

1

Juxtapp

Steve Hanna – July 2012

A Scalable System for Detecting Code Reuse Among Android Applications

Steve Hanna
sch@eecs.berkeley.edu

Ling Huang
ling.huang@intel.com

Edward Wu
edwardxwu@berkeley.edu

Saung Li
shadowcwal@berkeley.edu

Charles Chen
charleschen@berkeley.edu

Dawn Song
dawnsong@cs.berkeley.edu

Android Mobile Markets

 Android operating system serves as 48% of mobile market

 Android App Store, Amazon Application Store
 Central repositories to obtain applications

 Users have an expectation of safety

 Markets largely rely on a reactive approach to removing items
 User policing and reporting
 User ratings as indicators
 Bouncer, the Android scanner, leaves much to be desired

2

Markets, not so safe

 Piracy
 Games currently the largest target of piracy
 Paid games made free by pirates

 Repackaged, removing validation code

 Code Reuse & Bugs
 Copy paste errors intro duce security vulnerabilities

 Known Malware
 As of August 2011, users are 2.5 times more likely to encounter

malware than 6 months
 Estimated that high as 1 million users exposed to malware

3

Up to a million android users affected by malware, says report. http://www.linuxfordevices.com/c/a/News/
Lookout-malware-report-2011/

Problem Statement - A need for detection

 Reactive approach not enough

 Detecting application similarity as a first defense shows promise
in mitigating threats to users
 Significantly raises the bar for pirates and malware authors
 Early detection of known bugs

 Reject applications upon submission

 Provides a first chance detection scheme for programs with well
known bugs

4

Applications and Goals

 Architecture for systematic analysis of Android applications to
detect:
 Code reuse and bug discovery
 Piracy
 Software Containment
 Repackaged known malware

 Design Goals
 High performance
 Accurately and efficiently represent the applications under analysis
 Efficiently incrementally update application repository
 Extendable to many features

5

Methodology

 Feature Hashing
 Collect static code features and represent them as a bitvector

 Agglomerative Hierarchical Clustering
 Cluster based on a similarity threshold

 Similarity Containment
 Determine what portions of A’s code exist in B.

6

Feature Hashing

 Reduces dimensionality of data being analyzed

 Feature representation is compact, efficient
 Pairwise comparison efficient
 Comes at the cost of potential collisions

 Given an efficient bit vector representation of size n (prime)
and a window size of k
 Able to store presence or absence of a feature with 1 or 0

7

Unique Problem Domain

 Android applications written in DEX
 Executes on Dalvik, Android’s virtual machine

 Application packages (.APK), archive of:
 Application Code
 Android Manifest (permissions and exports)
 Resources (images, text, raw data)
 Certificate Information

 Contains structured information about the application
 DEX format fully describes the Java application

8

What are the Features?
The Basic Block Format

 Given an APK

 For each class we extract
 Basic block with

instructions
 Each instruction’s op code

 If a const, we record
this constant data

 Package, class and
method name

9

A metric for Similarity

 Jaccard Similarity
 Logical representation, not set representation
 Gives a percentage in common
 Jaccard Dissimilarity measured as 1 – J(A,B)

 Both have ranges [0,1]

 Containment
 Defined as the percentage of features in Application B that exist

within Application A

10

Agglomerative Hierarchical Clustering

 Each application begins in its own
cluster
 Applications under analysis

represented as a matrix of vectors

 Clusters are merged iff the distance
between any two applications in the
cluster is less than some threshold (T)
 For instance, 90% similar allows for

additional code up to 10% of the body.

 Resulting clusters show applications
with threshold (T) similarity in common

11

Architecture

12

Juxtapp Performance

 LEFT: Computed overhead of entire workflow on 100,000
applications with varying numbers of slave nodes.

 RIGHT: The cost of running the workflow and updating the
application repository for new applications.

