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Abstract—One of the widely studied structural properties of
social and information networks is their community structure,
and a vast variety of community detection algorithms have
been proposed in the literature. Expansion of a seed node into
a community is one of the most successful methods for local
community detection, especially when the global structure of
the network is not accessible. An algorithm for local community
detection only requires a partial knowledge of the network and
the computations can be done in parallel starting from seed
nodes. The parallel nature of local algorithms allow for fast
and scalable solutions, however, the coverage of the commu-
nities heavily depends on the seed selection. The communities
identified by a local algorithm might cover only a subset of the
nodes in a network if the seeds are not selected carefully.

In this paper, we propose a novelseeding algorithm which
is parameter free, utilizes merely the local structure of the
network, and identifies good seeds which span over the whole
network. In order to find such seeds, our algorithm first com-
putes similarity indices from local link prediction techniques
to assign a similarity score to each node, and then abiased
graph coloring algorithm is used to enhance the seed selection.
Our experiments using large-scale real-world networks show
that our algorithm is able to select good seeds which are
then expanded into high quality overlapping communities
covering the vast majority of the nodes in the network using a
personalized PageRank-based community detection algorithm.
We also show that using our local seeding algorithm can
dramatically reduce the execution time of community detection.

I. I NTRODUCTION

The emergence of large-scale social and information net-
works have motivated numerous studies of the structural
properties of these networks such as their community struc-
ture. A community typically refers to a group of densely
connected nodes which have sparse connections with the rest
of the nodes in the network, and a wide variety of algorithms
have been proposed for identifying communities [8], [20].

Community detection algorithms can be divided into
global and local algorithms.Global algorithms require a
global knowledge of the entire structure of the network
in order to uncover all the communities in that network.
Since such knowledge might not be available for large-
scale networks, local algorithms are gaining more popu-
larity [5], [17], [19], [7]. Local algorithmstypically start
from a number ofseed nodes (sets) and expand them
into possibly overlapping communities by examining only
the neighborhood of the seeds. Due to their nature, local
algorithms can be parallelized and are scalable. However,

they might only cover a subset of the nodes in a network
if the seeds are not chosen carefully. A naive approach
for achieving high coverage is therefore to consider all
the nodes in a network as seeds. However, this approach
is computationally expensive and leads to many redundant
communities. Although the goal of local algorithms is not to
achieve a complete coverage of a network, finding a small
number of seeds which are well distributed over the network
and can lead to a high coverage is very desirable.

Since our knowledge of the community structure of large-
scale real-world networks is usually limited, finding good
seeds that span over the network using only the knowledge
of the local structure of a network is a challenging problem.
In this paper, we present a novel local seed selection
algorithm which achieves a high coverage and a community
quality similar to the naive approach (where all nodes are
used as seeds) but with a significantly lower execution time.

Our algorithm uses similarity indices fromlink prediction
techniques. In link prediction, similarity indices are used
to estimate the similarity of nodes which are expected to
get connected, however, we use them to asses the similarity
of nodes which are already connected. We assign a local
similarity score to each node based on a similarity index
and identify nodes that are similar to their neighbors and
therefore are expected to be in the same community. An-
dersen et al. [2] theoretically showed that a seed set that
is “nearly contained” in a target community is a good seed
set for that community. We select a node as a seed if it has
the highest score among its neighbors, and we show that
this method is very effective in finding a small number of
very good seeds in a network which can be expanded into
high quality communities. However, similar to other existing
local seeding algorithms, the communities expanded from
these seeds do not achieve a high coverage of the network.

In order to improve the coverage, we propose to use
distributedgraph coloring. Although we show that we can
select good seeds using graph coloring, we also introduce a
new distributedbiased graph coloringalgorithm to further
enhance our seeding algorithm, where the nodes with the
highest local similarity score, which are expected to be good
seeds, are assigned a specific color. Then the ties are broken
at random so that no two adjacent nodes pick the same color.
In the end, the nodes which received the specific color are
selected as seeds. Our proposed algorithm is parameter free,



is computed locally, selects seeds from parts of the network
where the other local similarity methods fail to pick any
seeds, and does not lead to many duplicate communities
since it does not pick any neighboring nodes as seeds.

