
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

Trustworthy ICT

NETWORK OF EXCELLENCE

A European Network of Excellence in Managing Threats and
Vulnerabilities in the Future Internet: Europe for the World †

Deliverable D7.4: Final Report on Cyberattacks

Abstract: In this deliverable, we will “report our research results in the
area of Cyberattacks”. We begin by putting our work in the context of the
SysSec roadmap, and specifically how our research results address the var-
ious threats identified in different fields. The report is divided into four
different chapters, one for each identified field, containing Attacks on Web
Applications and Services, Attacks on Smart and Mobile Devices, Attacks on
Privacy and Attacks on Social Networks.

Contractual Date of Deliv-
ery

August 2014

Actual Date of Delivery December 2014
Deliverable Dissemination
Level

Public

Editors Sotiris Ioannidis, Thanasis Petsas
Contributors All SysSec Partners
Quality Assurance TUBITAK-BILGEM

†The research was funded by the European Union, within the Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n° 257007.

The SysSec consortium consists of:

FORTH Coordinator Greece
Politecnico Di Milano Principal Contractor Italy
Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Institut Eurécom Principal Contractor France
IICT-BAS Principal Contractor Bulgaria
Technical University of Vienna Principal Contractor Austria
Chalmers University Principal Contractor Sweden
TUBITAK-BILGEM Principal Contractor Turkey

www.syssec-project.eu 2 January 9, 2015

Document Revisions & Quality Assurance

Internal Reviewers

1. Ali Rezaki (TUBITAK-BILGEM)
2. Konstantina Drakou (FORTH)

Revisions
Ver. Date By Overview
0.1.0 3/12/2014 Editors Changes suggested by the final consistency review.
0.0.9 26/11/2014 #1 Final review of deliverable consistency.
0.0.8 24/11/2014 #2 Further updates by internal review.
0.0.7 21/11/2014 #1 Second review by QMC on deliverable concerning for-

mat, style, and content.
0.0.6 24/10/2014 #1 Thorough review of QMC for all chapters.
0.0.5 10/10/2014 #2 Detailed review of introduction, conclusions, and

roadmap relations.
0.0.4 23/9/2014 Editors Quality check by all chapter contributors.
0.0.3 15/9/2014 Editors Merging of packages, references, macros, etc.
0.0.2 10/8/2014 Editors Input received by partners.
0.0.1 3/7/2014 Editors Outline and preliminary article selection complete.
0.0.0 17/4/2014 Editors First outline of document.

www.syssec-project.eu 3 January 9, 2015

www.syssec-project.eu 4 January 9, 2015

Contents

1 Introduction 13
1.1 Cyberattacks in the SysSec Research Roadmap 13
1.2 Research Topics Covered in This Report 14
1.3 Other Cybersecurity Related Works of SysSec Consortium . . . 15

2 Attacks on Web Applications and Services 19
2.1 Introduction . 19
2.2 An Empirical Study on the Security of Cross-domain Policies

in Rich Internet Applications 20
2.2.1 Data Collection . 20
2.2.2 Policy adoption and security 20
2.2.3 Attacks . 25
2.2.4 Setting up the Attack 25
2.2.5 Lessons Learned . 27

2.3 An Architecture for Enforcing JavaScript Randomization in
Web2.0 Applications . 28
2.3.1 Architecture . 28
2.3.2 Case Studies . 33
2.3.3 WordPress . 33
2.3.4 Evaluation . 38
2.3.5 Lessons Learned . 40

2.4 Combining Static and Dynamic Analysis for the Detection of
Malicious Documents . 40
2.4.1 Background . 40
2.4.2 Design and Implementation 41
2.4.3 Experimental Evaluation 46
2.4.4 Lessons Learned . 49

5

3 Attacks on Smart and Mobile Devices 51
3.1 Introduction . 51
3.2 Evading Dynamic Analysis of Android Devices 51

3.2.1 Anti-analysis Techniques 51
3.2.2 Static Heuristics . 52
3.2.3 Dynamic Heuristics . 53
3.2.4 Hypervisor Heuristics 54
3.2.5 Implementation . 55
3.2.6 Experimental Evaluation 56
3.2.7 Data and Tools . 56
3.2.8 Methodology . 57
3.2.9 Evasion Results . 58
3.2.10 Countermeasures . 59
3.2.11 Lessons Learned . 61

3.3 A Study of WebView-related vulnerabilities in Mobile Appli-
cations . 61
3.3.1 Background . 61
3.3.2 Threat Scenario . 62
3.3.3 Case Study . 64
3.3.4 Large Scale Evaluation 65
3.3.5 Mitigation . 69
3.3.6 Lessons Learned . 69

4 Attacks on Privacy 71
4.1 Introduction . 71
4.2 Minimizing Information Disclosure to Third Parties in Single

Sign-On Platforms . 72
4.2.1 OAuth Protocol . 72
4.2.2 Social Login vs. User Privacy 73
4.2.3 Design . 75
4.2.4 Implementation . 78
4.2.5 Lessons Learned . 82

4.3 Privacy-preserving Microblogging Browsing through Obfus-
cation . 83
4.3.1 System Design . 83
4.3.2 Analytical Evaluation 87
4.3.3 Simulation-based Evaluation 92
4.3.4 Implementation . 94
4.3.5 Experimental Evaluation 95
4.3.6 Lessons Learned . 98

www.syssec-project.eu 6 January 9, 2015

5 Attacks on Social Networks 101
5.1 Introduction . 101
5.2 Using Social Networks to Harvest Email Addresses 102

5.2.1 Harvesting email addresses 102
5.2.2 Using Social Networks to harvest email addresses . . . 103
5.2.3 Measurements . 107
5.2.4 Lessons Learned . 113

5.3 Breaking Facebook’s Social Authentication 113
5.3.1 Social Authentication 113
5.3.2 Breaking Social Authentication 119
5.3.3 Experimental Evaluation 122
5.3.4 Overall Dataset . 123
5.3.5 Breaking SA: Determined Attacker 124
5.3.6 Breaking SA: Casual Attacker 125
5.3.7 Lessons Learned . 127

5.4 Detecting social network profile cloning 127
5.4.1 Design . 128
5.4.2 Implementation . 129
5.4.3 Evaluation . 131
5.4.4 LinkedIn Study . 131
5.4.5 Lessons Learned . 135

6 Conclusions 137

www.syssec-project.eu 7 January 9, 2015

www.syssec-project.eu 8 January 9, 2015

List of Figures

2.1 Global Alexa Top100, Top100K 21
2.2 Correlation of policy adoption and site popularity rank. 22
2.3 Alexa Top100 US . 23
2.4 Fortune500 . 23
2.5 CDF of the number of directives (length) per cross-domain

policy for top 100K global sites. 25
2.6 Attack Proxy Design . 26
2.7 A typical RaJa example. 29
2.8 Schematic diagram of the RaJa architecture. 31
2.9 Code mixing of JavaScript with alien languages. 32
2.10 Categorization of all cases that result in faulty randomization

due to interference between JavaScript and PHP. 34
2.11 Suggested workarounds for all cases that result in faulty ran-

domization due to interference between JavaScript and PHP. . 35
2.12 Example of randomized source code from WordPress (wp-

login.php). 37
2.13 Server side evaluation when the Apache benchmark tool (ab)

is requesting each web page through a Fast Ethernet link. . . . 39
2.14 Client-side evaluation for a RaJa-enabled web browser using

the SunSpider benchmarks. 39
2.15 Overall architecture of MDScan. 42
2.16 A malformed PDF document that is rendered normally by

Adobe Reader. 43
2.17 An obfuscated version of the document shown in Fig. 2.16

that is still rendered normally by Adobe Reader. 44
2.18 Cumulative fraction of the virus scanners of VirusTotal that

detected a set of 197 malicious PDF samples. 47

9

LIST OF FIGURES

2.19 Cumulative distribution of the processing time for malicious
and benign PDF samples. 47

2.20 Number of virus scanners (out of 41) of VirusTotal that de-
tected obfuscated versions of malicious PDF files generated
with Metasploit. 47

2.21 Average processing time for malicious and benign samples. . . 49

3.1 CDF accelerometers’ events intervals in an Emulator. 53
3.2 CDF of scheduling events in device and Emulator. 53
3.3 Example of an attacker compromising (a) the server or (b)

the traffic to steal a victim’s address book. 64

4.1 Distribution of requested permissions for a set of 755 web-
sites that have integrated Facebook’s single sign-on platform. . 73

4.2 A website requesting an excessive amount of personal data. . 75
4.3 Typical communication of session state to loaded pages v.s.

the one followed by SudoWeb 77
4.4 SudoWeb extension modules. 78
4.5 Outline of SudoWeb’s workflow. 79
4.6 Screenshot of the configuration for the session manager module. 81
4.7 Screenshot of a Facebook “Request for Permission” page. . . . 82
4.8 Disclosure Probability PC of k-subscription-UNIF as a function

of the obfuscation level k and the size of S. 86
4.9 Disclosure Probability PC of k-subscription-UNIF as a function

of the size of S and channel popularity pC 89
4.10 Disclosure Probability PC of k-subscription-PROP as a func-

tion of the obfuscation level k. 89
4.11 Disclosure Probability as a function of the obfuscation level k. 89
4.12 Distribution of the sensitive channels popularity. 91
4.13 Distribution of the number of sensitive channels followed by

a user. 91
4.14 Disclosure probability as a function of k using realistic simu-

lations. 91
4.15 Overall operation of the k-subscription browser extension for

Twitter. 95
4.16 Time to follow a sensitive channel as a function of k. 95
4.17 Number of tweets posted per channel per hour. 95
4.18 Bandwidth consumed for a user receiving tweets as a function

of time. 95
4.19 Bandwidth consumption with k-subscription, Tor and vanilla

system. 96
4.20 Browsing latency as a function of k when a user opens Twit-

ter’s main page. 96

www.syssec-project.eu 10 January 9, 2015

LIST OF FIGURES

5.1 Ratio of unique email addresses per keyword for various
email harvesting methodologies. 108

5.2 Ratio of traffic volume per email address for various harvest-
ing methodologies . 108

5.3 Example screenshot of the user interface of a Facebook SA page.114
5.4 Attack tree to estimate the vulnerable Facebook population. . 117
5.5 Overview of our automated SA-breaking system. 119
5.6 Successfully-passed tests as a function of the training-set size. 124
5.7 Time required to lookup photos from SA tests in the face

recognition system. 125
5.8 Efficiency of automated SA breaker against actual Facebook

tests. 126
5.9 Diagram of our system architecture. 128
5.10 CDF of the range of search results returned for different

pieces of information on a user profile. 134

www.syssec-project.eu 11 January 9, 2015

LIST OF FIGURES

www.syssec-project.eu 12 January 9, 2015

1
Introduction

1.1 Cyberattacks in the SysSec Research Roadmap

One of the focus areas of the SysSec project was to improve our understand-
ing in new and emerging types of cyberattacks, as well as to advance the
state-of-the-art in the area of detection and mitigation of such cyber threats.
The SysSec project had outlined the main candidate topics that should be
investigated in the 2011 First Report on Threats on the Future Internet and
Research Roadmap [56], which then was enriched with the 2012 Second Re-
port on Threats on the Future Internet and Research Roadmap [57] and finally
with our updated roadmap, the 2013 Red Book: Roadmap for Systems Secu-
rity Research [58] providing examples of such attacks, information about
their impact, as well as the state-of-the-art of the current defensive tools
and techniques against them.

The candidate topics that have been identified as a result of brainstorm-
ing and discussion from relevant working groups within the SysSec project
were the following: Social Engineering, Web Services and Applications, Big
Data and Privacy, Critical Infrastructures, Smart, Mobile and Ubiquitous Ap-
pliances, Insiders and Network Core Attacks. Considering that the area of
cyberattacks is very wide, our research will cover four of the most preva-
lent fields as outlined in our roadmap. In the first roadmap [56], we paid
particular attention on the Web Services and Appliances. Thus, during the
first year, our research was basically related with attacks on Web Applica-
tions and Services. In our second roadmap [57], we placed more emphasis
on Smart, Mobile and Ubiquitous Appliances and on Privacy. Thus, during
the second year of our research focus on cyberattacks in these two different
fields. In our updated roadmap, in the Red Book [58], the most important
field was the emerging Social Networks, and therefore, our third year of re-
search was mainly focused on attacks on such networks. In Section 1.2,
there is an outline of the topics covered in this report. The topics are listed

13

CHAPTER 1. INTRODUCTION

in the order specified by the roadmap. In Section 1.3, there is a list of other
works of the SysSec project related with cybersecurity that are not covered
in detail due to the limited space of this report.

In the Review of the state-of-the-art in Cyberattacks [108], an overview of
the most critical categories of cyber attacks was provided that threaten the
modern computer systems and networks based on the most recent publica-
tions appeared in the top conferences in the field including Memory Attacks
and Exploitation Techniques, Attacks on Devices, Denial of Service Attacks,
Social Network and Privacy attacks, Web attacks, etc.

1.2 Research Topics Covered in This Report

This report provides the selected research work that the SysSec partners
have conducted during the project in order to address issues in the area of
cyberattacks identified previously and included in SysSec roadmaps.

As the area of cyberattacks is very broad covering very different kinds of
threats from Web Services to Critical Infrastructures and Ubiquitous Appli-
ances as already mentioned in the previous section, our research will cover
three of the most prevalent fields in the area as drawn from our roadmaps.
These fields of cyberattacks are:

• Attacks on Web Applications and Services (Chapter 2)

• Attacks on Smart and Mobile Devices (Chapter 3)

• Attacks on Privacy (Chapter 4)

• Attacks on Social Networks (Chapter 5)

The report is divided into three different chapters, one for each distinct field.
First, in Chapter 2, we present our research work related with web-based
cybersecurity threats. In Section 2.2, there is a study related with the secu-
rity issues that occur in web applications and services due to cross-domain
policies. Then, we proceed with presenting a framework for JavaScript ran-
domization aiming at detecting and preventing Cross-Site Scripting (XSS)
attacks in Section 2.3. Then, in Section 2.4, we present a malicious doc-
ument scanner that combines static and dynamic analysis to detect threats
contained in PDF files that can reach Internet users through a variety of
channels such as rogue web sites, file-sharing networks, removable media,
or as attachments to email messages. Second, in Chapter 3, we present
our research work related with attacks on smart devices. Specifically, in
Section 3.2, we introduce various techniques that can be used by Mobile
Malware in order to evade the Android dynamic analysis through emula-
tion detection. Moreover, we evaluate these techniques in different Android
dynamic analysis tools and online services that analyze Android malware.

www.syssec-project.eu 14 January 9, 2015

1.3. OTHER CYBERSECURITY RELATED WORKS OF SYSSEC
CONSORTIUM

In Section 3.3, we present a threat scenario that targets WebView apps and
show its practical applicability in a case study of over 287,000 Android apps.
Finally, in Chapter 4, we introduce our research work related to attacks on
users’ privacy. In Section 4.2, we implement a framework for minimum in-
formation disclosure across third-party sites with social login interactions
in order to solve the privacy issues that arise by this kind of login mecha-
nisms. Then, we focus on the negative impact that social networking sites
may have on privacy of their users and ways we can protect against these
cyber threats in Section 4.3. Finally, in our last Chapter 5, we present our
research work related to cyber threats on social networks. In Section 5.2,
we present how spammers can exploit social networks in order to harvest
the users’ email addresses that can be used on a later stage in order to satisfy
their malicious intentions. We then, continue with attacks against authenti-
cation mechanisms in Section 5.3, and social network profile cloning attacks
in Section 5.4.

1.3 Other Cybersecurity Related Works of SysSec
Consortium

In this section, there is a list of other works of the SysSec project related
with cybersecurity which are not covered in detail due to the limited space
of this report.

• Claudio Criscione, Fabio Bosatelli, Stefano Zanero, and Federico
Maggi. Zarathustra: Extracting WebInject Signatures from Bank-
ing Trojans. In Proceedings of the 12th Annual International Confer-
ence on Privacy, Security and Trust (PST). July 2014, Toronto, Canada.

• Rafael A Rodrguez Gmez, Gabriel Maci Fernndez, Pedro Garca Teodoro,
Moritz Steiner, and Davide Balzarotti. Resource monitoring for the
detection of parasite P2P botnets. Computer Networks, Elsevier
B.V., pages 302311, June 2014.

• Jelena Isacenkova and Davide Balzarotti. Shades of Gray: A Closer
Look at Emails in the Gray Area. In Proceedings of the 9th ACM Sym-
posium on Information, Computer and Communications Security (ASI-
ACCS 2014). June 2014. Kyoto, Japan.

• Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Zubair
Rafique, Wouter Joosen, Christopher Kruegel, Frank Piessens, Gio-
vanni Vigna, Stefano Zanero. Stranger Danger: Exploring the
Ecosystem of Ad-based URL Shortening Services.. In Proceedings
of the 2014 International World Wide Web Conference (WWW). April
2014. Seoul, Korea.

www.syssec-project.eu 15 January 9, 2015

CHAPTER 1. INTRODUCTION

• Giancarlo Pellegrino and Davide Balzarotti. Toward Black-Box De-
tection of Logic Flaws in Web Applications. In Proceedings of the
Network and Distributed System Security Symposium (NDSS). February
2014, San Diego, USA.

• Zlatogor. Minchev and Luben Boyanov. Smart Homes Cyberthreats
Identification Based on Interactive Training. In Proceedings of the
3rd International Conference on Application of Information and Commu-
nication Technology and Statistics in Economy an d Education (ICAICT-
SEE). December 2013, Sofia, Bulgaria.

• Dennis Andriesse, Christian Rossow, Brett Stone-Gross, Daniel Plohmann,
Herbert Bos. Highly Resilient Peer-to-Peer Botnets Are Here: An
Analysis of Gameover Zeus. In Proceedings of the 8th IEEE Interna-
tional Conference on Malicious and Unwanted Software (MALWARE’13).
October 2013, Fajardo, Puerto Rico, USA.

• Matthias Neugschwandtner, Martina Lindorfer, Christian Platzer. A
view to a kill: Webview exploitation. In Proceedings of the
6th USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET). August 2013, Washington, DC, USA.

• Andrei Costin, Jelena Isacenkova, Marco Balduzzi, Aurelien Francil-
lon, Davide Balzarotti. The Role of Phone Numbers in Understand-
ing Cyber-Crime Schemes. In Proceedings of the Annual Conference
on Privacy, Security and Trust (PST). July 2013, Terragona, Spain.

• Davide Canali, Davide Balzarotti, Aurelien Francillon. The Role of
Web Hosting Providers in Detecting Compromised Websites. In
Proceedings of the 22nd International World Wide Web Conference
(WWW). May 2013, Rio de Janeiro, Brazil.

• Federico Maggi, Alessandro Frossi, Stefano Zanero, Gianluca Stringh-
ini, Brett Stone-Gross, Christopher Kruegel, Giovanni Vigna. Two
Years of Short URLs Internet Measurement: Security Threats and
Countermeasures. In Proceedings of the 22nd International World
Wide Web Conference (WWW). May 2013, Rio de Janeiro, Brazil.

• Davide Canali and Davide Balzarotti. Behind the Scenes of Online
Attacks: an Analysis of Exploitation Behaviors on the Web. In
Proceedings of the 2013 Network and Distributed System Security Sym-
posium (NDSS). February 2013, San Diego, CA, USA

• Luben Boyanov, Zlatogor Minchev and Kiril Boyanov. Some Cyber
Threats in Digital Society. In International Journal ”Automatics &
Informatics”. January 2013.

www.syssec-project.eu 16 January 9, 2015

1.3. OTHER CYBERSECURITY RELATED WORKS OF SYSSEC
CONSORTIUM

• Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, Christo-
pher Kruegel. DISCLOSURE: Detecting Botnet Command and Con-
trol Servers Through Large-Scale NetFlow Analysis. In Proceedings
of the 2012 Annual Computer Security Applications Conference (AC-
SAC). December 2012, Orlando, FL, USA.

• Christian Rossow, Christian Dietrich, Herbert Bos. Large-Scale Anal-
ysis of Malware Downloaders. In proceedings of the 9th Confer-
ence on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA). July 2012, Heraklion, Greece.

• Theodore Scholte, William Robertson, Davide Balzarotti, Engin Kirda.
Preventing Input Validation Vulnerabilities in Web Applications
through Automated Type Analysis. In Proceedings of the 36th An-
nual IEEE Computer Software and Applications Conference (COMPSAC).
July 2012, Izmir, Turkey.

• Zhang Fu, Marina Papatriantafilou. Off The Wall: Lightweight Dis-
tributed Filtering to Mitigate Distributed Denial of Service Attacks.
In Proceedings of the 31st IEEE International Symposium on Reliable Dis-
tributed Systems (SRDS). October 2012, Irvine, CA, USA.

• Zhang Fu, Marina Papatriantafilou, Philippas Tsigas. Mitigating dis-
tributed denial of service attacks in multiparty applications in the
presence of clock drifts. In IEEE Transactions on Dependable and Se-
cure Computing (TSDC), Volume 9, Issue 3. May 2012.

• Zhang Fu, Marina Papatriantafilou, Philippas Tsigas. Mitigating dis-
tributed denial of service attacks in multiparty applications in the
presence of clock drifts. In IEEE Transactions on Dependable and Se-
cure Computing (TSDC), Volume 9, Issue 3. May 2012.

• Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Christo-
pher Kruegel, Marco Cova, Giovanni Vigna. EVILSEED: A Guided
Approach to Finding Malicious Web Pages. In proceedings of the
2012 IEEE Symposium on Security and Privacy (SP). May 2012, San
Francisco Bay Area, CA, USA.

• Kaan Onarlioglu, Utku Ozan Yilmaz, Engin Kirda, Davide Balzarotti.
Insights into user Behavior in Dealing with Internet Attacks. In
proceedings of the 19th Annual Network & Distributed System Security
Symposium (NDSS). February 2012, San Diego, CA, USA.

• Matthias Neugschwandtner, Paolo Milani Comparetti, and Chris-
tian Platzer. Detecting Malwares Failover C&C Strategies with
SQUEEZE. In Proceedings of the 2011 Annual Computer Security Ap-
plications Conference (ACSAC). December 2011, Orlando, FL, USA.

www.syssec-project.eu 17 January 9, 2015

CHAPTER 1. INTRODUCTION

• Christian Platzer. Sequence-Based Bot Detection in Massive Multi-
player Online Games. In Proceedings of the 13th International Con-
ference on Information and Communications Security (ICICS). Novem-
ber 2011, Beijing, China.

• Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos,
Maarten van Steen, Norbert Pohlmann. On Botnets that use DNS
for Command and Control. In Proceedings of the 7th European Con-
ference on Computer Network Defense (EC2ND). September 2011, Gte-
borg, Sweden.

• Danesh Irani, Marco Balduzzi, Davide Balzarotti, Engin Kirda, Carlton
Pu. Reverse Social Engineering Attacks in Online Social Networks.
In Proceedings of the 8th Conference on Detection of Intrusions and Mal-
ware and Vulnerability Assessment (DIMVA). July 2011, Amsterdam,
The Netherlands.

• Francesco Roveta, Luca di Mario, Federico Maggi, Giorgio Caviglia,
Stefano Zanero, Paolo Ciuccarelli. BURN: Baring Unknown Rogue
Networks. In proceedings of VizSec 2011. July 2011, Pittsburg, PA,
USA.

• Georgios Kontaxis, Demetris Antoniades, Iasonas Polakis, Evangelos
P. Markatos. An Empirical Study on the Security of Cross-Domain
Policies in Rich Internet Applications. In proceedings of the 4th Eu-
ropean Workshop on System Security (EuroSec). April 2011, Salzburg,
Austria.

• Zhang Fu, Marina Papatriantafilou, Philippas Tsigas. CluB: A Cluster
Based Proactive Method for Mitigating Distributed Denial of Ser-
vice Attacks. In proceedings of the 26th ACM Symposium on Applied
Computing (SAC). March 2011, TaiChung, Taiwan.

