark vCloud [10] are offering access to virtualized servers
in their data centers on an hourly basis. Servers can be
quickly launched and shut down via application program-
ming interfaces, offering the user a greater flexibility com-
pared to traditional server rooms. This paradigm shift is
changing the existing IT infrastructures of organizations, al-
lowing smaller companies that cannot afford a large infras-
tructure to create and maintain online services with ease.

A popular approach in cloud-based services is to allow
users to create and share virtual images with other users.
For example, a user who has created a legacy Linux De-
bian Sarge image may decide to make this image public so
that other users can easily reuse it. In addition to user-
shared images, the cloud service provider may also provide
customized public images based on common needs of their
customers (e.g., an Ubuntu web server image that has been
pre-configured with MySQL, PHP and an Apache). This
allows the customers to simply instantiate and start new
servers, without the hassle of installing new software them-
selves.

Unfortunately, while the trust model between the cloud
user and the cloud provider is well-defined (i.e., the user
can assume that cloud providers such as Amazon and Mi-
crosoft are not malicious), the trust relationship between the
provider of the virtual image and the cloud user is not as
clear.

In this paper, we explore the general security risks asso-
ciated with the use of virtual server images from the public
catalogs of a cloud service provider. In particular, we fo-
cus our investigation to the security problems of the public
images available on the Amazon EC2 service. Over several
months, we instantiated and analyzed over five thousands

Linux and Windows images provided by the Amazon cata-
log, checking for a wide-range of security problems such as
the prevalence of malware, the quantity of sensitive data left
on such images, and the privacy risks of sharing an image
on the cloud.

In particular, we identified three main threats related, re-
spectively, to: 1) secure the image against external attacks,
2) secure the image against a malicious image provider, and
3) sanitize the image to prevent users from extracting and
abusing private information left on the disk by the image
provider. For example, in our experiments we identified
many images in which a user can use standard tools to un-
delete files from the filesystem, and recover important doc-
uments including credentials and private keys.

Although public cloud server images are highly useful for
organizations, if users are not properly trained, the risk as-
sociated with using these images can be quite high. The fact
that these machines come pre-installed and pre-configured
may communicate the wrong message, i.e., that they can
provide an easy-to-use “shortcut” for users that do not have
the skills to configure and setup a complex server. The real-
ity is quite different, and this paper demonstrates that many
different security considerations must be taken into account
to make sure that a virtual image can be operated securely.

During our study we had continuous contact with the
Amazon Web Services Security Team. Even though Amazon
is not responsible of what users put into their images, the
team has been prompt in addressing the security risks iden-
tified and described in this paper. Meanwhile, it has pub-
lished public bulletins and tutorials to train users on how
to use Amazon Machine Images (AMIs) in a secure way [29,
28]. A more detailed description of the Amazon feedback is
provided in Section 6.

Finally, it is important to note that the security problems
we describe in this work are general in nature, and they
are not specific to the Amazon Cloud. We hope that our
paper will raise awareness about the security risks of using
and creating public software images on the cloud, and will
encourage other cloud providers to verify and improve their
security just as Amazon has done.

In summary, this paper makes the following contributions:

• We describe the design and implementation of an au-
tomated system that is able to instantiate and analyze
the security of public AMIs on the Amazon EC2 plat-
form.

• We provide detailed descriptions of the security tests
that we performed on public AMIs.

• We describe the results of our security tests that demon-
strate that both the users and the providers of public
AMIs may be vulnerable to security risks such as unau-
thorized access, malware infections, and loss of sensi-
tive information.

• The Amazon Web Services Security Team has acknowl-
edged and taken steps to address the issues we have
identified. We discuss the countermeasures that they
have taken, and report on the information campaigns
that they have started.

2 Overview of Amazon EC2

The Amazon Elastic Compute Cloud (EC2) is an Infrastructure-
as-a-Service cloud provider where users can rent virtualized

servers (called instances) on an hourly base. In particular,
each user is allowed to run any pre-installed virtual machine
image (called Amazon Machine Image, or AMI) on this ser-
vice. To simplify the setup of a server, Amazon offers an
online catalog where users can choose between a large num-
ber of AMIs that come pre-installed with common services
such as web servers, web applications, and databases. An
AMI can be created from a live system, a virtual machine
image, or another AMI by copying the filesystem contents to
the Amazon Simple Storage Service (S3) in a process called
bundling. Public images may be available for free, or may be
associated with a product code that allows companies to bill
an additional usage cost via the Amazon DevPay payment
service. Thus, some of these public machines are provided
by companies, some are freely shared by single individuals,
and some are created by the Amazon team itself.

In order to start an image, the user has to select a resource
configuration (differing in processing, memory, and IO per-
formance), a set of credentials that will be used for login, a
firewall configuration for inbound connections (called a se-
curity group), and the region of the data center in which the
machine will be started. Amazon data centers are currently
located in the US (Northern Virginia and Northern Califor-
nia), Europe (Ireland), and Asia (Singapore). An additional
data center (Tokyo) was added after we had completed our
experiments. Hence, this data center will not be discussed
in the rest of the paper.

Currently, there are three different pricing models avail-
able: The first one is a fixed pricing scheme where the cus-
tomer pays per instance-hour, the second one is a subscrip-
tion model with an initial fee and lower instance-hour costs,
and the third one (called spot instances) is a model where
prices vary according to the current load of the data cen-
ters. This model lets the customer specify a maximum price
he is willing to pay for an instance in addition to the other
instance parameters. If the current spot price drops below
this threshold, the instance is started, and if the spot price
rises above the threshold, it is terminated, thus making this
model suitable for interruptible tasks.

When an AMI is instantiated, its public DNS address is
announced via the Amazon API, and the machine is made
accessible via SSH on port 22 (Linux) or Remote Desktop
on port 3389 (Windows). An important aspect of this cloud
computing service is that the instance’s maintenance is com-
pletely under the responsibility of the user. That is, she is
the one who can be held responsible for any content provided
by the machine, and she is the one who has to assure its se-
curity. This includes, for example, the usual administration
tasks of maintaining the configuration in a secure state (i.e.,
applying patches for vulnerable software, choosing the right
passwords, and firewall configuration), and only allowing se-
cure, encrypted communication protocols.

