

RUHR-UNIVERSITÄT BOCHUM

SmartProxy: Secure Smartphone-Assisted Login on Compromised Machines

DIMVA'12, Heraklion, Greece, 26.-27.07.2012

<u>J. Hoffmann</u>, S. Uellenbeck, T. Holz Chair for Systems Security

First things first...

SmartProxy is ...

- a HTTP(S) proxy,
- running on a *smart*phone,
- and written in Java for Android 2.3+.

Goal

- Enable secure login on compromised machines.
- Protect credentials and cookies.

Imagine . . .

- you have to use an untrusted and possibly compromised machine.
- you need to access some website.
- you want to benefit from that computer's screen and keyboard.
- you have your trusted smartphone in your pocket.

Solution

- Use the computer nevertheless, but only type in fake credentials.
- Your smartphone will do all the authentication, the PC never sees real credentials or cookies.

Attacker Modell

An attacker . . .

- has complete control of the PC,
- can therefore read and alter all exchanged data.
- but can not break reasonable crypto,
- and does not have full access to the smartphone.

1 Introduction

2 System Overview

3 Internals

4 Evaluation


User Setup

User needs to ...

- 1. connect the smartphone and the PC.
- 2. import the root certificate (only once).
- 3. setup proxy use in the browser.
- 4. setup each account in *SmartProxy* he wishes to protect (once for each account).
- 5. surf the Web on the PC.

hgi

Connection Options

Smartphone acts as WiFi AP

- (Slow) Internet connection of the smartphone is used (e.g., 3G).
- All network traffic is routed through the smartphone.

Computer acts as WiFi AP

- (Fast) Internet connection of the PC is used.
- All network traffic is routed back to the compromised PC.
 - Bad for plain HTTP traffic.

Connection Options II

USB Tethering

- Basically the same as the smartphone acting as a WiFi AP.
- Smartphone may use WiFi for Internet connectivity.

Other

- Make use of the Android Debug Bridge (insecure).
- Smartphone and PC on same (WiFi) network.
- A combination of the above with altered routes (requires root).

Workflow

In general, SmartProxy . . .

- 1. accepts initial (CONNECT) request.
- 2. connects to the requested server (certificates are verified).
- 3. forges the presented certificate.
- 4. forwards the forged certificate to the browser.
- 5. parses and eventually filters each following request and reply.

No server changes required!

1 Introduction

2 System Overview

3 Internals

4 Evaluation

MITM Attack | Certificate Forging

Root certificate

- X509 v1 certificate generated on first usage.
- Imported into browsers.
- All forged certificates are signed with this certificate.

Forged certificates

- X509 v3 certificates generated if seen for the 1st time.
- Keys are the same for each certificate (less overhead, browsers do not care) and signed by v1 certificate.
- Certificate contains additional alternate subject names (faster).

Credentials

A credential is ...

- a 5-tuple: fake/genuine password/username and a domain.
- manually added to *SmartProxy* by the user.

Functionality

- Fake values are replaced in the header (Basic Authentication) and in POST requests.
- Fake passwords are entered by the user into the browser in a special format: fp_fakepassword_
- Bound to the given domain.

Credentials II

Attacks

- 1. Attacker might change the password on the website!
 - SmartProxy substitutes each credential only once every 15 minutes.
 - SmartProxy recognizes a password change if a fakepassword and two equal values are sent by a form.
 - The user is asked in such cases.
 - SmartProxy logs and vibrates on each substitution.
- 2. Attacker might generate "transactions" on behalf of the user.
 - No (general) mitigation possible?!
 - User sees requests in the log on the smartphone.

Cookies

Cookies are ...

- substituted by SmartProxy to some fake values before reaching the Browser if considered security relevant.
- security relevant if the value is at least 8 bytes long, has a high entropy or the name contains, e.g., id, sid or session.

Problems

Cookies can be generated in the Browser (JS).

• SmartProxy ignores them, they are not deemed security relevant and the attacker already knows them.

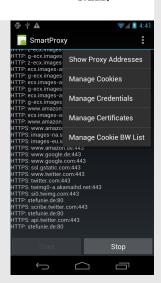
A websites might "break" because of substituted cookies.

• User can manage cookies in a black- and whitelist.

hg i

Personal Data Encryption

- All credentials are encrypted (AES/CBC).
- Key is derived from the fakepassword (PBKDF2).
- Smartphone is no single-point-of-failure regarding credentials.
 - Only those credentials are compromised for which the fakepassword is known.



Data Management

User can ...

- view and delete trusted/forged certificates.
- view and delete Cookies and manage the B/W list.
- create, edit and delete credentials.

1 Introduction

2 System Overview

3 Internals

4 Evaluation

Synthetic Benchmarks

Micro benchmark for the two SSI handshakes. 1

SmartProxy o W	/ebserver
-----------------	-----------

	J		
KS	Ciphersuite	AVG	SD
512	RSA/AES/256/SHA	29	24
1024	RSA/AES/256/SHA	33	17
2048	RSA/AES/256/SHA	37	9
4096	RSA/AES/256/SHA	90	17
512	DHE/AES/256/SHA	84	15
1024	DHE/AES/256/SHA	83	17
2048	DHE/AES/256/SHA	90	17
4096	DHE/AES/256/SHA	124	17

Webbrowser $\rightarrow SmartProxy$

KS	Ciphersuite	AVG	SD
512	RSA/AES/256/SHA	35	16
1024	RSA/AES/256/SHA	42	20
2048	RSA/AES/256/SHA	90	68
4096	RSA/AES/256/SHA	360	326
512	DHE/AES/256/SHA	3,734	4,422
1024	DHE/AES/256/SHA	3,344	4,096
2048	DHE/AES/256/SHA	3,551	4,101
4096	DHE/AES/256/SHA	3,670	4,115

¹KS = Keysize, AVG = Average Time, SD = Standard Deviation, Times in ms SmartProxy|Horst Görtz Institute for IT-Security|DIMVA'12, Heraklion, Greece|26.-27.07.2012

Real World Benchmarks

Alexa Top 25

- Measured overhead of SmartProxy on load times.
- Less than 50% for majority of websites, without caching.
- With enabled caching, overhead sometimes not noticeable.

Alexa Top Ranked Video Portals

- YouTube, XVideos and YouPorn ©
- They work as expected (extensively tested, of course).

Real World Benchmarks II

Website	Handshake [ms]	Overhead	Login
twitter.com	400	17%	√
amazon.com	263	18%	\checkmark
youtube.com	71	20%	\checkmark
google.com	91	23%	\checkmark
live.com	595	23%	\checkmark
bing.com	52	142%	√
wordpress.com	527	204%	\checkmark
yandex.ru	274	260%	\checkmark

Less overhead in new version, numbers from the paper.

Conclusion

It works!

- You can surf the Web with it
- Low overhead (especially with caching)
- Secure credentials (and cookies)
- No server side changes

Improvements

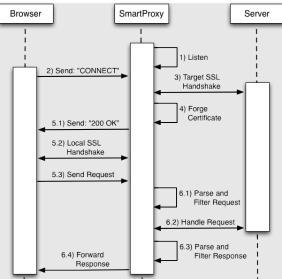
- Connectivity
- Usability (initial setup)
- How to handle non-standard login mechanisms?

RUHR-UNIVERSITÄT BOCHUM

Thanks for your attention! Questions?

Contact

Johannes Hoffmann johannes.hoffmann@rub.de Chair for Systems Security



Workflow II

More Problems

Scripts might use cookie values to form requests with it.

• SmartProxy searches requests for substituted cookies and replaces them.