• Theodoor Scholte, Davide Balzarotti, Engin Kirda. Quo Vadis? A
Study of the Evolution of Input Validation Vulnerabilities in Web
Applications. In proceedings of the 15th International Conference on
Financial Cryptography and Data Security (FC). February 2011, St. Lu-
cia.

• Leyla Bilge, Engin Kirda, Christopher Kruegel, Marco Balduzzi. EXPO-
SURE: Finding Malicious Domains Using Passive DNS Analysis. In
proceedings of the 18th Annual Network & Distributed System Security
Symposium (NDSS). February 2011, San Diego, CA, USA.

www.syssec-project.eu 18 January 9, 2015

2
Attacks on Web Applications and Services

2.1 Introduction

In this chapter, we present our research work related to web-based cyberse-
curity threats. First, we present an extensive study on the deployment and
security issues of cross-domain policies in the web (Section 2.2). This work
provides vulnerability awareness regarding the use of cross-domain Flash
and Silverlight web policies. Our results reveal more than 6,500 websites
with weak policies and, thus vulnerable to attacks. Moreover, we present
proof-of-concept implementations of attack scenarios that target weak corss-
domain policies for Flash and Silverlight enabled websites. Then, we pro-
ceed with presenting a framework for JavaScript randomization aiming at
detecting and preventing Cross-Site Scripting (XSS) attacks (Section 2.3).
Cross-Site Scripting (XSS) extends the traditional code-injection attack in
native applications to web applications. It is considered as one of the most
severe security threats over the last few years. One promising approach for
dealing with code-injection attacks in general is Instruction Set Randomiza-
tion (ISR). The fundamental idea behind ISR is that the trusted code is trans-
formed in randomized instances. Thus, the injected code, when plugged to
the trusted base cannot speak the language of the environment. To the
best of our knowledge, there has been no systematic effort for applying a
randomization scheme directly to a client-side programming language, like
JavaScript. In this work we present RaJa, which applies randomization di-
rectly to JavaScript. Finally, we present a malicious document scanner, we
call MDScan, that combines static and dynamic analysis to detect threats
contained in PDF files that can reach Internet users through a variety of
channels such as rogue web sites, file-sharing networks, removable media,
or as attachments to email messages (Section 2.4). The autonomous design
of MDScan allows it to be easily incorporated as a detection component
into existing defenses, such as intrusion detection systems and antivirus ap-

19

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

plications. Our experimental evaluation with real and generated malicious
documents, as well as benign PDF files, shows that MDScan can accurately
detect a broad range of malicious documents, even when they have been
highly obfuscated, while it has a reasonable runtime processing overhead.

2.2 An Empirical Study on the Security of Cross-
domain Policies in Rich Internet Applications

An extended version of the study can be found in [82].

2.2.1 Data Collection

To examine both the policy usage and the security issues of cross-domain
policies, we created a number of diverse (both geographically and content-
wise) lists of websites. Our first and larger list includes the 100K most popu-
lar websites, according to Alexa 1. We believe this represents a complete list
of both popular and less popular websites. Furthermore, we compiled a list
with the websites of the Fortune 500 companies to fill our global view set.
For our geographically diverse set, formed by popular sites in a more local
scale, we used lists with the 500 most popular websites, again according
to Alexa, in the U.S.A, Great Britain, Germany, France and Greece. Addi-
tionally, we have used a list with 500 of the most popular Greek e-shopping
websites to form a set of content-specific sites in our country.

For each domain name in those lists we placed the following requests:
http[s]://domain/crossdomain.xml and http[s]://www.domain/crossdomain.

xml to download the policy file for Adobe Flash if one existed. A respec-
tive batch of requests was also sent to retrieve the policy file for Microsoft
Silverlight. We subsequently examined those XML files and identified the
domains that did return a valid policy. Our findings are presented in the
following section. We focus on the findings from the http://www.domain re-
quests as they represent the most common case and their differences with
the results of the other requests are minor.

2.2.2 Policy adoption and security

2.2.2.1 Global Penetration

We first examine the cross domain policy adoption at a global scale. Recall
that the existence of a crossdomain policy file does not state whether a web-
site supports RIA plugins or not, but whether a website allows RIA plugins
to request and receive data from this website. Figure 2.1 (top) presents our
findings for the Top 100 and Top 100K websites, while Table 2.1 summarizes

1http://www.alexa.com/

www.syssec-project.eu 20 January 9, 2015

http[s]://domain/crossdomain.xml
http[s]://www.domain/crossdomain.xml
http[s]://www.domain/crossdomain.xml
http://www.domain

2.2. AN EMPIRICAL STUDY ON THE SECURITY OF CROSS-DOMAIN
POLICIES IN RICH INTERNET APPLICATIONS

 0% 25% 50% 75% 100%

Top100 Adoption

Top100K Adoption

�

Top100 Security

Top100K Security

75%

14%

25%

86%

84%

52%

16%

48%

Some Policy No Policy Domain Restricted Any Domain

Figure 2.1: Global Alexa Top100, Top100K

Adobe Flash Microsoft Silverlight
None Some Policy None Some Policy

Tier Restricted Unrestricted Restricted Unrestricted
Alexa Top 100 25% 84% 16% 97% 67% 33%
Alexa Top 1K 48% 71% 29% 98% 63% 37%

Alexa Top 10K 71% 58% 42% 99% 38% 62%
Alexa Top 100K 86% 52% 48% 99% 22% 78%

Fortune 500 84% 75% 25% - - -

Table 2.1: Adobe Flash Cross-domain Policy and Microsoft Silverlight Client-
access Policy adoption for the top 100K Alexa sites.

our findings for all sub-classes examined. We can see that the penetration
ratio of domain policies diminishes as the total number of examined sites
grows. For example, 75 out of the Top 100 sites serve a policy file, while
this percentage drops to only 14% for the Top 100K sites. Furthermore, as
we see in the bottom bars of Figure 2.1, security awareness also diminishes.
That is, top popular sites seem to restrict their policies more carefully than
less popular sites – only 16% are weak cases for the Top 100 vs. almost 50%
for the Top 100K sites.

To further understand the evolution of weak implementations as the
site’s rank moves away from the top, Figure 2.2 plots the cumulative per-
centage of weak policies in relation to the site’s rank. We can observe a clear
trend here; the less popular the site is, the higher the probability the website
will have implemented a weak policy.

2.2.2.2 Country Penetration

We continue our examination by looking at the cross-domain policy adop-
tion at a more local scale. To do so, we study the policy penetration for the
U.S.A. and a number of major European countries. Table 2.2 summarizes
our results. Countries like the U.S.A. with a high adoption rate (57%) of

www.syssec-project.eu 21 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

0

20

40

60

80

100

Rank
0 10 100 1K 10K 100K

% of sites having policies up to rank i

% of weak policies up to rank i

Figure 2.2: Correlation of policy adoption and site popularity rank.

cross-domain policies have fewer weak policies (28% of deployed policies)
than countries like Greece where the adoption rate is much lower (36%)
but there are more weak policies (39%). This indicates that countries where
such policies are more widely used are also more security-aware.

In a similar study, in 2006, Grossman [28] examined the crossdomain
policy files for the top 100 sites in the U.S.A., according to Alexa, and the
websites of the Fortune 500 list of companies. With a penetration of 36%
and 8% respectively, Grossman found 6% and 2% to be wildcarded for any-
domain. In January 2011, we re-examined the two lists. Figure 2.3 presents
our findings along with the findings of the Grossman study. We see an in-
crease in the penetration of cross-domain policies in 2011. More than 60%
of the sites implement a cross-domain policy in the Alexa U.S.A top 100,
an increase of almost 173% since 2006. Alarmingly, the number of weak
policy deployments has also increased to 21%, exhibiting a growth of 124%
since 2006. This indicates that, since 2006, more sites have adopted cross-
domain policies, which is not surprising considering the capabilities of Flash
technology. What is surprising though, is that the percentage of sites imple-
menting weak policies, has also increased and its increase is almost 70% of
the growth rate of Flash technology adoption. In the case of the Fortune 500
sites, the penetration of such policies has doubled while the ratio of weak
implementations has remained the same. The two groups of sites have a
dice coefficient of 0.14, indicating two very different sets; the first one is
more dynamic in terms of Flash technology adoption than the latter and
appears to have more secure policies. At the same time, however, it also
exhibits an increasing trend towards weak implementations.

2.2.2.3 Category Penetration

Apart from examining local sites in each country, we examine specific site
categories as provided by Alexa. More specifically, we inspect the 500 most
popular sites in a series of categories. Table 2.3 summarizes our results.

www.syssec-project.eu 22 January 9, 2015

2.2. AN EMPIRICAL STUDY ON THE SECURITY OF CROSS-DOMAIN
POLICIES IN RICH INTERNET APPLICATIONS

 0% 25% 50% 75% 100%

2006 Adoption

2011 Adoption

�

2006 Security

2011 Security

36%

62%

64%

38%

83%

79%

17%

21%

Some Policy No Policy Domain Restricted Any Domain

Figure 2.3: Alexa Top100 US

 0% 25% 50% 75% 100%

2006 Adoption

2011 Adoption

�

2006 Security

2011 Security

8%

16%

92%

84%

75%

75%

25%

25%

Some Policy No Policy Domain Restricted Any Domain

Figure 2.4: Fortune500

Cross-domain policies are adopted in 16% to 46% of the sites, depending
on the category. We can see that shopping sites are more aware of the
security implications, with only 17% having unrestricted policies. All other
categories have unrestricted policies in a larger percentage, ranging from
28% and up to 51%. We also examined the sites for Microsoft Silverlight,
but omit the results due to the small adoption rate (less than 2% in all cases)
and the lack of space.

Greek E-Shopping Sites: To examine both local and category specific
websites we assembled a set with 500 popular Greek e-shopping sites by
crawling the catalog of Skroutz 2, a popular Greek e-shopping search engine.
Although, the adoption of cross-domain policy files is rather low (2.5%),
the percentage of any-domain, unrestricted-access policies reaches an im-
pressive 83.3%. Considering the nature of these sites (i.e., online shopping
involving user accounts, personal and financial details), one can imagine
the impact of an attack against their users.

2http://www.skroutz.gr

www.syssec-project.eu 23 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

Adobe Flash Microsoft Silverlight
None Some Policy None Some Policy

Country Restricted Unrestricted Restricted Unrestricted
U.S.A. 43% 72% 28% 97% 69% 31%

Germany 55% 63% 37% 99% 50% 50%
Great Britain 58% 66% 34% 98% 89% 11%

France 63% 62% 38% 99% 75% 25%
Greece 64% 61% 39% 99% 50% 50%

Table 2.2: Adobe Flash Cross-domain Policy and Microsoft Silverlight Client-
access Policy adoption the top 500 sites across different countries.

Adobe Flash
None Some Policy

Category Restricted Unrestricted
Sports 54% 49% 51%
Health 85% 54% 46%
Society 75% 55% 45%
Adult 84% 60% 40%
Arts 52% 63% 37%
News 62% 64% 36%

Science 83% 66% 34%
Recreation 67% 68% 32%

Home 82% 69% 31%
Computers 68% 72% 28%
Shopping 68% 83% 17%

Table 2.3: Policy adoption and security evaluation for the top-500 sites in a
series of content categories.

2.2.2.4 Administrative Overhead

In the previous sections, we have seen that an important number of cross-
domain policies are vulnerable to attacks. In this section, we examine
whether the creation and management of these policy files require a high
administrative overhead. To this extent, we measure the number of direc-
tives in each policy file found in the top 100K sites in the global set of Alexa.
Without the use of wildcards for sub-domain or any-domain white-listing,
each domain to be allowed access must be declared in a directive of its own.
Figure 2.5 plots the Cumulative Distribution Function (CDF) of the length
(number of directives) of the policy files. One may notice that 10% of those
policies has more than 10 directives, 5% has more than 20 and there are
sites that span over 100 or even 400 directives. Such long policies can
prove hard to effectively maintain and could contain weaknesses that may
go unnoticed.

www.syssec-project.eu 24 January 9, 2015

2.2. AN EMPIRICAL STUDY ON THE SECURITY OF CROSS-DOMAIN
POLICIES IN RICH INTERNET APPLICATIONS

%
 o

f
p
o
lic

y
 f
ile

s

0

20

40

60

80

100

of directives in policy file

0 1 2 5 10 20 50 100 500

Figure 2.5: CDF of the number of directives (length) per cross-domain policy
for top 100K global sites.

2.2.3 Attacks

In the previous section we showed that the percentages of cross-domain
adoption and weaknesses are high among the web sites. In this section we
present two attack scenarios that leverage a weak cross-domain policy and
describe how they can be used for malicious purposes. Furthermore, we
present a proof-of-concept implementation for exploiting such weaknesses
and provide the technical details. Each scenario has been tested with at least
one real case of a weak policy found during our experiments in section 2.2.2.

2.2.4 Setting up the Attack

Prior to discussing the actual attack, we first describe the steps needed by the
attacker in order to use a Flash object as an attack proxy. The whole scenario
is depicted in Figure 2.6. Initially, the attacker tricks her victim into load-
ing http://attacker.com/malicious.swf which is a carefully crafted Adobe
Flash object. This object can be masked as a movie, animation or game and
thereby conceal its true purpose, or can be completely invisible (e.g., zero
dimensions on an HTML page) and accessed as part of a perfectly legitimate
site via an iframe in the form of an advertisement. As soon as malicious.swf
loads, it can execute arbitrary code and open a standard network socket with
a malicious server running on the attacker’s home computer. Socket con-
nections to network destinations are governed by the same rules as cross-
domain site access but this is a server the attacker controls. For that matter,
the Flash player inside the victim’s browser issues a cross-domain access re-
quest towards the malicious server, which in return provides the necessary
cross-domain policy (Listing 2.1).

As soon as the victim’s Flash player examines the policy, it establishes
a network connection with the attacker’s server. Through that connection,

www.syssec-project.eu 25 January 9, 2015

http://attacker.com/malicious.swf
malicious.swf

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

Figure 2.6: Attack Proxy Design

Listing 2.1: Cross-domain Policy enabling socket connections from the vic-
tim

1 <allow -access -from domain =" attacker.com"

2 to-ports ="8080"/ >

malicious.swf receives control messages describing the URLs for which it
will issue HTTP GET requests (steps 2-3 in Figure 2.6). Since, malicious.swf
is executed inside the victim’s web browser, the victim is the one who places
those HTTP requests on the network (step 4). As soon as the request is
served back to malicious.swf (step 5), it forwards the received content
through the network socket back to the attacker’s control server (step 6).
At this point the attacker receives the response to an HTTP request that the
victim has placed on his behalf.

The set of URLs the attacker is able to instruct the victim to fetch on his
behalf, is dictated by the set of sites on the web with weak cross-domain
policies. While this may seem as a serious restriction on the attacker’s
request-issuing capabilities, in Section 2.2.2, we found more than 6.5K sites
containing weak policies. Furthermore, in special categories such as Greek
e-shopping sites, more than 80% of those that have a deployed policy are
vulnerable to this attack.

Steps 4 and 5 can differ, depending on the actual attack carried out. In
the next sections we describe two possible attack cases. Both cases were

www.syssec-project.eu 26 January 9, 2015

malicious.swf
malicious.swf

2.2. AN EMPIRICAL STUDY ON THE SECURITY OF CROSS-DOMAIN
POLICIES IN RICH INTERNET APPLICATIONS

implemented and tested in real world scenarios, using a proof-of-concept
deployment of the Figure 2.6 components.

2.2.4.1 Abusing cookies and credentials

In the first attack scenario, the attacker abuses the victim’s web creden-
tials when accessing sites with weak policies. By instructing malicious.swf

to issue an HTTP request towards http://site.requiring.login.com, the
victim’s browser will in fact send along any cookies it has, if the victim
is already authenticated for that site (e.g. victim’s web mail, e-shopping
account). So, for instance, the attacker could instruct the victim to fetch
https://mail.webmail.com and receive a response with the victim’s web
mailbox contents or https://shopping-site.com/cart?action=add&item=foo
to add an item to the basket. Some sites employ Cross-site Request Forgery
(CSRF) tokens which are, in essence, random nonces returned to the (legiti-
mate) user upon logging in to a site. Thus, any attacker cannot issue a direct
request without knowing the nonce. However, as with login cookies, CSRF
tokens are also appended by the victim’s browser in the upstream path from
malicious.swf to the destination site or can be read from the HTTP headers
included in the site’s responses. It should be noted that such requests are
not recorded in the browsing history and do not leave other evidence, such
as cache files, on the victim’s computer.

2.2.4.2 Laundering web attacks

An attacker can launder various types of attacks, such as XSS and SQL injec-
tions, by issuing them through the victim’s browser. The attacker’s target site
must have a weak policy so that the victim can issue the malicious requests
even if the attacker does not require the receipt of HTTP responses. Fur-
thermore, sites with weak security policies are also likely to be vulnerable
to other attacks.

On a different note, an attacker could frame the victim by associating
him with frowned-upon activity. For instance, he could abuse the victim’s
credentials for posting offending messages on a web discussion group, with
a weak policy, that the victim is a member of or place network requests
towards controversial content through the victim’s browser.

2.2.5 Lessons Learned

In this work we conducted an extensive study regarding the adoption and
implementation of the cross-domain policy for RIA object access. When the
policy is not specifically crafted to match a website’s design and structure,
an adversary can leverage the weak implementation to deploy various at-
tacks targeting the site’s users. We found that 14% of the top 100K sites

www.syssec-project.eu 27 January 9, 2015

malicious.swf
http://site.requiring.login.com
https://mail.webmail.com
https://shopping-site.com/cart?action=add&item=foo
malicious.swf

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

have adopted cross-domain policy files, and almost 50% of them have a
weak implementation. Furthermore, the top 500 sites we examined from a
country-level point of view present an adoption rate of 50%, with weak im-
plementation percentages ranging from 28% to 39%. When examining top
e-shopping websites in various countries, we found up to 83% of them im-
plementing a weak policy. We also presented real world examples of weak
policy implementations and attacks that can be carried out against them.
Finally, our proof-of-concept attack implementation highlighted the security
implications of misconfigured cross-domain access policies.

2.3 An Architecture for Enforcing JavaScript Ran-
domization in Web2.0 Applications

An extended version of this study can be found in [49].

2.3.1 Architecture

In this section, we present in detail the architecture of our sytsem (called
RaJa). We highlight all key components that compose the architecture and
code modifications we have performed in existing software. RaJa builds on
well-known and highly used open source projects like Mozilla and Apache.
Finally, we give a short overview in a collection of tools we have specifically
build for system administrators who want to utilize the RaJa framework.

2.3.1.1 Overview

RaJa is based on the idea of Instruction Set Randomization (ISR) to counter
code injections in the web environment. XSS is the most popular code-
injection attack in web applications and is usually carried out in JavaScript.
Thus, RaJa aims on applying ISR to JavaScript. However, the basic corpus
of the architecture can be used in a similar fashion for other client-side
technologies. In a nutshell, RaJa takes as input a web page and produces
a new one with all JavaScript randomized. A simple example is shown in
Figure 2.7. Notice that in the randomized web page all JavaScript variables
(emphasized in the Figure) are concatenated with the random token 0x78.
All other HTML elements and JavaScript reserved tokens (like var and if)
as well as JavaScript literals (like "Hello World", "welcome" and true)
have been kept intact. The randomized web page can be rendered in a
web browser that can de-randomize the JavaScript source using the random
token. RaJa needs modifications both in the web server and the web client,
as is the case of many XSS mitigation frameworks [78, 87, 74, 50]. In order
to perform the randomization, RaJa needs to run as a pre-processor before
any other server-side language (like PHP) takes place. RaJa assumes that

www.syssec-project.eu 28 January 9, 2015

2.3. AN ARCHITECTURE FOR ENFORCING JAVASCRIPT
RANDOMIZATION IN WEB2.0 APPLICATIONS

1 <!-- Original Document. -->

2 <html >

3 <script >

4 var s = "Hello World !";

5 if (true)

6 document.

7 getElementByName (" welcome ").

8 text = s;

9 </script >

10 <div id=" welcome"></div >

11 </html >

12
13 <!-- Randomized Document. -->

14 <html >

15 <script >

16 var s0x78 = "Hello World !";

17 if (true)

18 document0x78.

19 getElementByName0x78 (" welcome ").

20 text0x78 = s0x78;

21 </script >

22 <div id=" welcome"></div >

23 </html >

Figure 2.7: A typical RaJa example.

only the JavaScript stored in files in the server is trusted. Randomizing
all trusted JavaScript ensures that any code injections will not be able to
execute in a web browser that supports the framework.

A sample work-flow of a RaJa request-response communication is as
follows. The RaJa-compliant web browser announces that it supports the
framework using an HTTP Accept header. The web server in turn opens
all files needed for serving the requests and randomizes each one with a
unique per-request key. Typically, a request involves several files that poten-
tially host JavaScript, which are included in the final document through a
server-side language. For example, PHP uses require and similar functions
to paste the source of a document in the final web response. RaJa makes
sure that all JavaScript involved is randomized. Finally, the web server at-
taches an HTTP X-RAJA-KEY header field which contains the randomization
key. The RaJa-compliant web browser can then de-randomize and execute
all trusted JavaScript. Any JavaScript source code that is not randomized
can be detected and prevented for executing. The potential code injection
is logged in a file. We now look into details on how we enable RaJa in the
server and client side, respectively.

2.3.1.2 Server Side

In order to enable RaJa in a web server we use two basic components: (a)
an Apache module (mod raja.so), which operates as content generator and

www.syssec-project.eu 29 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

(b) a library interceptor which handles all open() calls issued by Apache.
Although RaJa can be used with any server-side technology, for the purposes
of this work we use PHP. Thus, we have configured the RaJa-enabled web
server to use PHP as an output filter. For all experiments in this work we
use PHP acting as an output filter, but if someone prefers to use PHP as a
module and not as a filter, two Apache web servers can be used with the
RaJa-enabled Apache acting as a proxy to the PHP-enabled one.

The RaJa Apache module handles initially all incoming requests for files
having an extension of .html, .js and .php. This can be configured to
support many other file types. For each request, it generates a random
key and places it to a shared memory placeholder. It then opens the file
in order to fulfill the request. The call to open() is intercepted using the
LD PRELOAD [30] functionality, available in most modern operating systems,
by the RaJa randomizer. The latter acts as follows. It opens the file and
tries to identify all possible JavaScript occurrences. That is, all code inside a
<script> tag, as well as all code in HTML events such as onclick, onload,
etc. For every JavaScript occurrence a parser, based on the Mozilla Spi-
derMonkey [37] JavaScript engine is invoked to produce the randomized
source. All code is randomized using the token which is retrieved from the
shared memory placeholder. We analyze in more detail the internals of the
SpiderMonkey-based parser below.

The randomized code is placed in a temporary file and the actual libc -

open() is called with the pathname of the randomized source. Execution is
transferred back to the Apache RaJa module. The module takes care for two
things. First, it attaches the correct Content-Length header field, since the
size of the initial file has possibly changed (due to the extra tokens attached
to JavaScript source). Second, it attaches the X-RAJA-KEY header field to the
HTTP response, which contains the token for the de-randomization process.
The key is refreshed per request. All randomized code is contained in an
internal memory buffer. This buffer is pushed to the next operating element
in the Apache module chain. If the original request is for a PHP file, then
the buffer will be pushed to the PHP output filter. It is possible that PHP
will subsequently open several files while processing require() or similar
functions. Each open() issued by the PHP filter is also intercepted by the
RaJa randomizer and the procedure is repeated again until all PHP work has
been completed. The size of the final response has possibly changed again,
due to the PHP processing. PHP takes care for updating the Content-Length
header field.

