
Behavior-based Methods for Automated,
Scalable Malware Analysis

Stefano Zanero, PhD

Assistant Professor, Politecnico di Milano

Stefano Zanero

Knowing the enemy = key for success

“He will win who knows when to fight and when not
to fight... He will win who, prepared himself, waits to
take the enemy unprepared. Hence the saying: If
you know the enemy and know yourself, you need
not fear the result of a hundred battles. If you know
yourself but not the enemy, for every victory gained
you will also suffer a defeat. If you know neither the
enemy nor yourself, you will succumb in every
battle.” [Sun-Tsu]

Stefano Zanero

The analysis issue

Analysts are way too few, code is way too much

Need better ways to
 Automatically analyze/reverse engineer malware
 Automatically classify/cluster malware, e.g. in families

For both, we have two approaches with symmetric issues

Stefano Zanero

Static vs. dynamic approaches

Static approaches

+ Complete analysis

- Difficult to extract
semantics

- Obfuscation / packing

Dynamic approaches

- “Dormant” code

+ Easy to see “behaviors”

+ Malware unpacks itself

Stefano Zanero

Our Approach

Turn weakness into strength, and strength into weakness, as
Sun-Tzu would suggest: leverage code reuse between
malware samples to our advantage

 Automatically generate semantic-aware models of
code implementing a given malicious behavior

 Use these models to statically detect the malicious
functionality in samples that do not perform that
behavior during dynamic analysis

 Use a variation of this technique to study malware
evolution over time

Stefano Zanero

REANIMATOR

Run malware in monitored environment and detect
a malicious behavior (phenotype)

Identify and model the code responsible for the
malicious behavior (genotype model)

Match genotype model against other unpacked
binaries

Stefano Zanero

REANIMATOR

Stefano Zanero

Dynamic Behavior Identification

Stefano Zanero

Dynamic Behavior Identification

Run malware in instrumented sandbox
 Anubis (anubis.iseclab.org)

Dynamically detect a behavior B (phenotype)

Map B to the set RB of system/API call instances
responsible for it

RB is the output of the behavior identification phase

Stefano Zanero

Behavior Detection Examples

spam: send SMTP traffic on port 25
 network level detection

sniff: open promiscuous mode socket
 system call level detection

rpcbind: attempt remote exploit against a specific vulnerability
 network level detection, with snort signature

drop: drop and execute a binary
 system call level detection, using data flow information

...

Stefano Zanero

Extracting Genotype Models

Stefano Zanero

Extracting Genotype Models: Goals

Identified genotype should be precise and complete

Complete: include all of the code implementing B

Precise: do not include code that is not specific to B
(utility functions,..)

We proceed by slicing the code, then filtering it to
remove support code, and germinating to complete it

Stefano Zanero

Slicing

Start from relevant calls R
B

Include into slice instructionsϕ involved in:
 preparing input for calls in R

B

• follow data flow dependencies backwards from call
inputs

 processing the outputs of calls in R
B

• follow data flow forward from call outputs

We do not consider control-flow dependencies
 would lead to including too much code (taint explosion

problem)

Stefano Zanero

Filtering

The slice is not preciseϕ

General purpose utility functions are frequently included
(i.e: string processing)

 may be from statically linked libraries (i.e: libc)
 genotype model would match against any binary that links to

the same library

Backwards slicing goes too far back: initialization and
even unpacking routines are often included

 genotype model would match against any malware packed
with the same packer

Stefano Zanero

Filtering Techniques

Exclusive instructions:
 set of instructions that manipulate tainted data every

time they are executed
 utility functions are likely to be also invoked on

untainted data

Discard whitelisted code:
 whitelist obtained from other tasks or execution of the

same sample, that do not perform B
 could also use foreign whitelist

• i.e: including common libraries and unpacking routines

Stefano Zanero

Germination

The slice is not completeϕ

Auxiliary instructions are not included
 loop and stack operations, pointer arithmetic, etc

Add instructions that cannot be executed without
executing at least one instruction in ϕ

Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)

Stefano Zanero

Finding Dormant Functionality

Stefano Zanero

Finding Dormant Functionality

Genotype is a set of instructions

Genotype model is its colored control flow graph (CFG)
 nodes colored based on instruction classes

2 models match if they share at least one K-Node subgraph (K=10)

Use techniques by Kruegel et al. to efficiently match a binary against
a set of genotype models

We use Anubis as a generic unpacker

Stefano Zanero

Evaluation

Are the results accurate?
 when REANIMATOR detects a match, is there really the dormant

behavior?
 how reliably does REANIMATOR detect dormant behavior in the

face of recompilation or modification of the source code?