3 AMI Testing Methodology

To conduct our security evaluation, we developed an auto-
mated system to instantiate and test the Amazon’s AMIs.
The architecture of our system is highlighted in Fig. 1, and
consists of three main components. The Robot is the part
of the system that is responsible for instantiating the AMIs,
and fetching the corresponding login credentials. Since Ama-
zon does not control which credentials are configured in the
public images, our tool was configured to try a list of the
most common user names (e.g., root, ec2-user, ubuntu,

DB

Robot

Instantiated AMI

Test Suite

Remote Scanner

Analysis

Results

Local Scanner

AMIs

Upload / Execute

Scan

Data

Instanciate AMI

Check Login

Credentials

Vulnerability
Configuration

Figure 1: System Architecture

and bitnami for Linux). Despite these attempts, there are
cases in which the robot may fail to retrieve the correct login
information. This is the case, for example, for AMIs whose
credentials are distributed only to the image provider’s cus-
tomers by companies that make business by renting AMIs.
Hence, these type of images are outside the scope of our
evaluation.

After an AMI has been successfully instantiated by the
robot, it is tested by two different scanners. The Remote
Scanner collects the list of open ports1 using the NMap tool [23],
and downloads the index page of the installed web applica-
tions. In Section 5, we explain how an attacker can use
this information as a fingerprint to identify running images.
The Local Scanner component is responsible for uploading
and running a set of tests. The test suite to be executed
is packaged together in a self-extracting archive, uploaded
to the AMI, and run on the machine with administrative
privileges. In addition, the Local Scanner also analyzes the
system for known vulnerabilities using the Nessus tool [30].
For AMIs running Microsoft Windows, the scripting of au-
tomated tasks is complicated by the limited remote adminis-
tration functionalities offered by the Windows environment.
In this case, we mounted the remote disk and transfered the
data using the SMB/Netbios subsystem. We then used the
psexec tool [27] to execute remote commands and invoke
the tests.

The test suite uploaded by the Local Scanner includes 24
tests grouped in 4 categories: general, network, privacy, and
security (for the complete list see Appendix A).

The general category contains tests that collect general
information about the system (e.g. the Linux distribution
name, or the Windows version), the list of running processes,
the file-system status (e.g., the mounted partitions), the list
of installed packages, and the list of loaded kernel mod-
ules. In addition to these basic tests, the general category
also contains scripts that save a copy of interesting data,
such as emails (e.g., /var/mail), log files (e.g., /var/log

and %USER\Local Settings), and installed web applications
(e.g., /var/www and HKEY_LOCAL_MACHINE\SOFTWARE).

1 Since Amazon does not allow external portscans of EC2
machines, we first established a virtual private network con-
nection to the AMI through SSH, and then scanned the ma-
chine through this tunnel.

The privacy test cases focus on finding any sensitive in-
formation that may have been forgotten by the user that
published the AMI. This includes, for example, unprotected
private keys, application history files, shell history logs, and
the content of the directory saved by the general test cases.
Another important task of this test suite is to scan the
filesystem to retrieve the contents of undeleted files.

The network test suite focuses on network-related infor-
mation, such as shared directories and the list of open sock-
ets. These lists, together with the processes bound to the
sockets, can be used to verify if the image is establishing
suspicious connections.

Finally, the security test suite consists of a number of
well-known audit tools for Windows and Linux. Some of
these tools look for the evidence of known rootkits, Tro-
jans and backdoors (e.g. Chkrootkit, RootkitHunter and
RootkitRevealer), while others specifically check for pro-
cesses and sockets that have been hidden from the user
(PsTools/PsList and unhide). In this phase, we also run
the ClamAV antivirus software (see Section 4.2) to scan for
the presence of known malware samples.

These security tests also contain checks for credentials
that have been left or forgotten on the system (e.g., database
passwords, login passwords, and SSH public keys). As al-
ready mentioned in an Amazon report published in June
2011 [15], these credentials could potentially be used as back-
doors to allows attackers to log into running AMIs.

4 Results of the AMIs Analysis

Over a period of five months, between November 2010 to
May 2011, we used our automated system to instantiate and
analyze all Amazon images available in the Europe, Asia,
US East, and US West data centers. In total, the cata-
log of these data centers contained 8,448 Linux AMIs and
1,202 Windows AMIs. Note that we were successfully able
to analyze in depth a total of 5,303 AMIs. In the remaining
cases, a number of technical problems prevented our tool to
successfully complete the analysis. For example, sometimes
an AMI did not start because the corresponding manifest
file was missing, or corrupted. In some cases, the running
image was not responding to SSH, or Remote Desktop con-
nections. In other cases, the Amazon API failed to launch
the machine, or our robot was not able to retrieve valid login
credentials. These problems were particularly common for
Windows machines where, in 45% of the images, the Ama-
zon service was not able to provide us with a valid username
and password to login into the machine. Nevertheless, we
believe that a successful analysis of over 5,000 different im-
ages represents a sample large enough to be representative
of the security and privacy status of publicly available AMIs.

Table 1 shows a number of general statistics we collected
from the AMIs we analyzed. Our audit process took on av-
erage 77 minutes for Windows machines, and 21 minutes for
the Linux images. This large difference is due to two main
reasons: first, Windows machines in the Amazon cloud take
a much longer time to start, and, second, our antivirus test
was configured to analyze the entire Windows file-system,
while only focused the analysis on directories containing ex-
ecutables for the Linux machines.

In the rest of this section, we present and discuss the re-
sults of the individual test suites.

Average #/AMI Windows Linux
Audit duration 77 min 21 min
Installed packages – 416
Running Processes 32 54
Shares 3.9 0
Established sockets 2.75 2.52
Listening sockets 22 6
Users 3.8 24.8
Used disk space 1.07 GB 2.67 GB

Table 1: General Statistics

4.1 Software Vulnerabilities

The goal of this first phase of testing is to confirm the fact
that the software running on each AMIs is often out of date
and, therefore, must be immediately updated by the user
after the image is instantiated.

For this purpose, we decided to run Nessus [30], an au-
tomated vulnerability scanner, on each AMI under test. In
order to improve the accuracy of the results, our testing
system provided Nessus with the image login credentials, so
that the tool was able to perform a more precise local scan.
In addition, to further reduce the false positives, the vulner-
ability scanner was automatically configured to run only the
tests corresponding to the actual software installed on the
machine. Nessus classifies each vulnerability with a sever-
ity level ranging from 0 to 3. Since we were not interested
in analyzing each single vulnerability, but just in assessing
the general security level of the software that was installed,
we only considered vulnerabilities with the highest severity
(e.g., critical vulnerabilities such as remote code execution).