We present the control flow of the RaJa architecture in Figure 2.8 with
all eight steps enumerated. We now proceed and present a step-by-step ex-
planation of a RaJa-enabled request-response communication. In Step (1),
the RaJa-enabled web client requests index.php from a RaJa-enabled web
server. In Step (2), the request is forwarded to the RaJa module which in
turn in Step (3), generates a key, stores the key in a shared memory frag-

www.syssec-project.eu 30 January 9, 2015

2.3. AN ARCHITECTURE FOR ENFORCING JAVASCRIPT
RANDOMIZATION IN WEB2.0 APPLICATIONS

Apache

RaJa Module

PHP Filter

RaJa randomizer

RaJa web browser

(8) Randomized Response

(2) Request

(4) open() interceptor

Shared Memory
Key Storage

(1) index.php

(3)

Generate key

and open()
(5) Retrieve Key

(6) Randomize
(7)

Attach X-RAJA-KEY

and pass

randomized

buffer

Figure 2.8: Schematic diagram of the RaJa architecture.

ment and opens the file index.php. In Step (4), the RaJa randomizer inter-
cepts open() and in Step (5), it retrieves the key from the shared memory
fragment. In Step (6), index.php is opened, randomized, saved to the disk
in a temporary file and the actual libc open() is called with the pathname
of the just created file. In Step (7), control is transferred to the RaJa mod-
ule which adds the correct Content-Length and X-RAJA-KEY header fields.
If the file is to be processed by PHP the buffer containing the randomized
source is passed to the PHP filter. All open() calls issued from PHP will be
further intercepted by the randomizer but we have omitted this in Figure 2.8
to make the graph more clear to the reader. Finally, in Step (8), the final
document is served to the RaJa-enabled web browser.

2.3.1.3 Randomization

All JavaScript randomization is handled through a custom parser based on
the SpiderMonkey [37] JavaScript engine. The RaJa parser takes as input
JavaScript source code and it produces an output with all code randomized.
For an example refer to Figure 2.7. The original SpiderMonkey interpreter
parses and evaluates JavaScript code. In RaJa execution is disabled. Instead,
all source is printed randomized with all JavaScript identifiers concatenated
with a random token. Special care must be taken for various cases. We
enumerate a few of them.

1. Literals. All literals, like strings and numbers, are parsed and directly
pasted in the output in their original form.

2. Keywords. All keywords, like if, while, etc., are parsed and directly
pasted in the output in their original form.

www.syssec-project.eu 31 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

1 <!-- Original Source. -->

2 <?php if (user_exists($user)) { ?>

3 var message = <?php echo "Welcome" ?>;

4 <?php } else { ?>

5 var message = "Sign -Up Needed .";

6 <?php } ?>

7
8 <!-- Randomized Source. -->

9 <?php if (user_exists($user)) { }?>

10 var message0x78 =

11 <?php echo "Welcome" ?>;

12 <?php } else { ?>

13 var message0x78 = "Sign -Up Needed .";

14 <?php } ?>

Figure 2.9: Code mixing of JavaScript with alien languages.

3. HTML comments. The original SpiderMonkey removes all comments
before evaluation. The RaJa parser pastes all HTML comments in their
original form.

4. Language mixing. Typically a web page has a mixture of languages
such as HTML, PHP, XML and JavaScript. The RaJa parser can be
configured to handle extra delimiters as it does with HTML comments
and thus identify other languages, such as PHP, which heavily intermix
with JavaScript. We further refer to these languages as alien languages.

We augment the RaJa parser to treat occurrences of alien languages in-
side JavaScript according to the following rules.

• Rule 1. An alien language occurrence is treated as a JavaScript identi-
fier if it occurs inside a JavaScript expression.

• Rule 2. An alien language occurrence is treated as a JavaScript com-
ment and is left intact if Rule 1 is not applied.

We conclude to these basic two rules after investigating four popular and
large, in terms of lines of code (LOC), web applications. By manually check-
ing how PHP is mixing with JavaScript, we observed that in the majority of
the cases PHP serves as an identifier or literal inside a JavaScript expression
(see line 3 in Figure 2.9). For a short example of how these two rules are
applied refer to Figure 2.9.

2.3.1.4 De-randomization

The de-randomization process takes place inside a RaJa-compliant browser.
In our case this is Firefox with an altered SpiderMonkey engine. The modi-
fied JavaScript interpreter is initialized with the random token, taken from

www.syssec-project.eu 32 January 9, 2015

2.3. AN ARCHITECTURE FOR ENFORCING JAVASCRIPT
RANDOMIZATION IN WEB2.0 APPLICATIONS

the X-RAJA-KEY header field. During the parse phase it checks every identi-
fier it scans for the random token. If the token is found, the internal struc-
ture of the interpreter that holds the particular identifier is changed so as to
hold the identifier de-randomized (i.e. the random token is removed). If the
token is not found, the execution of the script is suspended and its source is
logged as suspicious.

We take special care in order to assist in coding practices that involve
dynamic code generation and explicit execution using the JavaScript’s built-
in function eval(). Each time a correctly randomized eval() is invoked
in a script, the argument of eval() is not de-randomized. Notice that this
is consistent with the security guarantees of the RaJa framework, since the
eval() function is randomized in the first place and cannot be called ex-
plicitly by a malicious script unless the random token is somehow revealed.
However, this approach is vulnerable to injections through malicious data
that can be injected in careless use of eval(). For the latter case, the RaJa
framework can be augmented with tainting [101, 112, 89, 91].

Self-Correctness. In order to prove that the RaJa parser does not produce
invalid JavaScript source, we use the built-in test-suite of the SpiderMonkey
engine. We first run the test-suite with the original SpiderMonkey inter-
preter and record all failures. These failures are produced by JavaScript
features which are now considered obsolete. We subsequently randomize
all tests, remove all E4X [66] tests because we do not support this dialect,
re-run the test-suite with the raja-eval (a tool capable in executing ran-
domized source) and record all failures. The failures are exactly the same.
Thus, the modified SpiderMonkey behaves exactly as the original one in
terms of JavaScript semantics.

2.3.2 Case Studies

In this section we test RaJa with popular web applications. We present
our experiences from deploying the framework with existing source code,
which is composed by multiple flavors of server-side and client-side code.
We, also, highlight various coding idioms and practices we found, while
trying to enable RaJa in real-world web applications.

2.3.3 WordPress

WordPress is a popular blog engine based on PHP and MySQL. The web ap-
plication is composed by approximately 150,000 lines of code as of version
2.9. The source corpus includes PHP, HTML, XML, SQL and JavaScript code,
mixed up in various ways. WordPress had many security vulnerabilities in
the past and thus it is considered ideal for testing RaJa with it.

We install WordPress in an Apache that supports RaJa. We use our tools
introduced in Section 2.3.1 to scan all the source code of WordPress and spot

www.syssec-project.eu 33 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

1 /* Case 1. */

2 echo "<script type=’text/javascript ’>\n";

3 echo "/* <![CDATA[*/\n";

4 echo "document.write (...);"

5 echo "/*]]> */\n";

6 echo "</script >\n";

7
8 /* Case 2. */

9 $actions[’quickedit ’] =

10 ’onclick ="Reply.open(\’’ .$post ->ID. ’\’,\’edit\’);"’

11
12 /* Case 3. */

13 tinyMCEPreInit = {

14 ...

15 mceInit : {<?php echo $mce_options; ?>},

16 ...

17 };

18
19 /* Case 4. */

20 var RecaptchaOptions = {

21 lang : ’{L_RECAPTCHA_LANG}’,

22 index : <!-- IF $CAPTCHA -->

23 {$CAPTCHA}<!-- ELSE -->10<!-- ENDIF --> };

24
25 /* Case 5. */

26 onsubmit=

27 "return

28 (emptyFormElements(this , ’table ’)

29 && checkFormElementInRange(

30 this , ’num_fields ’, ...);"

Figure 2.10: Categorization of all cases that result in faulty randomization
due to interference between JavaScript and PHP.

JavaScript snippets. We attempt to randomize all 187 identified scripts. The
RaJa randomizer manages to successfully randomize 169 scripts and fail to
18. The failed tests indicate that the randomizer cannot process the scripts
up to the end due to code interference between JavaScript and PHP. The
successfully passed scripts indicate that the randomizer succeeded on them.
It is questionable if the rest of the PHP code has been modified wrongly
due to the randomizer. We further proceed and check each file using PHP’s
lint mode to check the randomized files syntactically. All files succeed on
passing the PHP syntax check.

We manually analyze all failed tests and categorize the family of prob-
lems that drive the RaJa randomizer to failure. We conclude that there are
five general cases where code-mixing between PHP and JavaScript results
in broken randomized source:

• Case 1. Partial injection of JavaScript source using the PHP built-in
function echo(). Lines 2-6 in Figure 2.10.

• Case 2. String concatenation. Lines 9-10 in Figure 2.10.

www.syssec-project.eu 34 January 9, 2015

2.3. AN ARCHITECTURE FOR ENFORCING JAVASCRIPT
RANDOMIZATION IN WEB2.0 APPLICATIONS

1 /* Case 1. */

2 <script type=’text/javascript ’>

3 /* <![CDATA[*/

4 document.write (...);

5 /*]]> */

6 </script >

7
8 /* Case 2. */

9 $content = ’\’’ . $post . ’\’,\’edit\’’;

10 $actions[’quickedit ’] =

11 ’onclick =" commentReply.open(’.$content.’);"’;
12
13 /* Case 3. */

14 <?php $mce_options_s = "{" . $mce_options . "}"; ?>

15 tinyMCEPreInit = {

16 ...

17 mceInit : <?php echo $mce_options_s; ?>,

18 ...

19 };

20
21 /* Case 4. */

22 <!-- IF $CAPTCHA -->

23 var RecaptchaOptions = { ... };

24 <!-- ELSE -->

25 var RecaptchaOptions = { ... };

26 <!-- ENDIF -->

Figure 2.11: Suggested workarounds for all cases that result in faulty ran-
domization due to interference between JavaScript and PHP.

• Case 3. Partial JavaScript code generation by PHP scripting blocks.
Lines 13-17 in Figure 2.10.

• Case 4. JavaScript code generation by using frameworks’ meta lan-
guages. Lines 20-23 in Figure 2.10.

• Case 5. Markup injections. Lines 26-30 in Figure 2.10.

We depict examples of all five cases that force RaJa to produce faulty
randomized source code in Figure 2.10. All examples are real from the
source of WordPress, except for Case 3, where we use an example from
phpBB and for Case 5, where we use an example from phpMyAdmin. Some
examples are slightly altered for better presentation. We now proceed and
discuss each case in detail and provide a workaround, where possible.

Case 1. RaJa cannot handle partial fragments of JavaScript, since the
source must be first fully parsed and then randomized. It is hard for
the parser to isolate portions of JavaScript injected using the PHP built-in
echo() function and then re-assemble them in a snippet that can be suc-
cessfully parsed. The example of this case in Figure 2.10 (lines 2-6) can be
solved with a different coding practice suggested in Figure 2.11 (lines 2-6).

www.syssec-project.eu 35 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

Case 2. RaJa cannot handle complex string concatenation of mixed
JavaScript and PHP variables, since both languages support all quotation fla-
vors in string literals. Thus, string quoting in PHP interferes with JavaScript
quoting and it is hard to isolate one from the other. The example of this
case in Figure 2.10 (lines 9-10) can be solved with a different coding prac-
tice suggested in Figure 2.11 (lines 9-11).

Case 3. RaJa treats all alien language occurrences as an identifier accord-
ing to Rule 1 (see Section 2.3.1). There are some cases where PHP code is
injected in a location that cannot be handled correctly as a JavaScript iden-
tifier (recall Rule 1 from Section 2.3.1). Consider the case in line 15 of
Figure 2.10. The curly brackets surrounding the PHP code denote an object
inside. Thus, the JavaScript interpreter does not expect to parse a com-
mon identifier. The example of this case in Figure 2.10 (lines 13-17) can
be solved with a different coding practice suggested in Figure 2.11 (lines
14-19).

Case 4. RaJa cannot randomize JavaScript when is mixed with meta
language elements. The JavaScript source cannot be parsed if the meta lan-
guage code is removed, since the removal leaves two subsequent JavaScript
identifiers. The latter produces a syntax error. The example of this case
in Figure 2.10 (lines 20-23) can be solved either by extending the parser
to identify some meta language elements and ignore them or by giving a
different coding practice suggested in Figure 2.11 (lines 22-26).

Case 5. RaJa cannot randomize JavaScript when is mixed with HTML
special characters. These HTML characters are translated from a PHP fil-
ter before the script reaches the web browser. Before the translation the
JavaScript expression is invalid. For example, the most frequently occurring
case is when the sequence of HTML entities && is translated to &&,
which is the logical AND in a JavaScript expression. We are not aware of the
goal of the web programmers that use this coding tactic. The example of
this case in Figure 2.10 (lines 26-30) can be solved by extending the parser
to ignore all HTML special characters.

All workarounds suggested are meant for assisting RaJa to handle com-
plex code intermixing between JavaScript and PHP. Web programmers may
dislike the coding idioms we suggest and it is not our intention to enforce
coding practices. However, we believe that programming aesthetics may be
overlooked in favor of security. We further proceed and alter all faulty scripts
according to the workarounds we suggest above. The result is a full func-
tional and RaJa-enabled WordPress. We manage to create and administrate
a sample blog using a RaJa-enabled web browser. We present an example
from a randomized script from the WordPress distribution in Figure 2.12.

www.syssec-project.eu 36 January 9, 2015

2.3. AN ARCHITECTURE FOR ENFORCING JAVASCRIPT
RANDOMIZATION IN WEB2.0 APPLICATIONS

1 <script type="text/javascript">

2 <?php if ($user_login || $interim_login) { ?>

3 setTimeout_0x42(function (){ try{

4 d_0x42 = document_0x42.getElementById_0x42(’pass ’);

5 d_0x42.value_0x42 = ’’;

6 d_0x42.focus_0x42 ();

7 } catch(e_0x42){}

8 }, 200);

9 <?php } else { ?>

10 try{

11 document_0x42.getElementById_0x42(’login ’).focus_0x42 ();

12 } catch(e_0x42){}

13 <?php } ?>

14 </script >

Figure 2.12: Example of randomized source code from WordPress (wp-
login.php).

Application LoCs Scripts Passed Failed
WordPress 143,791 187 169 18

phpBB 213,681 539 512 27
phpMyAdmin 178,447 263 215 48

Drupal 44,780 8 6 2
Total 580,699 997 902 95

Table 2.4: Summary of scripts that RaJa can successfully randomize in four
real-world web applications.

2.3.3.1 phpBB, phpMyAdmin and Drupal

We perform similar studies for other three large and popular web applica-
tions, namely phpBB, phpMyAdmin and Drupal. In Table 2.4, we present a
summary of our complete study. Specifically, we list all JavaScript snippets
identified, the number of them that we can successfully randomize, as well
as all scripts that fail in randomization.

All failed scripts are covered by the five cases we have already presented.
It is worth mentioning that phpBB uses internally a meta-language for better
code structuring (see example of Case 3 in Figure 2.10). RaJa can effectively
identify and randomize most of phpBB scripts even if the language mixing is
triple (PHP, JavaScript and phpBB meta-language). In Table 2.5, we present
all scripts in all four web applications that failed due to one of the five cases
mentioned above.

www.syssec-project.eu 37 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

Web Application Scripts C1 C2 C3 C4 C5
WordPress 18 3 12 3 0 0

phpBB 27 1 0 0 26 0
phpMyAdmin 48 0 43 2 0 3

Drupal 2 0 2 0 0 0
Total 95 4 57 5 26 3

Table 2.5: Categorization of all mixed scripts in all four web applications.

2.3.4 Evaluation

In this section, we evaluate RaJa. We measure the overhead RaJa imposes
on the server and client side and we test the framework with real-world
attacks from a well-known XSS repository.

Server-Side Overhead. The most crucial part of RaJa performance is
the server-side part. All web pages are examined for JavaScript source code
and if an occurrence is found the RaJa randomizer performs a full-JavaScript
parsing session. This process is repeated for every request. This is vital for
the security guarantees of the framework, since the randomization key has
to be refreshed in every request. Otherwise, an XSS exploit can perform a
request to reveal the key and then launch the actual attack.

In order to measure the overhead imposed on the server-side part, we
request a set of web pages that embed a significant amount of JavaScript us-
ing the Apache Benchmark (ab) [15]. The sample of web pages is collected
from the SunSpider [39] suite, which constitutes a collection of JavaScript
benchmarks for measuring the performance of JavaScript engines. The suite
is composed by nine different groups of programs that perform various com-
plex operations. We manually select three JavaScript tests from the Sun-
Spider suite. The heavy test involves string operations with many lines of
JavaScript. This is probably the most processing-intensive test in the whole
suite, composed by many lines of code. The normal test includes a typical
amount of source code like most other tests that are part of the suite. Finally,
the light test includes only a few lines of JavaScript involving bit operations.

We use ab over a Fast Ethernet (FE) network. We configure ab to issue
1000 requests for the heavy, normal and light web pages to stress a RaJa-
enabled server. Figure 2.13 summarizes the results for the case of the ab

tool connecting to the web server through a FE connection. The RaJa server
imposes an overhead that ranges from a few tens of milliseconds to about
one hundred of milliseconds in the worst case (the heavy web page). While
the results are quite promising for the majority of the tests, the processing
time for the heavy page could be considered significant.

Client-Side Overhead. The additional overhead in the client-side orig-
inates from the fact that a RaJa compliant web browser embeds a modi-

www.syssec-project.eu 38 January 9, 2015

2.3. AN ARCHITECTURE FOR ENFORCING JAVASCRIPT
RANDOMIZATION IN WEB2.0 APPLICATIONS

Server−Side/FE (heavy)

Requests (%)

40 50 60 70 80 90 100

T
im

e
 (

m
s
e
c
)

0

100

200

300

400

500

Server (modified)

Server (vanilla)

Server−Side/FE (medium)

Requests (%)

40 50 60 70 80 90 100

T
im

e
 (

m
s
e
c
)

0

10

20

30

40

50

Server (modified)

Server (vanilla)

Server−Side/FE (light)

Requests (%)

40 50 60 70 80 90 100

T
im

e
 (

m
s
e
c
)

0

5

10

15

20

25

30

Server (modified)

Server (vanilla)

Figure 2.13: Server side evaluation when the Apache benchmark tool (ab)
is requesting each web page through a Fast Ethernet link.

Client−Side Evaluation

3d access bitops controlflow crypto date math regexp string

T
im

e
 (

m
s
e

c
)

0

200

400

600

800

1000

1200

1400

RaJa−enabled Firefox

Firefox

Figure 2.14: Client-side evaluation for a RaJa-enabled web browser using
the SunSpider benchmarks.

fied SpiderMonkey engine, which de-randomizes each JavaScript identifier
while parsing. We expect this overhead to be relatively small compared to
the authentic SpiderMonkey engine, since it involves a string comparison,
relatively to the size of the token, for every identifier parsed.

In order to evaluate the client-side overhead we use the SunSpider [39]
suite, which includes a collection of JavaScript benchmarks. These tests are
meant to stress the JavaScript engine of a web browser. The benchmarking
is carried-out using JavaScript which in the RaJa case is also randomized
and cannot be accounted. However, the code involved for accounting the
benchmarks is significantly lesser than the code of the tests and thus the
results are slightly deviate from the real overhead. We plot the benchmark
results for all seven different families of tests in Figure 2.14. As expected,
the RaJa -enabled web browser is slightly slower than the original Firefox.

Attack Coverage. We use the repository hosted by XXSed.com [70]
which includes a few thousands of XSS vulnerable web pages. This reposi-
tory has been also used for evaluation in other works [87, 50]. The majority
of these exploits refers to XSS reflection attacks, excluding some <iframe>

injections. We evaluate RaJaagainst all web sites that have not fixed the
vulnerability since the exploit’s publication, 1,401 in total. More precisely,

www.syssec-project.eu 39 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

we use the exact methodology presented in [50]. As expected, all 1,401
exploits are successfully detected and prevented from executing.

2.3.5 Lessons Learned

In this work we present RaJa, which applies randomization directly to
JavaScript. We modify a popular JavaScript engine to carefully modify all
JavaScript identifiers and leave all JavaScript literals, expressions, reserved
words and JavaScript specific constructs intact. We further augment the
engine to recognize tokens identifying the existence of a third-party pro-
gramming language. This is driven by two observations: First, JavaScript
usually mixes with one server-side scripting language, like PHP, with well
defined starting and ending delimiters; second, Server-side scripting ele-
ments when mixed up with JavaScript source act as JavaScript identifiers
or literals in the majority of the cases. To verify these speculations we de-
ploy RaJa in four popular web applications. RaJa fails to randomize 9.5%
of identified JavaScript in approximately half a million lines of code, mixed
up with JavaScript, PHP and markup. A carefully manual inspection of
the failed cases suggests that failures are due to coding idioms that can be
grouped in five specific practices. Moreover, these coding practices can be
substituted with alternative ones.

2.4 Combining Static and Dynamic Analysis for the
Detection of Malicious Documents

A more detailed description of the work can be found in [110].

2.4.1 Background

PDF, created by Adobe Systems, has become the de facto file format for the
distribution of printable documents. A file adhering to the PDF specification
has four main sections: a one-line header with the version number of the
PDF specification; the main body of the document, which consists of objects
such as text, images, fonts, annotations, or even other embedded files; a
cross-reference table with the offsets of the objects within the file; and fi-
nally, a trailer for quick access to the cross-reference table and other special
objects.

Besides static data, PDF objects can also contain code written in
JavaScript. This allows document authors to incorporate sophisticated fea-
tures such as form validation, multimedia content, or even communication
with external systems and applications. Unfortunately, attackers can also
take advantage of the versatility offered by JavaScript for the exploitation
of arbitrary code execution vulnerabilities in the PDF viewer application.

www.syssec-project.eu 40 January 9, 2015

2.4. COMBINING STATIC AND DYNAMIC ANALYSIS FOR THE
DETECTION OF MALICIOUS DOCUMENTS

Through JavaScript, the attacker can achieve two crucial goals: trigger the
vulnerable code, and divert the execution to code of his choice. Depend-
ing on the vulnerability, the first is achieved by calling the vulnerable API
function or otherwise setting up the necessary conditions. Then, through
heap-spraying [67] or other memory manipulation techniques, the flow of
control is transferred to the embedded shellcode, which carries out the final
step of the attack, e.g., dumping on disk and then launching an embedded
malware executable.

Besides exploiting some vulnerability in the PDF viewer, attackers have
exploited advanced PDF features such as the /Launch option, which au-
tomatically launches an embedded executable, or the /URI and /GoTo op-
tions [71], which can open external resources form the same host or the
Internet. Although in both cases the application first asks for user autho-
rization, such features are quite hazardous, and after the public exposure of
their security implications, they were promptly mitigated.

2.4.2 Design and Implementation

The mere presence of JavaScript code in a PDF file is not an indication
of malicious intent, even if the code has been highly obfuscated. Besides
hindering malicious code analysis, code obfuscation is legitimately used for
preventing reverse engineering of proprietary applications. To be resilient
against highly obfuscated code, MDScan analyzes any embedded code by ac-
tually running it on a JavaScript interpreter. During execution, if some form
of shellcode is revealed in the address space of the JavaScript interpreter,
then the input document is flagged as malicious.

Document scanning in MDScan consists mainly of two phases. In the first
phase, MDScan analyzes the input file and reconstructs the logical structure
of the document by extracting all identified objects, including objects that
contain JavaScript code. In the second phase, any JavaScript code found in
the document is executed on an instrumented JavaScript interpreter, which
at runtime can detect the presence of embedded shellcode. The overall
design of MDScan is presented in Fig. 4.15. Below, we describe its main
components and the details of our detection method.

2.4.2.1 Document Analysis

Upon reading the input document, MDScan analyzes its structure and ex-
tracts all identified objects, which are then organized in a hierarchical struc-
ture. The complexity and ambiguities [105, 102, 115] of the PDF specifi-
cation make this process a non-trivial task. In addition, most PDF viewers,
including Adobe Reader, attempt to render even malformed documents, and
generally do not strictly follow the PDF specification. This gives attackers

www.syssec-project.eu 41 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

Figure 2.15: Overall architecture of MDScan.

even more room to hinder document analysis, by taking advantage of these
intricacies to obfuscate the structure of malicious PDF files.

