
Effects of Memory Randomization,
Sanitization and Page Cache on

Memory Deduplication

Kuniyasu Suzaki Kengo IijimaKuniyasu Suzaki, Kengo Iijima,
Toshiki Yagi, Cyrille Artho

EuroSec 2012 at Bern, April 10

Research Institute
for Secure Systems

Background 1/2
• Infrastructure as a Service(IaaS) type cloud computing

offers OS hosting service and runs many virtual machines.
– Examples: Amazon EC2, Rackspace, ...
– Physical resources are very important. Many techniques are

developed to save resourcesdeveloped to save resources.
• We concentrate on memory.

• Memory Deduplication is utilized to share same contents and
reduces consumption of physical memory.

• Venders want to use this function, but …

Background 2/2
• Some attacks are appeared on IaaS, and users want to

increase security of Guest OS.
– For example, Cross VM Side channel attack [CSS2009]

• Guest OSes have some choices of security function.
– Some of them change the behavior of memory and will work

i d f f d d li ito increase or decrease performance of memory deduplication.

• Our paper measures the affects of security functions on
real memory deduplication (KSM with KVM).

Contents

1) Background
2) Memory deduplication
3) OS security functions

– Address Space Layout randomization Memory SanitizationAddress Space Layout randomization, Memory Sanitization,
Page Cache flashing

4) Experimental results
– On Linux’s KSM (Kernel Samepage Merging) with KVM

virtual machine monitor

5) Discussion and Conclusion

Memory Deduplication 1/2
• Memory deduplication is a technique to share same

contents page.
– Mainly used for virtual machines.
– Very effective when same guest OS runs on many virtual

machines.

• Many virtual machine monitors include deduplication• Many virtual machine monitors include deduplication
with different implementations.

VM1 VM2 VM(n)

Real Physical Memory

Guest Pseudo Memory

Memory Deduplication 2/2
• Content-aware deduplication

– Check contents when data is loaded from disk to memory.
• Transparent Page Sharing on Disco [OSDI97]
• Satori on Xen[USENIX09]

• Periodical memory-scan deduplication
– Scan memory pages and merge when pages are same. It can

treat dynamically created contents pages.
• Content-Based Page Sharing on VMWare ESX [SOSP02]
• Differential Engine on Xen[OSDI08]
• KSM (Kernel Samepage Merging) [LinuxSymp09]

– General-purpose memory deduplication for Linux.
– Used mainly for KVM.

• Our paper uses KSM with KVM virtual machine.

KSM: Kernel Samepage Merging
• KSM has 3 states for pages.

– Volatile : contents change frequently (not to be candidate)
– Unshared: candidate pages for deduplication (unique at present)
– Shared: deduplicated pages with same contents.

• Pages are scanned (default: 20msec)
All t d t t i l– All pages are not scanned at a trial.

– The maximum is 25% of the available memory.
– The time to be deduplicated depends on the situation.

Contents

1) Background
2) Memory deduplication
3) OS security functions

– Address Space Layout randomization Memory SanitizationAddress Space Layout randomization, Memory Sanitization,
Page Cache flashing

4) Experimental results
– On Linux’s KSM (Kernel Samepage Merging) with KVM

virtual machine monitor

5) Discussion and Conclusion

OS Security functions

• Modern OSes have security functions that modify
memory contents dynamically.
1. Address Space Layout Randomization (ASLR)

with Position Independent Executable (PIE)
2. Memory Sanitization
3. Page Cache flashing

Address Space Layout Randomization(ASLR)
• Normal binary has fixed Memory layout, and has vulnerability for

overflow attack.
• ASLR gives randomized offset (aligned page) to code, library, and stack.

• Early ASLR for Linux is implemented on PaX and Exec Shield Linux.
• Linux 2.6.12 (June 2005), Windows VISTA.

• Binaries have to be Position Independent Executable (PIE).
– GCC has options to compile a code for PIE-ELF binary. (“-fPIE” for compiler p p y (p

and “–pie” for linker)
• Disadvantage: PIE binaries become fat, because the all addressing are relocatable.

• ASLR and PIE binaries will affect memory deduplication.

Library

Code 0x08048000

0x40000000

0xBFFFF000Stack
Library

PIE code 0x????????

0x????????

0x????????Stack

The address is
changed for each
process on ASLR

Position Independent

PIE-ELF
on ASLR

Normal ELF

Memory sanitization
• Technique for zero-clearing pages after use.

– Sensitive data remain for long periods after use, and Chow
proposed Secure deallocation [USENIX Security 04, 05] . It
prevents information leak.