The selected seeds are then expanded into overlapping
communities using a personalized PageRank-based local
community detection algorithm, which can be computed
locally and is known to result in high quality communi-
ties [22]. We have empirically compared our proposed seed-
ing algorithm with a number of existing seeding methods,
as well as a state-of-the-art local community detection algo-
rithm with respect to quality and coverage of the identified
communities. The quality is assessed using ground truth data
where such data exists, andconductancewhich is a widely
used quality function.

Overall, our contributions in this paper are as follows.
• We define a similarity score which is calculated as the

sum of the similarity of a node with all of its connected
neighbor by adopting the similarity indices from link
prediction techniques.

• We propose a new local seeding algorithm which uses
these similarity scores (link prediction-based seeding).

• We propose to use graph coloring for picking random
seeds in a network and introduce biased graph coloring
for enhancing our seeding algorithm (biased coloring-
based seeding).

• We empirically compare the different similarity indices
which we have used in our seeding algorithm. We
also experimentally evaluate our seeding algorithm and
show that it can find a reasonably small number of
seeds which are expanded into communities with high
coverage and a similar quality compared to when all the
nodes are used as seeds but with significantly reduced
execution time.

• We show that our biased coloring algorithm is also
successful in improving the coverage of other existing
local seeding algorithms.

The remainder of the paper is organized as follows.
Sections II and III present the related work and the back-
ground, respectively. Our seeding algorithm is presented in
Section IV. Section V presents the experimental results.
Finally, Section VI concludes our work.

II. RELATED WORK

There have been numerous studies proposing different
types of community detection algorithms [8], [20]. In this
paper, we only consider local algorithms.

Coscia et al. [7] have proposed theDemon algorithm,
which starts from all the nodes in a network to identify
the local communities in each neighborhood and then uses
merging to form the optimal global communities. A closely
related approach is theNode Perceptionby Soundarajan
et al. [17] which is a template for first finding local sub-
communities and then identifying all the communities.

There are a variety of local community detection algo-
rithms which assume that the seeds are given, e.g., [5] or can
be picked at random, e.g., [11]. However, there are not many
studies which have looked into the problem of selectinggood
seeds. Shen et al. [16] proposed to use maximal cliques,
which form the core of the communities, as seeds which is
computationally expensive. Gargi et al. [9] used the number
of times a video has been viewed in the Youtube network
to select the top videos as seeds, however, this type of non-
structural information is not available for many networks.

Gleich et al. [10] showed that theegonetswith low
conductance are good seeds for finding the best communities
of a network with respect to conductance. However, Whang
et al. [19] showed that these communities do not achieve
high coverage. Chen et al. [4] proposed an algorithm for
selecting the nodes with local maximal degree as seeds.
The authors suggested to remove the identified communities
expanded from these seeds from the network and find new
seeds in the remaining parts of the network repeatedly to
improve the coverage. These methods are explained in more
detail in the next section and are compared against our
proposed seeding algorithm.

Whang et al. [19] have proposed two seeding algorithms
which achieve high coverage. In theGraclus centersthey run
a partitioning algorithm to createk network partitions and
then the nodes in the center of these partitions are selected
as seeds. In thespread hubalgorithm, at leastk nodes with
the highest degree in the network are selected as seeds. Both
seeding algorithms require some global knowledge as well
as the number of seeds to be known which is not a realistic
assumption since we typically do not know the community
structure of the real-world networks in advance.

Our seeding algorithm is parameter free and uses sim-
ilarity indices from local link prediction and local graph
coloring. Yan and Gregory [21] have used a similarity index
to add edge weights to unweighted networks in order to
improve the quality of existing global community detection
algorithms. Psicologia et al. [6] have used simple graph
coloring as the first step for a label propagation community
detection algorithm. These works do not introduce local
seeding algorithms and therefore are fundamentally different
from our work.