Result Refinement

 Exclude Popular Features and Idioms
 Including const-data makes this less sensitive

 Clustering
 Determine applications that are similar within a threshold
 Pare down search space

 Exclusion Lists
 Problem: Common packages dominate clustering and similarity
 Class/Package Frequency Analysis

 First attempt was excluding most commonly used packages
 Led to a very long tail, with clusters

 Core functionality
 If we can differentiate between classes that are indirectly invoked from those

that are required for functionality,

14

Defining Core Functionality

15

Core Functionality

Key Intuition: Android applications
have many entry points. Some are
invoked from implicit edges in the
application, we only consider direct
edges

This allows us to quantify the classes
and packages which are directly
invoked versus those which are
implicitly invoked. This helps us
determine which fragments of code
are essential to functionality. Reflections can cause inaccuracy in this method.

Experimental Results

 Experiments performed on EC2 and a local cluster
 Hadoop Streaming Implementation, C++/Ruby/Python/Java

 Vulnerable Code Reuse
 In-Application Billing
 License Verification Library

 Piracy
 Detection of pirated games which were repackaged

 Malware
 Detection of repackaged malware and new variants

16

Android Application Dataset

 Android Market
 30k Free Applications

 Anzhi Market (Chinese 3rd Party)
 28,159 Free Applications

 Contagio Malware Dump
 72 Malware Samples

17

Reuse of Vulnerable Code (I)

 In-Application Billing

 Google provides IAB code verified purchased on the device.
 Dynamic rewriting of the application allowed purchases for free

 Detected 295 applications use at least 70% of the sample code.

 174 were vulnerable to the free market attack
 65 detect the attack off device verification or JNI verification
 56 remained inoperable.

18

Reuse of Vulnerable Code (II)

 License Verification Library
 Identified potential vulnerability points in sample application

 Detected 182 applications with 90% of code
 272 total applications with at least 70% of code

 Single point of checking potentially allows rewriting to circumvent
checks

19

void checkAccess(…) {
// If we have a valid recent LICENSED response, we can skip asking Market.
if (mPolicy.allowAccess()) {
…

 // Try to use more data here. ANDROID_ID is a single point of attack.
 String deviceId = Secure.getString(getContentResolver(), Secure.ANDROID_ID);

Reuse of Vulnerable Code (III)

 License Verification Library
 Examined all 272 applications from set
 239 appeared to be vulnerable

 Contained the vulnerable pattern

 Detected even with obfuscated method names and variation in
vulnerable pattern

20

<i o="iget-object vC="Lcom/android/vending/licensing/LicenseChecker; "/>
<i o="invoke-interface” Policy;.allowAccess()”/>
<i o="move-result" vA="v1"/>
<i o="if-eqz" vA="v1" vB="0015"/>
<i o="invoke-interface” vC=“LicenseCheckerCallback;.allow()V" vD="v10"/>

Piracy on Third Party Markets

 Guardian article claims that these games have
been repackaged by pirates:
 Chillingo’s The Wars
 Neolithic Software’s Sinister Planet

 Evaluated 28,159 applications in the Anzhi market
 Juxtapp found 3 pirated versions of Chillingo’s The

Wars marketed by Joy World, the same company
accused of piracy in the article. No Sinister Planet
found.

 71% code in common with the original application.
 2 are distinctly different, and the third has minor

variations (string differences).
 Pirate left “Chillingo” logo in the repackaged code!

21

Source: http://www.guardian.co.uk/technology/blog/2011/mar/17/android-market-pirated-games-concerns

Identifying Repackaged Malware

22

 Examined Anzhi Market for repackaged malware
 5 families: GoldDream, DroidKungFu 1 & 2, zsone, and DroidDream

 Found 34 instances of malware in the market
 13 Distinct GoldDream Carriers Found

 Games were repackaged with GoldDream

 Juxtapp quickly allowed us to identify the contaminated code

Questions?

 Thanks for listening!

 Questions? sch@eecs.berkeley.edu

	Juxtapp
	Android Mobile Markets
	Markets, not so safe
	Problem Statement - A need for detection
	Applications and Goals
	Methodology
	Feature Hashing
	Unique Problem Domain
	What are the Features? �The Basic Block Format
	A metric for Similarity
	Agglomerative Hierarchical Clustering
	Architecture
	Juxtapp Performance
	Result Refinement
	Defining Core Functionality
	Experimental Results
	Android Application Dataset
	Reuse of Vulnerable Code (I)
	Reuse of Vulnerable Code (II)
	Reuse of Vulnerable Code (III)
	Piracy on Third Party Markets
	Identifying Repackaged Malware
	Questions?