We also looked at the most common vulnerabilities that
affect Windows and Linux AMIs. These results are detailed
in Appendix B.

From our analysis, 98% of Windows AMIs and 58% of
Linux AMIs contain software with critical vulnerabilities.
This observation was not typically restricted to a single ap-
plication but often involved multiple services: an average of
46 for Windows and 11 for Linux images (the overall dis-
tribution is reported in Figure 2). On a broader scale, we
observed that a large number of images come with software
that is more than two years old. Our findings empirically
demonstrate that renting and using an AMI without any
adequate security assessment poses a real security risk for
users. To further prove this point, in Section 4.2, we describe
how one of the machines we were testing was probably com-
promised by an Internet malware in the short time that we
were running our experiments.

4.2 Security Risks

Malware

As part of our tests, we used ClamAV [8], an open source an-
tivirus engine, to analyze the filesystem on the target AMI.
ClamAV contains about 850,000 signatures to identify dif-
ferent types of known malware instances such as viruses,
worms, spyware, and trojans. Since most of the existing
malware targets the Windows operating systems, we ana-
lyzed the complete file-system tree of Windows AMIs, while
we limited the coverage for Linux AMIs to common binary
directories (e.g. /usr/bin, /bin, and /sbin). As a conse-
quence, the scan time took on average of 40 minutes for a

0
2

5
9

11
13

15
17

20
22

26
28

30
33

35
37

39
41

43
45

47
51

53
55

57
59

61
65

67
69

76
79

83
90

93
99

103
108

125

0

5

10

15

20

25

30

of Vulnerabilites

#
 o

f A
M

Is

0
2

5
9

11
13

15
17

20
22

26
28

30
33

35
37

39
41

43
45

47
51

53
55

57
59

61
65

67
69

76
79

83
90

93
99

103
108

125

0

5

10

15

20

25

30

of Vulnerabilites

#
 o

f A
M

Is

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103
4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

0

50

100

150

200

250

300

350

of Vulnerabilites

#
 o

f A
M

Is

Figure 2: Distribution AMIs / Vulnerabilites (Win-
dows and Linux)

Windows installation, and less then a minute for a Linux
one.

In our malware analysis, we discovered two infected AMIs,
both Windows-based. The first machine was infected with
a Trojan-Spy malware (variant 50112). This trojan has a
wide range of capabilities, including performing key logging,
monitoring processes on the computer, and stealing data
from files saved on the machine. By manually analyzing
this machine, we found that it was hosting different types of
suspicious content such as Trojan.Firepass, a tool to de-
crypt and recover the passwords stored by Firefox. The sec-
ond infected machine contained variant 173287 of the Tro-

jan.Agent malware. This malware allows a malicious user
to spy on the browsing habits of users, modify Internet Ex-
plorer settings, and download other malicious content.

While we were able to manually confirm the first case,
we were unable to further analyze the second infected ma-
chine. In fact, after we rented it again for a manual analysis
a few hours after the automated test, the infected files did
not existed anymore. Hence, we believe that the AMI was
most probably compromised by an automatically propagat-
ing malware during the time that we were executing our
tests. In fact, the software vulnerability analysis showed
that different services running on the machine suffered from
known, remotely exploitable, vulnerabilities.

Unsolicited connections

Unsolicited outgoing connections from an invoked instance
to an external address may be an indication for a significant
security problem. For example, such connections could be

the evidence of some kind of backdoor, or the sign for a mal-
ware infection. Outgoing connections that are more stealthy
may also be used to gather information about the AMI’s us-
age, and collect IP target addresses that can then be used
to attack the instance through another built-in backdoor.

In our experiments, we observed several images that opened
connections to various web applications within and outside
of Amazon EC2. These connections were apparently check-
ing for the availability of new versions of the installed soft-
ware. Unfortunately, it is almost impossible to distinguish
between a legitimate connection (e.g., a software update)
and a connection that is used for malicious purposes.

Nevertheless, we noticed a number of suspicious connec-
tions on several Linux images: The Linux operating system
comes with a service called syslog [3] for recording various
events generated by the system (e.g., the login and logout
of users, the connection of hardware devices, or incoming
requests toward the web server).

Standard installations record these kinds of events in files
usually stored under the /var/log directory and only users
with administrative privileges are allowed to access the logs
generated by the syslog service. In our tests, we discovered
two AMIs in which the syslog daemon was configured to
send the log messages to a remote host, out of the control of
the user instantiating the image. It is clear that this setup
constitutes a privacy breach, since confidential information,
normally stored locally under a protected directory, were
sent out to a third party machine.

Backdoors and Leftover Credentials

The primary mechanism to connect to a Linux machine re-
motely is through the ssh service. When a user rents an
AMI, she is required to provide the public part of the her
ssh key that it is then stored by Amazon in the autho-

rized_keys in the home directory. The first problem with
this process is that a user who is malicious and does not
remove her public key from the image before making it pub-
lic could login into any running instance of the AMI. The
existence of these kinds of potential backdoors is known by
Amazon since the beginning of April 2011 [25].

A second problem is related to the fact that the ssh server
may also permit password-based authentication, thus pro-
viding a similar backdoor functionality if the AMI provider
does not remove her passwords from the machine. In addi-
tion, while leftover ssh keys only allow people with the corre-
sponding private key (normally the AMI image creator), to
obtain access to the instance, passwords provide a larger at-
tack vector: Anybody can extract the password hashes from
an AMI, and try to crack them using a password-cracking
tool (e.g., John the Ripper [13]).

In other words, ssh keys were probably left on the images
by mistake, and without a malicious intent. The same ap-
plies to password, with the difference that passwords can
also be exploited by third parties, transforming a mistake in
a serious security problem.

During our tests, we gathered these leftover credentials,
and performed an analysis to verify if a remote login would
be possible by checking the account information in /etc/passwd

and /etc/shadow, as well as the remote access configuration
of OpenSSH.