Our algorithm can be used for seeding any local com-
munity detection algorithm. In this paper, we have used a
variant of a personalized PageRank algorithm by Yang et
al. [22]. Although Yang et al. have shown that this algorithm
is very successful in identifying the communities to which
a given seed belongs, they did not investigate the effect of
using a seeding algorithm.

III. B ACKGROUND

A. Notations

Let G = (V,E) be a connected, undirected, and un-
weighted graph, whereV is the set ofn nodes andE



is the set ofm edges or links ofG. Let v ∈ V be a
node in G. The set of the neighbors ofv is denoted by
Γ(v) = {u : u ∈ V, (u, v) ∈ E}. The degree ofv is
shown askv = |Γ(v)|, and ∆ refers to the maximum
degree in the graph. The egonet ofv is the subgraph
induced by the node and its neighbors and is defined as
egonet(v) = {v} ∪ {u : u ∈ Γ(v), (u, v) ∈ E}.

A local community detection algorithm expands a seed
node s into a communityC which is a set of nodes
including s. We denote byC = {C1, . . . , Ck} the collection
of overlapping communities expanded fromk distinct seed
nodes which are selected by a seeding algorithm. The
coverageof the collection of communitiesC is defined
as cov(C) =

|
⋃

k

i=1 Ci|
|V | . The conductanceof a community,

which is used both as a scoring function and as a quality
function, is defined asφ(C) = m(C)

min(vol(C),vol(V \C)) , where
m(C) = |{(u, v) ∈ E : u ∈ C, v /∈ C}| is the number of
inter-cluster edges andvol(C) =

∑
v∈C kv is the volume of

a communityC and corresponds to the sum of the degree
of all the nodes in the community.

B. Existing Seeding Methods

In this study, we have selected a number of state-of-the-art
algorithms to be compared against our proposed algorithm.

Spread hub (SH) [19] In this method, first the nodes
are sorted in order of decreasing degree. Then, as long as
the number of selected seeds is less thank, the nodes with
the maximum degree are greedily chosen as seeds. This
algorithm can pick more thank seeds, wherek is given as
input, and only picks neighboring nodes as seeds when their
degree is equal. The complexity of SH isO(n log n+ k).

Low conductance cuts (EC) [10] Gleich et al. have
shown that the low conductance egonets are good seed sets.
This algorithm selects around 3% of the network nodes
as seeds. A nodev can be a seed if for allu ∈ Γ(v),
φ(egonet(v)) ≤ φ(egonet(u)). EC can find these seeds
with time complexityO(m∆). Whang et al. [19] showed
that this method performs poorly with respect to coverage.

Local maximal degree (MD) [4] This algorithm uses a
list of nodes in the graph. If a node has the highest local
degree, it is added to a seed set and is removed from the
list together with all its neighbors with lower degrees. If a
node is not alocal-maximal-degreenode, it is also removed
from the list. This process is repeated until all the nodes are
removed from the list. The complexity of MD isO(n∆).

C. Link Prediction and Similarity Indices

Link prediction is the problem of predicting the relations
that should exist in a network or are very likely to be formed
in the future. These methods typically estimate the similarity
of nodes which are not connected to each other using
similarity indices. We have selected a number of basic and
widely used similarity indices for local link prediction [12].

Neighbors index (CN) is a very basic metric which
calculates the size of the neighborhood overlap of two nodes
and is formally defined asCN(u, v) = |Γ(u) ∩ Γ(v)|.

Hub promoted index (HP) assigns higher scores to the
edges adjacent to high degree nodes (hubs) and is defined
asHP(u, v) = CN(u, v)/min(ku, kv).

Leicht-Holme-Newman index (LHN) assigns high val-
ues to the nodes that have many common neighbors com-
pared to the expected number of neighbors and is defined
asLHN(u, v) = CN(u, v)/(ku × kv).

