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Abstract. We use anonymized flow data collected from a 10Gbps backbone link
to discover and analyze malicious flow patterns. Even though such data may be
rather difficult to interpret, we show how to bootstrap our analysis with a set of
malicious hosts to discover more obscure patterns. Our analysis spans from sim-
ple attribute aggregates (such as top IP and port numbers) to advanced temporal
analysis of communication patterns between normal and malicious hosts. For ex-
ample, we found some complex communication patterns that possibly lasted for
over a week. Furthermore, several malicious hosts were active over the whole
data collection period, despite being blacklisted. We also discuss the problems
of working with anonymized data. Given that this type of privacy-sensitive back-
bone data would not be available for analysis without proper anonymization, we
show that it can still offer many novel insights, valuable for both network re-
searchers and practitioners.
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1 Introduction

The amount of Internet malware in circulation has increased and is forecasted to in-
crease even further [1]. Also the types of attacks have changed over time and are today
very different from the ones seen a decade ago. From being a way to gain esoteric
prestige, the attacks nowadays are connected to organized crime [2]. It is important to
understand how prevalent malicious code is, how it spreads, how many “normal” users
are infected, and what happens when one is infected.

There are several orthogonal methods to find partial answers to these questions.
For example, companies or other large organizations can analyze the traffic in their
networks. In these settings, especially given the fact that the organization has a budget
for security incident investigation, there often exists a security policy with enforcement.
That is, as certain security mechanisms are used the data from such organizations will
only show a subset of possible security incidents.

Antivirus companies [3,4], with their software ubiquitously deployed on many com-
puters around the world, can also collect certain data from their customers to analyze
larger trends. However, some information is sensitive to export from the client and the
data are again skewed; they come from computers where security mechanisms have
been installed and where the owners (presumably) are security conscious.
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Large networks of honeypots [5,6] offer invaluable insights into malware behavior
but again the data are biased as these are not regular computers with regular users.
Given their specialized nature, it is also expected that other hosts on the network have a
higher-than-average security protection; the administrators that spend time to install and
monitor a honeypot usually also invest time into other (simpler) security mechanisms.
Similar reasoning goes for DShield/SANS’ aggregated data [7,8].

In our work, we analyze traffic from the backbone of the Swedish University Net-
work SUNET. This is a high-level cross-section of traffic from a very large domain,
giving us an aggregated view of a very large number of hosts containing both security-
conscious users (i.e., researchers in security) as well as less sophisticated users (students
using the computer as a means to an end). By analyzing such traffic, we hope to gain
a different, and potentially more general, view of current malware behavior than the
approaches described above. However, we acknowledge that our cross section of users
is also skewed, albeit in a different way than above. SUNET mainly provides high-
speed Internet access to academic institutions in Sweden, meaning that a majority of
the users are either students or other people connected to academic institutions or re-
search environments, but there are also other types of users such as museums and some
government agencies.

Our analysis of malicious behavior and the corresponding collection is focused on
anonymized flows (i.e. summaries of packet streams between communication endpoints)
and not full packet payload. The advantages include a more manageable amount of data
that are less privacy-invasive than a full packet payload capture. The disadvantages
include no ground truth and a limited ability to further refine or validate our results.
Even though anonymized flow data may stymie some type of analysis, we show that
such data can still be used to discover typical malicious flow patterns that we then
investigate in detail. We consider our results here as a survey with possibilities of future
extensions, both when it comes to the extent of the data analyzed and the methods used.

The rest of the paper is organized as follows. In Section 2 we describe the collection
of traffic and explain the type of data available for analysis. In Section 3, we describe
the general characteristics of this data. We then outline the problem of finding malicious
behavior in Section 4 and formally describe the assumptions and requirements we need
for the analysis of malicious flows. In Section 5, we analyze the behavior of malicious
hosts. In Section 6, we describe related work. The paper is concluded in Section 7.

2 Description of the Data Collection
2.1 Measurement Setup

We collected backbone traffic on an OC-192 (10Gbps) link in the core-backbone of
SUNET, the Swedish University Network. Its current version, OptoSUNET, is a star
structure over leased fiber, with a central exchange point in Stockholm. OptoSUNET
connects all SUNET customers redundantly to a core network in Stockholm, as depicted
in Figure 1. Traffic routed to the international commodity Internet is carried on three
links between SUNET and NORDUnet, where NORDUnet peers with Tier-1 backbone
providers, large CDNs (Content Distribution Networks) and other academic networks.
We used an existing 10Gbps measurement infrastructure [9] to collect traffic on one of
the 10Gbps links between SUNET and NORDUnet, indicated in black color in Figure 1.

2



Fig. 1: OptoSUNET core topology.
All SUNET customers are via access
routers connected to two core routers.
The SUNET core routers have lo-
cal peering with Swedish ISPs, and
are connected to the international
commodity Internet via NORDUnet.
SUNET is connected to NORDUnet
via three links: a 40Gbps link and
two 10Gbps links. Our measurement
equipment collects data on the first of
the two 10Gbps links (black) between
SUNET and NORDUnet.

