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Abstract. In the shift from traditional to cyber-physical electric grids,
motivated by the needs for improved energy efficiency, Advanced Meter-
ing Infrastructures have a key role. However, together with the enabled
possibilities, they imply an increased threat surface on the systems. Chal-
lenging aspects such as scalable traffic analysis, timely detection of mali-
cious activity and intuitive ways of specifying detection mechanisms for
possible adversary goals are among the core problems in this domain.
Aiming at addressing the above, we present METIS , a two-tier streaming-
based intrusion detection framework. METIS relies on probabilistic mod-
els for detection and is designed to detect challenging attacks in which
adversaries aim at being unnoticed. Thanks to its two-tier architecture, it
eases the modeling of possible adversary goals and allows for a fully dis-
tributed and parallel traffic analysis through the data streaming process-
ing paradigm. At the same time, it allows for complementary intrusion
detection systems to be integrated in the framework.
We demonstrate METIS ’ use and functionality through an energy ex-
filtration use-case, in which an adversary aims at stealing energy infor-
mation from AMI users. Based on a prototype implementation using
the Storm Stream Processing Engine and a very large dataset from a
real-world AMI, we show that METIS is not only able to detect such
attacks, but that it can also handle large volumes of data even when run
on commodity hardware.

Key words: Advanced Metering Infrastructures, Intrusion Detection
Systems, Data Streaming

1 Introduction

The shift from traditional to cyber-physical grids relies on the deployment of Ad-
vanced Metering Infrastructures (AMIs) in which communication-enabled meters
share data with the utility’s head-end and are remotely controlled. In this con-
text, the strict coupling between threats’ cyber and physical dimensions (that
can possibly result in human losses or physical damage [4]) demands for appro-
priate defense mechanisms. As Stuxnet[7] taught us, malicious activity designed

? Some preliminary results of METIS that do not overlap with the contribution of this
work have been presented in a poster paper at the fifth International Conference on
Future Energy Systems (ACM e-Energy), 2014
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to hide its malicious behavior can be carried out during years before being de-
tected.

Despite the limited number of real attacks documented so far, a considerable
number of possible attack vectors has been uncovered [17]. Specification-based
Intrusion Detection Systems (IDSs) [1, 18], the main defense mechanism pro-
posed so far for this domain, detect malicious activity by means of deviations
from defined behavior. Such IDSs usually require a considerable amount of man-
ual labor by a security expert in order to tune them to specific installations [1].
At the same time, they do not provide a comprehensive protection against all
possible adversary goals. As an example, they might distinguish messages that
comply with a given protocol from messages that do not, but might fail in dis-
tinguishing whether a message that does not violate the protocol is sent by an
intact or a compromised device.

Challenges Kush et al. [14] claim traditional IDSs cannot be used effectively in
these environments without major modifications and they mention nine chal-
lenges, four of which are taken into account in this paper: scalability, adaptive-
ness, network topology and resource-constrained end devices. As discussed in [1],
AMIs consist of several independent networks whose overall traffic cannot be
observed by a centralized IDS. Hence, the IDS should process data in a dis-
tributed fashion in order to embrace the different networks composing the AMI.
Furthermore, the processing capacity of a centralized IDS would be rapidly ex-
hausted by the big, fluctuating volume of data generated by AMIs’ devices. To
this end, the IDS should also process data in a parallel fashion in order to cope
with the volumes of data and detect malicious activity timely. It should be noted
that existing privacy regulations play an important role when it comes to the
information accessed to spot malicious activity. As discussed in [19], fine-grain
consumption readings reveal detailed information about household activities and
could be used to blackmail public figures [8]. For this reason, while being inter-
ested in detecting malicious activity, the utility maintaining the AMI might not
have access to underlying information owned by energy suppliers. Hence, the
IDS should be able to detect malicious activity while relying on partial evidence
(i.e., while accessing a limited set of traffic features). Finally, the IDS should
avoid expensive per-site customization by providing an efficient way to specify
how to detect malicious activities.

Contributions We present METIS 2, an Intrusion Detection framework that
addresses these challenges by employing a two-tier architecture and the data
streaming processing paradigm [23]. METIS has been designed giving particular
attention to the detection of malicious activity carried out by adversaries that
want to go unnoticed. The challenge in the detection of such malicious activity
lies in that suspicious traffic proper of a given adversary goal can be caused by
both legitimate and malicious factors. We provide the following contributions:

2 Named after the mythology figure standing for good counsel, advice, planning, cun-
ning, craftiness, and wisdom.
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1. A two-tier architecture that provides a scalable traffic analysis that can be
effective while (possibly) relying on a limited set of traffic features. Its two-
tier architecture eases the system expert interaction (who can model the
traffic features affected by an adversary goal by means of Bayesian Networks)
and allows for complementary detection mechanisms such as specification-
based and signature-based ones to be integrated in the framework.

2. A prototype implementation programmed using Storm [24], a state of the art
Stream Processing Enginge used mainstream applications (such as twitter).

