
Online and Scalable Data Validation in
Advanced Metering Infrastructures

Vincenzo Gulisano
Chalmers University of Technology

Gothenburg, Sweden
vinmas@chalmers.se

Magnus Almgren
Chalmers University of Technology

Gothenburg, Sweden
almgren@chalmers.se

Marina Papatriantafilou
Chalmers University of Technology

Gothenburg, Sweden
ptrianta@chalmers.se

Abstract—The shift from traditional to cyber-physical grids
involves the deployment of Advanced Metering Infrastructures,
networks of communication-enabled devices remotely controlled
by utilities. Live information collected by these devices enables
for applications such as demand/response, real-time pricing
or intrusion detection, among others. In these scenarios, data
validation is necessary in order to preprocess the noisy and lossy
data produced by the devices and make it available to utilities’ or
third parties’ applications. Challenges proper of data validation
in this domain include the possibility of expressing validation
rules specific to an Advanced Metering Infrastructure installation
and analysis techniques that cope with the large and fluctuating
volume of data produced by the devices.

In this paper, we discuss and provide evidence of the online,
scalable and expressive validation analysis enabled by the data
streaming processing paradigm. Based on a prototype implemen-
tation on top of the Storm processing engine and using data
from a real-world Advanced Metering Infrastructure, we show
that streaming-based validation rules enable for the analysis of
thousands of meters per second and only incur in small latency
penalties in the order of milliseconds.

Keywords—Advanced Metering Infrastructures, Data Valida-
tion, Data Streaming.

I. INTRODUCTION

The transition from traditional to cyber-physical electric
grids involves the deployment of Advanced Metering In-
frastructures (AMIs). An AMI is composed by networks of
communication-enabled devices that share information (e.g.,
energy consumption readings, energy quality measurements
or power outage logs) with the utility’s head-end. A consid-
erable number of research directions surrounds AMIs: real-
time pricing [3], demand-response [16], users’ privacy [25],
smart meters vulnerabilities [10], Intrusion Detection Systems
(IDSs) [5], users’ awareness and social media [19] or load
forecast [12]. All these research fields depend on the data
produced by AMIs’ devices. Unfortunately, such data is known
to be noisy, lossy and to be possibly delivered out of order
and with duplicates (especially for AMIs relying on wireless
communication [17]). Because of this, data validation analysis
is adopted to preprocess and clean the data collected from
the devices before the utility or third parties access it. Such
validation analysis usually relies on a set of validation rules.
It should be noted that noisy and missing data does not
depend uniquely on AMIs’ devices themselves, but can also
be caused by their (possibly malicious) users. Causes of noisy
and lossy data include faulty or badly calibrated devices, lossy

or overloaded (or possibly jammed) communication channels
or incorrect energy consumption readings manipulated by
malicious users, among others.

Challenges: Millions of messages are generated on a
daily basis by AMIs’ devices. Some of them are generated
with a certain periodicity chosen by the utility (e.g., energy
consumption readings) while others can appear in bursts over
time (e.g., power outage logs). To this end, a scalable validation
analysis is required in order to cope with the large and
fluctuating volume of data produced by the devices. At the
same time, an online (i.e., in a real-time fashion) validation
analysis is required for live information to be leveraged in
scenarios such as real-time pricing or defense frameworks.
Since AMIs are composed by heterogeneous types and brands
of devices (e.g., electricity meters, meter concentrator units,
heating meters, and so on) that usually rely on proprietary
data formats, it is desirable for utilities to rely on validation
tools with which system experts can easily compose validation
rules rather than rely on a set of predefined ones.