Our measurement hardware includes two measurement nodes on site and one ad-
ditional processing platform at our university. At the core network in Stockholm, we
apply optical splitters to tap the two OC-192 links, one for each direction. The splitters
are attached to the measurement nodes on-site, which also preprocess the traces, includ-
ing prefix-preserving IP address anonymization [10]. We always collected network data
simultaneously for both directions. For the final analysis, we transferred anonymized
network flows to the processing platform at Chalmers University.

2.2 Description of the Collected Data: Unidirectional Flows

We ran our data collection every week for 24 hours with crl flow of the CoralReef
Suite [11]. We define flows by the unidirectional sequence of packets sharing a 5-tuple
of {sourceIP,destinationIP,sPort,dPort,proto}. Flows are then fur-
ther discriminated by a 5-minute timeout interval, i.e., two packets sharing the same
tuple belong to the same flow if their timestamps are within the given interval. A sam-
ple flow summary of crl flow with anonymized IP addresses is shown in Table 1. Flow
summaries include the identifying 5-tuple, where the proto represents transport proto-
col numbers as assigned by IANA, such as 6 for TCP, 17 for UDP and 1 for ICMP. Note
that in the case of ICMP the port fields contain the type and code, respectively. Other
meaningful fields are pkts and bytes, containing the number of packets and bytes seen
within the flow interval; and firstTS and latestTS, representing POSIX timestamps of the
first and last captured packet in a flow, respectively. Note that we do not normally see
any TCP/IP header information apart from the ports and timestamps described above.

Table 1: Two lines describing the flow output from CoralReef (IP addresses anonymized).

sourceIP destinationIP proto ok sport dport pkts bytes flows firstTS latestTS
192.168.52.11 74.125.43.147 6 1 445 3995 3 120 1 t10 t1n
192.168.10.69 74.125.43.101 1 1 3 1 1 56 1 t20 t2n

2.3 Measurement Bias and Errors

According to SNMP statistics [12], the applied load-balancing mechanisms by SUNET
assigned about 30% of all inbound but only 15% of the outbound traffic volume to
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the 10Gbps link measured, and the rest to the alternative links. This type of sampling
bias is hard to quantify, since the routing policies are outside our control and differ for
incoming and outgoing traffic. They may also change without our knowledge.

The routing of the outgoing traffic is decided by the organization the traffic is origi-
nating from, meaning that different rules govern different parts of the “inside” network.
We have observed that we are blind to outgoing traffic from some IPs, for some hosts
we only see a subset of their traffic and for yet others, we may detect all traffic.

The policy for incoming traffic is slightly more uniform, but still complex due to
the setup of different peering points and agreements, introducing e.g. hot potato routing
effects. In general, we see a subset of all traffic, depending on routing decisions based
on a three-tuple of {sourceIP, sPort, destinationIP} for TCP/UDP flows.
Traffic from some peering points are not visible at all at our measurement point.

There are also a few caveats of the experimental hardware setup. Even though we
normally had no traffic loss within collection periods, there were two exceptions. Firstly,
the measurement cards can sometimes loose synchronization with the OC-192 PoS
framing, so we proactively restarted the collection in 3h periods, leading to missing
packets in the second between such data collection periods. Secondly, there were four
short, but immense traffic surges, where traffic was increasing from the normal rate of
<200k to >400k packets per second. During these surges, our nodes could not keep up
with the speed and dropped packets, which was logged by the measurement cards.

Finally, the measurements were done over an operational large network, meaning
that parameters change over the course of the data collection. For example, on April 22,
we saw a spike of traffic over the outgoing link we were monitoring, as one of the
alternative routes was down for a short period of time. It is important to understand the
limitations of the experiment setup for correct analysis of the data. We can reason about
data we captured, but we need to be careful when interpreting missing data; a flow may
be missing because it was never sent but it may also be missing because it was routed
around our measuring point.

3 Overall Data Characteristics
In this section, we describe the overall data characteristics of the captured flows. Table 2
shows traffic statistics of the collection days used for this study.1 The first observation is
that we see many more incoming than outgoing flows, mainly due to the load-balancing
mechanisms we explained in Section 2.3.

For the incoming traffic, the transport protocol breakdown in terms of flow num-
bers was about 42% TCP, 56% UDP, and 2% ICMP, while the outgoing link showed a
slightly different protocol ratio with 28% TCP, 69% UDP, and 3% ICMP.2 The num-
ber of flows changed over the data collection period but the traffic mix was relatively
constant with two exceptions, April 8 and May 6. On these two days, we observed a
larger number of flows due to major events involving a single host inside SUNET. This

1 Note that our data include a substantial portion of incoming flows on UDP port 53, due to a
RIPE DNS server located inside SUNET, serving over 400 zones. Traffic from and to port 53
on this server cannot be considered native SUNET traffic and we filtered it out for this study.

