
Experiments with Malware

Visualization

Yongzheng Wu and Roland H.C. Yap

Singapore U. of Tech.

& Design

Natl. U. of Singapore

Why Malware Visualization

• Malware comparison, classification and clustering
is not well defined

– Sharing & Evolution: Reusable components and
complex co-evolution history

– No definite answers: Different anti-virus software give
different classifications

• Can visualization show relationships between
malware?

– Not automatic analysis

– Complementary to analysis

Motivating Applications

• Identify common components of two malware

sample

• Identify new code in a new malware variant

• Identify changes made on benign software

from virus

• Study relation between malware families

• Identify the family of an unknown malware

sample

Visualization Preview

Background on DotPlot

E A C B E E E D C

A

C

B

C

D

E

B

C

E

Sequence X

S
e

q
u

e
n

ce
 Y

Background on DotPlot

E A C B E E E D C

A

C

B

C

D

E

B

C

E

Sequence X

S
e

q
u

e
n

ce
 Y

Background on DotPlot (self-

comparison)

A B C D E F G H I

A

B

C

D

E

F

G

H

I

Sequence X

S
e

q
u

e
n

ce
 X

An example
Comparing two variants of Bagle

Variant A

V
a

ria
n

t B

A smaller section

A
 la

rg
e

 se
ctio

n

The two sections in two

variants are similar

respectively

Many small sections

that are similar

Sequence: Content & Sections

• Sequence coresponds to content of memory

– Subset of “memory dump”

– Executable pages (focus on the code)

– Obtained after unpacking

• Sequence is divided into many sections, e.g.

exe, DLL, anonymous

Processing The Instruction Sequence

• Problem 1: Direct dotplot of the raw

instruction sequence yelds too much similarity

– Because of common instructions such as

• ret

• nop

• xor eax, eax

Processing The Instruction Sequence

• Solution: use n-gram

– Compares n consecutive bytes rather than

individual bytes

• What is n-gram?

– Original: A B C A C D B

– 2-gram: AB BC CA AC CD DB

– 3-gram: ABC BCA CAC ACD CDB

Processing The Instruction Sequence

Raw Instructions 16-gram

Processing The Instruction Sequence

(cont.)

• Problem 2: Sequence is too large for visualization

– The size of memory dump is typically 10 to 100MB

– Comparing two 10M sequences yelds 10Mx10M
image, i.e. 100T pixels!

– Our interactive visualizer handles sequences up to
~500K (Gigapixel images)

– Note: n-gram only reduce the size by n-1

• Solution: hash-based sampling

– Reduce a sequence of size N to N/k

– Sample an n-gram if its hash modulo k is 0

Processing The Instruction Sequence

(cont.)

No sampling After 1:500 sampling

Application 1: Two Variants from Same

Family

• Objective

– Visualize similarity and difference of two variants

from same family

• Data set used

– Two Bagle variants

Application 1: Visualization

broken into many tiny segments

Application 1: Information Learned

• Trivial polymorphic code

• About 5000 different fragments (6%) like this

• 94% code is same in both variants

Application 2: Discover API Hooking by

Comparing System DLL

• API hooking is usually done by patching the

API function entry

• Without hooking, sections of a system DLL are

same in different dumps

• We can compare sections, which are different,

of a system DLL.

Application 2: Visualization

Two different sections of kernel32.dll

from Hupigon

Self-comparison of 11 different sections

of ntdll.dll (10 Conficker variants

and 1 benign software)

Section 1

S
e

ctio
n

 1

Section 2

S
e

ctio
n

 2

Section 11

S
e

ctio
n

 1
1

Application 2: Information Learned

• API hooking in Hupigon. 0x7c801d7b is the entry of
LoadLibraryA()

• 0x7c8197b0 is the entry of CreateProcessInternalW()

Application 3: Visualizing Malware

Families

• Comparing 60 malware instances: 5 instances

× 12 malware families

– Total size 142M

• Try to visualize malware clustering

Application 3: Visualizing Malware

Families (self comparison, only exe sections)

Three Barcodes.

Inner: Sections

Middle: Variants

Outer: Family

Bagle

Hupigon

Turkojan

Bifrose or Hupigon?

Bagel

Bifrose

Hupigon

Turkojan

Application 4: Identify Unknown

Malware

• Given a few known samples.

• We want to compare against existing known

families

– Can we identify family of a new sample?

Application 4: Identify Unknown

Malware

Alureon Bagle Conficker Hupigon

Unknown 1

Unknown 2

Unknown 3

Unknown 4

Ground Truth: Conficker

Ground Truth: Bagle

Ground Truth: Turkojan

Ground Truth: Bifrose

Limitations & Conclusion

• Limitations
– Sophisticated obsfucated code

– Scalability: meant to work with selected samples

• Conclusion
– Effective in showing the similarity in the internal structure

of malware.

– Show similarities between families.

– Identify unknown malware sample

– Can visualize other properties of sequence
• Instruction/basic block/function sequence

• System call sequence

• Memory access