Resource Allocation index (RA) is motivated by the
resource allocation process where the common neighbors
of two nodes act like transmitters which distribute their
recourses to all their neighbors. Therefore, the amount of
recourses a nodeu receives from a nodev can be used for
calculating their similarity asRA(u, v) =

∑
w∈Γ(u)∩Γ(v)

1
kw

.
Preferential Attachment (PA) is motivated by the pref-

erential attachment mechanism, where the probability that
a new link is connected to a nodev is proportional to the
degree of the nodekv and is defined asPA(u, v) = ku×kv.

D. Graph Coloring

The problem of coloring the nodes of a graph with a small
number of colors is a fundamental graph problem and has
been widely studied. The goal of a graph coloring algorithm
is to color the nodes in a graph with at most∆+ 1 colors,
where∆ is the maximum degree in the graph, so that no
two neighboring nodes share the same color. Coloring has
many applications such as assigning time or frequency slots
for communications of wireless devices.

The most well-known distributed algorithm for∆ + 1
graph coloring is a randomized algorithm based on the
maximum independent set algorithm of Luby [13], [14]
which needsO(log n) time. Barenboim et al. [3] have shown
that deterministic distributed coloring can be implemented
in linearO(∆) time.

In distributed graph coloring, each node picks a color uni-
formly at random from the set of colors which are available
to it, and solves the conflicts with its neighbors by picking
new colors and exchanging confirmations. Eventually, the
algorithm converges when each node has a color different
from the colors of all its neighbors.

IV. OUR METHOD

In this section we present our approach to overlapping
community detection using our novel seeding algorithm and
a personalized PageRank-based seed expansion algorithm.

A. Link Prediction-based Seed Selection

In our seeding algorithm, we propose to use similarity in-
dices from link prediction methods to calculate the similarity
of the nodes which are directly connected. Our intuition is
that if a node has high similarity with its neighbors, it is
expected that they belong to the same community. Moreover,



Algorithm 1 Link prediction-based seed selection
Input: A graphG(V,E).
Output: The seed setS.

Let S = ∅;
2: for all v ∈ V do score(v) =

∑
u∈Γ(v) sim(u, v); end for

for all v ∈ V do
4: if score(v) > 0 and ∀u ∈ Γ(v) : score(v) ≥ score(u) then

S = S ∪ {v};
6: end if

end for
8: return S

Algorithm 2 Biased coloring-based seed selection
Input: A graphG(V,E).
Output: The seed setS.

Let S = ∅;
2: for all v ∈ V do score(v) =

∑
u∈Γ(v) sim(u, v); end for

for all v ∈ V do
4: Let SC = ∅;

∀u ∈ Γ(v), confirm(u, v) = 0; converge(v) = false; color(v) = 0;
6: available colors(v)={c1, ..., ckv+1} wherekv = |Γ(v)|;

SC = {score(u) : ∀u ∈ egonet(v)};
8: for all u ∈ egonet(v) do

if score(u) = max(SC) then color(u) = c1; end if
10: end for

if color(v) = 0 then color(v) = pick color(available colors(v)); end if
12: while converge(v) = false do

for all u ∈ Γ(v) do
14: if color(v)=color(u) and score(v)≤score(u) then

color(v) = pick color(available colors(v));
16: else if color(u) > 0 then confirm(u, v) = 1; end if

end for
18: if ∀u∈Γ(v), confirm(u, v)=1 andcolor(v)>0 then

converge(v) = true;
20: end if

end while
22: if color(v) = c1 andkv > 1 then S = S ∪ {v}; end if

end for
24: return S

a node is a good seed if it has many neighbors in the target
community [2]. Therefore, a node which is very similar to its
neighbors can be a good representative for its neighborhood,
thus can be selected as a seed for local community detection.

Our seed selection algorithm is presented in Algorithm 1.
Each nodev calculates its similarity with its direct neighbors
and assigns ascore(v) to itself based on the sum of the
similarities. The sim(u, v) function refers to any of the
similarity indices introduced in the previous section. Then,
each node compares its score with its neighbors and decides
if it is a seed or not.

Table I shows a summary of the names we use in the rest
of the paper for the instances of our seeding algorithm when
different similarity indices are used for calculating the score
of the nodes.