2 Other protocols in the order of 0.1% are excluded. The values are often rounded to the nearest
percent, and the sum is sometimes not exactly 100% (as in Table 2).
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Table 2: A summary over the collection days and the corresponding traffic characteristics. The
values in parenthesis in the columns for Flows and Bytes show the percentage of the traffic for
TCP, UDP and ICMP respectively. Data for all days are captured in 2010 with a duration of 24h.

Incoming Link Outgoing Link

Date # Pkts / 109 # Flows / 108 # Bytes / 1012 # Pkts / 109 # Flows / 108 # Bytes / 1012

April 01 8.38 2.33 (39/59/2) 5.74 (83/17/0) 3.95 1.20 (27/70/3) 3.21 (58/41/0)
April 08 11.4 3.11 (48/50/2) 8.42 (85/15/0) 5.44 1.54 (27/70/3) 3.93 (52/47/0)
April 15 10.4 2.79 (40/58/2) 7.80 (84/16/0) 3.89 0.96 (28/69/3) 2.98 (54/45/0)
April 22 11.7 2.91 (41/57/2) 9.41 (87/12/0) 3.95 1.09 (29/69/2) 3.31 (61/38/0)
April 29 10.4 2.73 (41/58/2) 7.76 (86/13/0) 3.38 0.95 (30/68/2) 2.77 (57/43/0)
May 06 9.46 3.14 (46/52/2) 6.75 (84/16/0) 4.23 1.16 (30/67/2) 3.62 (58/41/0)

particular host was the target of a large number of connections from a widely scattered
IP range via known IRC port numbers within short time periods. We see many incom-
ing 1-pkt flows with 40 Bytes (probably RST packets), but also a substantial number of
established connections involving exchange of small data portions. We suspect that this
host was sending out Botnet Command & Control (C&C) traffic, where we see only the
return traffic of the botnet zombies all over the world. Thus, we observe that malicious
activity may even leave a footprint in large aggregates as the ones shown in Table 2.

Similarly, we can consider the protocol mix based on the number of bytes trans-
ferred. As can be seen, there was much more traffic sent over TCP than over UDP even
though the number of flows of UDP exceeded the number of flows for TCP. Surpris-
ingly, the UDP traffic accounted for as much as 43% of the outgoing traffic.

Table 3: Unique hosts during the data collection 2010-04-01.

Inside SUNET Outside SUNET
Incoming Link Destination IPs 970,149 Source IPs 24,587,096
Outgoing Link Source IPs 23,600 Destination IPs 18,780,894

In Table 3, we show how many unique IP addresses we saw on the links on the first
collection day. Note that the destination address space for the incoming link is repre-
sented by the source address space on the outgoing link, due the opposing directions of
the unidirectional links. Even though part of the difference between the address spaces
observed can be explained by routing differences, there is a factor of 41 between the
observed IPs inside SUNET between the two directions. We know from previous mea-
surements that scanning operations, even though often unanswered from hosts inside
SUNET, inflate the number of incoming destinations [13], and for that reason we have
not done any closer analysis of such behavior on the data presented here.

Table 4: The number of unique source IP addresses found in the traffic on the outgoing link.

Date April 1 April 8 April 15 April 22 April 29 May 6
Unique IP:s 23,600 26,398 12,223 76,143 12,218 12,603

In Table 4, we show the number of unique source IP addresses seen on the outgoing
link. There are two artifacts we would like to highlight. First, on April 22 we see many
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more source hosts. During a short period this day, one of the alternative routing links
was down and more traffic was routed over the link we measure. By roughly excluding
the 20 minutes the link was down, we have 16,823 unique sources, an estimate more
similar in size to the other collection days.The other artifact is that onward from April
15 we see only about half of the sources, maybe because of a new routing policy. We
briefly investigated how many of the sources on the outgoing link were also present in
the data collected on the incoming link. Given the asymmetry of Table 3, one would
expect a majority of the source IPs on the outgoing link also be present as destinations
on the incoming link. In the data of April 1, it is 97.24%, confirming our expectations.
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Fig. 2: The figure shows how many days a particular host is active. The pie chart to the left shows
hosts inside SUNET (source IP addresses) while the pie chart to the right shows hosts outside
SUNET (destination addresses). The figure is based on data collected on the outgoing link.

We also investigated how long we could detect traffic from a particular IP address.
For example, an IP address may become unused with DHCP, a host may be removed
from the network, or the routing policy is changed. In Figure 2, we have included two
pie charts that show how many collection days a typical IP address was active. The
chart on the left represents hosts inside SUNET while the one on the right represents
hosts outside SUNET. Note we use the estimate for April 22, where the 20 minutes of
exceptional traffic is excluded as described above.