3. One of the first evaluations based on data extracted from a real-world AMI
and focusing on energy exfiltration attacks in which the adversary aims at
stealing energy consumption information from AMI users. The evaluation
studies both the detection capabilities of the framework and its applicabil-
ity while relying on commodity hardware. To the best of our knowledge,
detection of such attacks has not been addressed before.

The paper is structured as follows. We introduce some preliminary concepts
in Section 2. In Section 3 we overview the METIS ’ architecture while we discuss
its implementation in Section 4. An example showing how the framework is
applied to the energy exfiltration use-case is presented in Section 5. We present
our evaluation in Section 6, survey related work in Section 7 and conclude in
Section 8.

2 Preliminaries

2.1 Advanced Metering Infrastructure model

We consider a common AMI model, composed of two types of devices: Smart
Meters (SMs), in charge of measuring energy consumption and exchanging event
messages such power outage alarms or firmware updates, and Meter Concentrator
Units (MCUs), in charge of collecting such information and forwarding it to the
utility head-end. Different network topologies exist in real-world AMIs (e.g.,
point-to-point, hierarchical or mesh ones). In order to encompass all possible
networks and represent AMIs that can evolve over time, we consider a generic
network, in which SMs are not statically assigned to specific MCUs.

Among the messages that are exchanged by the AMI’s devices, two are of
particular interest with respect to the use-case that will be introduced in the
following: Energy Consumption Request (ECReq) messages, sent by MCUs, and
Energy Consumption Response (ECResp) messages, sent by SMs. Such messages
are used to retrieve energy consumption and can be exchanged several times per
day.

2.2 Intrusion Detection in Advanced Metering Infrastructures

AMIs are characterized by their slow evolution and limited heterogeneity. That
is, they are composed by a limited set of device types and their evolution is
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dictated by small (and often planned) steps (e.g., deployment of a new meter,
replacement of a broken meter, and so on). Given a time frame that ranges from
days to months, such evolution is “slow” and thus enables for detection tech-
niques, such as anomaly-based ones, building on machine learning mechanisms.
Nevertheless, the same evolving nature demands for a continuous learning that
evolves together with the AMI (thus addressing the adaptiveness and network
topology challenges discussed in [14]).

As introduced in Section 1, distributed and parallel network traffic analysis
should be employed in order to embrace the different networks that compose
AMIs while coping with the large and fluctuating volume of data produced by
their devices. The distinct deployment options for an IDS in this domain can be
characterized in a spectrum. At one extreme, the analysis could be performed
by the utility head-end system. In this case, the devices should be instructed to
report their communication exchanges to the head-end (at least, the ones that
are required to detect a given attack). On the other extreme, the computation
could be performed by the AMI’s devices themselves, as investigated recently
in [20]. This option would also be limited by the computational resources of the
devices. Intermediate solutions could rely on a dedicated sensing infrastructure
that runs the analysis together with the utility head-end system, as discussed
in [10]. To our advantage, relying on the data streaming processing paradigm
simplifies the deployment of an AMI defense framework to the requirement of
providing a set of nodes (sensing devices or servers) that embraces the possible
existing networks of the AMI. We refer the reader to [11] for a detailed discussion
about how data streaming applications can be deployed at arbitrary number of
nodes (thus addressing the scalability challenge discussed in [14]).

2.3 Adversary model

Several types of attacks can be launched against AMIs. On one hand, attacks
such as Denial of Service (DoS) or Distributed Denial of Service (DDoS) are
meant to be noticed (i.e., they impose a challenge in their mitigation rather
than detection). On the other hand, more subtle attacks can be carried out by
adversaries that want to go unnoticed. This second type of attacks (imposing
a challenge in their detection) are the main target of METIS . Such adversaries
could be interested in installing a malicious firmware that, while leaving the
device’s communication unaffected, would allow them to use the AMI as a com-
munication medium [10]. At the same time, a malicious firmware could also be
installed to lower bills by reducing the consumption readings reported by the
meters (causing an energy theft attack [16]).

Energy Exfiltration use-case In this scenario, the adversary aims at stealing en-
ergy consumption information from AMI users. As discussed in [19], fine-grained
consumption readings collected over a sufficiently large period reveal detailed in-
formation about household activities and could be used to blackmail public fig-
ures [8]. Given our AMI model, such malicious activity can be carried out after
successfully logging into an MCU or by deploying a (malicious) MCU replica and
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collecting energy consumption readings over a certain number of days. The sub-
tle nature of this attack lies in that suspicious exchanges of ECReq and ECResp
messages can be caused not only by the adversary, but also by legitimate factors
(e.g., noisy communication between devices, unreachable devices, and so on).

2.4 Data Streaming

A stream is defined as an unbounded sequence of tuples t0, t1, . . . sharing the
same schema composed by attributes 〈A1, . . . , An〉. Data streaming continuous
queries are defined as graphs of operators. Nodes represent operators that con-
sume and produce tuples, while edges specify how tuples flow among operators.
Operators are distinguished into stateless (e.g., Filter, Map) or stateful (e.g.,
Aggregate, EquiJoin, Join), depending on whether they keep any evolving state
while processing tuples. Due to the unbounded nature of streams, stateful op-
erations are computed over sliding windows (simply windows in the remainder),
defined by parameters size and advance. In this context, we focus on time-based
windows. As an example, a window with size and advance equal to 20 and 5
time units, respectively, will cover periods [0, 20), [5, 25), [10, 30) and so on.