Contributions: In this paper, we propose and provide
evidence about the online, scalable and expressive validation
analysis enabled by the data streaming processing paradigm.
The latter has been proposed as an alternative to the traditional
“store-then-process” (database) paradigm by applications de-
manding for high processing capacity with low processing la-
tency guarantees (e.g., financial markets analysis [22], public-
ity pricing [4], fraud detection [15] or defense frameworks [7]).
In data streaming, continuous queries are defined as Directed
Acyclic Graphs (DAGs) of operators and run in a distributed
and parallel fashion by Stream Processing Engines (SPEs) such
as Storm [23], Yahoo S4 [26] or StreamBase [24]. As we will
discuss, streaming-based validation rules can be composed by
means of the standard data streaming operators provided by
these SPEs. We provide the following contributions:

1) An analysis of the expressive and scalable validation
enabled by the data streaming processing paradigm,
including examples of real-world validation rules.

2) An implementation of a set of streaming-based vali-
dation rules on top of Storm [23], a state of the art
SPE used in companies such as Twitter.

3) An evaluation of the performance and scalability of
such streaming-based validation rules based on data
extracted from a real-world AMI.

The rest of the paper is organized as follows. We introduce
some preliminary concepts in Section II. We present how data



streaming operators can be used to compose streaming-based
validation rules in Section III. We provide an evaluation of the
performance (in terms of throughput and latency) of a set of
validation rules in Section IV. Section V discussed the related
work while Section VI concludes the paper.

II. SYSTEM MODEL

A. Validation Analysis in Advanced Metering Infrastructures

AMIs networks are composed by heterogeneous devices
such as smart meters (in charge of forwarding readings about
electricity, gas or water consumption) and meter concentra-
tors units (in charge of collecting consumption readings to
forward them to the utility head-end). These devices are usu-
ally resource-constrained and organized in different network
topologies (e.g., point-to-point, hierarchical or mesh ones). For
these reasons, it is more desirable for a utility to be able to
compose validation rules rather than rely on a predefined set
of validation rules that might not fit local constraints (or rely
on ad hoc solutions that will be hard to maintain). To this end,
data streaming operators constitute excellent building blocks
to compose streaming-based validation rules, as we discuss in
Section III.

The large and fluctuating volume of data produced by
AMIs’ devices demand for a scalable and online validation
analysis in order for the data to be leveraged by applications
such as real-time pricing or defense frameworks. Validation
rules could be deployed in different ways within an AMI.
On one hand, they could be deployed at the utility head-end
system. This centralized approach is the common choice in
existing AMIs (e.g., for IDSs, as discussed in [13]). Data
collected from the devices is preprocessed as it enters the
utility’s head-end and subsequently stored in order to be avail-
able to other applications. On the other hand, the deployment
could push the validation analysis to the meters themselves
(e.g., discarding wrong consumption readings at the meters
rather than at the head-end). As discussed in the context of
COUGAR [6], one of the pioneer SPEs, the performance of
a given traffic analysis technique can be improved by keeping
the data moved across devices to its minimum (i.e., transferring
only useful information). Intermediate solutions could rely
both on the devices themselves and the utility’s head-end to
perform the validation analysis. To our advantage, SPEs would
allow for streaming-based validation rules to be executed at
arbitrary numbers of heterogeneous nodes, thus leveraging any
of these possible deployment strategies, as we discuss later in
Section III-C.

B. Meter Data Management systems and Validation, Estima-
tion and Editing (VEE) Rules

The systems in charge of collecting and storing AMIs’
data are referred to as Meter Data Management systems [14],
[20]. Such systems rely on a set of Validation, Estimation and
Editing (VEE) rules that are used to preprocess the information
before the latter is stored in the utility’s databases.

In the context of VEE rules, Validation refers to the purging
of noisy or possibly corrupted information. As discussed in
Section I, possible causes of such information degradation
include faulty devices or overloaded communication channels,
among others. Possible examples of validation include removal

of negative consumption values or consumption values that
exceed the capacity of the fuse installed in a smart meter.

Estimation refers to the ability of producing missing in-
formation. Such information could be produced by relying on
interpolation methods or by methods that take into account
meters’ historical data. As an example, a period of missing
consumption values for a given smart meter could be estimated
based on its consumption as observed during the previous six
months.