Among hosts inside SUNET, we have found that a majority are only active on one
or two data collection days even though 13% seem to be reoccurring every single data
collection day. In our data, most hosts outside SUNET are also only visible a single day
and there are very few hosts that reoccur over time.

4 Finding Malicious Hosts

We are interested in finding and analyzing typical malicious flow patterns. However,
we face several problems when determining whether a host is malicious. First, its status
can mostly only be determined in relation to a local security policy of allowed behav-
ior. Transmission of data from a system, e.g., might be very permissible at some sites
(research centers sharing results) but very suspicious at other sites (government agency
analyzing pre-election numbers) where it could indicate exfiltration attacks. As we have
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a bird’s view over the network, we cannot make subjective judgment calls. However,
certain behavior, such as spreading malware, is quite universally seen as malicious.

Second, as we only see flow information, it is difficult to verify our suspicions of a
host’s malicious status. Through statistical analysis of the anonymized flow data we can
determine whether a host is behaving strangely compared to the mean, but we cannot
directly verify its status. For example, Google’s servers are an example of beneficial
hosts that would stand out in such an analysis unless accounted for.

However, others have the ability to more closely analyze payload, through, for ex-
ample, the analysis of malware collected in a honeypot. Several organizations make a
list of known malicious hosts available to the community. For our purposes, we use
the lists published from DShield and SRI Malware Threat Center to create a large
set of possible malicious hosts. They provide non-obfuscated IP addresses, which we
anonymized [10] similarly to the IP addresses in our flow data (cf. Section 2). More
specifically, we use DShield’s recommended block list [14], with 20 subnets and the
Most Aggressive Malware Attack Source and Filters [15] and Most Prolific BotNet
Command and Control Servers and Filters [16], 30 day lists, from SRI. The latter two
contain about 400-500 hosts together.

We leverage these host classifications to create a set of known malicious hosts,MF .
We use the following definition for malicious hosts and flows.

Definition of a malicious host A host, x, visible in our traffic capture, is defined as
being malicious, if x ∈MF . All such hosts are added to the malicious set,M.

Definition of a malicious flow A flow, f , with endpoints fs and fd is defined as being
malicious, if either fs ∈M or fd ∈M.

We usually downloaded the external malicious host lists in conjunction to the gen-
eral data collection, and then aggregated them (MF ). Note that we never reclassified
these hosts; if they have been deemed to be malicious at one point during the data
collection period, they were malicious the whole period. We chose this policy for its
simplicity, and given the relatively short time span of the collection period, we do not
find this to be a problem. The original data may also lag slightly in time (a host is only
discovered as malicious after a series of activities), and by treating it as malicious the
whole time we do not miss any of its initial behavior.

The set MF contains 25,900 potential hosts, where we on average saw activity
from about 5.0% of these hosts in the outgoing traffic and 4.6% of these hosts in the
incoming traffic. The sets have about 30% overlap, i.e. of the malicious hosts seen on
the outgoing link only 30% of the same sources were also present on the incoming
link the same collection date. We would like to emphasize that no hosts inside SUNET
belonged toM. The hosts in this set were thus all outside SUNET.

The resulting list of malicious hosts allows us to find malicious flow patterns that
in turn can be used for a larger analysis on a wider set of hosts. Also, concentrating on
the hosts in the malicious group facilitates the analysis as it is easier to find patterns in
this smaller subset. Certain attack patterns, such as denial-of-service attacks, cause by
their very nature a very large footprint on the flow data and can easily be found (see for
example [17]). However, we are also interested in behavior that is not so large scale,
and that is part of the reason why we bootstrap our analysis with the malicious setM.
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Finally, our set of malicious hosts is quite restrictive, e.g. a host needs to display
quite aberrant traffic to be on the block list from DShield. There are probably many
other hosts that are malicious but are not in our malicious set, as e.g. the IRC C&C
server described in Section 3. Thus, we expect that certain patterns found for the mali-
cious hosts will also be applicable to some, what might seem to be, normal hosts.

5 Analysis of Malicious Host Behavior

We use the set of Malicious Hosts, M, defined in Section 4, to discriminate normal
flows from malicious ones. We divide the analysis into two parts. First, we look at
overall characteristics of the malicious flows and discuss large malicious footprints. We
then describe two particular patterns found by analyzing the traffic flows to malicious
hosts on the outgoing link.

5.1 Characteristics of Malicious Flows

In Table 5, we show the average fraction of malicious flows, i.e. the number of malicious
flows divided by all flows averaged over the data collection period. We note that for in-
coming traffic, we seem to have more malicious flows over TCP while for outgoing
traffic, ICMP flows are dominating. We can explain this fact by previous observations
on data from an older generation of SUNET3 showing that the majority of anomalies
(including unsolicited network scanning) originates outside SUNET, i.e. on the main In-
ternet [13]. Table 5 once more confirms these earlier observations with higher numbers
of incoming TCP flows, many of them probably SYN probing attempts.