<ts,src,dst,msg>
<20:00,MCU0,SM0,ECReq>
<20:09,SM0,MCU0,ECResp>
<20:15,MCU1,SM1,ECReq>
<20:16,MCU1,SM1,ECReq>
<20:35,SM1,MCU1,ECResp>
<20:50,MCU2,SM2,ECReq>
<21:00,SM2,MCU2,ECResp>

...

Aggregate
Count
Group by: src
Win. size: 1 hour
Win. adv: 1 hour

Filter
Condition: src=MCU

<ts,src,dst,msg>
<20:00,MCU0,SM0,ECReq>
<20:15,MCU1,SM1,ECReq>
<20:16,MCU1,SM1,ECReq>
<20:50,MCU2,SM2,ECReq>

...

<ts,src,#msg>
<20:00,MCU0,1>
<20:00,MCU1,2>
<20:00,MCU2,1>

...

Fig. 1: Sample query that computes the number of messages forwarded by each
MCU during the last hour. The figure includes the abstract schema and a set of
sample tuples for each stream.

The generic schema of the streams generated by the AMI’s devices is com-
posed by attributes 〈ts, src, dst,msg〉, specifying the timestamp ts at which mes-
sage msg is forwarded by source src to destination dst. In the remainder, we
use the terms tuple and message interchangeably when referring to the devices’
communication. Figure 1 presents a sample query that computes the number of
messages forwarded by each MCU during the last hour for a given set of input
tuples (also shown in the figure).

2.5 Bayesian Networks

Bayesian Networks (BNs) provide a probabilistic graphical model in which a
set of random variables (and their dependencies) are represented by means of
a Directed Acyclic Graph. Given two random variables A and B, a directed
edge from A to B specifies that the latter is conditioned by the former [9]. The
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conditional probability P (B = bj |A = ai) represents the probability of observing
bj given that ai has already been observed. Figure 2 presents a sample Bayesian
Network in relation with our AMI model.

Sample Bayesian Network composed by three variables: MCU, SM and 
MSG. This Bayesian Network specifies that the probability of observing a 
given message MSG depends both on the MCU and the SM exchanging it.

MSG

MCU SM

Fig. 2: Sample Bayesian Network.

3 METIS - Overview

This section overviews METIS ’ architecture and presents how adversary goals
can be specified by the system expert. Multiple adversary goals can be specified
at the same time. For the ease of the exposition, we provide examples that focus
on our energy exfiltration use-case.

3.1 Architecture overview

Advanced 
Metering 
Infrastructure

MCU

SM

SM SM

SM

MCU

SM

Interaction Modeler: detect suspicious messages 
exchanged by the devices

Pattern Matcher: detect suspicious messages 
representative of given adversary goals

Suspicious message

Alarm

Fig. 3: Overview of METIS two-tier architecture.

Millions of messages are generated on a daily basis by the AMI’s devices.
Such messages carry heterogeneous information related to energy consumption,
energy quality and power outages, among others. If we put ourselves in the role of
the system expert, it might be hard to specify how evidence of a given adversary
goal could be detected while processing such traffic as a whole. The work required
by the system expert can be simplified by splitting it into two narrower tasks:
(i) specify how an adversary goal could affect the interaction of certain types
of devices (possibly belonging to different networks) and (ii) specify the pattern
of suspicious interactions that could be observed over a certain period of time.
This decomposition would also ease the deployment of a scalable distributed
and parallel traffic analysis. The interaction of the devices could be studied
close to the devices themselves (i.e., embracing the different networks of an AMI



METIS 7

and monitoring the potentially huge amounts of traffic in parallel). Based on
these observations, we designed METIS to analyze the AMI traffic by means
of two tiers: the Interaction Modeler and the Pattern Matcher (as presented in
Figure 3). Among its benefits, this two-tier architecture allows for other IDS
to be plugged into the framework (e.g., by replacing the provided Interaction
Modeler with a specification-based IDS such as [1]).

Interaction Modeler This tier analyzes the messages received and sent by
each device and relies on anomaly-based detection to distinguish the ones that
are expected from the suspicious ones.

The anomaly-based technique employed by the Interaction Modeler distin-
guishes between expected and suspicious messages based on the probability of
observing them. It should be noticed that such probability evolves over time
and is potentially influenced by several factors. As an example, the probability
of observing an ECReq message could depend on the MCU forwarding it, on the
SM receiving it, on the quality of the communication between these two devices,
and so on.

If we tackle this aspect from the system expert point of view, it is desirable
to have an intuitive way of specifying with traffic features should be taken into
account for a given adversary goal. To our advantage, Bayesian Networks (BNs)
provide an effective and graphical way of representing such features and their
inter-dependencies. At the same time, BNs can also be automatically translated
into data streaming queries, as we discuss in Section 4.2.