Editing refers to the ability of modifying historical infor-
mation. The rationale is that, in scenarios such as real-time
pricing, live information (e.g., energy consumption readings)
is needed within specified time intervals. To comply with such
time constraints, it might be preferable for the utility to rely on
estimated data rather than postponing any computation until all
data is available. Nevertheless, real information that arrives at
the utility after having been estimated (e.g., because of out of
order delivery of messages) is still more appropriate to store
than the calculated estimate.

C. Data Streaming

In data streaming, incoming data is processed by means of
continuous queries (or simply queries), DAGs where vertices
represent operators and edges specify how tuples flow between
them [2]. Differently from their database counterpart, such
queries are not issued at a point in time but rather stand
continuously to process information on the fly, updating their
computation and producing results accordingly. Data stream-
ing queries consume streams, each defined as an unbounded
sequence of tuples sharing the same schema, composed by
attributes 〈ts, A1, A2, . . . , An〉. Given a tuple t, attribute t.ts
represents its creation timestamp at the data source while
〈A1, A2, . . . , An〉 are application related attributes. Figure 1
presents a sample schema for tuples referring to energy con-
sumption readings that could be produced by the smart meters
deployed in an AMI. In the example, tuples are composed by
attributes ts, the creation timestamp, sm the smart meter id,
and cons, the consumption in kWh observed during the last
hour.

Attribute ts sm cons

Description Creation timestamp Meter ID Hourly consumption (kWh)

Fig. 1: Sample schema of tuples carrying energy information
readings.

Data streaming operators are distinguished into stateless
and stateful. Stateless operators (e.g., Filter, Map, Union)
process each tuple individually. On the other hand, stateful op-
erators (e.g., Aggregate, Join) perform computations based on
sequences of tuples. Due to the unbounded nature of streams,
stateful computations are performed over sliding windows (or
simply windows). Windows can be time-based (e.g., the tuples
received in the last 10 minutes) or tuple-based (e.g., the last
20 received tuples), and are defined by parameters Size and
Advance, specifying the extent of a window and the amount
of information discarded each time the latter slides.

Figure 2 present a sample sequence of tuples composed
by the attributes shown in Figure 1 and the evolution of a



<1:00,sm0,1.3> <11:00,sm0,1.8>
<5:00,sm0,1.2> <20:00,sm0,1.8>

W0 [0:00-12:00)

W1 [3:00-15:00)

W2 [6:00-18:00)

W3 [9:00-21:00)

time

Fig. 2: Sample sequence of tuples carrying energy information
readings and evolution of a time-based window of Size and
Advance of 12 and 3 hours, respectively.

time-based window of size and advance of 12 and 3 hours,
respectively.

III. STREAMING-BASED VALIDATION ANALYSIS

This section discusses how data streaming can be used
to run data validation analysis in AMIs. We first provide
definitions and examples of a basic set of data streaming
operators and continue discussing how such operators can
be used to compose streaming-based validation rules. We
conclude discussing how such rules are executed by SPEs
at an arbitrary number of nodes, thus leveraging the possible
deployment options discussed in Section II-A.

A. Basic data streaming operators

As discussed in Section II-A, it is desirable for a utility
to compose validation rules specific to their AMI installation
rather than using a predefined set of validation rules. By
relying on the data streaming paradigm, this would be done by
composing queries using the set of operators made available
by a given SPE. Several relational data streaming operators
are usually provided by SPEs (including Filter, Map, Union,
Aggregate, Join and Sort [1]). To give evidence of the expres-
siveness of data streaming queries, we discuss in the following
how four of these operators, usually defined by all SPEs,
allow to compose validation rules: Filter, Map, Aggregate and
Join. For each of these operators, we provide its definition
and describe its semantic together with an example (all the
examples refer to the sample schema shown in Figure 1). Each
operator is defined as:

OP{P1, . . . , Pm}(I1, . . . , In, O1, . . . , Op)

where OP represents the operator name, P1, . . . , Pm represent
a set of parameters that specify the operator semantics (e.g.,
functions used to transform input tuples, predicates used to
decide which information to discard or parameters related to
the windowing model), I1, . . . , In a set of input streams and
O1, . . . , Op a set of output streams. Optional parameters are
defined using square brackets.