2.4.2.1.1 File Parsing File parsing begins with the extraction of all ob-
jects found in the body of the document, including objects that have been de-
liberately left out from the cross-reference table. In fact, the cross-reference
table can be omitted altogether, as in the document shown in Fig. 2.16,
along with other required (according to the PDF specification) elements,
such as the endobj, endstream, and %%EOF keywords. Attackers can also
use seemingly incorrect but actually valid keywords, such as objend instead
of endobj. In general, the parser is resilient on parsing errors, and attempts
to extract as much information in the best manner possible, in accordance
with the behavior of the most popular PDF viewers.

After all objects have been identified, the parser proceeds to a normal-
ization step that neutralizes any further obfuscations, and extracts seman-
tic information about each identified object. Probably the most common
object-level obfuscation technique is the use of filters to transform the ob-
ject stream data and conceal the embedded JavaScript code. The PDF for-
mat supports many different filters for the decompression of arbitrary data
(/FlateDecode, /LZWDecode, /RunLengthDecode), the decompression of
images (/JBIG2Decode, /CCITTFaxDecode, /DCTDecode, /JPXDecode), or
the decoding of arbitrary 8-bit data that have been encoded as ASCII text
(/ASCIIHexDecode, /ASCII85Decode).

For instance, a typical use of these filters is to compress an image using
JBIG2 compression, and then encode the compressed data using an ASCII
hexadecimal representation. In practice, attackers can combine any number
of filters to conceal the embedded malicious javascript code. Special care
is taken for the correct handling of filter abbreviations such as the use of
/Fl in place of /FlateDecode. Although it is straightforward to extract the
encoded data by undoing each transformation, stream compression is very
effective against simple detection methods such as pattern matching.

Another important aspect of the object normalization step deals with
keywords that have been encoded using an ASCII hexadecimal represen-

www.syssec-project.eu 42 January 9, 2015

2.4. COMBINING STATIC AND DYNAMIC ANALYSIS FOR THE
DETECTION OF MALICIOUS DOCUMENTS

1 1 0 obj <<
2 /Type /Catalog
3 /Pages 1 0 R
4 /OpenAction <<
5 /S /JavaScript
6 /JS (app.alert({cMsg: ’Hello!’});)
7 >>
8 >>
9 endobj

10

11 2 0 obj <<
12 /Title (Malicious Document)
13 >>
14

15 trailer <<
16 /Root 1 0 R
17 /Info 2 0 R
18 >>

Figure 2.16: A malformed PDF document that is rendered normally by
Adobe Reader.

tation. The PDF format allows the arbitrary use of hexadecimal numbers
in place of ASCII characters in keywords, as shown in Fig. 2.17. Similarly,
strings in objects can be represented using various other encodings, such
as octal or hexadecimal representations with flexible character whitespace
requirements [105]. Finally, version 1.5 of the PDF specification introduced
the concept of object streams, which contain a sequence of PDF objects. So-
phisticated attackers have been using this feature for deeper concealment
of PDF objects that contain malicious code by wrapping them inside object
streams. MDScan handles object streams by identifying objects with a /Type

key that has the value /ObjStm in the object’s dictionary.

2.4.2.1.2 Emulation of the JavaScript for Acrobat API Adobe Reader
provides an extensive API that allows authors to create feature-rich docu-
ments with a wide range of functionality. The JavaScript for Acrobat API is
accessible as a set of JavaScript extensions that provide document-specific
objects, properties, and methods. Unfortunately, attackers can take advan-
tage of this versatile API to obfuscate further their malicious documents.
This can be achieved by embedding parts of the JavaScript code, or actual
data on which it depends, into objects or elements that are accessible only
through the Acrobat API. The malicious code can then retrieve its missing
parts or access any hidden data through the Acrobat API, and continue its
execution.

For instance, some malicious PDFs use the info property of the Adobe
JavaScript Document Object Model (DOM) to store parts of code or data, as
shown in Fig. 2.17. The info property provides access to document meta-

www.syssec-project.eu 43 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

1 ..JUNKDATA..%PDF-x.y..JUNKDATA..
2 1 0 obj <</tYpE
3 /C#61t#41log /#50#61#67#65#73 1 0 R
4 /Open#41ction<<
5 /S/JavaScript/JS(eval(
6 this.\
7 info.author);)>>>>
8 ..JUNKDATA..
9

10 6 0 obj <<
11 /Title <4D61 6C 69636
12 96F757320446F63756D656E 74>
13 /Author(app.al\145rt(
14 {cMsg: ’Hell\157!’});)
15 >>
16

17 trailer<</Root 1 0 R/Info 6 0 R>>
18

19 ..JUNKDATA..

Figure 2.17: An obfuscated version of the document shown in Fig. 2.16 that
is still rendered normally by Adobe Reader.

data such as the document title, author, copyright notice, and so on. Other
objects that can hold data supplied by the attacker include annotations, XML
specifications for embedded forms [59], or even the document pages them-
selves. For example, the script can read the actual words of a page using the
getPageNthWord function.

It is clear from the above that the proper execution of the code embed-
ded in a malicious PDF file requires an environment that provides the func-
tionality offered by the Acrobat API. Unfortunately, standalone JavaScript
engines such as SpiderMonkey [37], which is the engine used in MDScan,
do not support this API and are not aware of the Adobe JavaScript DOM,
since both are proprietary. In MDScan, we resolve this issue by augmenting
the JavaScript engine with our own implementation of the DOM parts and
the API calls that are most frequently used in malicious PDF documents. We
have followed an incremental approach, adding more functions according
to the ones found in the samples that we have encountered so far. After the
completion of the data parsing and normalization steps, MDScan analyzes
the identified objects and reconstructs the hierarchical structure of the DOM
objects needed for the emulation of the implemented API calls.

2.4.2.1.3 JavaScript Code Extraction After all extracted objects have
been analyzed, we need to identify the objects that contain JavaScript code,
and reconstruct the entire code image that will be fed to the JavaScript en-
gine for execution. According to the PDF specification, objects that contain
JavaScript code are denoted by the keyword /JS. The code can be located

www.syssec-project.eu 44 January 9, 2015

2.4. COMBINING STATIC AND DYNAMIC ANALYSIS FOR THE
DETECTION OF MALICIOUS DOCUMENTS

either in the object itself, or in some other object linked to the parent object
through an indirect reference (or a chain of indirectly linked objects).

At this point, we aim at recovering only the initial JavaScript code that
is set to run automatically when the document is opened. A common prac-
tice of malicious PDF authors is to scatter this code across many objects
with the aim to hinder detection and analysis. However, no matter into
how many objects the code has been split, in order for the original code
to be executable when the document is opened, the respective objects (or
their associated parent objects) should all have been marked as containing
JavaScript code using the /JS key. Any parts of the code that have been con-
cealed into other non-code PDF objects are not relevant at this stage, since
they will be retrieved at runtime through the appropriate API calls.

Having located the objects with the initial code to be executed, a crucial
next step is to identify the entry point of the code. This can be achieved
by looking for objects with specific declarations that denote immediate exe-
cution of the object’s content, such as /OpenAction, /AA, /Names, and oth-
ers [43]. The code of these objects is placed at the very bottom of the whole
reconstructed code, so that it follows any previous function or variable dec-
larations.

Another important aspect of the code extraction phase is the order
in which the code fragments are arranged before being loaded on the
JavaScript engine. For example, an attacker can place a statement that as-
signs a variable with the string representation of the shellcode in a PDF
object, and access that variable from code located in another object. If the
code of the second object (variable access) precedes the code of the first
object (variable definition), the JavaScript interpreter will issue a reference
error. In most cases, the correct order of the code chunks can be inferred
from the inherent ordering of the PDF objects in the file, and the chains
of indirect references. However, we also use some additional heuristics to
identify any use-before-declaration conditions, and reorder the respective
code chunks appropriately.

2.4.2.2 Code Execution and Shellcode Detection

Having extracted the embedded code, MDScan proceeds into the dynamic
analysis phase, in which the code is executed on a JavaScript interpreter.
In most malicious PDF files, the goal of the JavaScript code is to trigger a
vulnerability in the PDF viewer, and divert the normal execution flow to the
embedded shellcode. The shellcode can be initially concealed using multiple
layers of encryption or transformations, such as UTF-encoded characters,
eval chains, mapping tables, or other complex custom schemes. However,
during execution, its actual binary code will eventually be revealed into a
contiguous buffer referenced through a JavaScript string variable [98, 67].

www.syssec-project.eu 45 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

Strings in JavaScript are immutable, and thus a modification to an exist-
ing string results to the allocation of a new memory buffer. This allows us to
detect a PDF document that contains malicious JavaScript code by scanning
each newly created string for the presence of shellcode—a benign document
would never execute JavaScript code that carries any form of shellcode. To
that end, we have instrumented SpiderMonkey to scan the memory area of
each allocated string using Nemu [97], a shellcode detector based on bi-
nary code emulation. The runtime heuristics of Nemu can identify the most
widely used types of Windows shellcode, including egg-hunt shellcode [97],
which has been widely used in malicious PDFs [118].

Our approach is analogous to the one used by Egele et al. [67] for the de-
tection of drive-by download attacks. In their system, the JavaScript engine
of Mozilla Firefox has been instrumented to detect the presence of shellcode
during the execution of malicious scripts embedded in rogue web pages.
Unfortunately, we cannot directly modify the JavaScript engine of Adobe
Reader since its source code is not available. An alternative approach would
be to intercept the routines of the memory allocator used by Acrobat Reader
through library interposition, and scan each newly allocated buffer, simi-
larly to the design of Nozzle [98]. An advantage of this technique is that it
eliminates the need for custom document parsing, data and code extraction,
and emulation of the JavaScript for Acrobat API.

However, we have designed MDScan with the aim to be used as a stan-
dalone PDF scanner, and not as a protection enhancement for existing PDF
viewers. This allows MDScan to be easily embedded as an additional de-
tection component in existing intrusion detection systems, virus scanners,
or proxy servers. In contrast, a detector integrated with the actual PDF
viewer application, in the same spirit as the above browser-embedded sys-
tems [98, 67], cannot be easily used as a standalone component. Indeed,
this would at least require a fully-blown virtual machine running Windows
to host the instrumented viewer, and the viewer should be restarted for ev-
ery input file. In fact, this design is being used by malicious code analysis
systems like CWSandbox [114, 75], which can provide a detailed analysis
of the actions and OS-wide side effects of malicious PDF files.

2.4.3 Experimental Evaluation

In this section we present the results of the experimental evaluation of our
prototype implementation. First, we evaluate the detection effectiveness of
MDScan using real PDF samples. We, then, evaluate the overall processing
throughput, as well as the individual overhead of each analysis phase. For
our experiments, we used a diverse set of 197 malicious documents gathered
from public malware repositories and malicious websites [1, 2, 3, 21], as
well as from individual sources. The above set also includes nine samples
generated using the nine different PDF exploit modules of the Metasploit

www.syssec-project.eu 46 January 9, 2015

2.4. COMBINING STATIC AND DYNAMIC ANALYSIS FOR THE
DETECTION OF MALICIOUS DOCUMENTS

Number of malicious PDF files

0 25 50 75 100 125 150 175 200

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
A

V
s

0

0.2

0.4

0.6

0.8

1

Figure 2.18: Cumulative fraction of
the virus scanners of VirusTotal that
detected a set of 197 malicious PDF
samples.

Processing time (sec)

0 5 10 15 20 25

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
P

D
F

 f
ile

s

0

0.2

0.4

0.6

0.8

1

Benign

Malicious

Figure 2.19: Cumulative distribu-
tion of the processing time for ma-
licious and benign PDF samples.

Malicious PDF samples

s1 s2 s3 s4 s5 s6 s7 s8 s9

N
u
m

b
e
r

o
f
A

V
s

0

10

20

30

40

Original samples

Added JS obfuscation

Added PDF obfuscation

Figure 2.20: Number of virus scanners (out of 41) of VirusTotal that de-
tected obfuscated versions of malicious PDF files generated with Metasploit.

Framework [4]. We also used a set of 2,000 randomly chosen benign PDF
files that we found on Google.

2.4.3.1 Detection Effectiveness

We began our evaluation by testing the detection effectiveness of MDScan
using real malicious PDF samples. From the 197 malicious files, MDScan
successfully detected 176 (89%). From the files that were not detected, 15
did not attempt to exploit any arbitrary code execution vulnerability, but
relied other features such as /Launch and /URI, as discussed in Sec. 2.4.1.
We plan to extend the PDF parsing module to detect these types of attacks
by checking the extracted objects for the relevant keywords. The remaining
six samples were not detected due to faults during the parsing phase, which
we have been investigating.

For comparison, we submitted all samples to VirusTotal [41] and re-
trieved the results from 41 antivirus engines (AVs), which we have plotted
in Fig. 2.18. About half of the samples were detected only by half or less
of the AVs, while 24 samples were detected by 20% or less. Even for the
most detectable samples, there were about 20% or more of the AVs that did

www.syssec-project.eu 47 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

not detect them. We also submitted all samples to Wepawet [72, 60], which
reported 119 files as malicious, 16 as suspicious, 58 as benign, while four
resulted to error.

To test further the effectiveness of existing antivirus systems against PDF
threats, we created variants of the nine Metasploit samples by applying ad-
ditional obfuscation techniques. The first derived set was generated by ob-
fuscating the JavaScript code of the original samples using a publicly avail-
able code obfuscator [5]. The second set was generated from the previous
one by removing any PDF filter encodings from the objects that contained
JavaScript code. We, then, treated the exposed JavaScript code in each ob-
ject as a string, and encoded it using its hexadecimal representation.

As shown in Fig. 2.20, in most cases the original Metasploit samples were
detected by less than half of the AVs. The additional obfuscation applied in
the samples of the other two sets reduced the detection rate significantly,
with only ten or less of the AVs detecting the malicious files in the third set.
The only exception is the sample number three, which is detected by almost
the same number of AVs irrespectively of the applied obfuscation, due to
the inclusion of encrypted mediabox objects that were not altered by our
modifications. MDScan successfully detected all 27 samples.

Finally, we tested MDScan for false positives using the set of benign
files. After verifying that all 2,000 files were reported as benign by all AVs
of VirusTotal, we scanned them using MDScan, which did not misclassify
any of them.

2.4.3.2 Runtime Performance

We measured the processing time of MDScan for both malicious and benign
samples. We repeated each experiment ten times and report the average
values. Figure 2.19 shows the distribution of the processing time for all
samples in our two datasets, and Fig. 2.21 shows the breakdown of the
average scanning time for the two sets. As expected, most of the processing
time for malicious PDF files is spent on the emulation of the JavaScript code,
which is a much more CPU-intensive operation compared to file parsing and
code extraction. The average processing time for malicious inputs is just less
than three seconds, with about half of the files being scanned in less than
one second.

The average processing time for benign PDF files is 1.5s, with about
80% of the files being scanned in less than one second. In contrast to the
malicious files, the amount of time spent on code execution is negligible,
since only a small fraction of files contain JavaScript code. Instead, due
to the very large size of some of the files, the time spent on parsing and
analysis of the PDF objects in each file is significant.

www.syssec-project.eu 48 January 9, 2015

2.4. COMBINING STATIC AND DYNAMIC ANALYSIS FOR THE
DETECTION OF MALICIOUS DOCUMENTS

Processing time (sec)

0 0.5 1 1.5 2 2.5 3

Benign

Malicious

Parsing

Code extraction

Code execution

Figure 2.21: Average processing time for malicious and benign samples.

2.4.4 Lessons Learned

Malicious PDF files remain an important threat, requiring effective and ro-
bust detection mechanisms. As we have demonstrated, the effectiveness
of existing antivirus systems against malicious PDF files is quite modest,
given that in most cases the samples were well known and quite old, and
at the same time is highly affected by the application of simple obfuscation
techniques. MDScan is not affected by JavaScript code obfuscation, and is
robust against most of the known obfuscation techniques based on intrica-
cies of the PDF format specification. At the same time, it does not rely on
any specific vulnerability or exploit features, which allows the detection of
previously unknown threats. Combined with its standalone design, we be-
lieve that these features make MDScan an effective detection component for
larger network or host-level attack detection systems. However, due to its
emulation of the JavaScript for Acrobat API, MDScan will probably need to
be combined with VM-based analysis systems in case PDF threats start to
employ more advanced or diverse API calls.

www.syssec-project.eu 49 January 9, 2015

CHAPTER 2. ATTACKS ON WEB APPLICATIONS AND SERVICES

www.syssec-project.eu 50 January 9, 2015

3
Attacks on Smart and Mobile Devices

3.1 Introduction

In this chapter, we present our work related to attacks on smart devices
like smartphones or tablet PCs. In Section 3.2, we present techniques that
can be used in order to evade Android runtime analysis through emulation
detection and we evaluate these techniques in different Android dynamic
analysis tools. The work we conducted raises important questions about
the effectiveness of existing analysis systems for Android malware. For this
reason, we propose a number of possible countermeasures for improving
the resistance of dynamic analysis tools for Android malware against VM
detection evasion. Then, in Section 3.3, we proceed to present a threat
scenario that targets WebView apps and show its practical applicability in
a case study of over 287,000 Android apps. In a nutshell, the benefit of a
better user-experience that webview provides comes at the cost of serious
security implications. In case of a server compromise of just a single, vul-
nerable app, the consequences can be severe: For example, we found that
seemingly harmless, simple apps can exceed 500,000 installs. The result-
ing multiplication effect is enormous: by compromising only one server, the
attacker gains access to a huge number of mobile devices. Consequently,
WebView’s JavaScript support should be used with extreme caution

3.2 Evading Dynamic Analysis of Android Devices

For more information, an extended version of this work can be found
in [93].

51

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

Category Type small Examples
Static Pre-initialized static info IMEI has a fixed value

Dynamic Dynamic info does not change sensors produce same values
Hypervisor VM instruction emulation Native code runs differently

Table 3.1: A summary of the main types of VM detection heuristics.

3.2.1 Anti-analysis Techniques

Anti-analysis techniques that can be employed by Android apps to evade
detection can be classified in three categories: (a) static heuristics, based on
static information always initialized to fixed values in the emulated envi-
ronment, (b) dynamic heuristics, based on observing unrealistic behavior of
various sensors, and (c) hypervisor heuristics, based on incomplete emula-
tion of the actual hardware. Table 3.1 provides a summary of all categories,
along with some representative examples.

3.2.2 Static Heuristics

The static set includes heuristics that can be used for detecting emulated
environments by checking the presence and the content of unique device
identifiers, such as the serial number (device ID), the current build version,
or the layout of the routing table.
Device ID. Each smartphone contains an IMEI (International Mobile Station
Equipment Identity), which is a unique number identifying it in the GSM
network. The IMEI has already been used by malicious Android apps to hin-
der analysis by malware detection tools running on emulators [6]. Another
mobile device identifier is the IMSI (International Mobile Subscriber Iden-
tity), which is associated with the SIM card found in the phone. Our simplest
evasion heuristics are based on checking these identifiers, e.g., whether the
IMEI is equal to null, which is true for the default configuration of Android
Emulator. We will refer to this kind of heuristics using the abbreviation idH.
Current build. Another way to identify emulated environments is by in-
specting information related to the current build, as extracted from system
properties. For instance, the Android SDK provides the public class Build,
which contains fields such as PRODUCT, MODEL, and HARDWARE, that can be
examined in order to detect if an application is running on an emulator.
For example, a default Android image on an emulator has the PRODUCT and
MODEL fields set to google sdk, and the HARDWARE field set to goldfish. We
have implemented a number of heuristics based on this kind of checks, to
which we refer as buildH.
Routing table. An emulated Android device by default runs behind a virtual
router within the 10.0.2/24 address space, isolated from the host machine’s
network. The emulated network interface is configured with the IP address

www.syssec-project.eu 52 January 9, 2015

3.2. EVADING DYNAMIC ANALYSIS OF ANDROID DEVICES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7 0.75 0.8 0.85 0.9

C
D

F

Accelerometer’s events interval (sec)

Figure 3.1: CDF accelerometers’
events intervals in an Emulator.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Scheduling point (basic block offset)

Emulator
Device

Figure 3.2: CDF of scheduling
events in device and Emulator.

10.0.2.15. The configured gateway and DNS servers have also specific val-
ues. We use these networking properties as another detection heuristic.
Specifically, the heuristic checks listening sockets and established connec-
tions (through /proc/net/tcp), and attempts to find a port number associ-
ated with addresses 10.0.2.15 and 0.0.0.0, as an indication of an emulated
environment. We refer to this heuristic as netH.

3.2.3 Dynamic Heuristics

Mobile phones are equipped with a variety of sensors, including an ac-
celerometer, gyroscope, GPS, gravity sensor, etc. Essentially, these sensors
output values based on information collected from the environment, and
therefore simulating them realistically is a challenging task. The existence
of sensors is a key difference between smartphones and conventional com-
puting systems. The increasing number of sensors on smartphones presents
new opportunities for the identification of actual mobile devices, and thus
for the differentiation and detection of emulators. For instance, there are
studies focused on smartphone fingerprinting based on sensor flaws and im-
perfections [7, 63]. Such fingerprinting approaches can be leveraged for the
detection of emulated environments.

By default, the Android emulator cannot simulate device movements;
this can be achieved through additional sensor simulators [8]. Current
builds of the Android Emulator also support partially or not at all simu-
lation of other types of sensors. In our testing of the available simulated
sensors, we found that they generated the same value at equal time intervals
equal in average to 0.8 second with negligible standard deviation (equals to
0.003043). The CDF of the intervals between accelerometers’ events as ob-
served in an Android Emulator running for a couple of minutes is shown in
Figure 3.1. We found that the CDF for the rest of the sensors in Android Em-
ulator follows a similar pattern. We implemented our sensor-based heuris-
tics by taking advantage of the SensorManager [9] class of the Android API.
We developed an Android Activity that attempts to register a sensor listener
to monitor its output values using the following approach. First, we try to
register a sensor listener. If the registration fails, then the execution proba-

www.syssec-project.eu 53 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

bly takes place in an emulated environment (except in the case of an actual
device that does not support the specific sensor). Otherwise, if sensor regis-
tration is successful, then we check the onSensorChanged callback method,
which is called when sensor values change. If the sensor values or time
intervals observed are the same between consecutive calls of this method,
then we assume that the app is running on an emulated environment and we
unregister the sensor listener. We implemented this sensor-based heuristic
for the accelerometer (accelH), magnetic field (magnFH), rotation vector
(rotVecH), proximity (proximH), and gyroscope (gyrosH) sensors.

3.2.4 Hypervisor Heuristics

Identifying QEMU scheduling. Our first hypervisor heuristic is related to
QEMU scheduling [85], and the fact that QEMU does not update the vir-
tual program counter (PC) at every instruction execution for performance
reasons. As translated instructions are executed natively, and increasing
the virtual PC needs an additional instruction, it is sufficient and faster to
increase the virtual PC only when executing instructions that break linear
execution, such as branch instructions. This means that if a scheduling event
occurs during the execution of a basic block, it would be impossible for the
virtual PC to be reconstructed. For this reason, scheduling in a QEMU envi-
ronment happens only after the execution of a basic block, and never within
its execution.

A proof of concept QEMU Binary Translation (BT) detection technique
based on a histogram of the scheduling addresses of a thread has already
been implemented [85]. In a non-emulated environment, a large set of vari-
ous scheduling points will be observed, as scheduling can happen at an arbi-
trary time, whereas in an emulated environment, only a specific scheduling
point is expected to be seen, at the beginning of a basic block, as schedul-
ing happens after the execution of a complete basic block. We have imple-
mented this technique and used it in our experiments as an extra heuristic,
abbreviated as BTdetectH. In Figure 3.2, we show the different behaviors of
scheduling points by running this detection heuristic on an Android Emula-
tor and on a real device.
Identifying QEMU execution using self-modifying code. As a second
heuristic, we implemented a novel QEMU detection technique (we call
xFlowH) based on the fact that QEMU tracks modifications on code pages.
The technique is based on incurring variations in execution flows between
an emulator and a real device through self-modifying code.