B. Biased Coloring-based Seed Selection

Although our proposed seeding algorithm using similarity
scores can be used on its own for seed selection, we propose
to enhance it by adopting a graph coloring algorithm. Col-
oring helps us to pick seeds that are better distributed over
the network and therefore can lead to improved coverage.
First, we propose a basic random coloring method for
seed selection based on the randomized distributed coloring

Table I: Summary of the names used for the instances of
our seed selection algorithm based on the similarity indices
being used. Similarity index

sim(u, v) Instance name

Link prediction-based

CN(u, v) CN

Seeding (Algorithm 1)

HP (u, v) HP
LHN(u, v) LHN
RA(u, v) RA
PA(u, v) PA

Biased coloring-based

CN(u, v) CN + coloring

Seeding (Algorithm 2)

HP (u, v) HP + coloring
LHN(u, v) LHN + coloring
RA(u, v) RA + coloring
PA(u, v) PA + coloring

Random coloring - RN (coloring)

algorithm of Luby [14].
Random Coloring (RN) can be directly used for selecting

seeds, by picking the nodes which have the same color,
for example colorc1. The RN seed selection has some
advantages over simply picking seeds at random. It does not
require the number of seeds to be picked to be known and
it does not pick two neighbors as seeds resulting in fewer
redundant communities.

Although basic random coloring can be used for seed
selection, we also propose a biased graph coloring algo-
rithm which favors the nodes with high similarity scores to
improve the seed selection. The main difference between the
biased and the basic coloring is that, in biased coloring, the
nodes which are expected to be better seeds with respect to
link prediction-based similarity scores pick a specific color,
but in basic coloring, random nodes get the specific color.

Algorithm 2 shows our enhanced seeding algorithm with
our biased graph coloring. First each nodev calculates its
score using a local similarity function, and then assigns the
color c1 to the nodes with the highest score in its egonet,
egonet(v). If a node has not received the colorc1 from
itself or any of its neighbors, it picks a color for itself at
random from the set of available colors. In other words, if
a node has the highest score in at least one neighborhood it
gets the colorc1, otherwise, it picks a random color. After
initialization, each node checks the color of its neighbors,
if there is no conflict, the color is confirmed. Otherwise, if
the score of the node is less than or equal to the score of its
conflicting neighbor, the node picks a new color uniformly
at random usingpick color. This makes sure that the nodes
with high scores preserve their original colorc1.

The algorithm converges when all the nodes in the net-
work have a confirmed color. After convergence, the nodes
which have the colorc1 are selected as the seeds, since these
nodes have the highest similarity score in their neighborhood
and are expected to be good seeds.

Figure 1 shows two scenarios where coloring dramatically
improves seed selection1. Figure 1a shows an example where
three densely connected communities exist and therefore it

1In practice, due to the randomness in the coloring, the selected seeds are
not deterministic. In our experiments section we discuss thistopic further.



Method Seeds

CN 0, 1, 2, 3, 4, 5, 13, 14

HP 0, 1, 2, 3, 13, 14

LHN 0, 1, 2, 3, 7, 13, 14

RA 4, 5, 13, 14

PA 5

EC [10] 0, 1, 2, 3, 7, 10, 13, 14

(k=3)

Method Seeds

CN + coloring 5, 7, 14

HP + coloring 3, 6, 14

LHN + coloring 3, 10, 14

RA + coloring 5, 8, 14

PA + coloring 5, 8, 14

EC + coloring 0, 9, 13

RN (coloring) 3, 7, 13

SH + coloring 

MD + coloring

0, 6, 14

4, 5, 6MD [4] 

SH 4, 5, 6

4, 6, 14
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(a)

Method Seeds

CN + coloring 5, 15, 21

HP + coloring 6, 13, 15, 21

LHN + coloring 6, 15, 17, 18

RA + coloring 1, 8, 16, 21

PA + coloring 7, 14, 16, 21

EC + coloring 5, 14, 16, 21

Method Seeds

CN -

HP -

LHN -

RA -

PA 0, 8

EC [10] 1, 8, 18

(k=4)

7
8
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23
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10
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RN (coloring) 6, 15, 21