Filter: This stateless operator is a generalized selection
operator that can be used to discard tuples. The operator is
defined as:

F{C}(I,O)

where I is the input stream, O is the output stream and C is
the filtering condition. Each incoming tuple is forwarded to
O if the filtering condition C holds. The operator does not
modify the schema of its input tuples.

The following example considers a Filter operator forward-
ing only input tuples referring to a consumption reading lower
than or equal to 10 kWh.

F{cons ≤ 10kWh}(I,O)

Map: This stateless operator is a generalized projection
operator that can be used to transform one input tuple into
one or multiple output tuples with a different schema. The
operator is defined as:

M{A′
1 ← f1(tin), . . . , A

′
n ← fn(tin)}(I,O)

where I and O represent the input and output streams,
respectively. tin is a generic input tuple and the attributes
〈A′

1, . . . , A
′
n〉 form the output tuples’ schema.

The following example considers a Map operator convert-
ing the attribute cons of each input tuple from kWh to Wh.

M{ts← ts, sm← sm, cons← cons/1000}(I,O)

Aggregate: This stateful operator is used to compute
aggregation functions such mean, count, min, max, first
or last over windows of tuples. The operator is defined as:

A{WType,Size,Advance, A′
1 ← f1(W ), . . . , A′

n ← fn(W )

[,Group-by=(Ai1 , . . . , Aim)]}(I,O)

WType specifies the window type: time for time-based
windows or tuples for tuple-based ones. Parameters Size
and Advance specify the amount of tuples to be maintained
and discarded each time the window slides. An output tuple
carrying the result of functions f1(W ), . . . , fn(W ) is produced
each time the window slides if the latter contains at least one
tuple. If parameter Group-by is set, a separate window will be
maintained for each distinct value of attributes Ai1 , . . . , Aim .
Output tuples’ schema is composed by attributes ts (the
timestamp of the window), Group-by (if defined) and attributes
A′

1, . . . , A
′
n.

The following example considers an Aggregate operator
used to compute the highest consumption reading of each smart
meter over a window of 24 hours, producing a result every
hour.

A{time, 24h, 1h,max← max(cons),Group-by=(sm)}(I,O)

In the example, WType = time. Window Size and Advance
parameters are set to 24 hours and 1 hour, respectively. That is,
an output tuple will be produced every hour, and will contain
the highest consumption reading observed during the last 24
hours for each meter separately. By dropping the Group-
by attribute, we would instead get the highest consumption
reading among all meters. The schema associated to the output
stream is composed by attributes 〈ts, sm,max〉.

Join: This stateful operator is used to match tuples from
two distinct input streams, referred to as left (l) and right (r).
An output tuple whose schema is the combination of the l
and the r schema is produced each time a predicate P holds
for a pair of tuples from the l and r streams. Similarly to the
Aggregate operator, the Join uses windows to maintain input
tuples. A separate window (time or tuple based) is maintained
for the l and r streams. The operator is defined as:

J{P,WType, Size}(Sl, Sr, O)



Query I: Validation rule V1. Discard energy consumption
readings referring to negative consumption values or con-
sumption values exceeding a given threshold, here set to
10 kWh.

<ts,sm,cons>

F
I O

<ts,sm,cons>

F{cons > 0 ∧ cons ≤ 10kWh}(I,O)

The following example considers a Join operator that
matches two tuples if they refer to the same energy consump-
tion values and are observed during the last hour.

J{l.cons = r.cons, time, 1h}(Sl, Sr, O)

Since the operator combines the schema of each pair of l and
r tuples that match the predicate, the output tuples will be
composed by attributes 〈l.ts, l.sm, l.cons, r.ts, r.sm, r.cons〉

B. Composing streaming-based validation queries

As discussed in Section II-B, data validation rules are used
both for removing incoming data that should not be persisted
and to estimate missing one. We present here sample queries
that can be used to perform these two tasks.