• Linux has unconditional page sanitization patch.
– Increased zero-cleared pages will be deduplicated. As a result, it will

reduces consumption of physical memoryreduces consumption of physical memory.
– Disadvantage:

• Linux’s sanitization requires zero-clearing all physical pages at boot time.
• Do not treat page cache, because cashed pages are not released from a kernel.

0x00000000

Physical Memory
0xXXXX0000

Zero-cleared

000000
0000000

00000000

Page Cache flushing
• Page Cache flushing reduces possibility of information leak.
• Page Cache reduces I/O overhead when pages are accessed

repeatedly. However, the page cache may include sensitive data.
• Linux kernel has DropCache for page cache flushing.

– DropCache released all cached pages from the kernel.
• “cron” is used to flush page cache at certain intervals (1 sec).

Th fl h d i i d f th A lt it ill– The flushed memory region is reused for other processes. As a result, it will
reduce consumption of physical memory.

– DropCache does not zero-clear the released pages. We need to enable
sanitization to zero-clear the pages.

– Disadvantage:
• Re-loaded data from disk when the same contents are accessed again.

Contents

1) Background
2) Memory deduplication
3) OS security functions

– Address Space Layout randomization Memory SanitizationAddress Space Layout randomization, Memory Sanitization,
Page Cache flashing

4) Experimental results
– On Linux’s KSM (Kernel Samepage Merging) with KVM

virtual machine monitor

5) Discussion and Conclusion

Experiments

• Measure the effects of 3 security functions (ALSR, memory
sanitization, DropCache: page cache flushing) on memory
deduplication (KSM with KVM).

• Test environment
– Intel Core2Quad (Q9650) 3.0GHz processor
– Host OS: Ubuntu 9.10 (kernel: vanilla-2.6.32.1) with memory

deduplication KSM and virtual machine monitor KVM
– 2 type of Guest OSes

• Normal Gentoo Linux (1.12.13, kernel 2.6.31) on a 32GB virtual disk
(31GB ext3, 1GB swap)

• Gentoo Linux which is built as PIE binaries
– It utilize ALSR

Effects of Position Independent Executable (PIE)

• Gentoo Linux has 1,469 ELF binary files in /bin, /sbin,
/usr/bin, and /usr/sbin.
– On Normal Gentoo the total is 88.4MB
– On PIE Gentoo the total is 94.6MB (7% more).

• The biggest change: “pampop9” 5 396B > 9 440B (75% more)• The biggest change: pampop9 5,396B -> 9,440B (75% more).
• The smallest change: “wall” from 9,624B to 9,392B (2% less).

• From after PIE Gentoo is mainly used.

With and without ASLR, DropCache and
Sanitization on 4VMs

Security function
①Peak Mem

(MB)
Virtual/Physical

Stable State
⑤Guest OS
Boot Time

(sec)ASLR DropCache Sanitize ② Physical Mem (MB)
③ Sharing
(MB (%))

④ Unshared+
Volatile
(MB (%))

○ 574/458 234.9 106.4(45.3) 128.5(54.7) 62

○ ○ 431/332 206.9 70.7(34.1) 136.3(65.9) 83

○ ○ 2063/1661 204.6 82.1(40.1) 122.5(59.9) 61

○ ○ ○ 2063/1616 186.5 39.4(21.1) 147.1(78.9) 83

574/455 199.0 120.1(60.4) 78.9(39.6) 62

○ 429/316 169.5 83.1(49.0) 86.5(51.0) 82

○ 2063/1661 171.2 94.0(54.9) 77.2(45.1) 62

○ ○ 2063/1161 129.9 50.4(38.8) 79.5(61.2) 85

With and without ASLR, DropCache and
Sanitization on 4VMs

Security function
①Peak Mem

(MB)
Virtual/Physical

Stable State
⑤Guest OS
Boot Time

(sec)ASLR DropCache Sanitize ② Physical Mem (MB)
③ Sharing
(MB (%))

④ Unshared+
Volatile
(MB (%))

○ 574/458 234.9 106.4(45.3) 128.5(54.7) 62

○ ○ 431/332 206.9 70.7(34.1) 136.3(65.9) 83

○ ○ 2063/1661 204.6 82.1(40.1) 122.5(59.9) 61

+18%

-12%

-13%

DropCache delayed
the boot time.

○ ○ ○ 2063/1616 186.5 39.4(21.1) 147.1(78.9) 83

574/455 199.0 120.1(60.4) 78.9(39.6) 62

○ 429/316 169.5 83.1(49.0) 86.5(51.0) 82

○ 2063/1661 171.2 94.0(54.9) 77.2(45.1) 62

○ ○ 2063/1161 129.9 50.4(38.8) 79.5(61.2) 85
-14%

ASLR increases physical memory consumption
Others (DropCache, Sanitization, and Both)
decrease.