SH + coloring 0, 8, 14, 16, 210, 8, 14, 16SH 

MD + coloring 0, 8, 15, 210, 8, 14, 16MD [4] 

(b)

Figure 1: Example graphs and the selected seeds using different methods. Biased coloring improves the seed selection.

is expected that a good seed selection algorithm can pick at
least one seed in each community. However, it can be seen
that while PA only picks one seed, the others pick many
seeds including neighboring nodes. For instance, SH (see
Section III-B) which requires the number of seedsk to be
known in advance, picks node 4, 5, and 6 which have the
highest degree in the network but are directly connected.
We can also see that by adding biased coloring, the seed
selection improves. For instance, PA combined with coloring
selects one seed from each community and the methods
which earlier picked many neighbors, now pick fewer seeds
which are better distributed across the network.

Figure 1b shows another example where the neighboring
nodes do not have any common neighbors. Therefore, by
using the common neighbor-based similarity indices, i.e.,
CN, HP, LNH, and RA, all the nodes get a similarity score of
zero, so our algorithm fails to pick any seeds at all. However,
the figure also shows that when adding biased coloring to
the local seeding methods, a number of seeds are selected
which are well distributed over the graph. In these scenarios,
the biased coloring actually works similar to the random
coloring, since a node will only receive colorc1 if it has
picked it at random.

Time complexity:The time complexity of link prediction-
based score calculation isO(n∆). Our distributed biased
coloring algorithm which is used for enhancing seeding is
based on the algorithm by Luby which can run inO(log n).

C. Local Community Detection

After selecting the seeds, any type of seed expansion
algorithm can be used to identify local communities. In this
paper, we use a local algorithm by Yang et al. [22] which
uses truncated random walks to approximate personalized
PageRank. The main advantages of random walk-based
techniques are that they can be computed locally and in
parallel, the time and space requirements of such algorithms
do not depend on the size of the network [2], and the
communities identified by these types of algorithms are
structurally close to real-world communities [1].

The algorithm by Yang et al. works as follows. First,
the PageRank-Nibblealgorithm of Andersen et al. [2] is
used to compute an approximate personalized PageRank

Table II: Summary of the networks
Dataset |V | |E| |CT |∗

Amazon [22] 334,863 925,872 151,037
DBLP [22] 317,080 1,049,866 13,477
Youtube [15] 1,134,890 2,987,624 8,385
LiveJournal [22] 3,997,962 34,681,189 287,512
SoundCloud 5,187,722 36,989,364 N/A

∗the number of ground truth communities

vector starting from the seed node.2 Then, the algorithm
by Spielman and Teng [18] is used to create a collection of
sets of nodes. The set which has the first local optima of
a scoring function is selected as the final community. The
details of the algorithm can be found in [22], [2], [18]. In
this study, we have used conductance as the scoring function
which has been shown to be good for identifying ground
truth communities [22].

Time complexity:The overall complexity of the local
community detection algorithm can be approximated with
O(

∑k

i=1(vol(Ci))), where k is the number of the seeds
obtained from the seeding algorithm3.

V. EXPERIMENTAL RESULTS

In this section, we evaluate and compare our local seeding
algorithm with other existing algorithms using large scale
real-world networks.

A. Datasets

The networks we have used for this study are listed
in Table II. We have selected different types of publicly
available real-world datasets. Additionally, we have collected
a subset of users from an online social network of a sound
sharing website (SoundCloud) and have generated a new
network for this study.

Amazonis a product network in which nodes are products
and two products have an edge if they were co-purchased
frequently. DBLP is a collaboration network where nodes
are authors and two authors are connected with an edge if
they have co-authored at least one paper. In theYoutubeand

2The community detection algorithm approximates PageRank withan
accuracy valueǫ. In our experiments, we use a constantǫ = 10−4

for comparing different seeding algorithms, instead of trying to find the
accuracy value which leads to the best conductance.