ARM processors include two different caches, one for instructions accesses
(I-Cache) and one for data accesses (D-Cache) [55]. Harvard architectures
(like ARM) do not ensure coherence between I-Cache and D-Cache. There-
fore, the CPU may execute an old (possibly invalid) piece of code after a
newly one has already been written in main memory. This issue can be

www.syssec-project.eu 54 January 9, 2015

3.2. EVADING DYNAMIC ANALYSIS OF ANDROID DEVICES

resolved by enforcing consistency between the two caches, which can be
achieved through two operations: (a) cleaning main memory, so as the
newly written code lying in the D-Cache to be moved into main memory;
and (b) invalidating the I-Cache so that it can be repopulated with the new
content of the main memory. In native Android code, this can be done
through the cacheflush function, which carries out the above operations
through a system call.

We implemented an example of self-modifying (native) code that uses
a memory segment with write and execute rights which is overwritten sev-
eral times, in a loop, with the content (code) of two different functions, f1
and f2, alternately. After each code patch, we run the code of this segment,
which in turn runs either f1 or f2. These are two simple functions which
both append their name at the end of a global string variable, so that the
function call sequence can be inferred. To achieve an alternating call se-
quence, we have to synchronize the caches through a cacheflush call as
described previously.

We ran this code, along with the extra calls for cache synchronization
after each patch, on a mobile device and on the emulator, with the same
results—each execution produced a consistent function call sequence as de-
termined by the loop. Then, we performed the same experiment, but this
time excluded the cacheflush calls. As expected, on the mobile device
we observed a random call sequence for each run. As the caches are not
synchronized before each call, the I-Cache may contain stale instructions
because it is not explicitly invalidated. Interestingly, we found that this
does not happen on the emulator. Instead, the call sequence was exactly
the same as in the first case, when the caches were consistent before each
function call. This behavior is expected, as QEMU discards its translated
block for the previous version of the code, and re-translates the newly gen-
erated code, as it tracks modifications on code pages and ensures that the
generated code always matches the target instructions in memory [36].

3.2.5 Implementation

We have implemented the heuristics described in Section 3.2.1 using the
Android SDK. For BTdetectH and xFlowH, we used the Java Native Inter-
face (JNI) to invoke the native code that implements the functionality of
each heuristic. We developed a simple Android application (test app) that
runs our heuristics in the background, and for each one collects information
about its effectiveness. The collected data is sent to an HTTP server to be
stored in a local database. Moreover, we incorporated our heuristics in a
set of well known Android malicious apps. For this purpose, we used Smal-
i/Baksmali [10] along with Apktool [11], which we used for disassembling
and reassembling process. The incorporation of our heuristics in malicious
apps was done by patching the Smali Dalvik bytecode (generated by the

www.syssec-project.eu 55 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

Family Package name Heuristic Description
BadNews ru.blogspot. playsib.savageknife magnFH Data extrusion
BaseBridge com.keji.unclear accelH Root exploit
Bgserv com.android. vending.sectool.v1 netH Bot activity
DroidDream com.droiddream. bowlingtime gyrosH Root expoit
DroidKungFu com.atools.cuttherope rotVecH Root exploit
FakeSMS Installer net.mwkekdsf proximH SMS trojan
Geinimi com.sgg.sp buildH Bot avtivity
Zsone com.mj.iCalendar idH SMS trojan
JiFake android.packageinstaller BTdetectH SMS trojan
Fakemart com.android.blackmarket xFlowH SMS trojan

Table 3.2: Malware samples used for our study.

disassembly process) with the Smali code of each heuristic, which was pre-
viously extracted from our developed test app. Each malicious app was
modified to carry one of the implemented heuristics, as listed in Table 3.2.
At first, we ran each original sample as is, both on the emulator and on
a real device, and observed through the logcat command of Android log-
ging system the initial spawned Android activities and services. Afterwards,
we patched these components with one of the heuristics, which, depending
on the detection result, decides whether to continue the execution of the
component or not.

We tested the repackaged applications both on multiple emulators and
actual devices to make sure that the malicious behavior is triggered only
when the execution happens on a real device. Note that apart from the
above changes in the produced code of malicious apps, no other additions
are needed in any other parts of the APK files, except for the following cases.
The idH heuristic requires the READ PHONE STATE permission explicitly de-
clared in the Android Manifest file, to be able to retrieve information about
the phone state. For the BTdetectH and xFlowH heuristics, a new folder
named lib needs to be created inside the top level directory containing the
desired native code in the form of shared libraries.

3.2.6 Experimental Evaluation

3.2.7 Data and Tools

Malware Samples. We patched a number of well known Android malicious
apps with the code of our detection techniques using the process described
in Section 3.2.5. We used 10 samples from different malware families with
distinct capabilities, including root exploits, sensitive information leakage,
SMS trojans, and so on. All tested samples are publicly available and are
part of the Contagio Minidump [21]. Table 3.2 provides a summary of the
set of malware samples used, along with the heuristics used in each case.
Dynamic Analysis Services. The Android dynamic analysis services and
tools used in our evaluation are listed in Table 3.3. We used both standalone

www.syssec-project.eu 56 January 9, 2015

3.2. EVADING DYNAMIC ANALYSIS OF ANDROID DEVICES

Type Tool Web Page

Offl
in

e DroidBox http://code.google.com/p/droidbox/
DroidScope http://code.google.com/p/decaf-platform/wiki/DroidScope
TaintDroid http://appanalysis.org/

Onl
in

e

Andrubis http://anubis.iseclab.org/
SandDroid http://sanddroid.xjtu.edu.cn/
ApkScan http://apkscan.nviso.be/
VisualThreat http://www.visualthreat.com/
Tracedroid http://tracedroid.few.vu.nl/
CopperDroid http://copperdroid.isg.rhul.ac.uk/copperdroid/
APK Analyzer http://www.apk-analyzer.net/
ForeSafe http://www.foresafe.com/
Mobile Sandboxhttp://mobilesandbox.org/

Table 3.3: Android analysis tools and services used in our study.

tools available for download and local use, as well as online tools which
analyze submitted samples online.

We used three popular open source Android app analysis tools: Droid-
Box [107], DroidScope [117], and TaintDroid [68]. All three tools exe-
cute Android applications in a virualized environment and produce anal-
ysis reports. DroidBox offers information about about incoming/outgoing
traffic, read/write operations, services invoked, circumvented permissions,
SMS sent, phone calls made, etc. DroidScope performs API-level as well as
OS-level profiling of Android apps and provides insight about information
leakage. TaintDroid is capable of performing system-wide information flow
tracking from multiple sources of sensitive data in an efficient way.

In addition to standalone tools, we also used publicly available online
services that dynamically analyze Android apps, briefly described below.
Andrubis [113] performs both static and dynamic analysis on unwanted
Android apps. SandDroid performs permission/component analysis as well
as malware detection/classification analysis. ApkScan provides information
including file accesses, network connections, phone calls, SMS sent, infor-
mation leakage, and cryptographic activities. VisualThreat provides infor-
mation spanning from network activity and data leakage to malware fam-
ily detection through API correlation. TraceDroid emulates some actions,
when analyzing apps, such as user interaction, incoming calls, SMS mes-
sages, which can reveal malicious intents. CopperDroid [99] is built on top
of QEMU and performs out-of-the-box dynamic analysis (both OS-level and
API-level) of Android malware. APK Analyzer, ForeSafe and Mobile Sand-
box [104] are also dynamic analysis services, which inspect mobile malware
by following similar approaches as the previously mentioned tools.

3.2.8 Methodology

To evaluate the effectiveness of our heuristics, we follow two different ap-
proaches. In the first approach we submit an application sample that incor-
porates all of the heuristics, as described in Section 3.2.5, to each online
service of our set. During the analysis, the application tests the effectiveness
of the heuristics by trying them all sequentially for inferring if the execution

www.syssec-project.eu 57 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

idH bu
ild

H
ne

tH
acc

elH

mag
nF

H

rot
VecH

pro
xim

H

gy
ros

H

BTde
tec

tH

xF
low

H

DroidBox 3 7 7 7 7 7 7 7 JNI NS JNI NS

DroidScope 7 7 7 7 7 7 7 7 7 7
TaintDroid 7 7 7 7 7 7 7 7 JNI NS JNI NS

Andrubis 3 7 7 7 7 7 7 7 7 7
SandDroid 3 7 7 7 7 7 7 7 7 7
ApkScan 3 7 7 7 7 7 7 7 JNI NS JNI NS

VisualThreat 7 7 7 7 7 7 7 7 7 7
Tracedroid 7 7 7 7 7 7 7 7 7 7
CopperDroid 7 7 7 7 7 7 7 7 7 7
Apk Analyzer 3 3 3 7 7 7 7 7 JNI NS JNI NS

ForeSafe 7 7 7 7 7 7 7 7 7 7
Mobile Sandbox 3 7 7 7 7 7 7 7 JNI NS JNI NS

Table 3.4: Resilience of Android dynamic analysis tools against VM evasion
techniques. “3” indicates resilient, “7” indicates vulnerable and “JNI NS ” indi-
cates lack of support for JNI.

environment is emulated or not. For each heuristic tried, the app communi-
cates the result to an HTTP server. After that, we are able to ascertain which
of the heuristics were effective on identifying a virtualized environment and
which were not.

In order to perform a more realistic analysis and demonstrate how such
heuristics can complicate the work of various dynamic-analysis tools from
drawing correct conclusions, we follow a different approach. We modify
actual malicious apps so as to incorporate one of the heuristics, following the
process described in Section 3.2.5, and we submit both the original sample
and the repackaged one to each service. Then, we collect the generated
reports and compare them to find differences in the observed behaviors.

3.2.9 Evasion Results

The results of our evaluation are summarized in Table 3.4. The first three
rows correspond to standalone analysis tools, and the rest to online analysis
services. We next describe our key findings based on the collected results.
Finding 1. All the studied dynamic analysis tools and services are vulnerable
to five or more heuristics. As we can see in Table 3.4, all the tools we tested
can be easily evaded using just one of the proposed heuristics. Specifically,
only 6 out of the 12 tools are resilient to our simplest static heuristic idH,
which checks the IMEI of the device. We also found that only one analysis
service, Apk Analyzer, is resilient to all of the static heuristics. In addition,
all of the services are vulnerable to all of the dynamic heuristics, which are
based on using the sensors of the device, as well as the hypervisor heuristics
that take advantage of QEMU code generation intricacies.
Finding 2. All analysis tools failed to correctly infer the malicious behavior of
the repackaged malware samples. We compared all reports produced by all

www.syssec-project.eu 58 January 9, 2015

3.2. EVADING DYNAMIC ANALYSIS OF ANDROID DEVICES

of our studied tools manually (both offline and online ones) following our
second evaluation approach, and observed that the results are consistent
with those found by our first methodology.
Finding 3. All of the studied online analysis services can be fingerprinted
based on inferred information about their execution environment. During our
analysis, we did not receive any requests with results from three of the on-
line analysis services (CopperDroid, Visual Threat, and APK Analyzer) when
following the first approach. Apparently, those tools analyze apps in an en-
vironment with network connectivity disabled. Nonetheless, we observed
that if an application attempted to write a file during the analysis process
then the filename was reflected on the results page of all these tools.
Finding 4. Only one of the studied tools provides information about VM eva-
sion attempts. We found, by analyzing the reports generated by each analysis
tool, that only Apk Analyzer has the feature of detecting evasion behavior
in the submitted samples, and generates relevant alerts in the generated
reports (for example we observed the message: “May tried to detect the vir-
tual machine to hinder analysis”). Moreover, it reports the ways used to find
the evasion behavior. For example for the repackaged samples containing
the idH and buildH heuristics, it mentions the VM artifact strings found in
memory during the execution of the sample.

3.2.10 Countermeasures

Mobile malware with VM detection capabilities can pose a significant threat,
since it is possible to evade detection and therefore nullify the work of dy-
namic analysis tools that run on emulators. Moreover, Google bouncer,
which is the official tool used in order to detect malicious applications
that are about to be published in Google Play, is based on dynamic anal-
ysis conducted in the default emulated environment of Android on top of
QEMU. Google Bouncer is also vulnerable to environment detection tech-
niques [12]. In this section we propose a set of defenses that can be applied
in the current emulated environment of Android so as to make it more real-
istic.

Emulator Modifications. The Android Emulator can be modified eas-
ily in order to be resistant to our proposed static heuristics. Mobile device
identifiers such as IMEI and IMSI which are used from our idH heuristic are
all configurable in Android emulator. By looking at the Telephony Manager
service in the Android Emulator’s source code and through code analysis,
one can find the place where the modem device is emulated, which is im-
plemented as part of QEMU [13]. Thus the IMEI, IMSI, as well as other fea-
tures can be modified to make the emulator resemble to a real device. The
buildH heuristic that uses the information of the current build can be eas-
ily deceived by modifying the build properties loaded by Android Emulator.
These properties are defined in the build.prop file of Android Emulator’s

www.syssec-project.eu 59 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

source code. Finally, the default network properties of Android Emulator
can be modified to provide protection against netH as Apk Analyzer does.

Realistic Sensor Event Simulation. Our second set of heuristics, the
dynamic heuristics, are based on the variety of sensors that a mobile de-
vice supports. As already mentioned, Android Emulator supports trivially
detectable sensor simulation, with sensor events occurring at precise inter-
vals and the produced values not changing between consecutive events. All
the dynamic heuristics (accelH, magnFH, rotVecH, proximH and gyrosH)
are based on this behavior. In order to make all dynamic heuristics ineffec-
tive, better sensor simulation is required. Nonetheless, realistic simulation
of such hardware components is challenging and requires in-depth knowl-
edge of both the range of values that these devices can produce, as well as
realistic user interaction patterns. In this context, external software simu-
lators [8] could be used or record-and-replay approaches [73], in order to
simulate sensor data at real time as an additional component of the Android
Emulator.

Accurate Binary Translation. Binary translation used by QEMU, on
which the BTdetectH heuristic is based, is an essential operation of the An-
droid Emulator, in which each ARM instruction is translated into the x86

equivalent in order to be able to run on the x86-based host machine. BT-
detectH is based on a fundamental operation of the Android Emulator, as
already discussed in Section 3.2.1, and is not trivial to change it. One way
to remedy this issue is by making the binary translation process of QEMU
more accurate to the real execution used in the CPU of a device. That is,
the virtual program counter has to be always updated after an instruction,
as happens when instructions are getting executed in a CPU. Thus, this re-
quires revision and expansion of the current binary translation operation in
QEMU. On the other hand, this approach would end up producing a higher
execution overhead, making QEMU, and consequently the Android Emula-
tor, easily detectable (e.g., by comparing the different execution times that
could be observed in an emulator and in a real device for specific opera-
tions).

Hardware-Assisted Virtualization. Another way to cope with the above
issue is to use hardware-assisted virtualization, which is based on archi-
tectural support that facilitates building a virtual machine monitor and al-
lows guest OSes to run in isolation. For example, the upcoming hardware-
assisted ARM virtualization technology [20] can be used to avoid the process
of binary translation and the problems associated with it. By replacing in-
struction emulation (QEMU) with such technology, BTdetectH and xFlowH
heuristics which are based on VM intricacies would become ineffective.

Hybrid Application Execution. Furthermore, another solution to our
hypervisor heuristics would be to use real mobile devices to execute appli-
cations that contain native code. Both these two heuristics (BTdetectH and
xFlowH) require native code execution in order to act. Hybrid application

www.syssec-project.eu 60 January 9, 2015

3.3. A STUDY OF WEBVIEW-RELATED VULNERABILITIES IN MOBILE
APPLICATIONS

execution would be the most secure and efficient way for a dynamic anal-
ysis tool against all the suggested evasion heuristics. That is, application
bytecode can run in a patched version of Android Emulator shielded with
all protection measures described above; when an application is attempting
to load and run native code, then the execution of the native code can be
forwarded and take place on a real device.

3.2.11 Lessons Learned

In this work, we explored how dynamic analysis can be evaded by malicious
apps targeting the Android platform. We implemented and tested heuristics
of increasing sophistication by incorporating them in actual malware sam-
ples, which attempt to hide their presence when analyzed in an emulated
environment. We tested all re-packaged malware samples with standalone
analysis tools and publicly available scanning services, and monitored their
behavior. There was no service or tool that could not be evaded by at least
some of the tested heuristics. The work we conducted raises important ques-
tions about the effectiveness of existing analysis systems for Android mal-
ware. For this reason, we proposed a number of possible countermeasures
for improving the resistance of dynamic analysis tools for Android malware
against VM detection evasion.

3.3 A Study of WebView-related vulnerabilities in
Mobile Applications

For more information there exists an slightly extended version of this
work [90].

3.3.1 Background

With the rise of Web 2.0 and its technologies, the web shifted from static
to dynamic content, enabling the advent of social networks and peaking in
the current state of web apps that strive to rival their full-blown desktop
counterparts. Parallel to this development, another sector enjoys undimin-
ished growth: smartphones and their mobile device siblings, i.e., tablets.
Inevitably accompanied by these trends is the fact that web content con-
sumption shifts from desktop computers to mobile devices.

On mobile devices, end-users expect functionality to be delivered as a
standalone app. In order to make the life for developers easier, all major
mobile platforms, such as Android, iOS, Windows Phone and Blackberry in-
troduced WebView. WebView is essentially a browser-library that enables
developers to deliver web content, or even a whole web application as part

www.syssec-project.eu 61 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

of their smartphone client app. It is geared towards ease of use: fetch-
ing and displaying web content is a matter of a single method invocation.
Using WebView, the developers do not need to re-implement and maintain
their web application for every single platform. In addition, updates are
distributed instantaneously and without requiring any user interaction: the
developer just needs to change the content delivered by the web server.

While a pure browser-based solution would feature the same benefits,
the main advantage of choosing WebView is the streamlined integration of
device functionality. By making persistent storage, access to the short mes-
sage service and other functionality available to the web application, the
resulting apps are both flexible like web applications and powerful like or-
dinary applications. Typically, the developer exposes the needed APIs via a
JavaScript-interface that can then be accessed from within web application
JavaScript code.

The security implications of this feature are obvious: by providing a
direct bridge between web content and the operating system, WebView
punches a hole in the browser sandbox containment. If an attacker man-
ages to serve malicious content to a WebView-enabled app, she will have
access to all APIs that have been exposed via JavaScript.

Previous work in this area is scarce, Luo et al. [84] pick up attack vectors
on WebView (as does [45]), but do not delve into the actual exploitation of
apps. Bhavani [52] discusses an orthogonal problem on how a malicious
app may harm a benign web page via WebView. Finally, Fahl et al. reveal
orthogonal security problems in Android’s SSL handling [69].

In this work, we discuss two realistic threat scenarios that target Web-
View. We continue by presenting case studies on apps that we have success-
fully exploited. Based on the insights of the case studies, we conducted an
analysis of over 287k Android apps to check for WebView-related vulnera-
bilities.

3.3.2 Threat Scenario

A fundamental requirement for exploiting a WebView app is to gain control
over the web content that is requested by the app. To access the exposed
APIs, the attacker needs to inject JavaScript code that is subsequently exe-
cuted by the app. Depending on time and location of the manipulation, we
can distinguish between two possibilities:

Server compromise. If the attacker manages to manipulate the content
stored on the server, the attack leverage is very high, since every single
installation of the targeted app will be affected. The server compromise can
be achieved by arbitrary means, as long as parts of the web content can be
manipulated – a typical example being a stored cross-site scripting or SQL
injection attack (see Figure 3.3(a)). A great advantage of this attack vector

www.syssec-project.eu 62 January 9, 2015

3.3. A STUDY OF WEBVIEW-RELATED VULNERABILITIES IN MOBILE
APPLICATIONS

is that the attacker does not need to take encryption into account, as the
server will take care of it.

Traffic compromise. While compromising a tightly secured server might
prove difficult, manipulating the traffic on its way can be an equally ca-
pable alternative. In a typical man-in-the-middle (MITM) attack, the ad-
versary injects the malicious code in transmitted HTML or JavaScript (see
Figure 3.3(b)).

With mobile devices, a typical MITM attack intercepts the WiFi traffic.
This can be achieved by setting up a roque WiFi access point that lures
victims into connecting to them blindly. For example, the Jasager firmware
of the WiFi pineapple [47] will respond to any WiFi SSID scan request and
impersonate the requested network in the following.

Obviously, while the MITM attack works well with plaintext, end-to-end
encryption, such as HTTPS, is an issue. Since our scenario does not include
direct control over the device or the app code itself, a MITM attack will only
work if the app does not check certificate origins. In this case, the attacker
can establish two encrypted channels, one to the web content server and
one to the app, using a self-signed certificate.

Once the means to inject JavaScript code has been established, the actual
exploit can be crafted. Its design depends on both the targeted app and
platform.

On Android, APIs can be exposed as a whole: after an invocation of
WebView.addJavascriptInterface (<object>, <js object name>), the
native Java object will be available through JavaScript via the provided
name. The only information an attacker requires from the app in this case
is the JavaScript object name. Once determined, the latter opens up vast
possibilities: Via reflection the attacker can create objects and invoke their
methods as long as the app has requested the corresponding Android per-
missions. An even more drastic example would be to use Java’s HttpClient
to download a binary executable that then runs a root exploit (e.g. rage
against the cage [44]) to escalate its privileges and circumvent the permis-
sion system altogether. Naturally, such an attack would have to cope with
different devices and versions to be effective.

If an app is built using the Cordova [19] framework or its predecessor,
Phonegap, exploitation is even easier. Cordova is a convenience layer that
sits above WebView and provides certain JavaScript interfaces, e.g. access
to contacts or the camera out of the box. In addition, it always registers a
JavaScript interface object called cordovaNative that can be leveraged as
described above.

On iOS, the attacker’s possibilities are more limited, as iOS’ WebView
implementation does not include a ”native” JavaScript bridge. Instead, most
apps implement their own bridging techniques. However, a generic Cordova

www.syssec-project.eu 63 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

2 GET foo.html

1

3

4

Attacker

WebserverVictim

Malicious ScriptData Leak

</>

(a) Server compromise.

1 GET foo.html

2

4

Attacker

WebserverVictim

Data Leak

3 </>

(b) Traffic compromise.

Figure 3.3: Example of an attacker compromising (a) the server or (b) the
traffic to steal a victim’s address book.

exploit can, for instance, always read the contact list by accessing Cordova’s
navigator.contacts object.

Generally, attacks that target frameworks such as Cordova are both app-
and platform independent as long as they stick to the facilities supported
by the framework and provided that the app is granted the corresponding
permissions.

While usually suited to thwart traffic compromise, the role of end-
to-end encryption in Android’s WebView implementation is twisted. By
default, only certificates signed by a trusted certificate authority are ac-
cepted. To accept self-signed certificates, developers have to overwrite the
onReceivedSslError method of the WebView client.

3.3.3 Case Study

For our case study we manually analyzed and exploited four representative
apps that use WebView. As a test setup we had our mobile devices connect to
our own WiFi hotspot that rerouted all traffic through the mitmproxy [34].

Take Weather. This is a photo sharing app with the idea of combining
weather reports on certain geographical locations with up-to-date pictures
taken by the app’s users. It is built based on Cordova and available for
both Android and iOS. The network communication consists of JSON en-
coded information on the supported locations as well as the terms of use in

www.syssec-project.eu 64 January 9, 2015

3.3. A STUDY OF WEBVIEW-RELATED VULNERABILITIES IN MOBILE
APPLICATIONS

HTML format and a JavaScript that dynamically fetches CSS style informa-
tion. Since the traffic is transmitted unencrypted using plain HTTP, we can
easily inject our malicious JavaScript code. On both Android and iOS we
were able to access the address book, location information and the call log.
On Android we could also access other Java objects via the reflection attack
described above.

Most Wanted. This app displays information on the most wanted criminals
and terrorists of the United States. The requested permissions include access
to camera and geolocation in order to be able to submit tips. WebView is
used to directly display HTML content fetched from http://mobileweb.cdc.

nicusa.com/most_wanted_web/. It adds a JavaScript interface to allow HTML
elements to change the displayed content via a native Java object. Since
the data is transmitted in plain text, it is easy to inject malicious JavaScript
embedded in a <script> tag.