Table 5: Average fraction of malicious flows per protocol.

Incoming Link Outgoing Link
TCP 0.35% 0.05%
ICMP 0.02% 0.16%
UDP 0.04% 0.01%

Since possible responses to such unsolicited probes are important to understand
for the following analysis, we briefly outline them here. Basically, we can differentiate
between four scenarios following incoming SYN probings or connection attempts: i)
replied by SYN/ACK packets,4 i.e. connection establishment (which should be rather
rare for unsolicited scanning events); ii) unreplied, e.g. by firewalls; iii) replied with
a RST response from host sockets;5 and finally iv) replied with type 3 (net/host/port
unreachable) ICMP messages from network or end nodes.

Discussion: The larger number of outbound malicious ICMP flows is likely to be an
artifact of the unbalance caused by incoming unsolicited TCP probes. In fact, 75% of
the outgoing malicious ICMP flows are of type 3 – destination unreachable, which is an
overrepresentation compared to around 50% type 3 messages when analyzing all flows.

3 GigaSUNET, a ring architecture, was in 2007 replaced by OptoSUNET, a star architecture.
4 SYN/ACK packets are typically larger than 40 Bytes, i.e. 20B IP header, 20B TCP header, up

to 20B TCP options header, no payload.
5 RST packets are normally exactly 40B, i.e. 20B IP header, 20B TCP header, no payload.
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Fig. 3: The figure shows the number of malicious flows detected each data collection day.

Incoming Malicious Traffic: The High-Hitters
In Figure 3, we show the number of malicious flows for each data collection day. In
general, we observe more incoming than outgoing malicious traffic. We can also see
an inflation of incoming malicious flows by a factor of 15–25 on the last three days.
This increase stems from a very small number of IPs responsible for the majority of
malicious flows. In the following, we define high-hitters as source IPs outside SUNET
responsible for more than 4k malicious incoming flows during one day. Disregarding
the high-hitters further discussed below, we found a quite stable amount of incoming
malicious traffic during all days, consisting of between 25k–35k flows stemming from
between 1,108 and 1,349 malicious hosts per day.

On April 1, we observe one high-hitter, responsible for 83% of the incoming ma-
licious flows on this day. This host sent UDP packets to 132k different hosts inside
SUNET on port 1434 with 404-Byte-sized packets during a period of 21 hours. The port
number and packet size suggests that this host tried to spread the Sapphire worm [18].

In the data from April 8 and 15, we observe one high-hitter that was at both dates
responsible for about 33% of incoming malicious flows, a rather moderate traffic den-
sity compared to high-hitters found other days. Flows from this host (to 40 hosts inside
SUNET) were probably DNS responses, since they came from UDP port 53 with packet
sizes of typical DNS answers (around 120 Bytes) and there were corresponding DNS
queries (around 70 Bytes) from a few SUNET hosts found on the outgoing link. We sus-
pect that this host might have been involved in some sort of DNS poisoning attack [19].

On April 22, we observe as many as five high-hitters, responsible for 97% of in-
coming malicious traffic. Three of these high-hitters (generating 44%, 10% and 10%
of the flows, respectively) attempted to connect and login at large IP address ranges
of up to 300k hosts via either SSH (TCP port 22) or VNC (TCP port 5900) during a
couple of hours. The remaining two high-hitters (22% and 11%) also talked to large IP
ranges (around 60k hosts) without fixed destination port numbers, but rather with fixed
TCP source ports of 31414 and 1723, respectively. This would indicate that we actually
observe return-traffic from SUNET to these hosts on these port numbers, but we have
to further investigate this behavior for its significance.

On April 29, there were three high-hitters, together responsible for 97% of the in-
coming malicious flows. The main host (59%) was active during the entire 24 hour

9



period and connected to 107k hosts on five different proxy port numbers (e.g. TCP
8080, 3128, 1080, 9415) from port 6000, which is a scanning behavior also observed
elsewhere [20]. The other two high-hitters (23% and 15%) showed similar behavior to
the two unexplained high-hitters on April 22, with random destination port numbers but
fixed source ports of 14700 and again 31414.

On May 6, there was only one high-hitter, responsible for 96% of all incoming ma-
licious flows. This host was scanning on TCP port 1433 (MSSQL), which is known for
many vulnerabilities. Interestingly, this scanner also used a single source port number
of 6000, and is from the same \24 network as the main high-hitter on April 29.

Discussion: The data basically include a quite constant level of background radiation,
as also observed elsewhere [21,22]. However, at the same time we observe transient
high-hitters with varying traffic density. These outstanding, special events complicate
determination of regular traffic patterns and highlight the importance of longitudinal
measurements spanning time, allowing us to differentiate between the transient high-
hitter traffic from the constant background radiation in our analysis.