3The complexity of PageRank-Nibble, which is the main components of

the community detection algorithm, isO(|S| log
3 m

φ2 ), where it can return
a communityS with conductance< φ.
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Figure 2: A comparison of different local seeding algorithms and the expanded communities from the selected seeds. CN,
HP, LHN, RA, and PA refer to our local seeding algorithm (Algorithm 1) using the respective similarity indices (see TableI).
EC [10] and MD [4] refer to the local seeding algorithms beingcompared with our algorithm, and All refers to when all
the nodes in the network are used as seeds.

LiveJournalnetworks, the nodes are the users of the video
sharing and online blogging websites, respectively, and the
edges correspond to friendships. In theSoundCloudnetwork,
nodes are users and edges correspond tofollowing relations.

B. Comparison

In order to compare the seeding algorithms, we have
considered the number of nodes which are selected as seeds
by each algorithm, the quality of the identified communities
from these seeds, and the number of nodes being covered
by these communities.

In order to compare the quality of the identified com-
munities, we use both the conductance of the communities
and the similarity with the ground truth communities. The
similarity is calculated using theF1-scorewhich is defined
as F1-score= 2 precision . recall

precision+recall
, whererecall = |S∩C|

|C| ,

precision = |S∩C|
|S| , and S and C denote the detected

and the ground truth community, respectively. The average
f1-score over all the communities is used to compare the
communities expanded from the seeds by different seeding
algorithms.

If there is more than one community that overlaps with
a ground truth community, we select the one with the
highest f1-score, and the duplicate communities are ignored.
Moreover, communities which do not have any common
nodes with the ground truth communities are not considered
in the calculation of the average f1-score. Such communities
exist, since there are nodes in the networks which belong to
a community but are not annotated to be in the ground truth
community, i.e., the networks are “partially annotated” [19].

1) Link Prediction-based Seed Selection:Figure 2 shows
a comparison of our link prediction-based seeding algorithm

(Algorithm 1) using similarity indices CN, HP, LHN, PA,
and RA (see Table I) with two other local seeding algorithms
EC [10] and MD [4] (see Section III-B), as well as when
all the nodes in the network are used as seeds (All). It can
be seen that PA results in the highest average f1-score and
the lowest average conductance for most of the networks
being studied. The other four similarity indices used in our
algorithm also succeed in selecting a small number of good
seeds, which are expanded into high quality communities.
However, none of the local seeding methods can achieve a
high coverage in all the networks.

2) Biased Coloring-based Seed Selection:Figure 3 shows
a comparison of seed selection enhanced with biased col-
oring, as well as the basic random coloring (RN). It can
be seen, that by adding biased coloring, the coverage of
the communities is dramatically improved regardless of the
similarity index being used. Without biased coloring, our
seeding algorithm (Algorithm 1) was able to identify a few
very high quality communities, but after being enhanced
with coloring (Algorithm 2), it selects a small number of
seeds but now leads to communities with a similar average
quality compared to when all the nodes are used as seeds
(All). The figure also shows that using biased coloring has
improved the coverage of existing local seeding methods,
i.e., EC and MD (see Section III-B).

Note that the biased coloring is not deterministic since the
color conflicts are resolved at random. Although it is possi-
ble to use a deterministic distributed coloring algorithms,
e.g., [3], our experiments have shown that the induced
randomness does not affect the community detection much
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Figure 3: A comparison of different local seeding algorithms and the expanded communities from the selected seeds. CN,
HP, LHN, RA, and PA refer to our local seeding algorithm enhanced with biased coloring (Algorithm 2) using the respective
similarity indices, and RN refers to our basic random coloring algorithm (see Table I). EC + coloring and MD + coloring
refer to existing local seeding algorithms which are also enhanced with our biased coloring algorithm, and All refers to
when all the nodes in the network are used as seeds.

and the results are quite stable.4

3) Local versus Global Seeding:The seeding algorithms
compared up to this point are all local methods. There
are also seeding algorithms which assume that a global
knowledge of a network exists, and therefore this knowledge
can be used for selecting good seeds. In this study, we
include the Spread hub (SH) algorithm [19] which requires
the degree of all the nodes in the network to be known and
which is shown to select good seeds (Section III-B). Table III
shows the results using SH for three of the networks.

