

1

Juxtapp

Steve Hanna – July 2012

A Scalable System for Detecting Code Reuse Among Android Applications

Steve Hanna
sch@eecs.berkeley.edu

Ling Huang
ling.huang@intel.com

Edward Wu
edwardxwu@berkeley.edu

Saung Li
shadowcwal@berkeley.edu

Charles Chen
charleschen@berkeley.edu

Dawn Song
dawnsong@cs.berkeley.edu

Android Mobile Markets

 Android operating system serves as 48% of mobile market

 Android App Store, Amazon Application Store
 Central repositories to obtain applications

 Users have an expectation of safety

 Markets largely rely on a reactive approach to removing items
 User policing and reporting
 User ratings as indicators
 Bouncer, the Android scanner, leaves much to be desired

2

Markets, not so safe

 Piracy
 Games currently the largest target of piracy
 Paid games made free by pirates

 Repackaged, removing validation code

 Code Reuse & Bugs
 Copy paste errors intro duce security vulnerabilities

 Known Malware
 As of August 2011, users are 2.5 times more likely to encounter

malware than 6 months
 Estimated that high as 1 million users exposed to malware

3

Up to a million android users affected by malware, says report. http://www.linuxfordevices.com/c/a/News/
Lookout-malware-report-2011/

Problem Statement - A need for detection

 Reactive approach not enough

 Detecting application similarity as a first defense shows promise
in mitigating threats to users
 Significantly raises the bar for pirates and malware authors
 Early detection of known bugs

 Reject applications upon submission

 Provides a first chance detection scheme for programs with well
known bugs

4

Applications and Goals

 Architecture for systematic analysis of Android applications to
detect:
 Code reuse and bug discovery
 Piracy
 Software Containment
 Repackaged known malware

 Design Goals
 High performance
 Accurately and efficiently represent the applications under analysis
 Efficiently incrementally update application repository
 Extendable to many features

5

Methodology

 Feature Hashing
 Collect static code features and represent them as a bitvector

 Agglomerative Hierarchical Clustering
 Cluster based on a similarity threshold

 Similarity Containment
 Determine what portions of A’s code exist in B.

6

Feature Hashing

 Reduces dimensionality of data being analyzed

 Feature representation is compact, efficient
 Pairwise comparison efficient
 Comes at the cost of potential collisions

 Given an efficient bit vector representation of size n (prime)
and a window size of k
 Able to store presence or absence of a feature with 1 or 0

7

Unique Problem Domain

 Android applications written in DEX
 Executes on Dalvik, Android’s virtual machine

 Application packages (.APK), archive of:
 Application Code
 Android Manifest (permissions and exports)
 Resources (images, text, raw data)
 Certificate Information

 Contains structured information about the application
 DEX format fully describes the Java application

8

What are the Features?
The Basic Block Format

 Given an APK

 For each class we extract
 Basic block with

instructions
 Each instruction’s op code

 If a const, we record
this constant data

 Package, class and
method name

9

A metric for Similarity

 Jaccard Similarity
 Logical representation, not set representation
 Gives a percentage in common
 Jaccard Dissimilarity measured as 1 – J(A,B)

 Both have ranges [0,1]

 Containment
 Defined as the percentage of features in Application B that exist

within Application A

10

Agglomerative Hierarchical Clustering

 Each application begins in its own
cluster
 Applications under analysis

represented as a matrix of vectors

 Clusters are merged iff the distance
between any two applications in the
cluster is less than some threshold (T)
 For instance, 90% similar allows for

additional code up to 10% of the body.

 Resulting clusters show applications
with threshold (T) similarity in common

11

Architecture

12

Juxtapp Performance

 LEFT: Computed overhead of entire workflow on 100,000
applications with varying numbers of slave nodes.

 RIGHT: The cost of running the workflow and updating the
application repository for new applications.