When composing a validation rule that prevents incorrect
data from being stored, a Filter operator can be used to
take decisions about which input tuples to discard. Such a
decision can be taken in different ways. On one hand, the
decision could be taken based only on the tuple itself. As
presented in the sample Query I (validation rule V1) this can
be done with a single Filter operator (F ). On the other hand,
the decision about which tuples to discard could be based
on historical information. In general, an Aggregate, a Join
and a Filter operator can be used to filter tuples based on
historical information. The Aggregate operator can be used
to compute the reference information used to decide which
tuples to discard. Subsequently, the Join operator can be used
to match each incoming tuple with its reference information.
Finally, the Filter operator can be used to compare the incom-
ing tuple and the reference information. Query II (validation
rule V2) presents a sample query that discards a tuple if its
energy consumption exceeds more than two times the average
observed for the same meter during the last three hours. Since
the schema of the input tuples is modified by the Aggregate
(A) and the Join (J) operators, a final Map operator (M ) is
used to convert the schema of the Filter’s output tuples back
to the same as the input ones.

When composing a validation rule that estimates missing
information, the first task is to spot that one or multiple
consumption readings are missing. This can be done by relying
on an Aggregate and a Filter operator. The Aggregate operator
can match any pair of consecutive tuples referring to the same
smart meter. Subsequently, the Filter can by used to check if
their distance in time exceeds a given threshold.

Query III presents a validation rule (V3) that interpolates
missing consumption values if the time distance between two
consecutive tuples from the same meter exceeds one hour.

Query II: Validation rule V2. Discard a meter’s energy
consumption readings if they exceed two times the mean
consumption observed for the same meter during a given
period, here set to the previous three hours.

<ts,sm,cons>

A
I OA

<ts,sm,mean>

J
OJ

F
OF

M
O

<l.ts,l.sm,l.cons,r.ts,r.sm,r.mean>

<ts,sm,cons>

A{time,3h,1h,mean=mean(cons),Group-by=sm}(I,OA)
J{time,3h,l.sm=r.sm ∧ l.ts=r.ts+3h}(I,OA, OJ)
F{l.cons ≤ r.mean× 2}(OJ , OF )
M{ts← l.ts, sm← l.sm, cons← l.cons}(OF , O)

Query III: Validation rule V3. Interpolate missing con-
sumption values if the time distance between two consecu-
tive tuples from the same meter exceeds a given threshold,
here set to one hour.

<ts,sm,cons>

I
A

OA
F

OF
M

O

<sm,ts1,ts2,cons1,cons2>

<ts,sm,cons>

A{tuples, 2, 1, ts1=first(ts), ts2=last(ts), cons1= . . .
. . . first(cons),cons2=last(cons), Group-by=sm}(I,OA)
F{ts2-ts1 > 1h}(OA, OF )
M{(ts← interp(ts1,ts2, sm← sm, . . .

. . . cons← interp(cons1,cons2)}(OF , O)

The query is composed by three operators. The Aggregate
operator (A) defines a tuple-based window of size and advance
of 2 tuples and 1 tuple, respectively. A tuple containing both
the first and last timestamps (ts1 and ts2) and consumption
values (cons1 and cons2) is created for each smart meter
(Group-by=sm). Subsequently, the Filter operator (F ) is used
to forward only such tuples whose distance between ts1 and
ts2 exceeds one hour. Finally, the Map operator (M ) is used to
interpolate missing values applying the function interp (which
would be defined by the system expert), which will create
an output tuple composed by attributes 〈ts, sm, cons〉 for each
missing hour. An Aggregate operator could maintain historical
information (similarly to Query II) to be used when estimating
missing values (not shown here).

C. Scalable execution of streaming-based validation queries

A major advantage from the utility perspective is that SPEs
can leverage the resources devoted to the validation analysis
(e.g., nodes in a cluster or cores in a parallel architecture) in-
dependently of their deployment, as discussed in Section II-A.
In this section, we further discuss how SPEs allow for such
scalable execution of streaming-based validation rules.