Nature Wallpaper. Who would expect harm from an app that displays na-
ture wallpapers, has excellent ratings and features over 500,000 installa-
tions? The problem with Nature Wallpaper is that it uses a JavaScript in-
terface to set, download and manage favorite wallpapers. Again, the traffic
is unencrypted and malicious JavaScript can thus be easily injected. Since
the app has the permission to access persistent storage, downloading (and
executing) further malicious content would be possible.

Jiepang. This Chinese location-based social networking app offers a ”check
in” service similar to Foursquare and has excellent ratings as well as over
100,000 installs. In contrast to the previous applications, the traffic is par-
tially encrypted. However, it overwrites the default WebView SSL error
handler and opens the door for attackers: Its custom implementation of
the onReceivedSslError does not perform any error handling and simply
calls handler.proceed(), thus accepting any certificate and loading a page
without notifying the user. This circumstance and the use of a JavaScript
interface exposes the app to the traffic compromise threat scenario through
a (MITM) attack even in spite of the use of HTTPS. The app itself has the
permissions to access persistent storage and install packages, which again
would allow downloading and executing further malicious code.

3.3.4 Large Scale Evaluation

Motivated by the results of our small case study, we proceeded to the next
level: To get a grip on how widespread vulnerable WebView apps are, we
examined 287,512 Android apps that had been submitted to Anubis [18]
from July 2012 to March 2013.

WebView usage. First, we statically analyzed how many samples of our
dataset perform the necessary method invocations to allow for exploita-
tion (see Table 3.5). Starting point is the loadUrl call, which fetches

www.syssec-project.eu 65 January 9, 2015

http://mobileweb.cdc.nicusa.com/most_wanted_web/
http://mobileweb.cdc.nicusa.com/most_wanted_web/

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

Table 3.5: WebView usage

Method call Samples Percentage of all samples
loadUrl 166,751 58%
setJavascriptEnabled 158,042 55%
addJavascriptInterface 87,079 30%

web content from a given URL. As a next step, setJavascriptEnabled

has to be called with the boolean value ”true” in order to enable execu-
tion of JavaScript. To finally expose a native Java object via JavaScript,
addJavascriptInterface must be called. While well above half of the
apps in our dataset fetch web content using WebView, still some remark-
able 30% use a Java to JavaScript bridge functionality in their app, making
it vulnerable to attacks.

Table 3.6: Unencrypted HTTP app traffic

Traffic type Samples Percentage of samples with a JS interface
HTML 22,803 26.18%
JavaScript 11,870 14.63%
Total 23,048 26.47%

App traffic. In theory, WebView might be used to just render web con-
tent that is stored on the device, thus making injection of JavaScript code
based on our threat scenario impossible. Therefore we also analyzed the
traffic transmitted during dynamic analysis in Anubis. Table 3.6 shows the
results on unencrypted HTTP traffic. If either HTML or JavaScript or both
are contained in the traffic, it is highly likely that an injection attack would
be successful. Note that the given numbers are a lower bound, as some apps
might require complex user interaction (such as a login) before they can be
used and transmit network traffic.

Since end-to-end encryption makes a MITM attack impossible, we also
had a look at apps that use a custom implementation of the onReceivedSslError
handler. Developers have to overwrite this method of the WebView client
to accept self-signed certificates and as we have seen in the case study of
Jiepang, custom implementations can be rather ”simple”. Table 3.7 shows
that a considerable amount of samples implements a custom WebView cer-
tificate handling. To assess their complexity, we have disassembled every
custom SSL handler. The result is rather shocking: over 60% of the imple-
mentations are ”simple”: without executing any conditional statement, they
call handler.proceed right away.

Vulnerable apps. Based on the previous analysis results, we define an app
as being vulnerable, if it implements a JavaScript bridge and either trans-

www.syssec-project.eu 66 January 9, 2015

3.3. A STUDY OF WEBVIEW-RELATED VULNERABILITIES IN MOBILE
APPLICATIONS

Table 3.7: WebView certificate handling

Certificate handling Samples Percentage of all samples
Custom SSL handling 10,175 3.54%
Simple SSL handler 6,208 2.16%

mits data unencrypted or via an SSL connection that will accept self-signed
certificates. According to this definition, 27,731 samples (i.e. nearly 10% of
the dataset) are vulnerable. However, not every vulnerable app is equally
worth to be exploited: the gain of a successful exploitation is limited by
what the app is allowed to do according to its permission set. Table 3.8
gives an overview on how many security critical permissions are granted to
vulnerable apps. We have categorized the permissions into multiple groups
based on which risks are associated with them.

An impressive 76% of the vulnerable samples request privacy critical per-
missions. Nearly 2,000 samples request the SEND SMS permission that could
be abused to generate revenue by sending messages to premium numbers.
Finally over 60% of the samples have the necessary permission to store and
run further malicious content.

Table 3.8: Permissions of vulnerable apps

Permission (group) Samples Percentage of vulnerable samples
RECEIVE SMS 1,375 4.96%
READ SMS 1,590 5.73%
WRITE SMS 933 3.36%
SEND SMS 1,981 7.14%
SMS permissions 3,124 11.27%
PROCESS OUTGOING CALLS 355 1.28%
CALL PRIVILEGED 134 0.48%
PHONE CALL 0 0%
Call permissions 382 1.38%
WRITE EXTERNAL STORAGE 16,711 60.26%
INSTALL PACKAGES 1,241 4.48%
Installation permissions 16,727 60.32%
READ PHONE STATE 18,935 68.28%
READ CONTACTS 3,304 11.91%
ACCESS FINE LOCATION 11,022 39.75%
ACCESS COARSE LOCATION 12,923 46.60%
Privacy permissions 21,197 76.44%

Libraries. By using third party libraries that employ WebView, developers
may unintentionally make their apps susceptible to our threat scenario.

www.syssec-project.eu 67 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

As we have already mentioned, frameworks such as Cordova and its pre-
decessor Phonegap add a JavaScript bridge with a known object name per
default. If an app uses unencrypted HTTP or self-signed certificates, it is
thus immediately vulnerable to a generic exploit written for the framework
it employs. In our dataset, 1,435 samples use Cordova and 3,881 use Phone-
gap. Among those, 1,111 samples (0.39%) are vulnerable according to our
definition.

But Cordova and Phonegap are not the only examples of libraries that
use WebView. Table 3.9 shows to which extent third-party libraries are used
by the samples in our dataset. Most of the libraries are related to ad net-
works while some (e.g. Flurry) collect statistics to generate revenue. We list
the top ten ad networks according to Appbrain [16] as well as the Flurry
Analytics library, Greystripe and Jumptap from [103].

To assess whether they are safe according to our threat scenario, we
have downloaded the current SDKs of all libraries and inspected their class
files. Since a JavaScript interface is a precondition for the threat scenario on
Android, we regard all libraries that do not make use of a JavaScript bridge,
safe.

While with app development frameworks such as Cordova and Phone-
gap, the developer can still decide whether to use encryption and which
resources to fetch, ad libraries function autonomously to a large extent.
For example, Startapp receives the URL of the ad to click on via a JSON
object. This URL is then directly used in a loadUrl call, which opens
a JavaScript enabled WebView. The latter features a JavaScript interface
named startappwall, whose corresponding Java object is used to report
back to the library when the displayed ad is closed.

A full security audit would be necessary to evaluate whether the listed
ad libraries that use a JavaScript bridge are truly safe. However, such an
audit is out of the scope of this work.

3.3.5 Mitigation

Even if disabling JavaScript is not an option, a WebView-based app can still
be hardened against attacks.

The obvious way to thwart traffic tampering is a complete end-to-end
encryption. While many developers make use of HTTPS to secure their con-
nections, they are generally reluctant to invest the money for a certificate
issued by a trusted authority. Instead, they usually overwrite the default
behavior of current WebView implementations and accept self-signed cer-
tificates. Consequently, these applications are prone to MITM attacks again
if they do not employ countermeasures.

Such countermeasures could for example include origin checks that will
drop requests that do not match a certain IP address or are not encoded

www.syssec-project.eu 68 January 9, 2015

3.3. A STUDY OF WEBVIEW-RELATED VULNERABILITIES IN MOBILE
APPLICATIONS

Table 3.9: Library usage

Library Samples Percentage of all samples Safe?
Cordova 1,435 0.50% -
Phonegap 3,381 1.35% -
Admob 70,987 24.69% X
AirPush 13,462 4.68% X
Flurry 9,838 3.42% X
Millennial Media 8,663 3.01% X
MobClix 7,285 2.53% ?
LeadBolt 6,195 2.16% ?
InMobi 3,924 1.37% ?
Greystripe 1,787 0.62% ?
Chartboost 1,052 0.37% X
Jumptap 482 0.17% ?
Startapp 81 0.03% ?

using a predefined SSL certificate. Simple checks are usually implemented
by overwriting the corresponding WebView handler methods [46].

On the operating system side, Android 4.2 has introduced a new annota-
tion @JavascriptInterface that needs to be added to each method that is
exposed via the JavaScript bridge. This effectively prevents reflection-based
attacks. However, currently only 2.3% of all Android devices run version
4.2, with most devices still operating on Gingerbread [17].

To limit the harm that can be done once an app is actually exploited, the
principle of least privilege should be followed, i.e. in the case of Android,
only necessary permissions should be requested. Besides, Android WebView
allows to separately turn off access to local storage through the JavaScript
bridge.

3.3.6 Lessons Learned

In this work we have pointed out deficiencies in real-world apps that use
WebView and analyzed over 287,000 samples based on our threat scenario.
In a nutshell, the benefit of a better user-experience comes at the cost of
serious security implications. In case of a server compromise of just a sin-
gle, vulnerable app, the consequences can be severe: seemingly harmless,
simple apps like the Nature Wallpaper in our case study can exceed 500,000
installs. The resulting multiplication effect is enormous: by compromis-
ing only one server, the attacker gains access to a huge number of mobile
devices. Consequently, WebView’s JavaScript support should be used with
extreme caution. In order to keep app development with WebView easy,

www.syssec-project.eu 69 January 9, 2015

CHAPTER 3. ATTACKS ON SMART AND MOBILE DEVICES

developing a static code checking tool for WebView related vulnerabilities
could be rewarding future work.

www.syssec-project.eu 70 January 9, 2015

4
Attacks on Privacy

4.1 Introduction

This chapter provides our research work related with cybersecurity attacks
on users’ privacy. The different topics covered in this chapter contain the
implementation of a framework for minimum information disclosure across
third-party sites with social login interactions in order to solve the privacy
issues that arise by this kind of login mechanisms 4.2. In this work, we iden-
tify and describe an increasing threat to the users’ privacy: a threat which
masquerades under the convenience of a single sign-on mechanism and
gives third-party Web sites access to a user’s personal information stored in
social networks. We propose a new privacy-preserving framework for users
to interact with single sign-on and OAuth-like platforms provided by social
networks in their daily activities on the web. We implement a prototype of
our framework as a browser extension for the Google Chrome browser. Our
prototype supports the popular single sign-on mechanism “Facebook Con-
nect” and can be easily extended to support others, such as “Sign in with
Twitte”. We evaluate our implementation and show that (i) it allows users
to pre serve their privacy when signing on with third-party Web sites and (ii)
it does not affect any open sessions they might have with other third-party
Web sites that use the same single sign-on mechanisms. Then, we focus on
the negative impact that social networking sites may have on privacy of their
users and ways we can protect against these cyber threats in Section 4.3. In
this work, we propose k-subscription, the first obfuscation-based approach
to hide a user’s interests in microblogging services. Our approach encour-
ages users to follow k1 noise channels apart from each channel they want,
so as to hide (i) their real interests in a set of k channels, and (ii) other users’
in-terests in the microblogging service. To quantify the effectiveness of our
approach, we introduce a new notion: the Disclosure Probability. This is the
service’s confidence that a user is interested in a specific channel. We present

71

CHAPTER 4. ATTACKS ON PRIVACY

an analytic evaluation of our approach and derive closed-form formulas for
the disclosure probability. These formulas suggest that the disclosure prob-
ability can be made predictably small by fine-tuning the obfuscation level
k. We evaluate k-subscription in a more realistic scenario using simulations,
which are based on models derived from a real-world dataset with sensi-
tive channels from Twitter. We implemented our system as a plug-in for the
Chrome browser using Twitter as case study. We experimentally evaluate
our prototype and show that it has minimal bandwidth requirements and
negligible latency to browsing experience.

4.2 Minimizing Information Disclosure to Third Par-
ties in Single Sign-On Platforms

There is also an extended version of this work with more details [81].

4.2.1 OAuth Protocol

The OAuth or Open Authentication protocol [35] provides a method for
clients to access server resources on behalf of a resource owner. In practice,
it is a secure way for end users to authorize third-party access to their server
resources without sharing their credentials.

As an example, one could consider the usual case in which third-party
sites require access to a user’s e-mail account so that they can retrieve his
contacts in order to enhance the user’s experience in their own service.
Traditionally, the user has to surrender his username and password to the
third-party site so that it can log into his account and retrieve that infor-
mation. Clearly, this entails the risk of the password being compromised.
Using the OAuth protocol, the third party registers with the user’s e-mail
provider using a unique application identifier. For each user that the third-
party requires access to his e-mail account, it redirects the user’s browser
to an authorization request page located under the e-mail provider’s own
domain, and appends the site’s application identifier so that the provider is
able to find out which site is asking for the authorization. That authorization
request page, located in the e-mail provider’s domain, validates the user’s
identity (e.g., using his account cookies or by prompting him to log in), and
subsequently asks the user to allow or deny information access to the third-
party site. If the user allows such access, the third-party site is able to use
the e-mail provider’s API to query for the specific user’s e-mail contacts. At
no point in this process does the user have to provide his password to the
third-party site.

www.syssec-project.eu 72 January 9, 2015

4.2. MINIMIZING INFORMATION DISCLOSURE TO THIRD PARTIES IN
SINGLE SIGN-ON PLATFORMS

Third−party sites (%)

0 10 20 30 40 50 60 70 80 90 100

Access my basic information

Send me email

Post to Facebook as me

Access my profile information

Access my data any time

Access posts in my News Feed

Access my photos

Access my custom friend lists

Access information people share with me

Manage my events

Access my videos

Check−ins

Manage my pages

Access my family and relationships

Send me SMS messages

Access my contact information

Access messages in my inbox

Manage my notifications

Insights

Access my friend requests

Access Facebook Chat

Publish games and app activity

Figure 4.1: Distribution of requested permissions for a set of 755 websites
that have integrated Facebook’s single sign-on platform.

4.2.1.1 Facebook Authentication

Facebook’s social login platform, known as Facebook Connect [24], is an
extension to the OAuth protocol that allows third-party sites to authenticate
users by gaining access to their Facebook identity. This is convenient for both
sites and users; sites do not have to maintain their own accounting system,
and users are able to skip yet another account registration and thereby avoid
the associated overhead. A login with Facebook” button is embedded in
a third-party Web site and, once clicked, directs the user’s browser to a
Facebook server where the user’s cookies or credentials are validated. Upon
successful identity validation, Facebook presents a “request for permission”
dialog where the user is prompted to allow or deny the actions requested by
the third-party Web site, for example, social plug-in interactions or access
to various information in the user’s social profile. However, the user is not
able to modify or regulate the third-party Web site’s requests, for instance
to allow access to only a part of the information the site is requesting. If
the user grants permissions to the site’s request, Facebook will indefinitely
honor API requests originating from that third-party site that conform to
what the user has just agreed upon.

4.2.2 Social Login vs. User Privacy

To gain a better understanding of the type and extent of the permissions
requested by third-party websites through the Facebook Connect mecha-
nism, also known as “login with Facebook,” we studied a random sample of
755 sites that have incorporated Facebook’s social login platform. Figure 4.1
presents the frequency distribution of the different permissions requested by

www.syssec-project.eu 73 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

these websites. A full list of the available permissions can be found through
Facebook’s developer page [23].

One may notice that all sites request access to a user’s basic information.
That is the minimum amount of private information a user must disclose,
even if a third-party website does not really need all that information. Ac-
cording to its description, the basic information includes the “user id, name,
profile picture, gender, age range, locale, networks, user ID, list of friends,
and any other information they have made public.”

Besides the basic profile information, the administrator of the third-party
website may explicitly ask for additional permissions to access more user
information or perform certain actions on behalf of the user. For instance,
77% of the studied sites request access to the user’s e-mail address, 57% are
able to post content on behalf of the user, and more than 42% require to be
able to indefinitely access user information even when a user is not using
the application.

Moreover, permission to manage Facebook notifications could enable
malicious third-parties to hide the misuse of other permissions granted to
them. What is more, access to direct messages sent or received and Face-
book’s real-time chat system, could seriously compromise a user’s private
communications. Finally, special consideration should be given to permis-
sions that may result in real-world consequences for the user; the ability of a
third-party to access information about the user’s physical location (“Check-
ins”) or send SMS messages, which may result in monetary charges.

We argue that in most of the cases the type of permissions and the
amount of information requested from the user during social login are more
than necessary. Even with benign third-parties, the more personal data be-
ing shared, the greater the damage in case of leaks either accidental or as
a result of an attack. To give an example, one of the cases in our study is a
music band which urges its fans to perform a social login when visiting its
site. Although we could not confirm the presence of functionality dependent
upon social login, we will give the site the benefit of the doubt. However, its
requirements are over the top. It requests access to basic, contact and profile
information, photos and videos, to the user’s e-mail address and Facebook
chat. Moreover, such access is requested even if the user is not using the
site. Finally, it requests to ability to upload content to Facebook on behalf
of the user, read and manage the user’s events and reports on his physical
location. Figure 4.2 is a screenshot of the social login dialog for that site. Its
name has been anonymized. Access to all of the user’s photos and videos is
unjustified as is access to the user’s private conversations. Furthermore, the
ability to impersonate the user on Facebook is in no way restricted to pur-
poses related to the nature of the third-party. Finally, managing all events
and physical location information so it can for instance generate activity
related to the band clearly demonstrates the need for fine-grained permis-
sions. Ideally, the third-party would request access to photos tagged with

www.syssec-project.eu 74 January 9, 2015

4.2. MINIMIZING INFORMATION DISCLOSURE TO THIRD PARTIES IN
SINGLE SIGN-ON PLATFORMS

Figure 4.2: A website requesting an excessive amount of personal data.

a certain keyword related to the band, manage events and locations with
specific prefixes in their names and add a “uploaded by X on behalf of user
A” label to content uploaded on Facebook.

Overall, the above study confirms our intuition that the amount, type,
and combination of permissions requested by third-party sites can seriously
put users in a compromising position. At the same time, user reactions to a
recent effort [38] that enables users to become aware of third-party applica-
tions and websites with access to their (private) social information, confirm
the general request for improved control and better protection over the data
one uploads to a social network. Facebook itself acknowledges the issue and,
in a slight effort for remedy, offers users the option to anonymize the e-mail
address they surrender to third-parties. This option is unfortunately opt-in
and enabled by default in rare occasions driven by abuse-related heuristics.

Motivated by this issue, in the rest of this work we present the design
and implementation of a framework for minimum information disclosure
across third-parties in social login platforms.

4.2.3 Design

The modus operandi we assume in our approach is the following:

1. The user browses the Web having opened several tabs in her browser.

2. Then, the user logs in her ordinary Facebook account so as to interact
with friends and colleagues.

3. While browsing at some other tab of the same browser, the user en-
counters a third-party website asking her to log in with her Facebook

www.syssec-project.eu 75 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

credentials. At this point in time, our system kicks in and establishes
a new and separate downgraded session with Facebook for that cross-
site interaction. That session is tied to a stripped-down version of her
account which reveals little, if any at all, personal information. Now:

(a) The user may choose to follow our “advice” and log in with
this downgraded Facebook session. Let there be noted that this
stripped-down mode does not affect the browsing experience of
the user in the tabs opened at step 2 above: the user remains
logged in with her normal Facebook account in the tabs of step
2, while in the tabs of this step she logs in with the stripped-
down version of her account. Effectively, the user maintains two
sessions with Facebook:

i. One session logged in with her normal Facebook account,
and

ii. One session logged in with the stripped-down version of her
account.

(b) Alternatively, the user may want to override our system’s logic
and log in with her normal Facebook account revealing her per-
sonal information; in that cases she performs a “sudo” on that
particular cross-site interaction with Facebook and elevate the
by-default downgraded web session.

In the description of our system we assume the use of Facebook Con-
nect [24, 106], however our mechanisms can be extended to cover other
social login platforms as well.

Figure 4.3 shows the architecture of our system. To understand our ap-
proach we will first describe in Figure 4.3 how an ordinary web browser
manages session state. We see that the browser uses a default session store
(Session Store [0] (default)) which stores all relevant state information, includ-
ing cookies. Thus, when the user logs into Facebook (or any other site for
that matter) using her ordinary Facebook account, the browser stores the
relevant cookie in this default session store. When the browser tries to ac-
cess Facebook from another tab (Tab 3 in the figure), the cookie is retrieved
from the default session store and the page is accessed using the same state
as before.

In our design, we extend this architecture by including more than one
session stores. Indeed, in Figure 4.3 (bottom left) we have added “Session
Store [1]” which stores all relevant information, including cookies, for the
stripped-down Facebook session. This gives us the opportunity to enable
users to surf the Web using two distinct and isolated sessions with Facebook
at the same time: a session tied to the “normal” account is enabled in Tab 1

while a stripped-down session is in effect in Tab 3. To select the appropriate
account, our system (IMF) intercepts all URL accesses and checks their HTTP

www.syssec-project.eu 76 January 9, 2015

4.2. MINIMIZING INFORMATION DISCLOSURE TO THIRD PARTIES IN
SINGLE SIGN-ON PLATFORMS

Browser

Tab 3

Session Store [0]

(default)

Browsing State

(Cookies, Active

Sessions, etc.)

Browser

Tab 1

Browser

Tab 3

Session Store [0]

(default)

Session Store [1]

IMF

Browsing State

(Cookies, Active

Sessions, etc.)

Browser

Tab 1

Figure 4.3: Typical communication of session state to loaded pages v.s. the
one followed by SudoWeb

referrer field. If the URL points to Facebook Connect but the HTTP referrer
field belongs to a different domain name, then our system suspects that this
is probably an attempt from a third-party website to authenticate the user
with her Facebook credentials.

Therefore, as it stands inline between the loading page and the browser’s
state store(s), it supplies the appropriate state (from Session Store [1]) for
the stripped-down Facebook session to be employed. This is an implicit
privacy suggestion towards the user. If the user disagrees, she may choose
to authenticate with her ordinary Facebook account, in which case, Tab 3

will receive all cookies from Session Store [0].

We consider the proposed concept as analogous to privilege separation in
operating systems, i.e., different accounts with different privileges, such as
root and user accounts. Our design can scale and evolve so that it accommo-
dates different privacy-preserving scenarios in interaction with third-party
websites.

Figure 4.4 shows the modules of our system. Initially, in the upper left
corner, the user browses ordinary web pages (Web Browser). When a new
browser page (i.e., tab or window) is created (New Web Browser Page), the

www.syssec-project.eu 77 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

Identity

Managent

Function

Session

Monitor

Session

Manager

New Web

Browser Page

HTTP referrer != domain(URI)

&& isMonitored(domain(URI))

Web

Browser

Establish Separate

and Individual Session

Elevate / Downgrade

Web Session with

Single Sign-on

Provider

Figure 4.4: SudoWeb extension modules.

Session Monitor kicks in to find whether this is a social login attempt1. If
(i) it is such an attempt (i.e., isMonitorred(domain(URI)) is TRUE) and (ii)
the attempt is from a third-party website (i.e., HTTP referrer != domain(URI))
then our system calls the Identity Management Function (IMF) which employs
a downgraded, stripped-down from all personal information, session for the
user. From that point onwards, the Session Manager manages all the active
sessions of the user, in some cases different sessions with different creden-
tials for the same single sign-on domain. Figure 4.5 shows the workflow of
our system in more detail.