Are the results insightful?
 does REANIMATOR reveal behavior we would not see in dynamic

analysis?

Stefano Zanero

Accuracy

To test accuracy and robustness of our system we need a
ground truth

Dataset of 208 malware samples with source code
 thanks to Jon Oberheide and Michael Bailey from University of

Michigan

Extract 6 genotype models from 1 sample

Match against remaining 207 binaries

Stefano Zanero

Accuracy

Even with source, manually verifying code similarity is time-
consuming

Use a source code plagiarism detection tool
 MOSS

We feed MOSS the source code corresponding to each of the 6
behaviors

 match it against the other 207 sources
 MOSS returns a similarity score in percentage

We expect REANIMATOR to match in cases where MOSS returns
high similarity scores

Stefano Zanero

MOSS Comparison

Stefano Zanero

MOSS Comparison

Potential False Negatives

Potential False Positives

Stefano Zanero

Accuracy Results

We manually investigated the potential false positives and
false negatives

Low false negative rate (~1.5%)
 mostly small genotypes

No false positives
 genotype model match always corresponds to

presence of code implementing the behavior

Also no false positives against dataset of ~2000 benign
binaries
 binaries in system32 on a windows install

Stefano Zanero

Robustness

Robustness results when re-compiling
same source
 Robust against different compilation options (<7%

false negatives)
 Robust against different compiler versions
 Not robust against completely different compiler

(>80% false negatives)
 Some robustness to malware metamorphism was

demonstrated by Kruegel in a previous work

Stefano Zanero

In-the-Wild Detection

10 genotype models extracted from 4 binaries

4 datasets
 irc_bots: 10238 IRC bots
 packed_bots: 4523 packed IRC bots
 pushdo: 77 pushdo binaries (dropper, typically drops spam

engine cutwail)
 allaple: 64 allaple binaries (network worm)

Reanimator reveals a lot of functionality not observed during
dynamic analysis

Stefano Zanero

In-the-Wild Detection

B: Behavior observed in dynamic analysis.
S,D: Functionality detected by Reanimator

Stefano Zanero

Beagle

 Tracking of malware evolution over time
 Let malware update and at each step:

• Run malware in monitored environment to see
behaviors

• Identify the code changes responsible for
malicious behavior changes

 Use the same techniques of REANIMATOR
for identifying and labeling behaviors, and
evolutions of binary code

Stefano Zanero

Beagle: overview

Stefano Zanero

Beagle: how do we define a behavior

 We make use of an Anubis-like sandbox to
automatically analyze system level activity

 We extract automatically graphs of connected
actions that we call (unlabeled) behaviors

 We then label (some of) them manually, and
can recognize with simple rules them across
different samples

 This is similar to the REANIMATOR behavior
signatures

 Opposed to REANIMATOR we tag code with
behavior at a function-level granularity

Stefano Zanero

Beagle: our dataset

Stefano Zanero

Beagle: some global results

Stefano Zanero

Beagle: breakdown of changes on behaviors

Gamarue family

Distribution of
similarity

Bold line = median
Box = quantiles
(0,25,75,100)
Circle = outlier

Stefano Zanero

Beagle: some of the insights

 Changes and evolution
• Some families are much more actively developed than others
• Also we can pinpoint changes over individual behaviors,

sometimes across the collection
• In some cases, overall development appears constant/low, but

we can disaggregate it to significant changes
 Effort

• We have blocks in ASM, not LoC in source, but we can do
some estimate

• We estimate that avg added code in Zeus over each variation
is 140–280 LoC, with peaks up to 9,000

• Roughly holds for other families but we are less certain
• Significant effort of development in malware

Stefano Zanero

Conclusions

 Structural analysis alone is too time and brain
consuming

 Dynamic analysis alone has too many blind points
 We can combine both to obtain:

• Dormant code analysis and tagging
• Evolution tracking
• Triage of new samples

 In the next slide pack I will present:
• Automatic identification of behaviors
• (hopefully) better means of classifying

specimens in families

Stefano Zanero

Thanks for your attention!