Scalable execution is achieved by means of distributed and
parallel operator execution. Distributed execution (achieved
by means of inter-operator parallelism) allows for operators
belonging to the same query to be run at different nodes. At
the same time, parallel execution (achieved by means of intra-
operator parallelism) allows for individual operators to be run
in parallel at arbitrary numbers of nodes. Each operator is
parallelized by deploying multiple instances of it and by parti-
tioning its input stream(s) to such instances. The way in which



0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

Input Rate (tuples/second)

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

 

 

0

5

10

15

20

25

M
ill

io
ns

 o
f s

m
ar

t m
et

er
s

(H
ou

rly
 r

ea
di

ng
s)

B=100
B=200
B=300
B=400

Fig. 3: Throughput (tuples/second) of validation rules V1, V2

and V3 for different batch sizes.

the input tuples are routed to the different instances depends
on whether the parallel operator is stateless or stateful. Since
stateless operators (e.g., Filter and Map) process each tuple
individually, tuples can be routed to the different instances
by any routing technique (e.g., round-robin). Nevertheless, the
routing of tuples feeding a stateful operator must be aware
of its semantics. As an example, when deploying multiple
instances of the Aggregate and Join operators of Query II,
all the tuples referring to the same smart meter must be
routed to the same operator instance in order for the latter to
produce the correct output tuple. We refer the reader to [15]
for a exhaustive discussion about the parallelization of data
streaming operators.

IV. EVALUATION

In this section, we evaluate the applicability of the data
streaming paradigm in the context of AMIs’ data validation.
We first provide details about the data we use and the evalua-
tion setup. Subsequently, we evaluate the performance in terms
of throughput and latency of the streaming-based validation
rules discussed in Section III.

Evaluation setup

The real-world AMI used in our evaluation is composed
of 300,000 smart meters that cover a metropolitan area of 450
km2 with roughly 600,000 inhabitants. The utility extracted 13
months (From May 2012 to June 2013) of hourly consumption
readings from a subset of 50 meters and made this dataset
available for us. The validation rules are implemented on top
of Storm, version 0.9.1. The evaluation has been conducted
with an Intel-based workstation with two sockets of 8-core
Xeon E5-2650 processors and 64 GB DDR3 memory. All
experiments start (resp. end) with a warm-up (resp. cool-
down) phase. Presented results are measured in between of
these phases and are averaged over 10 separate runs. In all
experiments, we process the data extracted from the AMI,
modifying only the rate at which tuples are injected.

Performance evaluation

In order to make energy consumption readings available
in a real-time fashion, it is important to reduce the time
that goes from the measurement at the meter itself to the
delivery at the utilities’ or third parties’ applications. Such
delay depends on two main factors: the period with which

1 2 3
10

−1

10
0

10
1

10
2

Validation Rule

La
te

nc
y 

(m
ill

is
ec

on
ds

)

 

 

0.2
0.3 0.3 0.3

20
33

47 56

1.7
2.4

3.1
4.3

V1 V2 V3

B=100
B=200
B=300
B=400

Fig. 4: Latency (milliseconds, logarithmic scale) of validation
rules V1, V2 and V3 for different batch sizes.

energy consumption readings are pulled from or pushed by
meters (plus the network latency) and the latency introduced by
the data validation analysis. A trade-off exists between these
two factors. On one hand, it is desirable to retrieve energy
consumption readings frequently (if possible, as soon as the
measurement is taken). On the other hand, it is common to
batch tuples together in order for high-throughput systems
to achieve better performance. In this experiment, we study
the throughput and latency achieved for different batch sizes
B. As it would be done in a real deployment consuming
live information, all the three validation rules are executed
at the same time. The throughput is measured as the rate
(tuple/second) that each validation rule can sustain while
latency is measured for each validation rule individually.