The results, summarized in Table 2, show that the prob-
lem of leftover credentials is significant: 21.8% of the scanned
AMIs contain leftover credentials that would allow a third-

East West EU Asia Total
AMIs (%) 34.8 8.4 9.8 6.3 21.8
With Passwd 67 10 22 2 101
With SSH keys 794 53 86 32 965
With Both 71 6 9 4 90
Superuser Priv. 783 57 105 26 971
User Priv. 149 12 12 12 185

Table 2: Left credentials per AMI

party to remotely login into the machine. The table also
reports the type of credentials, and lists how many of these
would grant superuser privileges (either via root, sudo or su
with a password).

4.3 Privacy Risks

The sharing of AMIs not only bears risks for the customers
who rent them, but also for the user who creates and dis-
tributes the image. In fact, if the image contains sensitive in-
formation, this would be available to anybody who is renting
the AMI. For example, an attacker can gather SSH private
keys to break into other machines, or use forgotten Amazon
Web Services (AWS) keys to start instances at the image
provider’s cost. In addition, other data sources such as the
browser and shell histories, or the database of last login at-
tempts can be used to identify and de-anonymize the AMI’s
creator.

Private keys

We developed a number of tests to search the AMIs’ file-
system for typical filenames used to store keys (e.g., id_dsa
and id_rsa for SSH keys, and pk-[0-9A-Z]*.pem and cert-

[0-9A-Z]*.pem for AWS API keys). Our system was able
to identify 67 Amazon API keys, and 56 private SSH keys
that were forgotten. The API keys are not password pro-
tected and, therefore, can immediately be used to start im-
ages on the cloud at the expense of the key’s owner. Even
though it is good security practice to protect SSH keys with
a passphrase, 54 out of 56 keys were not protected. Thus,
these keys are easily reusable by anybody who has access to
them. Although some of the keys may have been generated
specifically to install and configure the AMI, it would not
be a surprising discovery if some users reused their own per-
sonal key, or use the key on the AMI to access other hosts,
or Amazon images.

By consulting the last login attempts (i.e., by lastlog

or last commands), an attacker can easily retrieve IP ad-
dresses that likely belong to other machines owned by the
same person. Our analysis showed that 22% of the analyzed
AMIs contain information in at least one of the last login
databases. The lastb database contains the failed login at-
tempts, and therefore, can also be very helpful in retrieving
user account passwords since passwords that are mistyped or
typed too early often appear as user names in this database.
There were 187 AMIs that contained a total of 66,601 entries
in their lastb databases. Note that host names gathered
from the shell history, the SSH user configuration, and the
SSH server connection logs can also provide useful clues to
an attacker.

Browser History

Nine AMIs contained a Firefox history file (two concerning
root and seven concerning a normal user). Note that because

Finding Total Image Remote
Amazon RDS 4 0 4
dDNS 1 0 1
SQL 7 6 1
MySql 58 45 13
WebApp 3 2 1
VNC 1 1 0
Total 74 54 20

Table 3: Credentials in history files

of ethical concerns, we did not manually inspect the contents
of the browser history. Rather, we used scripts to check
which domains had been contacted. From the automated
analysis of the history file, we discovered that one machine
was used by a person to log into the portal of a Fortune 500
company. The same user then logged into his/her personal
Google email account. Combining this kind of information,
history files can easily be used to de-anonymize, and reveal
information about the image’s creator.

Shell History

When we tested the AMI using our test suite, we inspected
common shell history files (e.g. ∼/.history, ∼/.bash_history,
∼/.sh_history) that were left on the image when it was
created. We discovered that 612 AMIs (i.e., 11.54% of the
total) contained at least one single history file. We found a
total of 869 files that stored interesting information (471 for
root and 398 for generic users), and that contained 158,354
lines of command history. In these logs, we identified 74 dif-
ferent authentication credentials that were specified in the
command line, and consequently recorded on file (ref. Ta-
ble 3).

For example, the standard MySQL client allows to spec-
ify the password from the command line using the -p flag.
A similar scenario occurs when sensitive information, such
as a password or a credit card number, is transferred to a
web application using an HTTP GET request. GET re-
quests, contrary to POST submissions, are stored on the
web server’s logs. The credentials we discovered belong to
two categories: local and remote.

The credentials in the image group grant an attacker ac-
cess to a service/resource that is hosted on the AMI. In
contrast, remote credentials enable the access to a remote
target. For example, we identified remote credentials that
can be used to modify (and access) the domain name in-
formation of a dynamic DNS account. A malicious user
that obtains a DNS management password can easily change
the DNS configuration, and redirect the traffic of the orig-
inal host to his own machines. In addition, we discovered
four credentials for the Amazon Relational Database Service
(RDS) [32] – a web service to set up, operate, and scale a
relational database in the Amazon cloud. We also found
credentials for local and remote web applications for differ-
ent uses (e.g. Evergreen, GlassFish, and Vertica) and for
a database performance monitoring service. One machine
was configured with VNC, and its password was specified
from the command line. Finally, we were able to collect 13
credentials for MySQL that were used in the authentication
of remote databases.

Recovery of deleted files

In the previous sections, we discussed the types of sensitive
information that may be forgotten by the image provider.
Unfortunately, the simple solution of deleting this informa-
tion before making the image publicly available is not satis-
factory from a security point of view.

In many file systems, when a user deletes a file, the space
occupied by the file is marked as free, but the content of the
file physically remains on the media (e.g. the hard-disk).
The contents of the deleted file are definitely lost only when
this marked space is overwritten by another file. Utilities
such as shred, wipe, sfill, scrub and zerofree make data
recovery difficult either by overwriting the file’s contents be-
fore the file is actually unlinked, or by overwriting all the
corresponding empty blocks in the filesystem (i.e., secure
deletion or wiping). When these security mechanisms are
not used, it is possible to use tools (e.g., extundelete and
Winundelete) to attempt to recover previously deleted files.

In the context of Amazon EC2, in order to publish a cus-
tom image on the Amazon Cloud, a user has to prepare her
image using a predefined procedure called bundling. This
procedure involves three main steps: Create an image from
a loopback device or a mounted filesystem, compress and en-
crypt the image, and finally, split it into manageable parts
so that it can be uploaded to the S3 storage.