stefano.zanero@polimi.it
@raistolo

Most of the work presented was/is joint work with:

UCSB – Christopher Kruegel

Lastline – Paolo Milani Comparetti

Northeastern University – Engin Kirda

Technical University of Vienna – Martina Lindorfer

Politecnico di Milano - Federico Maggi, Alessandro di Federico,
Guido Salvaneschi, Mario Polino, Andrea Scorti

Of course, errors and opinions are mine solely :-)

Research partially funded by the
European Commission under FP7

project SysSec

Jackdaw
Automatic, unsupervised, scalable extraction and

semantic tagging of (interesting) behaviors

Mario Polino, Andrea Scorti, Federico Maggi, Stefano Zanero

Politecnico di Milano
Dipartimento di Eletronica, Informazione e Bioingegneria

NECSTLab NElaboratory
CST

Waseda university, Nov. 25th 2014

Jackdaw Evaluation Conclusions

Pivot concept: behavior

behavior =̃ sequence of actions =̃ sequence of API calls (on Win binaries)

download_execute

recv

WriteFile

CreateProcess

Receives data from a network socket

Write a file

Create a new process

NECSTLab Stefano Zanero Jackdaw 2

Jackdaw Evaluation Conclusions

Defining Behaviors

Previous work: manual specification of behaviors

• Labor-intensive
• Only a small subset of behaviors can be defined manually
• Biased by previous experience of experts

Objective
Extract (interesting) behavior specifications in an automatic way from a
large collection of (untagged) malware

Why?
Support the analyst by providing a list of important behaviors, with a rough
explanation, to prioritize the analysis.

NECSTLab Stefano Zanero Jackdaw 3

Jackdaw Evaluation Conclusions

Our Approach: Jackdaw

NECSTLab Stefano Zanero Jackdaw 4

Jackdaw Evaluation Conclusions

System Architecture

Step 3:
Behavior Extraction

Step 4:
Semantic Tagging

Behaviors

Malware
Families

Step 1:
Data Collection

Step 2:
Clustering

Malware
Families
Malware
Instances

NECSTLab Stefano Zanero Jackdaw 5

Jackdaw Evaluation Conclusions

First step: Data gathering

1 Dynamic Analysis: data flow
analysis

• API functions name
• Parameters of API functions

2 Static Analysis: fingerprint of
code associated to data flow

• sub-graphs of the CFG
• can be hashed and matched
• reasonably resilient to

polymorphism

 <TAINT_DEPENDENCY id="19">

<call api_function="RegOpenKeyExW" caller_address="0x0065006e,0x00b0df8f" id="1"
objects="ObjectAttributes='hku\s-1-5-21-842925246-1425521274-308236825-
500\software\microsoft\internet explorer\privacy',

SubKey='software\microsoft\internet explorer\privacy'"/>

<call api_function="RegQueryValueExW" caller_address="0x0065006e,0x00b1cb90" id="2"
objects="ValueName='cleancookies'"/>

<call api_function="RegOpenKeyExW" caller_address="0x0065006e,0x00b0dfb5,0x00b1ca3a" id="3"
objects="ObjectAttributes='hku\s-1-5-21-842925246-1425521274-308236825-
500\software\microsoft\internet explorer\privacy',

SubKey='software\microsoft\internet explorer\privacy'"/>

<call api_function="GetProcAddress", caller_address="0x0065006e,0x00b0dfb5,0x00b1ca3a">

<function_boundaries begin="0x00b0de6f" blocks="0x00b0dfb5,0x00b0df8f" end="0x00b0e06f"
function_name="sub_B0DE6F"/>

 <function_boundaries begin="0x00b1cb7d" blocks="0x00b1cb90" end="0x00b1cba6"
function_name="sub_B1CB7D"/>

 <function_boundaries begin="0x00b1ca1c" blocks="0x00b1ca3a" end="0x00b1ca6f"
function_name="sub_B1CA1C"/>

 <path begin="0x00b0de6f" end="0x00b0e06f" function_name="sub_B0DE6F">
<\TAINT_DEPENDENCY>

Parameter
Propagation

Caller Addresses

NECSTLab Stefano Zanero Jackdaw 6

Jackdaw Evaluation Conclusions

Control Flow Graph Fingerprinting

Static Analysis.
Identify portions of CFG likely to
come from the same source code.
Properties:

• Unique
• Robust to insertion / deletion
• Robust to modification Both CFGs share a subgraph of given order

NECSTLab Stefano Zanero Jackdaw 7

Jackdaw Evaluation Conclusions

First Step: Data Gathering - Data cleaning

• Static data cleaning: remove the fingerprints of benign binaries (e.g.,
Windows libraries and exes)

• Dynamic data cleaning (Windows API name Normalization):

Prefixes WSASocket → socket

Suffixes
CreateEventA, CreateEventW →

CreateEvent

NECSTLab Stefano Zanero Jackdaw 8

Jackdaw Evaluation Conclusions

Second Step: Clustering

Goal: Build clusters of similar data flows

Sample

...
DF

A

DF
A

DF
A... ...

...

DF
A

DF
A

DF
A... ...

...

DF
A

DF
A

DF
A... ...

Step 2: Clustering of data-flow information based on features of the CFG

CF
G

CF
G

CF
G

NECSTLab Stefano Zanero Jackdaw 9

Jackdaw Evaluation Conclusions

Second step: Clustering

• Clustering of data flow in
malware

• Feature: fingerprint
• simple one pass algorithm
• Threshold
• Similarity metrics

Jaccard similarity

J(A,B) = |A∩B|
|A∪B|

Malware
instances

Taint con
fingerprint

Cluster

NECSTLab Stefano Zanero Jackdaw 10

Jackdaw Evaluation Conclusions

Third Step: Behavior Extraction

Goal: find API functions that represent each cluster (behavior model).

Step 3: B
ehavior generation based on representative A

P
Is

Behavior model 1
Behavior model 1

Behavior model 2 Behavior model 2

Behavior model 2

Implementations of
behavior 2

NECSTLab Stefano Zanero Jackdaw 11

Jackdaw Evaluation Conclusions

Third step: Behavior Extraction - MFR Heuristic

MFR Heuristic (Most Frequent Rule)
Model = API functions that appear often. How often? We set a threshold.

Cluster| API NtClearEvent CreateEvent NtSetEvent
Data Flow 1 T T T
Data Flow 2 T T T
Data Flow 3 T T T

...
Data Flow 13 T T F
Data Flow 14 T T F

Behavior Specification: NtClearEvent ∧ CreateEvent

NECSTLab Stefano Zanero Jackdaw 12

Jackdaw Evaluation Conclusions

Fourth Step: Semantic Tagger

Use Crawler to get knowledge and build significant tag for behaviors
For Each behavior:

Stackoverflow
crawler

Posts related to a
specific API

Posts related to a
specific API

Posts related to a
specific API

Posts related to a
specific API

Posts related to a
specific API

Posts related to a
specific API

Tags extraction

Whitelist / BL

Based on semantic, for example we are
interested in posts in which there are tags
like "windows", "winapi"
We are not interested in some tags like
"python","php" etc.

We weight the importance of posts
according to those wl/bl tags

API Tag : importance measure

NECSTLab Stefano Zanero Jackdaw 13

Jackdaw Evaluation Conclusions

Fourth step: Semantic Tagger

Behavior
API 1 API 2 API 3 API 4

Tags Tags Tags Tags

U (tags) = semantic (hints)

• We look for tags searching API function name, each* element of
powerset of API function in a model.

• Compute a score for each tag (based on post relevance and
frequency of tags in post related to the search).

• Build a ranking of tags.

NECSTLab Stefano Zanero Jackdaw 14

Jackdaw Evaluation Conclusions

System Evaluation

NECSTLab Stefano Zanero Jackdaw 15

Jackdaw Evaluation Conclusions

Dataset

The dataset:
• 1,272 samples from 17 malware families

NECSTLab Stefano Zanero Jackdaw 16

Jackdaw Evaluation Conclusions

Evaluation of behavior extraction: approach

• Unsupervised learning (no ground truth)
• We built a pseudo ground truth, asking experts to manually describe
a model.

• We compare these manually defined behavior models with
behavior models automatically identified by Jackdaw.

