BISSAM

Automatic Vulnerability Identification of Office Documents

Thomas Schreck, Stefan Berger, Jan Göbel
Siemens CERT

DIMVA 2012
27.07.2012
Motivation

• Malware increasingly focuses on client applications
 ▪ Security in Operating Systems is improving
 ▪ Circumventing perimeter security controls
 ▪ Microsoft Office documents are widely used

• Complex file formats lead to vulnerabilities

Source: Microsoft TechNet
Motivation

• During malware-related incidents, the following questions are necessary to answer

 ▪ Is the document malicious at all?
 ▪ Is it exploiting a 0-day or a known vulnerability?
 ▪ If known, which vulnerability is actually using?
 ▪ Which update remediates this security flaw?

• Today’s analysis tools either use manually created vulnerability signatures or concentrate on malware behavior
System Overview

- Multiple Sandboxes
- Running different Microsoft Office Versions
- Detection of “Forbidden Behavior”

Dynamic Exploit Detection

- Analysis of “Detection Logs“
- Mapping of “Forbidden Behavior” to Security Patches

Vulnerability Identification

- Signatures automatically generated from Security Patches

Signature Generation
System Overview – Automatic Exploit Detection

- Document is executed in several sandboxes, currently:
 - Office 2003, SP1, SP2, SP3
 - Office 2007, SP1, SP2
- Documents are deployed to each machine
- The execution of the application is monitored and logged by BISSAM using PIN
System Overview – Automatic Exploit Detection

- Exploits can be detected by monitoring the instruction pointer (EIP)
- The EIP holds the address of the next instruction
- Instructions are usually taken from the CODE segment

Dynamic Exploit Detection
Vulnerability Identification
Signature Generation

Stack
Heap
BSS
DATA
CODE

Exploits can be detected by monitoring the instruction pointer (EIP)
- The EIP holds the address of the next instruction
- Instructions are usually taken from the CODE segment
System Overview – Automatic Exploit Detection

- Attackers force the EIP to execute instructions from other segments
- BISSAM detects this by monitoring each instruction
- If the EIP leaves a legal segment, BISSAM generates the necessary log files
System Overview – Automatic Exploit Detection

Trace.log

Shellcode.log

... 0: 0x044986E1::: 90 :nop 0: 0x044986E2::: 90 :nop 0: 0x044986E3::: 90 :nop 0: 0x044986E4::: db df :fcmovnu st0, st7 0: 0x044986E6::: d9 74 24 f4 :fnstenv ptr [esp-0xc] ...

Instructions.log

... 0: 0x30003136::WINWORD.EXE 0f 85 8f 93 a6 00 :jnz 0x30a6c4cb 0: 0x3000313C::WINWORD.EXE c3 :ret 0: 0x3016D46E::WINWORD.EXE 5f :pop edi 0: 0x3016D46F::WINWORD.EXE 5e :pop esi 0: 0x3016D470::WINWORD.EXE c9 :leave 0: 0x3016D471::WINWORD.EXE c2 28 00 :ret 0x28
System Overview – Vulnerability Identification

- Uses the logs from the dynamic exploit detection
- The patch is found by matching the execution path to the signatures
- A patch may remediate multiple vulnerabilities
System Overview – Signature Generation

- Signatures must be generated automatically
- Signatures are generated by creating the binary difference between two security patches
- One patch is identified by multiple signatures
- One signature is a changed code block by the patch
System Overview – Signature Generation

- The implementation uses vendor’s security patches (full-file patches)
- The signatures are created by binary comparing each file in the patch to the same file in the base installation
System Overview – Signature Generation

• The implementation uses vendor’s security patches (full-file patches)

• The signatures are created by binary comparing each file in the patch to the same file in the base installation
Evaluation

• For the evaluation 7 documents were analyzed in depth
• Currently around 300 documents were analyzed

<table>
<thead>
<tr>
<th>Document</th>
<th>Correct Patch</th>
<th>BISSAM</th>
<th>OfficeCat</th>
<th>OffVis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE 2006 0022.ppt</td>
<td>MS06-028</td>
<td>MS06-028, MS06-058</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>CVE 2006 2492.doc</td>
<td>MS06-027</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CVE 2009 0556.ppt</td>
<td>MS09-017</td>
<td>MS09-017, MS10-004</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CVE 2009 0563.doc</td>
<td>MS09-027</td>
<td>MS09-027, MS09-068</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CVE 2009 1129.ppt</td>
<td>MS09-017</td>
<td>MS08-051, MS09-017</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CVE 2009 3129.xls</td>
<td>MS09-067</td>
<td>MS09-067, MS09-021</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CVE 2010 3333msf.doc</td>
<td>MS10-087</td>
<td>MS07-015, MS10-087</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Limitations & Future Work

- Improve the detection of malicious behavior
- Improve the security rating of binary changes
- Execution path log size affects the identification rate
Conclusion

• System was developed to
 ▪ detect malicious documents
 ▪ identify the vulnerability

• Evaluation showed that the system improves the Analysis compared to today’s tools

• Saves a lot of analysis time

• Adaptable to other Applications

• Currently in productive use at Siemens CERT
Some Numbers

There are currently

- **519** Bulletins mapped to
- **1069** CVE Numbers for
- **2821** downloaded patches that create a total set of
- **21,933,889** Signatures in the Database
Please contact for further information

Thomas Schreck
Siemens CERT

Otto-Hahn-Ring 6
81739 Munich
Germany

Phone: +49 89 / 636 - 41165
Fax: +49 89 / 636 - 41166

E-mail: t.schreck@siemens.com
Internet: http://www.siemens.com/cert