Figure 3 presents the processing throughput for different
batch sizes of 100, 200, 300 and 400 tuples. For each batch
size, the throughput initially grows linearly with the increasing
input rate while it flattens down when reaching the maximum
processing capacity. As expected, increasing the batch size
results in higher processing throughput. For a batch size of 100
tuples, the server is able to process approximately 2, 000 mes-
sages per second. For a batch size of 400 tuples, the throughput
grows to approximately 7, 000 messages per second. As shown
in the figure (secondary Y axis), if meters measure energy
consumption readings every hour, this processing capacity
would enable us to validate almost 25 million meters.

Figure 4 presents the latency (in milliseconds), for each
batch size B and validation rule (bars are plotted in logarithmic
scale to better emphasize the differences). It can be noticed
that different latencies are imposed by each validation rule. At
the same time, an increasing latency is also observed when
increasing the batch size B. The highest processing latency
is imposed by validation rule V2, since it contains both an
Aggregate and a Join operator (stateful operators’ computa-
tions are more expensive and thus incur higher latencies than
stateless ones). However, the latency introduced by the analysis
is negligible with the one introduced by transferring the data
from the meters to the utility (in our AMI, this action takes a
time in the order of seconds).

V. RELATED WORK

The data streaming research field emerged around the
year 2000 to overcome the limitations of traditional database



approaches for data intensive applications such as fraud de-
tection, IDS or financial market analysis. Sensor networks
sharing requirements similar to AMIs’ ones played a key role
in the development of pioneer SPEs such as TelegraphCQ [9],
Cougar [6] or Aurora [8]. During these years, data stream-
ing research has focused on aspects such as processing of
imprecise and missing information, graceful degradation and
load shedding techniques under peaks of load, and Quality-of-
Service (QoS) metrics.

To the best of our knowledge, this is the first work that fo-
cuses on the expressiveness and performance of data streaming
queries in the context of AMIs’ data validation. Nevertheless,
the data streaming processing paradigm has been taken into
account in other AMI-related scenarios, including electricity
load forecast [12], IDSs [11] and cloud-infrastructures [18],
[21]. These works provide evidence that the data streaming
processing paradigm is an appropriate candidate to address
the data analysis requirements proper of AMIs.

VI. CONCLUSIONS

A considerable number of applications surrounding AMIs
(e.g., demand-response, real time pricing and IDSs, among
others) depend on the data produced by AMIs’ devices. Its
noisy and lossy nature demands for validation analysis in order
to preprocess the data that is later accessed by utilities’ or third
parties’ applications. In this paper, we have discussed how the
data streaming processing paradigm can be leveraged to pro-
vide online and scalable validation analysis, composing valida-
tion rules by means of data streaming operators. Based on an
implementation on top of the Storm SPE and conducted with
data from a real-world AMI, we have shown that streaming-
based validation rules allow for the analysis of thousands of
energy consumption readings per second (with latencies in the
realm of milliseconds) while relying on commodity hardware.
Thanks to the distributed and parallel execution enabled by
SPEs, streaming-based validation rules could also be run closer
to the sources (e.g., achieving better scalability by filtering
values at the sources and saving bandwidth).

ACKNOWLEDGMENTS

This work has been partially supported by the European Commis-
sion Seventh Framework Programme (FP7/2007-2013) through the
SysSec Project, under grant agreement 257007, through the FP7-SEC-
285477-CRISALIS, through the collaboration framework of Chalmers
Energy Area of Advance, and with support from the Swedish Energy
Agency under the program Energy, IT and Design.

REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The
Design of the Borealis Stream Processing Engine. In CIDR, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and
architecture for data stream management. The International Journal on
Very Large Data Bases, 2003.

[3] H. Allcott. Rethinking real-time electricity pricing. Resource and
Energy Economics, 2011.

[4] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,
A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman. Photon:
Fault-tolerant and scalable joining of continuous data streams. In
Proceedings of the international conference on Management of data,
2013.

[5] R. Berthier and W. H. Sanders. Specification-based intrusion detection
for advanced metering infrastructures. In IEEE 17th Pacific Rim
International Symposium on Dependable Computing (PRDC), 2011.

[6] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.
In Mobile Data Management, 2001.