Since METIS relies on the data streaming processing paradigm, probabilities
are maintained over a window of size IMWS and advance IMWA (specified by the
system expert), thus coping with the evolving nature of AMIs. IMWS represents
the period of time during which traffic should be observed in order to have rep-
resentative probabilities. IMWA specifies the amount of information that should
be discarded each time the window slides. As an example, if parameters IMWS

and IMWA are set to 12 months and 1 months, respectively, probabilities based
on the traffic observed during the last year would be produced every month.

Pattern Matcher The anomaly-based detection mechanism employed by the
Interaction Modeler , based on the probability with which messages are expected,
can result in legitimate messages being considered as suspicious. As an example,
this could happen when lossy communication between a pair of devices leads to
a low expectation associated to a certain legitimate message. For this reason,
the Pattern Matcher consumes the suspicious messages forwarded by the Inter-
action Modeler in order to distinguish the ones that are isolated from the ones
representative of a given adversary goal, raising an alarm in the second case.

The system expert is required to specify how suspicious messages should be
processed by means of four parameters. An alarm is raised if a threshold T of
suspicious messages sharing the same values for the set of attributes GB are
observed given a window of size PMWS and advance PMWA.
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a) Interaction Modeler b) Pattern Matcher

Bayesian Network:
HourMCU SM

Reqs Resps

IMWS: 4 weeks
IMWA: 1 week

T: 4
GB: MCU,SM,Hour
PMWS: 7 days
PMWA: 1 day

Fig. 4: Input provided by the system expert for METIS ’ Interaction Modeler
and Pattern Matcher

3.2 Energy exfiltration use-case

Interaction Modeler Given our adversary model for the energy exfiltration use-
case, the malicious traffic would result in an unusual exchange of ECReq and
ECResp messages between a pair of MCUs and SMs. Hence, the system ex-
pert could define a BN composed by two variables: Reqs (the number of ECReq
messages observed in the window) and Resps (the number of ECResp messages
observed in the window), with Reqs being a conditional variable for Resps. In our
model, SMs are not statically connected to MCUs. Moreover, energy consump-
tion readings can be retrieved multiple times at different hours during each day
(the hour actually depends on the MCU). For this reason, more variables could
be added to the BN, as shown in Figure 4.a. Since SMs do not change the MCU
to which they connect on a daily basis, a window of four weeks (IMWS=4 weeks)
updated every week (IMWA=1 week) could be long enough to detect unexpected
exchanges of ECReq and ECResp messages.

Pattern Matcher As discussed in Section 2.3, the adversary is willing to collect
energy consumption readings over a certain number of days in order to infer
detailed information about the victim’s household activities. In this example
(Figure 4.b), the system expert specifies that an alarm should be raised if at
least four suspicious messages (T=4) are observed for the same MCU, SM and
hour (GB=MCU,SM,Hour) given a window of size seven days (PMWS=7 days)
and advance one day (PMWA=1 day).

4 Detecting anomalies by means of continuous queries

As discussed in Section 3.1, one of the motivations of METIS is to ease the sys-
tem expert’s interaction with the framework. For this reason, METIS decouples
the semantics of the analysis from its actual implementation and deployment.
That is, it requires the expert to specify how to detect a given adversary goal by
means of a BN and a set of parameters, while it is responsible for compiling such
information into a data streaming query. In the following sections we overview
the processing carried out by the query, also discussing how the BN is learnt by
means of data streaming operators.
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Data Preparer BN Learner
Probabilistic 

Filter
Pattern 
Matcher

Interaction Modeler

Fig. 5: Overview of the query created by METIS .

4.1 Continuous query - overview

Both the traffic analysis of the Interaction Modeler and the Pattern Matcher
are carried out by a single data streaming query compiled by METIS . For the
ease of the exposition, we present this query by means of four modules: the Data
Preparer , the BN Learner , the Probabilistic Filter and the Pattern Matcher
(as presented in Figure 5). The first three modules perform the analysis of the
Interaction Modeler while the last module is responsible for the analysis of the
Pattern Matcher .

The Data Preparer pre-processes the information required to learn the given
BN. It relies on a Filter operator to discard messages that are not relevant for
the BN and on an Aggregate operator to aggregate the information based on
the BN’s variables. The tuples forwarded by the Data Preparer are consumed
by the BN Learner , in charge of maintaining the probabilities over the window
of size IMWS and advance IMWA. The exact number of operators that compose
the BN Learner depends on the number of variables specified by the BN, as
we discuss in the following section. The tuples produced by the BN Learner
associate the messages observed during the given window to a certain probabil-
ity. This information is processed, together with the information produced by
the Data Preparer , by the Probabilistic Filter . As discussed in Section 2.2, the
evolving nature of AMIs demands for continuous learning. For this reason, the
Probabilistic Filter compares each tuple produced by the Data Preparer with its
associated probability learned over the latest completed window. As an exam-
ple, if parameters IMWS and IMWA are set to 10 and 5 time units, respectively,
the window will cover periods P1 = [0, 10), P2 = [5, 15), P3 = [10, 20), and so
on. Messages observed in period [10, 15) would be matched with the probabil-
ities learned during period P1, messages observed in period [15, 20) would be
matched with the probabilities learned during period P2, and so on. A tuple
produced by the Data Preparer is forwarded by the Probabilistic Filter based
on a probabilistic trial. As an example, if the probability learned for a certain
message is 0.9, such a message will be forwarded with a probability equal to 0.1.
Tuples forwarded by the Probabilistic Filter represent the tuples considered as
suspicious by the Interaction Modeler . As discussed in Section 3.1, an alarm is
raised if at least T suspicious messages sharing the same values for the set of at-
tributes GB are observed given a window of size PMWS and advance PMWA. The
Pattern Matcher relies on an Aggregate operator to count how many suspicious
messages sharing the same values for the set of attributes GB are received given
a window of size PMWS and advance PMWA. A Filter operator is used to filter
only the tuples produced by the Aggregate operator whose counter is greater
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than or equal to T. We provide an example of the continuous query associated
to the energy exfiltration use-case in Section 5.