The first step of this procedure changes across different
bundling methods adopted by the user (ref. Table 4). For
example, the ec2-bundle-image method is used to bundle
an image that was prepared in a loopback file. In this case,
the tool transfers the data to the image using a block level
operation (e.g. similar to the dd utility). In contrast, if the
user wishes to bundle a running system, she can choose the
ec2-bundle-vol tool that creates the image by recursively
copying files from the live filesystem (e.g., using rsync). In
this case, the bundle system works at the file level.

Any filesystem image created with a block-level tool will
also contain blocks marked as free, and thus may contain
parts of deleted files. As a result, out of the four bundling
methods provided by Amazon, three are prone to a file un-
deletion attack.

To show that our concerns have practical security impli-
cations, we randomly selected 1,100 Linux AMIs in four dif-
ferent regions (US East/West, Europe and Asia). We then
used the extundelete data recovery utility [5] to analyze
the filesystem, and recover the contents of all deleted files.
In our experiment, we were able to recover files for 98% of
the AMIs (from a minimum of 6 to a maximum of more
than 40,000 files per AMI). In total, we were able to retrieve
28.3GB of data (i.e., an average of 24MB per AMI).

We collected statistics on the type (Table 5) of the un-
deleted files by remotely running the file command. Note
that in order to protect the privacy of Amazon users, we
did not access the contents of the recovered data, and we
also did not transfer this data out of the vulnerable AMI.
The table shows a breakdown of the types of sensitive data
we were able to retrieve (e.g., PDFs, Office documents, pri-
vate keys). Again, note that the Amazon AWS keys are not
password-protected. That is, an attacker that gains access
to these keys is then able to instantiate Amazon resources
(e.g. S3 and AWS services) at the victim’s expense (i.e., the
costs are charged to the victim’s credit card).

In our analysis, we verified if the same problem exists for
Windows AMIs. We analyzed some images using the Win-

Method Level Vulnerable
ec2-bundle-vol File-System No
ec2-bundle-image Block Yes
From AMI snapshot Block Yes
From VMWare Block Yes

Table 4: Tested Bundle Methods

Type #
Home files (/home, /root) 33,011
Images (min. 800x600) 1,085
Microsoft Office documents 336
Amazon AWS certificates and access keys 293
SSH private keys 232
PGP/GPG private keys 151
PDF documents 141
Password file (/etc/shadow) 106

Table 5: Recovered data from deleted files

Undelete tool [31], and were able to recover deleted files in
all cases. Interestingly, we were also able to undeleted 8,996
files from an official image that was published by Amazon
AWS itself.

5 Machine Fingerprinting
In the previous sections, we presented a number of experi-
ments we conducted to assess the security and privacy issues
involved in the release and use of public AMIs. The results
of our experiments showed that a large number of factors
must be considered when making sure that a virtual ma-
chine image can be operated securely (e.g., services must be
patched and information must be sanitized).

A number of the issues we described in the previous sec-
tions could potentially be exploited by an attacker (or a ma-
licious image provider) to obtain unauthorized remote access
to any running machine that adopted a certain vulnerable
AMI. However, finding the right target is not necessarily an
easy task.

For example, suppose that a malicious provider distributes
an image containing his own ssh key, so that he can later lo-
gin into the virtual machines as root. Unfortunately, unless
he also adds some kind of mechanism to “call back home”
and notify him of the IP address of every new instance, he
would have to brute force all the Amazon IP space to try
to find a running machine on which he can use his creden-
tials. To avoid this problem, in this section we explore the
feasibility of automatically

In order to explore the feasibility, from an attacker point
of view, of automatically matching a running instance back
to the corresponding AMI, we started our experiment by
querying different public IP registries (ARIN, RIPE, and
LAPNIC) to obtained a list of all IPs belonging to the Ama-
zon EC2 service for the regions US East/West, Europe and
Asia. The result was a set of sub-networks that comprises
653,401 distinct IPs that are potentially associated with run-
ning images.

For each IP, we queried the status of thirty commonly used
ports (i.e., using the NMap tool), and compared the results
with the information extracted from the AMI analysis. We
only queried a limited number of ports because our aim was
to be as non-intrusive as possible. (i.e., see Section 6 for
a detailed discussion of ethical considerations, precautions,

Candidates
Approach Instances 1 10 50
SSH 130,580 2,149 8,869 11,762
Services 203,563 7,017 30,345 63,512
Web 125,554 5,548 31,651 54,918

Table 6: Discovered Instances

and collaboration with Amazon). For the same reason, we
configured NMap to only send a few packets per second to
prevent any flooding, or denial of service effect.

Our scan detected 233,228 running instances. This num-
ber may not reflect the exact number of instances there were
indeed running. That is, there may have been virtual ma-
chines that might have been blocking all ports.

We adopted three different approaches to match and map
a running instance to a set of possible AMIs. The three
methods are based on the comparison of the SSH keys, ver-
sions of network services, and web-application signatures.

Table 6 depicts the results obtained by applying the three
techniques. The first column shows the number of running
instances to which a certain technique could be applied (e.g.,
the number of instances where we were able to grab the SSH
banner). The last two columns report the number of running
machines for which a certain matching approach was able to
reduce the set of candidate AMIs to either 10 or 50 per
matched instance. Since 50 possibilities is a number that
is small enough to be easily brute-forced manually, we can
conclude that it is possible to identify the AMI used in more
than half of the running machines.

SSH matching Every SSH server has a host key that is
used to identify itself. The public part of this key is used
to verify the authenticity of the server. Therefore, this key
is disclosed to the clients. In the EC2, the host key of an
image needs to be regenerated upon instantiation of an AMI
for two reasons: First, a host key that is shared among sev-
eral machines makes these servers vulnerable to man-in-the-
middle attacks (i.e., especially when the private host key is
freely accessible). Second, an unaltered host key can serve
as an identifier for the AMI, and may thus convey sensitive
information about the software that is used in the instance.

This key regeneration operation is normally performed by
the cloud-init script provided by Amazon. The script
should normally be invoked at startup when the image is
first booted. However, if the image provider either forgets
or intentionally decides not to add the script to his AMI,
this important initialization procedure is not performed. In
such cases, it is very easy for an attacker to match the SSH
keys extracted from the AMIs with the ones obtained from
a simple NMap scan. As reported in Table 6, we were able
to precisely identify over 2,100 AMI instances by using this
method.