Result Refinement

 Exclude Popular Features and Idioms
 Including const-data makes this less sensitive

 Clustering
 Determine applications that are similar within a threshold
 Pare down search space

 Exclusion Lists
 Problem: Common packages dominate clustering and similarity
 Class/Package Frequency Analysis

 First attempt was excluding most commonly used packages
 Led to a very long tail, with clusters

 Core functionality
 If we can differentiate between classes that are indirectly invoked from those

that are required for functionality,

14

Defining Core Functionality

15

Core Functionality

Key Intuition: Android applications
have many entry points. Some are
invoked from implicit edges in the
application, we only consider direct
edges

This allows us to quantify the classes
and packages which are directly
invoked versus those which are
implicitly invoked. This helps us
determine which fragments of code
are essential to functionality. Reflections can cause inaccuracy in this method.

Experimental Results

 Experiments performed on EC2 and a local cluster
 Hadoop Streaming Implementation, C++/Ruby/Python/Java

 Vulnerable Code Reuse
 In-Application Billing
 License Verification Library

 Piracy
 Detection of pirated games which were repackaged

 Malware
 Detection of repackaged malware and new variants

16

Android Application Dataset

 Android Market
 30k Free Applications

 Anzhi Market (Chinese 3rd Party)
 28,159 Free Applications

 Contagio Malware Dump
 72 Malware Samples

17

Reuse of Vulnerable Code (I)

 In-Application Billing

 Google provides IAB code verified purchased on the device.
 Dynamic rewriting of the application allowed purchases for free

 Detected 295 applications use at least 70% of the sample code.

 174 were vulnerable to the free market attack
 65 detect the attack off device verification or JNI verification
 56 remained inoperable.

18

Reuse of Vulnerable Code (II)

 License Verification Library
 Identified potential vulnerability points in sample application

 Detected 182 applications with 90% of code
 272 total applications with at least 70% of code

 Single point of checking potentially allows rewriting to circumvent
checks

19

void checkAccess(…) {
// If we have a valid recent LICENSED response, we can skip asking Market.
if (mPolicy.allowAccess()) {
…

 // Try to use more data here. ANDROID_ID is a single point of attack.
 String deviceId = Secure.getString(getContentResolver(), Secure.ANDROID_ID);

Reuse of Vulnerable Code (III)

 License Verification Library
 Examined all 272 applications from set
 239 appeared to be vulnerable

 Contained the vulnerable pattern

 Detected even with obfuscated method names and variation in
vulnerable pattern

20

<i o="iget-object vC="Lcom/android/vending/licensing/LicenseChecker; "/>
<i o="invoke-interface” Policy;.allowAccess()”/>
<i o="move-result" vA="v1"/>
<i o="if-eqz" vA="v1" vB="0015"/>
<i o="invoke-interface” vC=“LicenseCheckerCallback;.allow()V" vD="v10"/>

Piracy on Third Party Markets

 Guardian article claims that these games have
been repackaged by pirates:
 Chillingo’s The Wars
 Neolithic Software’s Sinister Planet

 Evaluated 28,159 applications in the Anzhi market
 Juxtapp found 3 pirated versions of Chillingo’s The

Wars marketed by Joy World, the same company
accused of piracy in the article. No Sinister Planet
found.

 71% code in common with the original application.
 2 are distinctly different, and the third has minor

variations (string differences).
 Pirate left “Chillingo” logo in the repackaged code!

21

Source: http://www.guardian.co.uk/technology/blog/2011/mar/17/android-market-pirated-games-concerns

Identifying Repackaged Malware

22

 Examined Anzhi Market for repackaged malware
 5 families: GoldDream, DroidKungFu 1 & 2, zsone, and DroidDream

 Found 34 instances of malware in the market
 13 Distinct GoldDream Carriers Found

 Games were repackaged with GoldDream

 Juxtapp quickly allowed us to identify the contaminated code

Questions?

 Thanks for listening!

 Questions? sch@eecs.berkeley.edu

	Juxtapp
	Android Mobile Markets
	Markets, not so safe
	Problem Statement - A need for detection
	Applications and Goals
	Methodology
	Feature Hashing
	Unique Problem Domain
	What are the Features? �The Basic Block Format
	A metric for Similarity
	Agglomerative Hierarchical Clustering
	Architecture
	Juxtapp Performance
	Result Refinement
	Defining Core Functionality
	Experimental Results
	Android Application Dataset
	Reuse of Vulnerable Code (I)
	Reuse of Vulnerable Code (II)
	Reuse of Vulnerable Code (III)
	Piracy on Third Party Markets
	Identifying Repackaged Malware
	Questions?