4.2 Learning BNs by means of data streaming operators

The number of operators composing the BN Learner depends on the variables
defined for the BN. As we discuss in the following, the ability to automatically
convert a BN to a query boils down to the ability of computing the probabilities
of its variables by means of data streaming operators.

Given two discrete variables X such that supp(X) ∈ {x0, x1, . . . , xm} and Y
such that supp(Y ) ∈ {y0, y1, . . . , yn} and a sequence S of observations o1, o2, . . .
such that os = 〈xi, yj〉 and all observations belong to the same window, the
conditional probability can be computed as

P (Y = yj |X = xi) =
|{os ∈ S|os = 〈xi, yj〉}|
|{os ∈ S|os = 〈xi, .〉}|

In order to compute such a value, we need to count the number of occurrences
of each pair 〈xi, yj〉 and each value xi. In terms of data streaming operators, these
numbers can be maintained by two Aggregate operators. The first Aggregate
operator would count the occurrences of each pair 〈xi, yj〉. Similarly, the second
Aggregate operator would count the occurrences of each value xi. Subsequently,
values referring to the same xi value could be matched by an EquiJoin operator
and the resulting division computed by a Map operator.

Figure 6 presents a sample execution of the operators for a given sequence of
tuples. In the example, variable X assumes values {x0, x1} while variable Y as-
sume values {y0, y1}. In the example, the windows’ size and advance parameters
are both set to 10 time units.

Aggregate A1
Count
Group by: X,Y
Win. size: 10 
Win. adv: 10

EquiJoin E1
Equality: X
Win. size: 10 
Win. adv: 10

Map M1
Out fields:
X,Y,Z,C1/C2

Aggregate A2
Sum(C)
Group by: X
Win. size: 10 
Win. adv: 10

<ts,X,Y>
0,x0,y0

1,x0,y0

4,x0,y1

5,x1,y0

7,x1,y0

8,x1,y1

9,x0,y0

11,x0,y0

...

<ts,X,Y,C>
0,x0,y0,3
0,x0,y1,1
0,x1,y0,2
0,x1,y1,1

<ts,X,C>
0,x0,4
0,x1,3

<ts,X,Y,C1,C2>
0,x0,y0,3,4
0,x0,y1,1,4
0,x1,y0,2,3
0,x1,y1,1,3

<ts,X,Y,P>
0,x0,y0,0.75
0,x0,y1,0.25
0,x1,y0,0.67
0,x1,y1,0.33

Fig. 6: Continuous query used to compute P (Y |X). The figure includes the
abstract schema and a set of sample tuples for each stream.

5 Energy exfiltration use-case - Sample Execution

In this section, we provide a sample execution of the continuous query compiled
by METIS , given the BN and the parameters presented in Section 3.2. The
query is presented in Figure 7. For the ease of the exposition, we focus on the
messages exchanged between a single pair of MCUs and SMs, 〈mcu0, sm0〉.
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<ts,src,dst,msg>
2012/09/01-20:01,mcu0,sm0,ECReq
2012/09/01-20:02,sm0,mcu0,ECResp
2012/09/20-20:00,mcu0,sm0,ECReq
2012/09/20-20:02,sm0,mcu0,ECResp
2012/09/28-20:00,mcu0,sm0,ECReq
2012/09/28-20:01,mcu0,sm0,ECReq
2012/09/28-20:02,sm0,mcu0,ECResp
2012/09/28-20:02,sm0,mcu0,ECResp

-------------------------------------
2012/10/01-20:01,mcu0,sm0,ECReq
2012/10/01-20:02,sm0,mcu0,ECResp
2012/10/02-20:00,mcu0,sm0,ECReq
2012/10/02-20:01,sm0,mcu0,ECResp
2012/10/02-20:01,mcu0,sm0,ECReq
2012/10/02-20:02,sm0,mcu0,ECResp
2012/10/03-20:00,mcu0,sm0,ECReq
2012/10/03-20:01,mcu0,sm0,ECReq
2012/10/03-20:01,sm0,mcu0,ECResp
2012/10/03-20:02,mcu0,sm0,ECReq
2012/10/03-20:03,sm0,mcu0,ECResp

...