5.2 The Ubiquitous Malicious Hosts
We also decided to investigate how long the malicious hosts were active and the be-
havior of the most active hosts. We usedMout, i.e. the set of all visible malicious host
found in the outgoing traffic. We then counted how many collection days these mali-
cious hosts could be found (see Figure 4). As can be seen, a majority of the hosts were
only visible a single day during the collection period. A little more than 20% were vis-
ible for two days, and only about 3% were visible all collection days. This should be
compared with the pie chart to the right in Figure 2.

Discussion: The behavior of the malicious hosts was different from the behavior of all
hosts (cf. Figure 2). For example, there were more malicious hosts active all six data
collection days, as compared to all hosts. However, we believe this may be an artifact
of using a predefined malicious set, i.e., for a host to be blacklisted it must exhibit
malicious behavior over a period of time.
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Fig. 4: The number of days the malicious hosts were active in the outgoing traffic.

Below we further investigate the traffic flows for the malicious hosts that were
present all six data collection days. Even though they only made up 3% of all the ma-
licious hosts we detected, they still stand for 26% of the malicious traffic we found on

10



the outgoing link. We concentrate on the two most prolific hosts and their traffic pattern
over TCP, below referred to as host-A and host-B. As these flows are outgoing, the flows
originated at an internal host (marked as source in the packet). Either the traffic is in
response to earlier connection attempts by the malicious host or it is unsolicited traffic
sent directly to the malicious host. We believe the pattern for host-A described below is
of the former type, while the patterns seen concerning host-B is of the latter type.

Massive Connection Attempts: The Scanner

Host-A was the most active ubiquitous host in terms of number of flows over TCP,
being part of 3,593 flows over the whole collection period with 2,904 distinct hosts
inside SUNET. Many of these hosts inside SUNET were clustered into portions of \24
subnets, and there were usually only 1–2 flows between two distinct end points. Most
of the flows (94%) were directed towards destination port 6000 on host-A.

For example, from the subnet with the most TCP flows toward host-A, we found
flows from 123 distinct hosts. Looking in detail at the flows, there was exactly a single
packet from each host to host-A of the form:

srcSubNet.host:2967 host-A:6000 packets:1 Bytes:40
Clearly, this is a RST packet in response to a scan. This particular scanning technique,
using port 6000, has also been seen elsewhere [20] even though the tool behind it is not
completely understood. We also saw this kind of behavior among the high-hitters on the
incoming link (see Section 5.1).

It is particularly interesting that host-A probed different services over the collection
period. A majority of the captured flows came from April 1 (69%), where host-A probed
port 2967 (from 6000). Similarly, on April 8, port 2967 was probed. On April 15, we
see the first sign of a new target; 51% of the captured flows were the result of a scan
to port 2967 but 39% also targeted port 135, 6% port 1617, and, finally, 4% port 3230.
On April 22 the shift was larger still; 21% targeted port 2967 while 79% targeted port
135. On April 29, we can only see a single connection: one RST flow from source 2967
to destination port 6000. On May 5, the malicious host was again more active. At this
particular day, only a single connection went from 2967 to destination port 6000, while
99% instead involved port 135. Thus, the potentially vulnerable target port shifted over
the collection period, where first port 2967 and in the end only port 135 was probed.

Table 6: Pattern for a possible secondary return and infection.

src dst sport dport pkts bytes date time
src1 host-A 2967 6000 1 60 2010-04-22 04:09:16
src1 host-A 2967 1143 927 48,212 2010-04-22 04:09:21

The second interesting observation of host-A’s behavior is the following; the ma-
licious host immediately tried to connect (and infect?) hosts that seemed to have the
appropriate service running. As we said above, most of the traffic was actually a single
packet with size 40, i.e. a RST packet. What is interesting is when the SUNET host
replied with other packet sizes. In Table 6, we list one such example taken from the
data captured on April 22. The first flow summarizes the probing attempt by host-A
but the response we see is not the typical RST packet, i.e. the connection seemed to
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be accepted.6 Within 5s, host-A returned and opened a connection to the SUNET host
and then data were actually exchanged, possibly being malicious code. We see simi-
lar behavior on all days; if the first attempt did not elicit a RST packet, there was a
follow-up flow in almost all cases. For example, on April 1, there was a new flow, on
average within 12s, in 25 of the 27 cases where the SUNET host replied with a packet
of size 44.7 This tells us something about the scanning software. In the first pass, it tries
to connect from a standard port and it probably blasts out packets. If the service is not
refused, it returns within 10–12s and reconnects through other ports.
Discussion: Summarizing the behavior of host-A, we first see that the scanner remains
constant over the data collection period despite it being blacklisted. Apparently, the
owner did not feel it is worth changing the IP address (because few home users use
blacklists?). Second, host-A was actively monitored and supervised as we can see from
its shifting probing profile over the collection period. Third, the return after a success-
ful probe happened within seconds, either for further data collection or an infection
attempt. As future work, it would be interesting to monitor these possibly infected
SUNET hosts for their post-infection behavior.