Service matching In the cases where the ssh-based iden-
tification failed, we attempted to compare the banners cap-
tured by NMap with the information extracted from the ser-
vices installed on the AMIs. In particular, we compared the
service name, the service version, and (optionally) the ad-
ditional information fields returned by the thirty common
ports we scanned in our experiment.

The service-matching approach is not as precise as the ssh-
based identification. Hence, it may produce false positives if

the user has modified the running services. However, since
most services installed on the AMIs were old and out of date,
it is very unlikely that new services (or updated ones) will
match the same banners as the one extracted from the AMIs.
Therefore, a service update will likely decrease the matching
rate, but unlikely generate false positives. The fact that over
7,000 machines were identified using this method seems to
support the hypothesis that a large number of users often
forget to update the installed software after they rent an
AMI.

Web matching For our last AMI matching approach, we
first collected web information from all the instances that
had ports 80 and 443 (i.e., web ports) open. We then com-
pared this information with the data we collected during the
scan of the Amazon AMIs.

In the first phase, we used the WhatWeb tool [2] to ex-
tract the name and version of the installed web server, the
configuration details (e.g., the OpenSSL version), and the
installed interpreters (e.g., PHP, and JSP). In addition, we
also attempted to detect the name and version of the web
applications installed in the root document of the web server
by using WhatWeb’s plugins for the detection of over 900
popular web software.

In the second phase, we compared this information to the
scanned AMIs, and checked for those machines that had the
same web server, the same configuration, and the same ver-
sions of the language interpreters. Since different installa-
tions of the same operating system distribution likely share
this information, we then further reduced the size of the can-
didate set by checking the web application name detected by
the WhatWeb tool.

The last row of Table 6 shows that we were able to identify
more than 5,000 machines by using this technique.

6 Amazon’s Feedback
Clearly, one question that arises is if it is ethically accept-
able and justifiable to conduct experiments on a real cloud
service. During all our experiments, we took into account
the privacy of the users, the sensitivity of the data that was
analyzed, and the availability of Amazon’s services. In addi-
tion, all our AMI tests were conducted by automated tools
running inside virtual machines we rented explicitly for our
study. We did not use any sensitive data extracted from the
AMI, or interact with any other server during this test. In
addition, we promptly notified Amazon of any problem we
found during our experiments.

Amazon has a dedicated group dealing with the security
issues of their cloud computing infrastructure: the AWS
(Amazon Web Services) Security Team. We first contacted
them on May 19th 2011, and provided information about
the credentials that were inadvertently left on public AMIs.
Amazon immediately verified and acknowledged the prob-
lem, and contacted all the affected customers as summa-
rized by a public bulletin released on June 4th [29]. In cases
where the affected customer could not be reached immedi-
ately, the security team acted on behalf of the user, and
changed the status of the vulnerable AMI to private to pre-
vent further exposure of the customer’s personal credentials.
We also communicated to the AWS Security team our con-
cerns regarding the privacy issues related to publishing of
public AMIs (e.g., history files, remote logging, and left-
over private keys). The security team reacted quickly, and
realeased a tutorial [28] within five days to help customers

share public images in a secure manner. Finally, we con-
tacted again Amazon on June 24th about the possibility of
recovering deleted data from the public Amazon AMIs. To
fix the problem, we provided them some of the countermea-
sures we discussed in Section 4.3. Their team immediately
reported the issue internally and was grateful of the issue
we reported to attention. By the time of writing, Amazon
has already verified all the public AMIs where we have been
able to recover data, and has moved on to check the status
of all other public AMIs. The AWS security team is also
working on providing a solution to prevent the recovery of
private documents by undeletion.

The second part of our experiments included the use of
a port scanner to scan running images. Even though port
scanning has not been considered to be illegal per se (e.g.,
such as in the legal ruling in [1]), this activity may be consid-
ered an ethically sensitive issue. However, given the limited
number of ports scanned (i.e, 30) and the very low volume
of packets per second that we generated, we believe that our
activity could not have caused any damage to the integrity
and availability of Amazon’s network, or the images running
on it.

As researchers, we believe that our experiments helped
Amazon and some of its customers to improve their security
and privacy. In addition, we hope other cloud providers will
benefit from the results of this research to verify and improve
their security just as Amazon has done.

7 Related Work

There are several organizations that released general secu-
rity guidance on the usage of cloud computing, such as [4,
11]. Amazon Web Services, in addition to the security bul-
letins already mentioned, released a paper describing the
security processes put in place, focusing more specifically on
the management of public images [6]. The problem state-
ment of security on cloud computing infrastructures has
been widely explored. Garfinkel and Rosenblum [19] studied
the problem statement of using virtual images and especially
the security problems of using third party virtual images.
Glott and al. [20] present a good overview of the problem
of sharing images as well. The above papers expose a set of
best practices and problem statements but did not perform
any practical assessment tests.

On the other hand, some authors focused on solutions
that would mitigate parts of the security problems we have
identified. For example, solutions that tackle the problem
of rootkits detection on multi-tenant clouds [18]. The au-
thors describe a secure-introspection technique at the vir-
tualization layer in order to identify the guest OS and im-
plements rootkit detection while running outside the guest
OS. Ibrahim et al. [22] analyze the problem of cloud virtual
infrastructures and draw the requirements for virtualization-
aware techniques. Another approach to address the problem
consists in specifying contracts between cloud providers and
virtual machine users [24]. In this case, the authors describe
extensions to the Open Virtual Machine Format (OVF) to
specify the requirements of machine images in order to be
safely executed by a cloud computing provider. Wei et al [33]
propose a technique to share and use third party images in
a secure way. The authors describe an image management
system that controls the access to machines, tracks their
provenance and integrity and finally assesses their security
through scanning. Thus, these papers are focusing on so-

lutions and did not implement or perform a wide range of
tests on an existing cloud infrastructure.