Interaction Modeler parameters
WSDM: 4 weeks
WSDM: 1 week
Pattern Matcher parameters
T: 2
GB: MCU,SM,Hour
PMWS: 7 days
PMWS: 1 day

<ts,mcu,sm,hour,#Reqs,#Resps>
2012/09/01,mcu0,sm0,20,1,1
2012/09/20,mcu0,sm0,20,1,1
2012/09/28,mcu0,sm0,20,2,2
-------------------------------------
2012/10/01,mcu0,sm0,20,1,1
2012/10/02,mcu0,sm0,20,2,2
2012/10/03,mcu0,sm0,20,3,2

<ts,mcu,sm,hour,#Reqs,#Resps,Prob>
2012/09/01,mcu0,sm0,20,1,1,0.67
2012/09/28,mcu0,sm0,20,2,2,0.33

<ts,mcu,sm,hour,#Reqs,#Resps>
2012/10/02,mcu0,sm0,20,2,2
2012/10/03,mcu0,sm0,20,3,2

<ts,mcu,sm,hour>
2012/10/01,mcu0,sm0,20

Pattern Matcher

Create alarm if 2 or more 
suspicious messages are 
observed for the same MCU, 
SM and Hour over one week

Probabilistic Filter

Malicious input tuples and 
subsequent tuples affected 
by them are marked in red.

Forward ECReq and ECResp 
messages, count them for each 
MCU, SM and Hour

Data Preparer

Compute 
P(Reqs,Resps|MCU,SM,Hour)

BN Learner

Fig. 7: Sample execution of the query compiled for the energy exfiltration use-
case. The figure includes the abstract schema and a set of sample tuples for each
stream.

The Data Preparer module relies on its Filter operator to forward only
ECReq and ECResp messages. These messages are then consumed by the Ag-
gregate operator, in charge of counting how many ECReq and ECResp messages
are exchanged between each MCU and SM and for each hour. In the example,
malicious messages (injected by the adversary) are marked in red. As shown
in the figure, an exchange of a single ECReq and a single ECResp message is
observed twice while an exchange of two ECReq and two ECResp messages is
observed only once during the month of September. Similarly, exchanges of one
ECReq and one ECResp messages, two ECReq and two ECResp messages, and
three ECReq and two ECResp messages are observed once during the month of
October. The last two tuples produced by the Aggregate operator are marked
in red since they are influenced by the malicious input messages.

The probability of observing each combination is computed by the BN
Learner module. The probability of observing an exchange of one ECReq
and one ECResp messages is 67% while the probability of observing an ex-
change of two ECReq and two ECResp messages is 33%. The probabilities
computed by the BN Learner and the tuples produced by the Data Preparer
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are matched by the Probabilistic Filter . As discussed in Section 4.1, each tu-
ple produced by the Data Preparer is matched with its associated proba-
bility observed in the latest completed window. In the example, tuples pro-
duced during the month of October will be matched with the probabilities ob-
served for the month of September. Tuples 〈2012/09/01,mcu0, sm0, 20, 1, 1〉,
〈2012/09/02,mcu0, sm0, 20, 2, 2〉 and 〈2012/09/03,mcu0, sm0, 20, 3, 2〉 have a
probability of 0.33, 0.67 and 1, respectively, of being considered as suspicious.
In the example, tuples 〈2012/09/02,mcu0, sm0, 20, 2, 2〉 and 〈2012/09/02,mcu0,
Sm0, 20, 3, 2〉 are considered as suspicious and forwarded. Since the threshold T
is set to two, an alarm is raised by the Pattern Matcher .

6 Energy Exfiltration use-case - Evaluation

In this section we evaluate METIS with respect to our energy exfiltration use-
case and show that (i) it is able to detect malicious activity and that (ii) it can
be leveraged by relying on commodity hardware. We first present the evaluation
setup, discussing the real world AMI from which data is extracted and the at-
tack injection methodology for the energy exfiltration attacks. We continue by
presenting the detection accuracy for a given configuration of the Interaction
Modeler and the Pattern Matcher , also discussing how different configurations
affect their detection capabilities. Subsequently, we evaluate the processing ca-
pacity of METIS (in terms of throughput and latency) when executed by a
server that could be deployed at the utility head-end.

6.1 Testbed and dataset description

METIS has been implemented on top of Storm, version 0.9.1. The continuous
query (topology in Storm’s terminology) is composed by fourteen operators. The
real-world AMI used in our evaluation is composed by 300,000 SMs that com-
municate with 7,600 MCUs via IEEE 802.15.4 and ZigBee. The network covers
a metropolitan area of 450 km2 with roughly 600,000 inhabitants. The utility
extracted data for a subset of 100 MCUs that communicate with approximately
6,500 SMs and made it available for us. The input data covers a period of six
months ranging from September 2012 to February 2013. To the best of our knowl-
edge, this dataset is free from energy exfiltration attacks. SMs are not statically
linked to MCUs. At the same time, SMs appear and disappear (e.g., because of
new installations or decommissioning). MCUs are in charge of collecting energy
consumption readings at different hours, usually two or three times per day (the
hours at which the collection happens is specific for each MCU). Due to the
wireless communication, it is common for MCUs and SMs to lose messages that
are thus forwarded multiple times. Each MCU has a maximum of three attempts
per hour to retrieve the energy consumption of a given SM. The information kept
by the utility does not contain the exact number of messages exchanged for a
given MCU, SM and day. Nevertheless, we are able to compute the probabilities
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with which a message is lost (and hence sent again) based on the logs stored by
the MCUs. The ECReq and ECResp messages for each MCU, SM and day are
simulated based on such probabilities.