Temporal Patterns: Connecting to the Malicious Server

Host-B was the second most active malicious host that was also present on all connec-
tion days. We found 972 flows involving this host coming from 27 distinct sources in
the outgoing data. These flows do not seem to be part of a scan; for many of these out-
going flows, a few packets were sent from a non-privileged port from the host inside
SUNET to a few very specific ports on the malicious host. We did not at all see similar
scanning behavior as with host-A. Interestingly enough though, these flows to host-B
sometimes seemed to follow temporal patterns.

We analyzed the traffic patterns based on their time properties from four of the hosts
inside SUNET communicating with host-B, shown in Figure 5. Each subgraph (with
one exception) shows all flows between a single host inside SUNET to a specific desti-
nation port on host-B. The connection index n in the graph represents flow n (ordered
chronologically), which is then plotted at (tn − tn−1, n). That is, the x axes represent
the time differences between two consecutive flows, while the y axes simply index the
flows ordered by time. Let us look at each of the subplots separately. We order them
from top to bottom, left to right, according to the number in parenthesis in the figure
text along the x axes.

In Subplot 1 in Figure 5, we show one of the time patterns we found. Here, the
source host connected to host-B, port 6969, about once every 43min. Now and then,
such a connection was immediately followed by another flow (i.e. through a new source
port on the host inside SUNET), probably a reconnect after a failed first attempt. This
particular pattern existed over two collection dates, where the flows from the second
day is marked with unfilled markers.

Similarly, in Subplot 2, we found a consistent pattern but with a period of 30min
instead of 43min as in Subplot 1. In this graph, we have also added dotted lines between
two consecutive connections to make the connection pattern more visible. The SUNET

6 Note that SYN/ACK responses are, due to TCP option headers, typically larger than 40 Bytes.
7 The missing two cases may be an effect of the routing bias explained in Section 2.3.
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Fig. 5: The figure shows temporal communication patterns to the malicious host-B.

host connected to host-B, port 8000, about every 30min with a few exceptions. Three
times, the “ordinary” connection was immediately followed by a new connection. Two
times8 the reconnections took more than 30min to establish. Again, the pattern lasted
over two collection dates spaced a week apart, and the flows from the second day are
marked with unfilled markers.

Discussion: The patterns seen for the hosts in Subplot 1 and 2 imply relatively simple
programming, i.e. a regular refresh or a keep-alive signal. The hosts inside SUNET may
contain malware, meaning that these patterns would indicate an attempt to “call home”
by the malware to the blacklisted host-B. However, sometimes other services are also
running on the malicious hosts and the seen pattern could be the result of a more regular
service. Especially interesting is the pattern length; interpolating, it would seem that the
keep-alive signal was present over a week.

In Subplot 3 we can see a complex back-off pattern with t1 = 111s, t2 = 222s,
t3 = 333s, t4 = 666s, t5 = 1, 332s, t6 = 2, 664s, i.e. tn =

∑n−1
i=1 ti for n > 2. The

vertical dotted lines are added at these anchor times for ease of reading the figure. The
source tried to connect to host-B with a total of about 16–17 distinct flows, with about
3–4 connections spaced 111s apart. The following connection then came after 222s
followed by one at 333s, 666s, 1, 332s, and finally about nine flows spaced 2, 664s
apart. What makes this particular pattern stand out, apart from its complexity, is that
the source connected to host-B on several distinct ports (6969, 8000, 8080), always
following the exact same pattern, seldom being off even a full second from the anchor
times described above. Moreover, this very same host also tried to connect to six other
hosts, using the exact same connection pattern but with different destination ports (80,

8 In Subplot 2 we have one outlier at about 38,293s that is not shown (the dotted lines hint to its
existence). In Subplot 4, we have five outliers not visible in the graph.
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2710, 6997, 6969, 9999, 60500). Thus, in total the host exhibited the very same pattern
in twelve distinct cases and they have all been superimposed in Subplot 3. Even though
Subplot 3 in reality contains 12 graphs, we can see that the pattern in each of these
graphs is so similar to the others that each individual point is plotted on top of another
and it is easy to distinguish the overall structure. There are a few errant points in the
beginning but towards the end the sequence is stabilized. Most of the flows that make
up this pattern, contained three packets with a total of 152 Bytes. These 12 patterns
appeared within four minutes of each other, which might indicate a common event
triggering their initialization. They may also have contained more points than shown in
the graph, but any subsequent point is beyond our 24h data collection period.