More specific to Amazon EC2, a novel approach was pro-
posed by Bleikerts et al. [16]. The paper analyses the secu-
rity of an infrastructure (a set of connected virtual machines)
deployed on Amazon EC2 through graph theory techniques.
The goal is to provide security resilience metrics at the in-
frastructure level rather than at the virtual image level.
Thus, this study aims at designing better cloud infrastruc-
tures by identifying problems at the configuration of the se-
curity groups (network firewall rules). Other works focused
on the placement algorithm of Amazon EC2 instances [26],
and showed how to exploit it in order to achieve co-residence
with a targeted instance. This is the first step towards the
exploitation of side channel attacks but these attacks were
only outlined. Slaviero et al. [21] showed that cloud users
are not careful when choosing AMIs. By publishing a public
malicious AMI, they showed that this AMI was instantiated
several times and statistics about the usage of the AMIs
were collected. Moreover, they showed that it was possi-
ble to circumvent the payment mechanism of paid AMIs by
modifying the AMI manifest file.

Finally, concurrently and in parallel to our work, Bugiel et
al. [17] have recently conducted a study in which they per-
form similar experiments on the Amazon’s EC2 catalogue
and have reached similar conclusions. Note, however, that
our experiments are more comprehensive and have been con-
ducted on a larger scale. While they have only considered
1255 AMIs, we selected and automatically analyzed over
5000 public images provided by Amazon in four distinct data
centers. We also discovered and discussed a wider number
of security issues by testing every image for known malware
samples and vulnerabilities. Furthermore, we collaborated
closely with Amazon’s Security Team to have the identified
problems acknowledged and fixed.

Even though most of these papers highlighted trust and
security problems associated to the use of third party im-
ages, to the best of our knowledge we are the first to preset
a large-scale, comprehensive study of the security and pri-
vacy of existing images.

8 Conclusion

Cloud services such as Amazon’s Elastic Compute Cloud and
IBM’s SmartCloud are quickly changing the way organiza-
tions are dealing with IT infrastructures and are providing
online services. It is easy to obtain computing power today.
One can simply buy it online and use application program-
ming interfaces provided by cloud companies to launch and
shut down virtual images. A popular approach in cloud-
based services is to allow users to create and share virtual
images with other users. Cloud providers also often provide
virtual images that have been pre-configured with popular
software such as open source web servers. In this paper,
we explored the general security risks associated with vir-
tual server images from the public catalogs of cloud service
providers. We investigated in detail the security problems of
public images that are available on the Amazon EC2 service.
Our findings demonstrate that both users and providers
of public AMIs may be vulnerable to security risks such
as unauthorized access, malware infections, and the loss of
sensitive information. The Amazon Web Services Security
Team has acknowledged our findings, and has already taken
steps to address the security risks we have identified. We

hope that the results of this study will be useful for other
cloud service providers who offer similar services.

9 Acknowledgments

This research has been partially funded by the European
Union Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement n. 257007, by the NSF (CNS-1116777)
and by COMET K1, FFG - Austrian Research Promotion
Agency and the Secure Business Austria. The authors would
like to acknowledge Don Bailey and the Amazon Web Ser-
vices Security Team for their commitment in addressing the
security risks we identified.

10 References

[1] Security focus: Port scans legal, judge says.
http://www.securityfocus.com/news/126.

[2] Whatweb webapp scanner. http:
//www.morningstarsecurity.com/research/whatweb.

[3] Syslog-ng, 2000-2011. http:
//www.balabit.com/network-security/syslog-ng/.

[4] Security guidance for critical areas of focus in cloud
computing v2.1, Dec. 2009.
https://cloudsecurityalliance.org/csaguide.pdf.

[5] Extundelete linux data recovery tool, 2010.
http://extundelete.sourceforge.net/.

[6] Amazon elastic compute cloud, May 2011.
http://aws.amazon.com/security.

[7] Amazon elastic compute cloud (amazon ec2), May
2011. http://aws.amazon.com/ec2/.

[8] Clamav, July 2011. http://www.clamav.net/.
[9] Cloud computing, cloud hosting and online storage by

rackspace hosting, May 2011.
http://www.rackspace.com/cloud/.

[10] Enterprise cloud computing from terremark, May
2011. http://www.terremark.com/services/
cloudcomputing.aspx.

[11] Guidelines on security and privacy in public cloud
computing, draft special publication 800-144, 2011.

[12] Ibm smartcloud, May 2011. http:
//www.ibm.com/cloud-computing/us/en/#!iaas.

[13] John the ripper unix password cracker, Apr. 2011.
http://www.openwall.com/john/.

[14] Joyent smartdatacenter, May 2011. http://www.
joyent.com/services/smartdatacenter-services/.

[15] Reminder about safely sharing and using public amis,
Jun 2011. http:
//aws.amazon.com/security/security-bulletins/
reminder-about-safely-sharing-and-using-public-amis/.

[16] S. Bleikertz, M. Schunter, C. Probst, D. Pendarakis,
and K. Eriksson. Security audits of multi-tier virtual
infrastructures in public infrastructure clouds. In
Proceedings of the 2010 ACM workshop on Cloud
computing security workshop.

[17] S. Bugiel, S. Nürnberger, T. Pöppelmann, A. Sadeghi,
and T. Schneider. Amazonia: When elasticity snaps
back. 2011.

[18] M. Christodorescu, R. Sailer, D. Schales,
D. Sgandurra, and D. Zamboni. Cloud security is not
(just) virtualization security: a short paper. In
Proceedings of the 2009 ACM workshop on Cloud
computing security.

[19] T. Garfinkel and M. Rosenblum. When virtual is
harder than real: Security challenges in virtual
machine based computing environments. In
Proceedings of the 10th conference on Hot Topics in
Operating Systems-Volume 10.

[20] R. Glott, E. Husmann, A. Sadeghi, and M. Schunter.
Trustworthy clouds underpinning the future internet.

http://www.securityfocus.com/news/126
http://www.morningstarsecurity.com/research/whatweb
http://www.morningstarsecurity.com/research/whatweb
http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/network-security/syslog-ng/
https://cloudsecurityalliance.org/csaguide.pdf
http://extundelete.sourceforge.net/
http://aws.amazon.com/security
http://aws.amazon.com/ec2/
http://www.clamav.net/
http://www.rackspace.com/cloud/
http://www.terremark.com/services/cloudcomputing.aspx
http://www.terremark.com/services/cloudcomputing.aspx
http://www.ibm.com/cloud-computing/us/en/#!iaas
http://www.ibm.com/cloud-computing/us/en/#!iaas
http://www.openwall.com/john/
http://www.joyent.com/services/smartdatacenter-services/
http://www.joyent.com/services/smartdatacenter-services/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/

The Future Internet.
[21] M. S. Haroon Meer, Nick Arvanitis. Clobbering the

cloud, part 4 of 5, 2009. http://www.sensepost.com/
labs/conferences/clobbering_the_cloud/amazon.