In order to inject adversary traffic, we randomly pick a MCU-SM pair and,
during a period that goes from seven to ten days, we inject ECReq and ECResp
messages. In total, we inject 50 energy exfiltration attacks, resulting in 995 ma-
licious messages. Note that these messages are subject to the same probability
of being lost as any legitimate message. Furthermore, in order to simulate the
behavior of a subtle adversary, malicious messages are exchanged at the same
hour at which the MCU is actually retrieving energy consumption readings (as it
would be trivial to detect an energy exfiltration attack if messages are exchanged
when the MCU is not supposed to communicate).

6.2 Detection Accuracy

In this experiment, the BN is the one presented in Section 3.2. The Interaction
Modeler ’s parameters IMWS and IMWA are set to four weeks and one week,
respectively. The Pattern Matcher ’s window parameters PMWS and PMWA are
set to seven days and one day, respectively. The Pattern Matcher is instructed
to raise an alarm if at least a threshold T of five suspicious messages sharing the
same values for the set of attributes MCU,SM and Hour is observed. A summary
of the results is presented in Table 1.

AMI data

Number of attacks 50
Number of malicious messages 995
Overall number of messages 4, 146, 327
Messages per day (average) 23, 743
Suspicious messages per day (average) 450

Interaction Modeler
Malicious messages considered as suspicious 857
Malicious messages not considered as suspicious 138

Pattern Matcher

Number of alarms 488
Alarms, True Positive 245
Alarms, False Positive 243
Detected Attacks 45

Table 1: Summary of the Interaction Modeler ’s and the Pattern Matcher ’s de-
tection results.

During the six months covered by the data, more than 4.2 million messages
are exchanged between the 100 MCUs and the 6, 500 SMs taken into account
(more than 23, 000 messages on average on a daily basis). Nevertheless, a small
number of approximately 450 messages are considered suspicious on average by
the Interaction Modeler on a daily basis. 857 out of the 995 malicious mes-
sages are considered as suspicious. In total, 488 alarms are raised by the Pattern
Matcher , 245 of which are related to real attacks (45 attacks are actually de-
tected).
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We say an alarm raised by the Pattern Matcher is a true positive (resp., false
positive), if the period of time covered by its window of size PMWS and advance
PMWA actually includes days in which malicious activity has been injected for
the given MCU, SM and Hour. It should be noticed that since the window
slides every day (PMWA is set to one day), multiple alarms can be raised during
consecutive days for one or more suspicious messages referring to a given MCU,
SM and Hour. The number of false positives (243) raised during the six months
period results in one or two false positives per day, on average. This number
of false positives is reasonable for the system expert to use the framework (a
reasonable threshold is set to no more than ten false positives per day in [15]).
We further analyzed the cause of these alarms and interestingly, most of these
false positive alarms are due to new smart meters that appear in the traffic. As
this evaluation is based on a real deployment, we can draw the conclusion that
the number of devices in this environment is not stable (meaning any assumption
of the former would cause false alarms).

6.3 Parameters sensitivity
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Fig. 8: True Positive and False Positive rates for varying thresholds T.

For a given configuration of the Pattern Matcher ’s parameters PMWS, PMWA

and GB, the number of attacks detected by the former depends on the threshold
T (i.e., it depends on the number of days during which suspicious messages
should be observed in order to raise an alarm). In this section, we present how the
true positive and false positive detection rates are affected by varying the values
of the threshold T. Since the Pattern Matcher ’s Aggregate window size (PMWS)
is set to seven days, the experiments are run for T = 1, . . . , 7. As presented in
Figure 8, the minimum true positive rate is achieved when parameter T is equal
to seven. In this case, no false positive alarms are raised by the Pattern Matcher .
It can be noticed that the true positive rate increases to more than 80% when
T ≤ 6, while it grows to more than 90% when T ≤ 4.

6.4 Processing capacity

As shown above, METIS is able to detect the majority of the energy exfiltration
attacks we injected. In this section, we show it can also cope with the large
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Fig. 9: Throughput and latency for increasing input rates and batch sizes.

volume of events produced in a typical AMI. For that reason, we evaluate the
processing capacity of METIS when running on a server that could be deployed
at the utility’s head-end, an Intel-based workstation with two sockets of 8-core
Xeon E5-2650 processors and 64 GB DDR3 memory.

Among the different parameters that could influence the processing capac-
ity of the query, the batch size plays a fundamental role in this context. While
processing messages, a trade-off exists between the rate at which such mes-
sages can be processed and the latency imposed by the processing itself. In
high-throughput systems, it is common to group tuples together in batches (of
thousands or tens of thousands of tuples) in order to achieve higher throughput.
Nevertheless, this is not an option in our scenario. Each pair of devices exchanges
a small number of messages per hour (in the order of tens). If the analysis re-
lies on big batches (e.g., thousands of messages), devices might not be able to
log incoming and outgoing messages for the resulting large periods of time and
possible attacks would thus not be detected.