In addition to the global knowledge, SH requires the
minimum number of seeds,k, to be known in advance. Un-
fortunately, our knowledge of the real community structure
of many real networks is very limited, therefore it is not easy
to estimate a correct value fork. It can be seen in the table
that the selection ofk dramatically affects the quality and
the coverage of the communities. The table also shows the
community quality and coverage when SH is enhanced with
our biased coloring, and it can be seen that coloring can
compensate for a bad selection ofk. Although the global
knowledge is available in this scenario, our experiments
show that using local coloring for seed selection is a good
and safe choice, since even with a global knowledge of the
network, selecting the right number of seeds is not easy.

4) Execution Time:Finally, we have compared the ex-
ecution time of personalized PageRank-based community
detection using our seeding algorithm (PA + coloring) ver-
sus running the community detection for all the nodes in

4In the figures, all the results for the coloring enhanced seeding methods
are computed at least 5 times and the figures show the mean values with
95% confidence interval (the error bars were too small to be shown).

Table III: Comparison of SH with different percentage of
graph nodes ask

Dataset k (% of n) Seeds F1-score Conductance Coverage

Amazon

3% 0.03 0.50 0.16 0.89
10% 0.11 0.53 0.20 0.98
15% 0.18 0.52 0.23 0.99

3%+coloring 0.11 0.56 0.22 0.99

DBLP

3% 0.03 0.28 0.25 0.83
10% 0.12 0.23 0.28 0.96
15% 0.17 0.21 0.30 0.98

3%+coloring 0.16 0.21 0.30 0.99

Youtube

3% 0.03 0.10 0.40 0.61
10% 0.10 0.11 0.40 0.87
15% 0.18 0.10 0.41 0.94

3%+coloring 0.15 0.10 0.41 0.92

Table IV: Execution time
Seeding Community

Detection
F1-Sc. Cond. Cov.

Amazon
PA+coloring 52 s 2 h 38 m 0.55 0.22 0.99

All - 17 h 15 m 0.51 0.23 1.00
Demon - 37 h 40 m 0.51 0.50 0.79

DBLP
PA+coloring 2 m 16 s 1 h 12 m 0.19 0.30 0.96

All - 8 h 42 m 0.21 0.31 1.00
Demon - 32 h 54 m 0.25 0.63 0.85

Youtube
PA+coloring 7 m 54 s 1 h 38 m 0.12 0.37 0.80

All - 14 h 47 m 0.09 0.47 0.99
Demon - 52 h 48 m 0.23 0.73 0.23

the network (All). We have also compared the execution
times with an state-of-the-art local overlapping community
detection algorithm, DEMON [7], which is based on the
idea that different nodes have different views of the com-
munities in their neighborhood and these communities can
be merged into the global communities of the network. All
the implementations we have used are in Python.5

5We have used the implementation of Demon provided by its authors,
and have usedǫ = 0.3 and the default minimum community size for the
experiments.



Table IV summarizes the execution times. It can be seen
that our seeding algorithm (PA + coloring) is very fast and
that the use of seeding dramatically reduces the execution
time of the community detection. It can also be seen that
our algorithm leads to a better combination of high coverage
with good quality communities compared to DEMON.

VI. CONCLUSIONS

In this paper, a novel distributed parameter-free seed
selection algorithm is presented which only requires local
computations. In our algorithm, we have taken advantage
of the similarity indices widely used for link prediction to
select a small number of good seeds. We have also enhanced
our seeding algorithm with a novel biased coloring algorithm
to further improve the seed selection. The seeds identified
by our algorithm have then been expanded into high quality
overlapping communities using a personalized PageRank-
based community detection algorithm which can also be
computed locally.

Experiments using different types of large-scale real-
world networks have shown that our seeding algorithm is
able to pick nodes that are well-distributed over the networks
and are expanded into communities with both high coverage
and good quality. Our results also show that using seed
selection can dramatically reduce the execution time of
community detection while preserving the quality of the
identified communities.
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