[7] M. Callau-Zori, R. Jiménez-Peris, V. Gulisano, M. Papatriantafilou,
Z. Fu, and M. Patiño-Martı́nez. STONE: a stream-based DDoS defense
framework. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013.

[8] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: a
new class of data management applications. In Proceedings of the 28th
international conference on Very Large Data Bases, 2002.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah. TelegraphCQ: continuous dataflow processing. In Proceed-
ings of the ACM SIGMOD international conference on Management of
data, 2003.

[10] M. Costache, V. Tudor, M. Almgren, M. Papatriantafilou, and C. Saun-
ders. Remote control of smart meters: friend or foe? In Computer
Network Defense (EC2ND), Seventh European Conference on, 2011.

[11] M. A. Faisal, Z. Aung, J. R. Williams, and A. Sanchez. Securing
advanced metering infrastructure using intrusion detection system with
data stream mining. In Intelligence and Security Informatics. Springer,
2012.

[12] J. Gama and P. P. Rodrigues. Stream-based electricity load forecast. In
Knowledge Discovery in Databases: PKDD. Springer, 2007.

[13] D. Grochocki, J. H. Huh, R. Berthier, R. Bobba, W. H. Sanders,
A. A. Cárdenas, and J. G. Jetcheva. AMI threats, intrusion detection
requirements and deployment recommendations. In Smart Grid Com-
munications (SmartGridComm), IEEE Third International Conference
on, 2012.

[14] GTM RESEARCH. White paper, The Emergence of Meter Data
Management (MDM): A Smart Grid Information Strategy Report, 2010.

[15] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez. Streamcloud: An elastic and scalable data streaming
system. Parallel and Distributed Systems, IEEE Transactions on, 2012.

[16] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar. Decentralized
Coordination of Energy Utilization for Residential Households in the
Smart Grid. IEEE Transactions on Smart Grid, 2012.

[17] E. Kermany, H. Mazzawi, D. Baras, Y. Naveh, and H. Michaelis.
Analysis of advanced meter infrastructure data of water consumption
in apartment buildings. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2013.

[18] B. Lohrmann and O. Kao. Processing smart meter data streams in the
cloud. In Innovative Smart Grid Technologies (ISGT Europe), 2nd IEEE
PES International Conference and Exhibition on, 2011.

[19] T. Mikkola, E. Bunn, P. Hurri, G. Jacucci, M. Lehtonen, M. Fitta, and
S. Biza. Near real time energy monitoring for end users: Requirements
and sample applications. In Smart Grid Communications (SmartGrid-
Comm), IEEE International Conference on, 2011.

[20] Oracle Utilities Meter Data Management. http://www.oracle.com/us/
industries/utilities/046533.pdf.

[21] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna. Adaptive rate
stream processing for smart grid applications on clouds. In Proceedings
of the 2nd international workshop on Scientific cloud computing, 2011.

[22] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of
real-time stream processing. ACM SIGMOD Record, 2005.

[23] Storm project. http://storm.incubator.apache.org/.
[24] StreamBase. http://www.streambase.com.
[25] V. Tudor, M. Almgren, and M. Papatriantafilou. Analysis of the Impact

of Data Granularity on Privacy for the Smart Grid. In Proceedings
of the 12th ACM Workshop on Workshop on Privacy in the Electronic
Society, 2013.

[26] Yahoo S4. http://incubator.apache.org/s4/.

http://www.oracle.com/us/industries/utilities/046533.pdf
http://www.oracle.com/us/industries/utilities/046533.pdf
http://storm.incubator.apache.org/
http://www.streambase.com
http://incubator.apache.org/s4/

	Introduction
	System Model
	Validation Analysis in Advanced Metering Infrastructures
	Meter Data Management systems and Validation, Estimation and Editing (VEE) Rules
	Data Streaming

	Streaming-based validation analysis
	Basic data streaming operators
	Composing streaming-based validation queries
	Scalable execution of streaming-based validation queries

	Evaluation
	Related Work
	Conclusions
	References