Finally, in Subplot 4 we show a similar pattern to that found in Subplot 3. We could
only find the single host in Subplot 3 with a back-off pattern within a second of the
anchor times. However, we found a few other instances where the pattern is somewhat
similar. One such example is shown in Subplot 4, where we again show flows from
a subsequent collection day with unfilled markers. In contrast to Subplot 3 (where 12
similar patterns are superimposed), Subplot 4 contains a single pattern, i.e. one host that
used different source ports to connect to the same destination port (8080) on host-B. In
contrast to the patterns in Subplot 3, we can see that this host was repeating the pattern
over and over again, lasting over a week, i.e. two data collection dates.

Discussion: The time properties for these two hosts represent a more complex program-
ming logic, implying that the programmer chose this particular algorithm for a reason.
As discussed above, these patterns could indicate an attempt to “call home” by the mal-
ware but it could also be part of a more regular service.9 The patterns were probably
triggered by some event, as all 12 occur within four minutes of each other. Given the
exact nature of the pattern displayed by the host in Subplot 3, we have described it at
several mailing lists but without conclusive responses as most people suggested a full
packet capture for further analysis – which is not possible for us due to privacy con-
cerns. We have also been unable to find other hosts within our data that follow such an
exact pattern as displayed by this host. This means that regardless of the pattern being
the result of a regular program or malware, it is not widespread.

6 Related Work

As already outlined, malicious traffic can be studied by several orthogonal methods,
such as distributed sensors, honeypot networks, network telescopes/darknets, and large-
scale passive measurements. The relation of the first two methods to our work has al-
ready been discussed in Section 1. They introduce a serious bias, as the users obviously
care about security, and they are not very suitable for analysis of real user responses.

Given that network telescopes monitor large, unused IP address spaces, they see
traffic that by its very nature should not exist [23]. Even though network telescopes have
been used for extensive studies of worm outbreaks [24] and for general characterization
of background radiation [25,26], they are only traffic sinks and do not respond genuinely
to incoming traffic.

9 For example, one of the destination ports found (6969) may be associated with bittorrent.
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Our approach, passive measurements on large-scale links, is generally viewed as
the best way to study Internet traffic, as it includes real behavioral responses from a
diverse user population. Others made use of observations of connection properties to
study general characteristics of scanning traffic both on campus links [21] and backbone
links [27]. Also one of the authors of this paper previously quantified unsolicited traffic
by simple heuristic methods utilizing connection patterns [17,22]. Malicious traffic (i.e.
scanning and DDoS attacks) was observed to be the main reason for short, unidirec-
tional one-way flows on both campus and backbone links [28]. Rehák et al. [29] uses
NetFlow data to fine-tune an Intrusion Detection System (IDS) by periodical insertion
of challenges (or fault injections).

In contrast, in this paper we have observed and analyzed traffic patterns of malicious
hosts, describing their changing behavior over the data collection period. Behavioral
analysis of malware is also possible by reverse engineering [30], and we consider such
approaches complementary to ours; reverse engineering requires a significant effort but
may yield an exact analysis of the malware in question but with our measurements a
wide range of behavioral patterns can directly be observed. Furthermore, reverse engi-
neering can never directly answer certain questions, such as how widespread a certain
malware is, but this is a property we can measure.

7 Discussions and Conclusions

We have shown that we can use anonymized flow data to discover and analyze mali-
cious flow patterns, a result useful for network researchers and practitioners interested
in security related topics such as intrusion detection. Some attacks leave such a big
footprint that they are visible even in summaries of large traffic aggregates, as the C&C
server described in Section 3. To detect more obscure patterns, though, we bootstrapped
our analysis with a predefined set of malicious hosts, and analyzed their behavior from
a large-scale perspective based on Internet backbone data. Each finding is discussed
in detail within the paper. For example, we showed the need for longer-time measure-
ments to be able to separate the transient high-hitters from the background traffic. De-
spite being blacklisted, we found some malicious hosts that stayed active over the whole
measurement period. One of these hosts seems to automatically scan and possibly infect
vulnerable hosts within seconds, but is most likely under active human supervision as its
scanning profile shifted over time. In contrast to many previous measurement methods,
we went beyond the analysis of simpler attribute aggregates (such as top source port,
etc.) to also include a temporal analysis of communication patterns, originating from
hosts within SUNET to a malicious host. We found both simple refresh logic and com-
plex back-off patterns, sometimes lasting over a week. The latter patterns are not easy
to discover because they do not leave large footprints in traditional traffic summaries.

Summarizing, there are disadvantages with using anonymized flow data in that it is
rather difficult to both interpret the data and to validate the result. However, such data
would otherwise not be available for analysis and they can still offer many valuable
insights, not possible with complementary methods. The findings in this paper are just
the first look at the data, which we are still expanding by regular weekly measurements
(ongoing since April 2010). By improving the selection of the malicious hosts, both by
using collected information from locally installed honeypots with access to full payload
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and a more automatic classification of hosts and malicious traffic [31], we expect more
detailed and conclusive results in the future.
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