[22] A. Ibrahim, J. Hamlyn-Harris, and J. Grundy.
Emerging security challenges of cloud virtual
infrastructure. In Proceedings of the APSEC 2010
Cloud Workshop.

[23] I. LLC. Network Mapper (NMap), 1996-2011.
http://nmap.org/.

[24] J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler.
Virtual machine contracts for datacenter and cloud
computing environments. In Proceedings of the 1st
workshop on Automated control for datacenters and
clouds.

[25] A. Puzic. Cloud security: Amazon’s ec2 serves up
’certified pre-owned’ server images, Apr. 2011. http:
//dvlabs.tippingpoint.com/blog/2011/04/11/
cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images.

[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and
communications security.

[27] M. Russinovich. Psexec, 2009. http://technet.
microsoft.com/en-us/sysinternals/bb897553.

[28] A. A. Security. How to share and use public amis in a
secure manner, June 2011. http:
//aws.amazon.com/articles/0155828273219400.

[29] A. A. Security. Reminder about safely sharing and
using public amis, June 2011. http:
//aws.amazon.com/security/security-bulletins/
reminder-about-safely-sharing-and-using-public-amis/.

[30] T. N. Security. Nessus vulnerability scanner,
2002-2011.
http://www.tenable.com/products/nessus.

[31] W. Software. Winundelete windows data recovery
tool, 2001-2011. http://www.winundelete.com/.

[32] A. A. Team. Amazon rds, 2011.
http://aws.amazon.com/rds/.

[33] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning.
Managing security of virtual machine images in a
cloud environment. In Proceedings of the 2009 ACM
workshop on Cloud computing security.

http://www.sensepost.com/labs/conferences/clobbering_the_cloud/amazon
http://www.sensepost.com/labs/conferences/clobbering_the_cloud/amazon
http://nmap.org/
http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images
http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images
http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images
http://technet.microsoft.com/en-us/sysinternals/bb897553
http://technet.microsoft.com/en-us/sysinternals/bb897553
http://aws.amazon.com/articles/0155828273219400
http://aws.amazon.com/articles/0155828273219400
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://www.tenable.com/products/nessus
http://www.winundelete.com/
http://aws.amazon.com/rds/

APPENDIX

A Test Suite

Tests Type Details OS
System Information General - Windows + Linux

Logs/eMails/WWW Archive General - Linux
Processes and File-System General - Windows + Linux

Loaded Modules General lsmod Linux
Installed Packages General - Linux

General Network Information Network Interfaces, routes Windows + Linux
Listening and Established Sockets Network - Windows + Linux

Network Shares Network Enabled Shares Windows + Linux
History Files Privacy Common Shells + Browsers Windows + Linux

AWS/SSH Private Keys Privacy Loss of sensitive info Linux
Undeleted Data Privacy (Only on X AMIs) Linux

Last logins Privacy - Linux
SQL Credentials Privacy/Security MySQL and PostgresSQL Linux

Password Credentials Privacy/Security Enabled Logins Windows + Linux
SSH Public Keys Security Backdoor access Linux

Chkrootkit Security Rootkit Linux
RootkitHunter Security Rootkit Linux

RootkitRevealer Security Rootkit Windows
Lynis Auditing Tool Security General Security Issues Linux

Clam AV Security Antivirus Windows + Linux
Unhide Security Processes/Sockets Hiding Linux
PsList Security Processes Hiding Windows

Sudoers Configuration Security - Linux

Table 7: Details of the tests included in the automated AMI test suite

B Vulnerabilities in AMIs

Windows Linux
Tested AMIs 253 3,432
Vulnerable AMIs 249 2,005
With Vuln. <=2 Years 145 1,197
With Vuln. <=3 Years 38 364
With Vuln. <=4 Years 2 106
Avg. # Vuln./AMI 46 11
TOP 10 Vuln. MS10-037, MS10-049, CVE-2009-2730, CVE-2010-0296,

MS10-051, MS10-073, CVE-2010-0428, CVE-2010-0830,
MS10-076, MS10-083, CVE-2010-0997, CVE-2010-1205,
MS10-090, MS10-091, CVE-2010-2527, CVE-2010-2808,

MS10-098, MS11-05 CVE-2010-3847, CVE-2011-0997

Table 8: Nessus Results

Table 8 reports the most common vulnerabilities that affect Windows and Linux AMIs. For example, the vulnerabilities
MS10-098 and MS10-051 affect around 92% and 80% of the tested Windows AMIs, and allows remote code execution if the
user views a particular website using the Internet Explorer. Microsoft Office and the Windows’ standard text editor Wordpad
contained in 81% of the Windows AMIs allow an attacker to take control of the vulnerable machine by opening a single
malicious document (i.e., vulnerability MS10-83). A similar vulnerability (i.e., CVE-2010-1205) affects Linux AMIs as well: A
PNG image sent to a vulnerable host might allow a malicious user to run code remotely on the AMI. We also observed that 87
public Debian AMIs come with the now notorious SSH/OpenSSL vulnerability discovered in May 2008 (i.e., CVE-2008-0166)
in which, since the seed of the random number generator used to generate SSH keys is predictable, any SSH key generated
on the vulnerable systems needs to be considered as being compromised.

8.74% of Linux AMIs contain a DHCP client that is vulnerable to a remote code execution. In fact, it fails to properly
escape certain shell meta characters contained in the DHCP server responses (vulnerability CVE-2011-0997). An attacker
that setups a bastion host in the Amazon cloud, can send around DHCP custom packets that may exploit users’ machines
installed in the neighborhood. Finally, more than 26.5% of machines contained a 2-years old vulnerability (CVE-2009-2730)
that may allows an attacker settled in the Amazon cloud to spoof arbitrary SSL servers via a crafted certificate.

	Introduction
	Overview of Amazon EC2
	AMI Testing Methodology
	Results of the AMIs Analysis
	Software Vulnerabilities
	Security Risks
	Privacy Risks

	Machine Fingerprinting
	Amazon's Feedback
	Related Work
	Conclusion
	Acknowledgments
	References
	Test Suite
	Vulnerabilities in AMIs