4.2.4 Implementation

We have implemented our proposed architecture as a browser extension
for the latest version of the Google Chrome browser2 with support for the
Facebook Connect social login platform. We find that, due to its popularity,
our proof of concept implementation covers a great part of single sign-on
interactions on the Web. Nevertheless, our browser extension can be seam-
lessly configured to support a greater variety of such cross-site social login
interactions.

1SudoWeb keeps a list with all social login domains currently supported and thus mon-
itored. If such a domain is monitored the isMonitorred(domain(URI)) function returns
TRUE.

2As we take advantage of generic functionality in the extension-browser communication
API, we find it feasible to also port the extension to Mozilla Firefox.

www.syssec-project.eu 78 January 9, 2015

4.2. MINIMIZING INFORMATION DISCLOSURE TO THIRD PARTIES IN
SINGLE SIGN-ON PLATFORMS

http://example.com

cookieStore[0].[fb]

= “john high session”

Browser Tab 2

Cookie Store [0]

(default)

http://facebook.com

Perform Action on

example.com using

cookieStore[1].fb low

priviledges session

cookieStore[1].[fb]

= “john low session”

Browser Tab 3

Cookie Store [1]

http://facebook.com

Perform Action on

example.com using

cookieStore[1].fb high

priviledges session

cookieStore[1].[fb]

= “john high session”

Browser Tab 3

Cookie Store [1]

(sudo)

Identity

Management

Function

IMF intercepts

Facebook Connect,

page loads in isolated

browser tab, using a

downgraded session.

“sudo reload” invokes

the IFM, signals

session upgrade,

supplies current tab URL

IFM populates isolated cookie store

to form upgraded session status.

Reloads Facebook Connect

page with new status.

Figure 4.5: Outline of SudoWeb’s workflow.

4.2.4.1 SudoWeb Modules

Here we describe the modules that comprise our extension to the Google
Chrome browser, in support of our proposed architecture.

Identity Management Function (IMF).
In the heart of the extension lies the logic module offering the identity

management function or IMF. This function is responsible for detecting the
possible need for elevating or downgrading a current session with a social
login provider (here: Facebook).

Such a need is detected by identifying differences in the HTTP referrer
domain and the URL domain of pages to be loaded. That is, when the user
navigates away from a third-party website (identified by the HTTP referrer
field) towards a social login website (we keep a configuration file with all
social login sites supported), IMF steps in, instantiates a new, isolated and
independent session store in the browser, and instructs the session manager
module to initialize it. This allows the browser to receive state that estab-
lishes a downgraded or stripped-down session with the social login provider.
Furthermore, it places a “sudo reload” HTML button on that page giving the
user the opportunity to reload that page using an elevated session instead.

Session Monitor.
The Session Monitoring module plays a supporting role to the IMF. If one

considers our extension as a black box, the session monitor stands at its in-
put. It inspects new pages opening in the browser and looks for cases where
the page URL belongs to a monitored domain of a social login provider
(here: Facebook) but the page has been invoked through a different, third-
party domain. It does so by comparing that URL with the HTTP referrer.

www.syssec-project.eu 79 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

The referrer is an HTTP parameter supplied by the browser itself based on
the URL of the parent tab or window that resulted in a child tab or window
being spawned.

The session monitor notifies the IMF of such incidents and supplies the
respective page URL. We should note that recent research has revealed that
the HTTP referrer field in several cases can be empty or even spoofed [51,
86] undermining all mechanisms based on it. Although it is true at the
network elements may remove or spoof the HTTP referrer field so that it
will be invalid when it reaches the destination web server, our work with
the HTTP referrer field is at the web client side, not at the web server side.
That is, the HTTP referrer field is provided to SudoWeb by the web browser
before it reaches any network elements which may remove it or spoof it.

Session Manager.
The Session Manager module also plays a supporting role to the IMF. If

one considers our extension as a black box, the session manager stands at its
output. Upon the installation of our extension, the session manager prompts
the user of the web browser to fill in his ordinary social login (here: Face-
book) account username and password, as well as his stripped-down one
that is to be used for the downgraded integration with third-party websites.

The session manager maintains in store the necessary state, e.g., cookies,
required to establish the two distinct sessions with the social login provider
and is responsible for populating the browser’s cookie store once instructed
by the IMF. As a result, it stands at the output of our extension and between
the browser’s session store and the rendered pages that reside in tabs or
windows. It affects the state upon which a resulting page rely on.

Our extension takes advantage of the incognito mode in Google Chrome
to launch a separate browser process with isolated cookie store and session
state so that when the session manager pushes the new state in the cookie
store, the user is not logged off of the existing elevated session (here: with
Facebook) that may be actively used in a different browser window.

Operation and Interaction of SudoWeb Modules.
In the spirit of the use case presented at the beginning of Section 4.2.3, a

user of SudoWeb will configure the session manager once, continue browsing
the Web, and eventually come across a third-party that wishes to interact
with his Facebook identity via social login.

The configuration of the session manager provides the necessary informa-
tion to seamlessly alternate between downgraded and elevated privileges
with one or more social login providers. Figure 4.6 presents an example
screenshot of such a configuration for Facebook, where the user declares
the two identities that will be used for that purpose; two buttons are used
to indicate to the session manager that the current session the user has with
Facebook is to be treated either as a primary (elevated) or secondary (down-
graded) session. The user logs in on Facebook with one identity, assigns one
of the two characterizations, is then briefly logged out of that identity so

www.syssec-project.eu 80 January 9, 2015

4.2. MINIMIZING INFORMATION DISCLOSURE TO THIRD PARTIES IN
SINGLE SIGN-ON PLATFORMS

Figure 4.6: Screenshot of the configuration for the session manager module.

that he can repeat the process for the second identity, and finally his origi-
nal session with Facebook is restored, making the entire process minimally
disrupting. At the bottom of the configuration page, a session test, retriev-
ing the names of the two identities from Facebook in real time, demonstrates
how two parallel Facebook sessions can be seamlessly maintained.

After it has been configured, SudoWeb monitors the web browser for
social login events. Upon the user reaching a third-party page and clicking
on the “login with Facebook” button, our system kicks in:

1. The session monitor detects the launch of a new Facebook page from a
page under the domain of the third-party website. The session monitor
notifies the IMF module of our extension and so the page launch is in-
tercepted and loaded in an incognito window, i.e., an isolated browser
process with a separate and individual session store.

2. The IMF coordinates with the session manager module so that this iso-
lated environment is populated with the necessary state for a down-
graded Facebook session to exist.

The entire process happens in an instant and the user is presented with
a browser window similar to figure 4.7. In this figure, we have used
third-party-web-site.com as the name of the third part website which
wants to authenticate the user using her Facebook account. We see that
in addition to authenticating the user, the third-party website asks for per-
mission to (i) send email to the user, (ii) post on the user’s wall, (iii) access
the user’s data any time, and (iv) access the user’s profile information. Al-
though Facebook enables users to “Allow” or “Don’t Allow” access to this
information (bottom right corner), if the user chooses not not allow this

www.syssec-project.eu 81 January 9, 2015

third-party-web-site.com

CHAPTER 4. ATTACKS ON PRIVACY

Figure 4.7: Screenshot of a Facebook “Request for Permission” page.

access, the entire authentication session is over and the user will not gain
access to the content of third-party-web-site.com.

Having intercepted this third-party authentication operation, SudoWeb
brings the stripped-down account (i.e., John Low) forward, on behalf of the
user. Therefore if the user chooses at this point to allow access to his infor-
mation by the third-party site, only a small subset of his actual information
will be surrendered. Note that a “sudo reload” button has been placed at
the bottom of the page, allowing the user to elevate this session to the one
tied to his actual, or a more privileged, Facebook identity.

The Facebook session with which the user was surfing prior to engag-
ing in this cross-site Facebook interaction remains intact in the other open
browser windows since, as mentioned earlier, we take advantage of the
browser’s incognito mode to initiate an isolated session store in which we
manage the escalation and de-escalation of user sessions. All the user has
to do is close this new window to return to his previous surfing activity.

4.2.5 Lessons Learned

Recent results suggest that hundreds of thousands of Web sites have already
employed single sign-on mechanisms provided by social networks such as
Facebook and Twitter. Unfortunately, this convenient authentication usually
comes bundled (i) with a request to the user’s personal information, as well
as (ii) the request to act upon a users social network on behalf of the user,
e.g., for advertisement. Unfortunately, the user can not deny these requests,
if she wants to proceed with the authentication. In this work, we explore this
problem and propose a framework to enable users to authenticate on third-
party Web sites using single sign-on mechanisms provided by popular social

www.syssec-project.eu 82 January 9, 2015

third-party-web-site.com

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

networks while protecting their privacy; we propose that users surf the Web
using downgraded sessions with the single sign-on platform, i.e., stripped
from excessive or personal information and with a limited set of privileged
actions. Thereby, by default, all interactions with thir d-party Websites take
place under that privacy umbrella. On occasion, users may explicitly elevate
that session on-the-fly to a more privileged or information-rich state to facil-
itate their needs when appropriate. We have implemented our framework
in the Chrome browser with current support for the popular single sign-on
mechanism Facebook Connect. Our results suggest that our framework is
able to intercept attempts for third-party Web site authentication and han-
dle them in a way to protect the user’s privacy, while not affecting other
ongoing Web sessions that the user may concurrently have.

Availability

The source code of SudoWeb is available at https://code.google.com/p/

sudoweb/.

4.3 Privacy-preserving Microblogging Browsing through
Obfuscation

For more information, there exists an extended version of this work [92].

4.3.1 System Design

4.3.1.1 Threat Model

We assume the existence of a microblogging service where users are able
to follow individual channels. A channel can be the account of a physical
person, of an entity such as a corporation, of a news site, of a politician’s
office, and so on. Additionally, we assume that the microblogging service is
capable of recording the users’ interests by observing which channels each
user follows. The information about the users’ interests, which is property
of the microblogging service, could be later sold to advertisers [100], and
could be used for a variety of purposes, all of which are beyond the con-
trol of individual users [79]. We view this capability of the microblogging
service as a potential concern for the users’ privacy, and we would like to de-
velop mechanisms that hide the users’ real interests from the microblogging
service.

In this work we assume an “honest but curious” microblogging service.
In this aspect, the microblogging service may try to find the user’s interest
based on the channels the user is following, but it will not try to “cheat”
by actively interfering with the process users are employing to protect their

www.syssec-project.eu 83 January 9, 2015

https://code.google.com/p/sudoweb/
https://code.google.com/p/sudoweb/

CHAPTER 4. ATTACKS ON PRIVACY

Notation Explanation

S : Set of sensitive channels that can be followed
C : Sensitive channel
U : Number of all users in the system
UC : Number of users actually interested in channel C
URC

: Number of users following channel C at random
pC : Popularity of channel C (pC = UC/U)
PC : Probability that a user following C is interested in C
N : Number of sensitive channels a user is interested in
k : Obfuscation level (per channel)

Table 4.1: Summary of Notation

privacy, or try to gain more information than what a user is willing, or re-
quired, to give. For example, the microblogging service will not create fake
channels or fake users in order to break the anonymity of ordinary users.
We think that this “honest but curious” model is reasonable in practice, as
popular microblogging services have a reputation they do not want to jeop-
ardize by becoming hostile against their own users. Therefore, we expect
such microblogging services to only try to passively gain knowledge based
on data given by their users.

4.3.1.2 Our Approach: k-subscription

Table 4.1 summarizes the notation we use throughout this section. Assume
that user A is interested in following channel C, which deals with a sensi-
tive issue, such as a medical condition. If user A follows only this channel,
the microblogging service would easily figure out that A is interested in this
medical issue. In this work we propose k-subscription: a system that makes
sure that the microblogging service is not able to pinpoint A’s interests with
reasonable accuracy. To do so, k-subscription follows an obfuscation-based
approach, which advocates that along with each channel C the user is inter-
ested to follow, she should also follow k − 1 other channels (called “noise”
channels). The number of noise channels is such that the microblogging
service will not be able to determine A’s interest with high probability, and
will not be able to identify the actual set of users interested in each spe-
cific channel. All the noise channels are randomly chosen from a set S of
“sensitive” channels. Note that A’s real interests are also members of S.

4.3.1.3 Uniform Sampling

When a user wants to follow channel C, k-subscription encourages the user
to follow k−1 other channels as well (say C1, C2, ..., Ck−1). In this way, the
microblogging service will not know whether the user is actually interested
in channel C or one of the C1, C2, ..., Ck−1. In our first algorithm, k-

www.syssec-project.eu 84 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

subscription-UNIF, these channels are chosen randomly with uniform proba-
bility from S. Algorithm 1 presents the pseudocode for k-subscription-UNIF.

Algorithm 1 k-subscription-UNIF: Choose noise channels uniformly from the
set S

F = ∅; {initialize the set of channels to follow}
for (i = 1 ; i ≤ k − 1 ; i++) do
Ci = randomly select a channel from set S ;
S = S \ Ci ; {remove Ci from S}
F = F ∪ Ci ; {add Ci in the set of channels to follow}

end for
F = F ∪ C ; {add C in the set of channels to follow}
Follow all Channels in F in a random order ;

k-subscription-UNIF is a naive but powerful approach for obfuscation and
we use it as a basic principle for our method. However, this approach leads
to some practical problems. In case that not all channels enjoy the same
popularity, then uniformly sampling from S may result in higher disclosure
probability for the more popular channels. Thus, we discuss an improved
version in the next section.

4.3.1.4 Proportional Sampling

A user following a popular channel (say C) along with several unpopular
ones has a higher probability of being interested in C than in the rest of
them. Capitalizing on this knowledge, the microblogging service has a better
chance of finding those users who follow popular channels. To mitigate
this issue, we propose k-subscription-PROP that sample channels from set S
according to their popularity. Assume that UC is the number of followers of
channel C and US =

∑
∀C∈S UC is the number of followers of all channels in

S. Thus, instead of sampling all channels with probability 1/|S|, we sample
channel C with probability UC/US . On Twitter, the popularity of a channel
can be inferred by the number of users following the respective account.
In other microblogging services similar metrics are available to determine
the popularity of a channel. k-subscription with proportional sampling for
adding noise does not affect the respective channel popularity.

4.3.1.5 Following Multiple Channels

Users may be interested in following more than one sensitive channels. Us-
ing k-subscription, users just need to select k − 1 other noise channels to
follow for each channel C they are interested in. Therefore, a user inter-
ested in following N channels will result in following k × N channels in
total. However, it is very likely that a user will be interested in N sensitive

www.syssec-project.eu 85 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

D
is

c
lo

s
u
re

 P
ro

b
a
b
ili

ty
 P

C

k: Obfuscation Level

channel popularity = 10%
channel popularity = 1%
channel popularity = 0.1%

(a) PC as a function of k
for different channel pop-
ularities.

Disclosure Probability PC - pC=0.01

 1000 10000

|S|: sensitive channels

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

O
b
fu

s
c
a
ti
o
n
 L

e
v
e
l
(%

 o
f
|S

|)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

(b) [PC as a function of
|S| and k, shown as a per-
centage of |S|, for chan-
nel popularity 1%.

Disclosure Probability PC - pC=0.01

 0.2
 0.1
 0.05

1000 2000 3000 4000 5000

|S|: sensitive channels

200

400

600

800

1000

O
b
fu

s
c
a
ti
o
n
 l
e
v
e
l
k

(c) [PC as a function of
|S| and k, for channel
popularity 1%.

Figure 4.8: Disclosure Probability PC of k-subscription-UNIF as a function of
the obfuscation level k and the size of S.

channels that are semantically related. This case may significantly increase
the disclosure probability. Indeed, the microblogging service can easily find
the correlated channels: it will get all the channels a user is following, clas-
sify them into semantic categories, and identify the sets of channels that are
semantically related. If there is only one set of related channels, it is more
probable that the user actually follows them, and the remaining unrelated
channels are the selected noise.

One way to address this issue could be the following: whenever a user
is interested in N related channels, the (k − 1) × N noise channels could
be selected in N -tuple groups, so that each N -tuple consists of N related
noise channels. However, this approach has a certain limitation: the mi-
croblogging service and k-subscription may use different similarity metrics
to identify related channels. For instance, the microblogging service may use
a more fine-grained similarity metric to find out the actual related channels.

Fortunately, k-subscription is able to protect users’ interests even when
they are interested in multiple semantically related channels. Although a
user will actually follow the set of N related sensitive channels she is in-
terested in, which can be identified by the microblogging service, there will
be a significant number of other users that also follow the same set of N
related channels due to random noise channel selections, i.e., without being
interested in them. This is due to the increased random selections when
users are interested in multiple channels. Thus, the microblogging service
will not be able to know which of the users following all these N related
channels are actually interested in them.

www.syssec-project.eu 86 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

4.3.2 Analytical Evaluation

4.3.2.1 Analysis of k-subscription-UNIF

The disclosure probability PC is the probability (as it can be calculated by
the microblogging service) that a user who follows channel C is really inter-
ested in C. nce along with channel C a user follows k− 1 other channels as
well, the disclosure probability is PC = 1/k. However, for large values of k
(i.e., in cases where the user wants to add a lot of noise) the microblogging
service has a more effective way to increase its certainty about the interest
of a user in a particular channel C. It knows that the UC users who are
interested in channel C actually follow it. At the same time, however, there
are U−UC other users that are not interested in C, who may have randomly
included C among their noise channels. The probability of C being included
in the set of channels followed randomly by a user interested in a channel
different than C is bounded by 1−(1−1/|S|)k−1, as this user will select k−1
channels randomly from S, which also includes C. Therefore, the average
number of the U −UC users not interested in C that will follow C randomly
as noise (URC

) are less than (U − UC) × (1 − (1 − 1/|S|)k−1). So, the ratio
of users following C who are really interested in C is less than

UC

UC + (U − UC)× (1− (1− 1/|S|)k−1)

Since the microblogging service does not know who of the users in UC

are interested in the channel C, it can only assume that all users following
C are interested in C. The probability of a user following C actually being
interested in C (denoted as PC) is given by:

PC < max(1/k,
UC

UC + (U − UC)× (1− (1− 1/|S|)k−1)
)⇒

PC < max(1/k,
pC

pC + (1− pC)× (1− (1− 1/|S|)k−1)
)

(4.1)

where pC is the channel’s popularity. We see that the total number of users
U and the number of users UC interested in channel C do not affect the
disclosure probability. Instead, the channel’s popularity pC , the parameter
k, and the total number of channels |S|, are the key factors that affect the
disclosure probability.

Estimating the Disclosure Probability.
First we arbitrarily fix |S| to 1,000 channels. Figure 4.8(a) shows how

the disclosure probability PC changes as a function of k (the level of ob-
fuscation). We see that when the popularity pC of a channel is rather high
(i.e., 10%), then it is difficult to obfuscate it with the k-subscription-UNIF
approach. Indeed, when as many as 10% of the users are interested in
channel C, then it would take a significant percentage of the rest 90% to

www.syssec-project.eu 87 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

include channel C among their noise channels, which is very difficult to
achieve. However, when popularity is around 1%, then it is much easier to
obfuscate it using this approach. Indeed, for k = 100 the disclosure proba-
bility is as low as 0.1, which means that the microblogging service can not
state with confidence larger than 10% that a user A who follows channel C
is really interested in C. Fortunately, when the popularity of C is even lower
(i.e., around 0.1%), the disclosure probability becomes 0.01 for obfuscation
levels as low as 100. That is, the microblogging service can not say with
confidence higher than 0.01 that a user who follows C is really interested in
C.

In our next figure we explore how the disclosure probability changes as
a function of the number of sensitive channels |S| and the obfuscation level
k. That is, if we double |S| how should we increase k so as to have the same
disclosure probability? Figure 4.8(b) shows a plot of the PC as a function of
|S| and k. Note that the obfuscation level k in the y-axis is shown not as an
absolute number but as a percentage of the number of sensitive channels.
From this figure we clearly see that lines of the same color run horizontally.
Horizontal lines mean that the value is the same for constant y (obfuscation
level as a percentage of |S|). This implies that as long as the obfuscation
level is a constant percentage of the size of the set of sensitive channels |S|,
the disclosure probability remains constant. To put it simply, if we double
the number of sensitive channels, we need to double the obfuscation level k
(in absolute numbers) in order to keep the disclosure probability constant.

To explore the relation between |S| and k even further, Figure 4.8(c)
shows the iso-probability contours of the disclosure probability PC as a func-
tion of the number of sensitive channels (i.e., |S| on x axis) and the obfusca-
tion level (i.e., k on the y axis). We plot the contours for probabilities 0.05,
0.1, and 0.2. Interestingly, we see that the iso-probability contours appear
as straight lines, clearly implying an almost linear relation between |S| and
k. That is, doubling |S| would require a twice as high k in order to keep
the probability of disclosure to the same level. Similarly, if we can afford to
double the obfuscation level, we can provide the same disclosure probability
for twice as many sensitive channels. Or, equivalently, if we are forced to
half the obfuscation level, we can still provide the same disclosure proba-
bility but only for half as many sensitive channels. These results are very
encouraging in the sense that we can still achieve the levels of PC we are
comfortable with, even when we are forced to use small obfuscation levels.

Figure 4.9 shows the impact that the number of sensitive channels |S|
and the channel popularity pC have on the disclosure probability. The ob-
fuscation level k is set to 100. We see that the iso-probability contours are
almost straight anti-diagonal lines indicating an almost inversely propor-
tional relation between |S| and pC .

Finding a Reasonable Size for S. We now analyze how large S should
be and how we can influence it. One can easily see that the larger S is, the

www.syssec-project.eu 88 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

Disclosure Probability PC - k=100

 1000 10000

|S|: sensitive channels

 0.001

 0.01

 0.1

 1

C
h

a
n

n
e

l
P

o
p

u
la

ri
ty

 p
C

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 4.9: Disclosure Prob-
ability PC of k-subscription-
UNIF as a function of the size
of S and channel popularity
pC .

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

k: Obfuscation Level

channel popularity = 10%
channel popularity = 1%
channel popularity = 0.1%

Figure 4.10: Disclosure Prob-
ability PC of k-subscription-
PROP as a function of the ob-
fuscation level k.

(a) |S|=1,000, channel popular-
ity=0.1%.

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

1
,.

..
,C

N

k: Obfuscation Level (per channel)

S=1000, pC=0.001

N = 1 channel
N = 2 channels
N = 3 channels
N = 4 channels
N = 5 channels
N = 10 channels

(b) |S|=1,000, channel popularity=1%].

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

1
,.

..
,C

N

k: Obfuscation Level (per channel)

S=1000, pC=0.01

N = 1 channel
N = 2 channels
N = 3 channels
N = 4 channels
N = 5 channels
N = 10 channels

(c) |S|=2,000, channel
popularity=1%.

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

1
,.

..
,C

N

k: Obfuscation Level (per channel)

S=2000, pC=0.01

N = 1 channel
N = 2 channels
N = 3 channels
N = 4 channels
N = 5 channels
N = 10 channels

Figure 4.11: Disclosure Probability as a function of the obfuscation level k.

higher the disclosure probability will be (for a constant obfuscation level k).
Therefore, we do not want the set S to be very large. On the other hand,
a very small S would easily give away a user’s true interests, and limit the
users’ choice for sensitive channels. Indeed, if S contains two channels, say
C1 and C2, if a user follows C1 (no matter whether she follows C2 or not),
the microblogging service will be able to conclude with probability 1/2 that
the user is interested in C1. In the same spirit, if S contains n members,
the microblogging service will be able to conclude with probability at least
1/n that the user is interested in the channel she follows. As a result, S
should be large enough so that the probability 1/n is small enough, so as
not to be useful for the microblogging service. In the absence of any other
information, the microblogging service is able to conclude with probability
UC/U that a random user is interested in channel C. Therefore, the set S
should be large enough so that 1/|S| < UC/U . We can estimate UC from
external sources, or based on the number of followers of channel C.