NECSTLab Stefano Zanero Jackdaw 17

Jackdaw Evaluation Conclusions

Evaluation of behavior extraction: results

Correctness:

Ground-truth Behavior:
firewall_settings

ShellExecute (advfirewall
firewall add rule name: 1)

Automatic Behavior

RegOpenKey (hku\s-1-5-21-842925246-
1425521274-308236825-

500\software\microsoft\internet
explorer\main)

GetProcAddress

ShellExecute (advfirewall
firewall add rule name: 1)

Completeness:
34 over 45 behavior models manually created by experts have been
identified also by Jackdaw.

NECSTLab Stefano Zanero Jackdaw 18

Jackdaw Evaluation Conclusions

Empirical evaluation.
Example of behavior HTTP connection:

InternetOpen (szAgent: atlsys13.exe: 1)
InternetOpenUrl,MapMemRegion,connect,recv,send

(szUrl: http://robertokunihira.sites.uol.com.br/nordeste.jpg, ForeignPort:
['80']: 1, LocalAddress: (['tcp'], public, ['1029']): 1, ForeignIP: public: 1])

'Banload_09af6de40ab414f41ba48b447345e75d'

Position Tag (hint) Score
1 http 18
2 proxy 13.5
3 ftp 8
4 file 6.8
5 mfc 6.8
6 post 6.2
7 internet 5.6
= upload 5.6
9 file-download 4.5

10 arrays 4
11 download 3.9
12 rich-internet-application 3.3
= networking 3.3
14 httprequest 2.8
15 httpwebrequest 2.2
16 internet-explorer 1.7
..

NECSTLab Stefano Zanero Jackdaw 19

Jackdaw Evaluation Conclusions

Recognizing behaviors in unknown malware

B
a
n
lo

a
d
_0

9
a

C
y
cb

o
t_

b
5
f

D
a
p
a
to

_f
d
1

G
a
m

a
ru

e
_d

f6
G

e
n
e
ri

cD
o
w

n
lo

a
d
e
r_

e
4
c

G
e
n
e
ri

cT
ro

ja
n
_0

8
4

G
ra

ft
o
r_

5
0
a

K
e
lih

o
s_

b
2
1

Ll
a
c_

a
0
2

O
n
lin

e
G

a
m

e
s_

4
d
6

Z
a
n
g
o
H

o
tb

a
r_

5
0
7

Z
e
u
s_

1
b
e

Z
e
u
s_

9
9
2

Z
e
u
s_

c9
6

Z
e
u
s_

d
b
e

Z
e
u
s_

e
7
7

Z
e
u
s_

f5
7

0.0

0.2

0.4

0.6

0.8

1.0

fo
u
n
d

NECSTLab Stefano Zanero Jackdaw 20

Jackdaw Evaluation Conclusions

Conclusions

NECSTLab Stefano Zanero Jackdaw 21

Jackdaw Evaluation Conclusions

Limitations and Future works

Limitations:
• needs buckets of variants of each malware family
• analyzed malware needs to be unpacked

Future Works:
• Introduce sequence/time concept in behavior models
• NLP to improve semantic tagging

NECSTLab Stefano Zanero Jackdaw 22

Jackdaw Evaluation Conclusions

Third step: Behavior Extraction - PLR Heuristic

PLR Heuristic (Propositional Logic Rule)
Let T be a set of elements; given a set of elements L ⊆ P(T), the solution
is all sets Q ⊆ P(T) such that:
• ∀l ∈ L,∀qi , qj ∈ Q with qi 6= qj , if qi ⊂ l then qj ∩ l = ∅
• ∀l ∈ L,∃!q ∈ Q, q ⊂ l

Cluster| API ...Atom API1 ...* ...Atom API2... RegCloseKey ...NtKey API1... ...NtKey API2...
Taint 1 T T F F F

...
Taint 5 T T F F F
Taint 6 F F T T T

...
Taint 8 F F T T T

Behavior Specification:
(AtomAPI1 ∧ AtomAPI2)⊕ (RegCloseKey ∧ NtKeyAPI1 ∧ NtKeyAPI2)

NECSTLab Stefano Zanero Jackdaw 23

Jackdaw Evaluation Conclusions

Conclusions

Jackdaw:
• Automatically extracts behavior models of widespread behaviors,
exploiting both dynamic and static analysis.

• Assigns a set of semantic tags to each model to help analyst
• Maps behavior model on binary code, building a catalog of
implementations of same behavior which can be used to attribute to
family/group

NECSTLab Stefano Zanero Jackdaw 24