+43%

-15%

13%

-21%

-35%

Sanitization uses all virtual
memory, but consumption
of physical memory is
reduced by deduplication.

ASLR decreases deduplication and
increases unique pages. It means
ASLR reduces opportunities for
memory deduplication.

IncreaseDecrease

Virtual and Physical memory consumption

0

500

1000

1500

2000

2500
Virtual Max

Physical Max1VM, 2VMs, 4VMs

Sanitization use
all memory

Smallest Smallest

MB

• Sanitization uses all virtual memory. KSM depress the consumption of physical
memory but it is still large.

• DropCache, (2) and (6), shows the smallest consumptions, because the flushed
pages are reused.
– They shows enabling DropCahe is the best from the view of memory, but DropCache

affects the time performance of GuestOS.

• DropCache was issued every second. It takes 10 - 20
microseconds (1% or 2%), thus it does not affect
performance severely.

• However, the boot time with DropCache increases by
b 20 d (30%)

DropCache: Page Flushing

about 20 seconds (30% more).
• The other boot procedures read 65MB of data from disk.

DropCache increases this to 99MB (52% more).

PIE Gentoo
(seconds)

No DropCache 61―62
DropCache 82―85

Disk Read (MB)
Normal 65

DropCache 99
Sanitize 65

Memory Usage in KSM: PIE Gentoo at a stable
state after booting 1, 2, and 4 VMs

50

100

150

200

250 Shared
Unshare
Volatile

1VM,2VMs,4VMs
MB

• Total memory(volatile+unshared+sharing) with ASLR are larger than without ASLR.
• Volatile and Sharing pages are almost the same. ASLR increases the number of unshared

pages. It means that ASLR increases pages with different contents.
• However, it is strange because ASLR dons not change the contests. The reason is not well

analyzed.

0

50

Trace of Memory usage on KSM with 4VMs

• Sanitization sets memory contents to zero on all memory pages at boot
time. KSM could not catch up.

• However, the performance of Guest OS is not effected, because KSM
limits the number of pages at a trial, and postpone deduplication.
– After booting, KSM deduplicates memory pages.

0

500

1000

1500

2000

0 100 200 300 sec

sharing

shared

unshared

volatile

0

500

1000

1500

2000

0 100 200 300 sec

sharing

shared

unshared

volatile

Without Sanitization(PIE Gentoo on ASLR) With Sanitization

MB MB

Contents

1) Background
2) Memory deduplication
3) OS security functions

– Address Space Layout randomization Memory SanitizationAddress Space Layout randomization, Memory Sanitization,
Page Cache flashing

4) Experimental results
– On Linux’s KSM (Kernel Samepage Merging) with KVM

virtual machine monitor

5) Discussion and Conclusion

Discussions
• Co-Design of GuestOS and VMM

– Some VMMs offers zero-cleared pseudo memory to a VM. If
memory sanitization recognizes it, the zero-clearing process
may be removed.

– If VMM control page flushing (balance page cache and I/O),
it hi l b l ti i ti VMit can achieve global optimization among many VMs.

• It will be a counter part of ballon memory of VMM.

• Consider Scalability on IaaS
– DropCache reduces the consumption of memory, but it also

reduce time performance. If a server (IaaS) hosts OSes which
don’t care time performance, DropCache is effective.

Related Works
• Memory deduplication has potential to change structure of OS.

– Memory deduplication is used to increase security
• SLINKY[USENIX ATC 2005] encourages static-linking, because memory

deduplication reduces the increase memory.
• Instead of static-linking, Self-contained ELF binaries (binaries which

include shared libraries) is used for generalization [HotSec 2010]

– Attack on memory deduplicationAttack on memory deduplication
• Memory disclosure attack for Copy-On-Write [EuroSec 2011]
• OS Fingerprint [IPCCC2011]

• Memory deduplication is improved.
• KSM++ [RESoLVE 2012]
• HICAMP [APSOLS 2012] Hardware memory deduplication. The size is

very small (16-256 Byte).

Conclusions
• Our paper measures the affects of security functions (ASLR,

sanitization, page cache flushing) on real memory deduplication
(KSM with KVM).
– ASLR increases consumption of physical memory, which is more than

anticipated.
– Memory sanitization has to initialize all memory, but the CPU overhead

for GuestOS is low because memory merging is postponed at heavy loadfor GuestOS is low, because memory merging is postponed at heavy load.
– Page cache flushing (DropCache) reduces consumption of physical

memory by reusing released pages. However, the overhead is large, which
is caused by re-loading data from a disk.

• We should consider co-design of VMM and security
function of guestOS and increase the scalability of IaaS.