Figure 9a presents the processing throughput for different batch sizes, from 5
to 100 tuples. As expected, increasing the batch size results in higher processing
throughput. For a batch size of 100 tuples, the server is able to process approxi-
mately 2, 000 messages per second. Based on our data, each pair of MCU and SM
exchanges one ECReq and one ECResp message each time energy consumption
is retrieved. If the 2, 000 messages processed every second refer to the exchange
of 1, 000 pairs of MCUs and SMs, the processing capacity of our prototype would
enable the monitoring of more than three millions pairs of MCU and SM every
hour. Figure 9b presents the corresponding latency (in milliseconds) for the dif-
ferent batch sizes. While a common pattern is observed for all batch sizes (the
latency starts increasing when the throughput gets closer to its maximum), it
can be noticed that the highest measured latency is of approximately 0.7 sec-
onds. This means that the latency in the detection of an attack would depend
on the frequency with which energy consumption readings are retrieved rather
than the (negligible) processing time introduced by METIS ’ analysis.
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7 Related Work

Despite their recent deployment, a considerable number of potential attacks
against AMIs has already been discussed in literature where some have even
been seen in the wild [13]. The attacks range from energy theft [16], stealing of
users’ information [2], up to physical damage of the infrastructure [4].

As outlined in [14], traditional IDSs cannot be used effectively in these envi-
ronments without major modifications. However, even though there exists a large
literature on intrusion detection in general, very few systems have been devel-
oped specifically for AMIs. Several papers motivate the need for security in smart
grids (where [5] is such an example); others go one step further and discuss detec-
tion mechanisms but often concentrating on other parts of the smart grid (such
as attack detection in SCADA networks [3], or for process control [12]). Berthier
et al. [2] discuss requirements with an outline of a possible intrusion detection
architecture suitable for AMIs. To the best of our knowledge, specification-based
IDSs are the main defense mechanism proposed so far for AMIs [1, 18].

One advantage with our approach is that several detection mechanisms can
be used as a sensor in the first tier (the Interaction Modeler), meaning that the
previously suggested specification-based approaches for AMIs could also be inte-
grated into our framework. However, in this paper we instead suggested Bayesian
inference in the first tier. Using Bayesian networks to model attacks merges the
best properties of the signature-based approach with the learning characteristics
of anomaly detection [26]. A specification-based IDS would require manual la-
bor to tune the system to a specific installation, where a Bayesian attack model
would be (relatively) easy to create for the system expert with the added ben-
efit that we automatically can parallelize it in METIS by relying on the data
streaming paradigm. Specification-based systems work best in very stable envi-
ronments; in AMIs it is expected that the traffic will be more dynamic and less
deterministic in the future with demand-side networks, as described in [14].

Using several tiers of sensors and analysis engines to improve the detection
has been used in traditional IDSs such as [25, 21]. Our motivation for having
different tiers is that they allow for the implementation of the Interaction Mod-
eler to be isolated from the overall event processing. As mentioned above, this
approach makes the design and implementation of the attack models easier. The
second tier manages the scalability of the approach to allow for the analysis of
the underlying traffic in real time.

As discussed in [2, 10], the coexistence of distinct networks within the same
AMI demands for distributed traffic analysis, either by relying on the devices
themselves (as recently investigated in [20]) or by relying on dedicated sensing
infrastructures. To this end, the data streaming processing paradigm [23] is an
optimal candidate for AMIs traffic analysis, as explored in [22, 27, 6]. The latter
is the closer to our approach, but their evaluation is not based on data from
realistic AMIs.3

3 They use the KDD Cup 99 dataset, with known problems (http://www.kdnuggets.
com/news/2007/n18/4i.html) as well as lacking realistic AMI attacks.

http://www.kdnuggets.com/news/2007/n18/4i.html
http://www.kdnuggets.com/news/2007/n18/4i.html
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8 Conclusions

This work proposed METIS , a two-tier defense framework that eases the mod-
eling of possible adversary goals and allows for a scalable traffic analysis by
employing the data streaming processing paradigm. The proposed architecture
allows for modular functionality and configurable deployment, allowing also for
complementary intrusion detection systems to be integrated in the framework
(e.g., by replacing the first tier). In the paper, besides describing and analyzing
its design and implementation, we showed how it is possible for a system expert
to model the detection of energy exfiltration attacks, a challenging adversarial
goal. Moreover, through the evaluation of the use-case based on big volumes of
data extracted from a real world AMI, we showed that METIS ’ analysis can
achieve high detection rates, with low false alarm numbers, even when relying
on commodity hardware.

It is worth pointing out that the possibility for distributed deployment of
METIS enables for the detection of a variety of scenarios, including those whose
detection is only possible through distributed evidence. The latter opens a path
for new research in detecting and mitigating adversarial actions in AMIs, where
for scalability and privacy purposes it can be imperative to detect unwanted
situations close to the data sources, without the need to store the original data.
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