4.3.2.2 Analysis of k-subscription-PROP

Let us now derive closed formulas for k-subscription-PROP. The probability
of C being included in the set of channels followed randomly by a user
interested in a different channel than C is bounded by 1− (1−UC/U)k−1, as

www.syssec-project.eu 89 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

this user will choose at random k−1 channels from S, and the probability of
choosing C at each individual choice is UC/U . The average number of users
not interested in C who will follow C randomly as noise (URC

) are less than
(U − UC)× (1− (1− (UC/U))k−1). So, the ratio of users who follow C and
are interested in C is less than

UC

UC + (U − UC)× (1− (1− UC/U)k−1)

Since the microblogging service does not know who are the UC users
interested in C, it can assume that all users following C are interested in
C. The probability of a user following C being interested in C (i.e., the
disclosure probability) is bounded as follows:

PC < max(1/k,
UC

UC + (U − UC)× (1− (1− UC/U)k−1)
)⇒

PC > max(1/k,
pC

pC + (1− pC)× (1− (1− pC)k−1)
)

(4.2)

where pC is the channel’s popularity. We observe that instead of the total
number of users U and the number of users UC that follow the channel
C, the disclosure probability is affected only by channel’s popularity pC ,
number of channels S, and obfuscation level k.

Figure 4.10 shows how disclosure probability changes with the level of
obfuscation k. We see that our k-subscription-PROP approach is able to effi-
ciently hide popular channels. Indeed, for a popularity of about 10%, it is
able to reach a disclosure probability of 0.1 using only k = 40. When the
popularity is 1%, even small obfuscation levels such as k = 50 can lead to
disclosure probability as low as 0.02, which is very encouraging. One can
notice in Figure 4.10 that as k increases for 10% popularity, the disclosure
probability tends to flatten out and in no case drops below 0.1. The rea-
son is that for a channel with 10% popularity, the disclosure probability can
never fall below 10% no matter how large the obfuscation level we use is.
There is a simple explanation for this: without taking any channel-following
information into account, the microblogging service knows that 10% of the
population is interested in channel C. Hence, the microblogging service can
safely assume that a user is interested in C with probability 0.1.

4.3.2.3 Analysis for Multiple Channels

A user may want to follow more than one sensitive channels, which may be
semantically related to each other. For simplicity, we assume that all users
U are interested in exactly N sensitive channels from S. Each user that
is actually interested to follow the N channels C1, ..., CN will also follow
(k − 1) × N noise channels based on random choices from S. Besides the
UC1,...,CN

users that are interested in these N channels, there will be some

www.syssec-project.eu 90 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

fo
ll
o

w
e

rs

Channel rank

(a=-0.073, b=-0.001, c=505747)

f(x)=x
a
 e

bx
 c

Figure 4.12: Distribu-
tion of the sensitive
channels popularity.

 0

 5

 10

 15

 20

 25

 30

 35

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
u

m
b

e
r

o
f

c
h

a
n

n
e

ls
 f

o
llo

w
e

d
 p

e
r

u
s
e

r
User rank

(a=55.6, b=-0.37)

f(x)=a x
b

Figure 4.13: Distribu-
tion of the number of
sensitive channels fol-
lowed by a user.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

k: Obfuscation Level

Maximum
Average

Figure 4.14: Disclosure
probability as a function
of k using realistic simu-
lations.

other users that will follow the same set of N channels without being inter-
ested in all of them, due to random noise channel selections. These users
contribute to hide the actual interests of the UC1,...,CN

users.
Since the microblogging service does not know the users who are ac-

tually interested in channels C1, ..., CN , it can only assume that all users
following these channels are interested in them. The disclosure probability
PC1,...,CN

that a user following all these N channels is actually interested in
them is equal to:

UC1,...,CN

UC1,...,CN
+ (U − UC1,...,CN

)×
(|S|−N
(k−1)N−N

)
/
(|S|
(k−1)N

) =

pC1,...,CN

pC1,...,CN
+ (1− pC1,...,CN

)×
(|S|−N
(k−1)N−N

)
/
(|S|
(k−1)N

) (4.3)

where
(|S|−N
(k−1)N−N

)
/
(|S|
(k−1)N

)
is the probability that a user selects randomly

these N channels from the set S with (k − 1) × N random choices when
using the k-subscription-UNIF approach. We estimate this probability with
a hypergeometric distribution, where all the successes N in the population
S should be drawn with (k − 1) × N attempts. Since we assume that all
channels have the same popularity, the k-subscription-PROP approach has
exactly the same behavior with k-subscription-UNIF in this analysis. pC1,...,CN

is the popularity of the N-tuple of sensitive channels, i.e., the percentage of
users actually interested in all these C1, ..., CN channels.

We want to explore how the disclosure probability changes with the
number of channels N that a user may be interested in. We assume that
the users interested in N channels are UC1,...,CN

= UC/N , i.e., they are re-
duced by N times. Note that we assume a hyperbolic decrease of the users
as N increases, instead of an exponential decrease, because we believe that
these N channels will be probably semantically related. We set the size of S
to 1, 000 and 2, 000 sensitive channels and we assume that all channels have
the same popularity pC , which is set to 0.1% and 1%.

www.syssec-project.eu 91 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

Figure 4.11 shows the disclosure probability as a function of k for dif-
ferent values of N , ranging from 1 up to 10. We see that as the number of
channels N increases, the disclosure probability is increased for low values
of k, but it decreases significantly for higher k. The increase for low k values
is because the users interested in N channels are reduced just by N times,
following a hyperbolic growth, while the probability of randomly selecting
these N channels for the rest users is reduced significantly by following a
hypergeometric distribution. Thus, it is unlikely for the rest users to follow
all these N channels at random with low k values. This means that for users
interested in many sensitive channels we need to use a higher k to achieve
a low disclosure probability.

In contrast, for higher values of k, we see a significant reduction of the
disclosure probability when users are interested in more channels. This is
because the users interested in N sensitive channels follow k ×N channels
in total, so we have more random selections for higher N values. For in-
stance, when N = 5 and k = 200, each user follows 1, 000 channels from S,
i.e., all the existing channels in S when |S| = 1, 000. The same happens in
case of N = 10 and k = 100. When the size of S and channel popularity
pC increase, the disclosure probability increases respectively, according to
Equation 4.3. However, a proper selection of a higher k value results in a
much lower disclosure probability, as the users’ interests can be efficiently
hidden among the random selections of other users. Our experimental eval-
uation in Section 4.3.5 shows that the network bandwidth and latency when
following few hundreds of noise channels are negligible, so our approach is
able to protect the users’ privacy even when they are interested in many
sensitive channels that are probably semantically related.

4.3.3 Simulation-based Evaluation

To evaluate k-subscription in a more realistic setup, where users are inter-
ested in a different number of sensitive channels, and sensitive channels
have different popularities, we built a realistic Monte Carlo simulator. The
simulator assigns a random popularity pC to each channel following a sim-
ilar distribution to real-world sensitive channels. First, each user randomly
selects the number of channels N that she is interested in following, based
on a distribution similar to real-world users’ selections. We assume that all
N channels are semantically correlated. Then, the user selects these chan-
nels one-by-one at random, proportionally to channel’s popularity. The noise
selection is performed with k-subscription-PROP.

To simulate a realistic popularity distribution of sensitive channels, we
selected a set S of 7, 000 sensitive channels using Twellow [40], a website
that categorizes Twitter accounts according to their subject. The selected
channels correspond to Twitter accounts dealing with health, political, reli-
gious, and other sensitive issues. We estimate the popularity of each channel

www.syssec-project.eu 92 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

based on its number of followers, i.e., UC . Figure 4.12 shows the distribu-
tion of sensitive channel popularity in our dataset. We see that this distri-
bution can be approximated very well using a power law with exponential
cutoff model. We use this approximation in the simulator to assign a pop-
ularity pC in each channel. We also see that only a small percentage of the
sensitive channels exhibit relatively high popularity, which increases the dis-
closure probability. In contrast, the majority of sensitive channels have low
popularity, which results in low disclosure probability even for low values of
k.

To simulate a realistic distribution of the number of sensitive channels
N that each user is interested in, we used the same real-word dataset of
sensitive channels. From the total 7, 000 channels, we used the Twitter API
to collect the user IDs of the followers of 500 sensitive channels related to
disability issues, and we measured the number of occurrences of each user
ID. This is the number of channels belonging in S that each user in our
dataset follows. In this analysis we found more than 530, 000 unique users.
Figure 4.13 shows the respective distribution, which is approximated with
a typical power law function. This approximation is used in our simulations
for realistic user selections. Also, we observe that only 0.85% of the users
follow more than 4 sensitive channels, while 91.65% of the users follow just
one sensitive channel.

The simulator keeps two counters per each channel: the number of users
that (i) select this channel as actual interest (UC), and (ii) select this channel
as noise (URC

). Before exiting, the simulator reports the disclosure proba-
bility per channel, which is max(1/k, UC/(UC +URC

). Additionally, it keeps
two lists per user: (i) the channels she is interested in (Ci), and (ii) the
channels she selects as noise (Cn). This way, the simulator reports the dis-
closure probability per user, based on the set of sensitive channels the user is
interested in (Ci). This probability is equal to max(1/k, UCi/(UCi + URCi

)),
where UCi the number of users interested in Ci and URCi

the number of
users that Ci is included within their Cn. This is because we assume that
all channels in Ci are semantically correlated. Among all the disclosure
probabilities reported per each user and each channel, the simulator reports
the overall average and maximum disclosure probability. We repeat each
simulation for 100 times and we use the average values.

We set |S| to 1,000 channels, U to 1,000,000 users, and we vary k from
1 to 200. Figure 4.14 shows the average and maximum disclosure probabil-
ity reported by the simulator as a function of k. We see that k-subscription
achieves a low average disclosure probability over all channels and users,
which decreases rapidly with k. However, we see that the maximum dis-
closure probability found for an individual user remains equal to 1 for low
values of k up to k = 30. This is because there is at least one user inter-
ested in an N-tuple that no other user has selected among her random noise
choices, especially for large values of N. However, as k increases, we see

www.syssec-project.eu 93 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

that an increasing number of users tend to select a significant percentage of
the channels in S as random choices, e.g., users with large value of N. As
these users follow most of the channels in S, they tend to hide the actual
users’ interests, even for large and rare N-tuples, reducing effectively the
maximum disclosure probability.

4.3.4 Implementation

To evaluate the feasibility and efficiency of k-subscription we have imple-
mented a Twitter extension for the popular Chrome web browser. The ex-
tension uses Twitter API v1.1 and complies with the REST API Rate Limit. It
is developed using Javascript and JQuery, Json2, OAuth and SHA-1 libraries.

Figure 4.15 shows the overall operation of k-subscription extension.
Upon installation, users can follow Twitter accounts in exactly the same
way, though Twitter’s web interface or “Follow me” buttons in third-party
web pages. To enhance user’s privacy, k-subscription intercepts all follow re-
quests and checks whether they correspond to sensitive channels contained
in S. If so, the extension transparently subscribes the user to k − 1 ad-
ditional “noise” channels from S according to the k-subscription-PROP algo-
rithm, where k can be configured by the user. These channels remain hidden
and the user never interacts with them, providing exactly the same Twitter
browsing experience as before. For this reason, the extension keeps a list
of all “noise” channels and dynamically filters out the unsolicited tweets of
these channels from user’s feed. Other affected information, such as the
number of channels followed, is adjusted appropriately by excluding the
effect of the “noise” channels.

At the first run, the extension downloads the set S of sensitive chan-
nels used for obscuring user’s selections. The set includes information about
each channel and its number of followers to improve “noise” selection. The
user can interfere with “noise” selection by proposing channels with prede-
fined features such as language and country. Users can disable the effect
of k-subscription on a follow request if they consider the related channel
as non-sensitive. When a user unfollows a sensitive channel, the extension
transparently removes its corresponding “noise” channels as well.

We envision that the set of sensitive channels S along with the project
in general would be maintained by the broader community of users and/or
Non-Governmental Organizations (NGO) that have a specific view towards
protecting privacy. Hence, S can be seeded by an initial set of sensitive chan-
nels and further improved through human intervention and participation of
the community. Similar privacy-concerned projects, such as Tor, enlist the
help of volunteers to maintain and improve its networks of routers. We
expect that similar approaches can be applied for k-subscription.

www.syssec-project.eu 94 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

Figure 4.15: Overall operation of the k-subscription browser extension for
Twitter.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

k: Obfuscation level

Figure 4.16: Time to fol-
low a sensitive channel
as a function of k.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

c
h

a
n

n
e

ls

Posts per hour

Figure 4.17: Number of
tweets posted per chan-
nel per hour.

 0

 10

 20

 30

 40

 50
k=100

 0
 5

 10
 15
 20
 25

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n
 (

K
b

p
s
)

k=50

 0

 2

 4

 6

 0 5 10 15 20 25 30

k=1

Figure 4.18: Bandwidth
consumed for a user re-
ceiving tweets as a func-
tion of time.

4.3.5 Experimental Evaluation

4.3.5.1 How Much Does the Noise Cost?

In our next experiment we tried to quantify how much more traffic is gen-
erated by the noise channels. To do so, we measured the total number of
tweets generated by all channels, divided by each channel’s lifetime and
found the average number of tweets per channel per unit of time. The CDF
of this function is shown in Figure 4.17. We see that the median chan-
nel (y=50%) generates less than one tweet (actually 0.25 tweets) per hour
while 93% of the channels generate less than two tweets per hour. Overall,
we see that the extra traffic generated by the noise channels should be very
small. Even adding 100 noise channels generates no more than 25 tweets
per hour, a negligible amount of traffic by most standards.

The reader will notice that the maximum posting rate that we have ob-
served is about 6 posts per hour (averaged over the entire lifetime of the
channel). Published statistics [109] suggest that the most prolific twitter
accounts post as much as one tweet update per minute. Such accounts usu-
ally belong to news stations or even to automated programs (bots). Given
that each tweet corresponds to just few hundred of bytes transferred over
the network, even in such cases the resulting network overhead will be rel-
atively low.

www.syssec-project.eu 95 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

(a) Initialization stage (load 20 tweets)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n
 (

K
b

p
s
)

k: Obfuscation level

k-subscription
Vanilla system

Tor

(b) Idle stage (download
incoming tweets)

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n
 (

K
b

p
s
)

k: Obfuscation level

k-subscription
Vanilla system

Tor

Figure 4.19: Bandwidth consumption with k-
subscription, Tor and vanilla system.

 0

 2

 4

 6

 8

 10

 12

1 10 20 30 40 50 60 70 80 90 100

B
ro

w
s
in

g
 L

a
te

n
c
y
 (

s
e
c
o
n
d
s
)

k: Obfuscation level

k-subscription
Vanilla system

Tor

Figure 4.20: Browsing
latency as a function of k
when a user opens Twit-
ter’s main page.

4.3.5.2 Bandwidth Consumption

When a user follows k channels for each subscription, she downloads
roughly k times more information than she actually needs. However, we
would like to see if the bandwidth needed for these downloads can be sus-
tained by a home DSL Internet connection or not, and the respective net-
work overhead in terms of used bandwidth. Figure 4.18 shows the traffic
load generated by our implementation over a 30-minute period for a user
following one sensitive channel with k = 100, k = 50, and k = 1 (i.e,
without using k-subscription). We notice that the bandwidth consumption
even in case of k = 100 is reasonably low, usually less than 1.5 Kbps. We
see that even in case of the vanilla system (see k = 1) the bandwidth con-
sumption is not significantly lower than in high values of k. In all cases
it is usually between 0.5 and 1.0 Kbps. By manually inspecting the traf-
fic we found that most of the bandwidth is used to download information
like images, trends and recommendations, which does not depend on the
value of k. The bandwidth used for downloading the actual tweets, which
increase with the value of k, was found to be a small percentage of the total
bandwidth consumption.

We observe a large spike at the beginning of each experiment, when we
have just opened the browser and loaded the Twitter page. For instance,
bandwidth consumption reaches 54 Kbps for k = 100, 29 Kbps for k = 50,
and 7 Kbps for the vanilla system at the first second. During this initial-
ization stage Twitter downloads all the necessary content (widgets, scripts,
CSS, profile images, etc.). At this stage, k-subscription downloads lot of
tweets from all k channels. r this reason we observe a relatively higher spike
as k increases. To improve browsing latency, we transparently increase the
page size to receive more tweets.

Note that profile images are cacheable, so k-subscription downloads the
additional images (depending on k) only once, without affecting the overall
bandwidth consumption. After the initial spike in the first few seconds,
we see constantly low bandwidth consumption, which correspond to the
low rate of incoming tweets. The average consumption in this 30-minute

www.syssec-project.eu 96 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

interval is 1.14 Kbps for k = 100, 0.71 Kbps for k = 50, and 0.54 Kbps for
k = 1. Overall, we see that the total bandwidth consumed by k-subscription
is not really an issue even if the user follows as many as 100 channels.

To evaluate the effect of the obfuscation level on bandwidth consump-
tion while browsing Twitter with k-subscription, we plot in Figure 4.19 the
bandwidth consumption as a function of k for two different stages: (i) when
the user loads Twitter and downloads her timeline, which consists of the lat-
est 20 tweets from the channels she is interested in, and (ii) when Twitter is
idle and just receives new incoming tweets for 30 minutes. We see that the
overhead is very low, even for large k, and can be easily handled by a home
DSL or even a mobile connection. The bandwidth consumption is much
lower in the idle stage, as expected, due to the low number of tweets per
second, as shown in Figure 4.17. The increased bandwidth during initial-
ization is because k-subscription asks for more tweets to display the default
page of 20 tweets only from channels that user is interested in. However,
the initialization lasts for just few seconds, e.g., 7.7 seconds for k = 100
and 2.8 seconds for the vanilla system. Thus, the increased bandwidth in
Figure 4.19a, corresponds to short term spikes, while the low bandwidth
in idle stage (see Figure 4.19b) corresponds to much longer periods, as the
user keeps Twitter’s page open in the browser.

In Figure 4.19, we also compare the bandwidth consumption of k-
subscription with a Tor browser. Although Tor offers a completely differ-
ent type of anonymity than k-subscription, it could be used with a fake ac-
count as a different approach to hide user’s interests. Thus, we evaluate
k-subscription using the performance of Tor with a fake Twitter account as a
baseline case. We see that Tor adds an additional bandwidth overhead due
to its data encapsulation. In particular, the average packet size of Twitter
traffic over Tor is 789 bytes, when the vanilla Twitter traffic has an average
packet size of 239 bytes. This is the main reason that during the idle stage
the bandwidth consumption of Tor is quite higher than the consumption of
k-subscription, e.g., two times higher when k = 90. During the initialization
stage, Tor has a higher bandwidth consumption than k-subscription with val-
ues of k up to 10, and lower consumption when k exceeds 10. This is due
to the increased number of tweets downloaded at startup by k-subscription
with high k values to construct a full page of useful tweets. However, as
the initialization stage lasts only for few seconds, compared with idle stage,
k-subscription adds less overhead in terms of bandwidth.

When k-subscription compounds the user’s timeline, it continues to
download tweets in the background until it reaches a certain number, which
is constant for each k value. This way, k-subscription avoids leaking any
information that Twitter could analyze to find out the channels a user is
interested in.

www.syssec-project.eu 97 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

4.3.5.3 Browsing Latency

In our next experiment we set out to explore the latency that k-subscription
imposes to user’s browsing experience. We instrumented our browser exten-
sion to measure the latency from the time that a user asks for one or more
tweets till the time that the browser actually displays the relative informa-
tion in the page, excluding any tweets from noise channels. This latency
includes the time spent in network for downloading tweets, as well as the
time spent in the CPU for excluding the noise and rendering the page. Note
that the user’s timeline is fully rendered when all the 20 tweets needed are
received, despite the fact that more tweets are downloaded in the back-
ground to hide the actual user’s interests.

Figure 4.20 shows the latency for displaying a page with k-subscription
for several values of k when the user opens Twitter and loads her timeline.
We see that the latency for downloading and displaying a full page with 20
tweets slightly increases with the number of noise channels, reaching to 7.7
seconds for k = 100 when without k-subscription (see k = 1) the latency to
display the same page is 2.8 seconds. Therefore, a slight delay of less than 5
seconds is not expected to significantly affect the user’s browsing experience,
while, at the same time, it enhances her privacy. Selecting a smaller number
of noise channels results in even lower latency. Note that this small delay
is only observed at the initialization stage, due to the increased number of
tweets needed to construct the user’s actual timeline. When the browser
remains open (idle stage) we do not observe any noticeable delay to render
the incoming tweets, even at very high values of k. If an incoming tweet
belongs to a noise channel we just drop it, else it is immediately given to user
with no further delay. Thus, our approach does not impose any significant
overhead to the browsing latency.

In Figure 4.20 we also compare the browsing latency of k-subscription
and Tor. We see that Tor requires a much higher latency to display Twitter’s
page, close to 10 seconds. This is due to the longer path from user to Twitter
through the anonymization network.

During the previous experiments we measured the CPU load of the
browser, using the Linux’s time utility. The CPU load was negligible for all
values of k, always less than 1%, even for k = 100. Thus, our k-subscription
browser extension does not add any considerable CPU overhead to the sys-
tem.

4.3.6 Lessons Learned

Although microblogging services enable users to have timely access to their
information needs through a publish-subscribe model, this creates major
privacy concerns. As users declare all channels they are interested in follow-
ing, the microblogging service is able to gather all their interests, including

www.syssec-project.eu 98 January 9, 2015

4.3. PRIVACY-PRESERVING MICROBLOGGING BROWSING THROUGH
OBFUSCATION

possible privacy-sensitive domains. To remedy this situation, we propose
k-subscription: an obfuscation-based approach that encourages the users to
follow k1 additional “nois” channels for each channel they are really inter-
ested in following. We present a detailed analysis of our approach and show
that by fine-tuning the k parameter we are able to reduce the confidence
that the microblogging service has in knowing which channels each user is
really interesting in. We have developed a prototype implementation as an
extension for the Chrome browser using Twitter as case study. Our exper-
imental evaluation shows that users may easily follow hundreds of noise
channels with minimal run-time overhead when they receive news they are
interested in. We believe that as an ever-increasing number of users turn to
microblogging services for their daily information needs, privacy concerns
will continue to escalate, and solutions such as k-subscription will become
increasingly more important.

www.syssec-project.eu 99 January 9, 2015

CHAPTER 4. ATTACKS ON PRIVACY

www.syssec-project.eu 100 January 9, 2015

5
Attacks on Social Networks

5.1 Introduction

This chapter provides our research work related with cybersecurity attacks
on social networks and their users’ privacy. The different topics covered in
this chapter contain attacks to social networks ranging from how spammers
can exploit social networks to serve their malicious intentions (Section 5.2),
or other forms of cyber-attack like attacks against authentication mecha-
nisms (Section 5.3) to social network profile cloning attacks (Section 5.4).
In Section 5.2, In this work, we demonstrate that social networks are an
enormous and ever expanding pool of information that can be used as a
stepping stone for personalized phishing campaigns. We demonstrate that
even by retrieving the most basic information, i.e., the name of the user,
we are able to harvest millions of email addresses. We present two differ-
ent approaches to harvesting; blind harvesting that aims to gather as many
email addresses as possible, querying for names retrieved from OSNs in the
Google search engine, and targeted harvesting that aims to gather email ad-
dresses and correlate them to personal information publicly available on
social networking sites. In Section 5.3, we systematize and expand previ-
ous work, which pointed out (i) the feasibility of recognizing people’s faces
using Facebook photos, and (ii) the theoretical issues with face-based SA.
This systematization allows us to describe an attack that breaks Facebook’s
SA mechanism, while retaining the assumptions of their threat model. We
present our black-box security analysis of Facebook’s SA mechanism and
point out its weaknesses (and implementation flaws) when employed as the
second factor of a two-factor authentication scheme. We design and im-
plement an automated, modular system that leverages face detection and
recognition to break Facebook’s SA efficiently. We, thus, show the feasibility
of such an attack in large-scale. Moreover, we show that publicly-available
face recognition services offer a very accessible and precise alternative to

101

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

building a custom face recognition system. We discuss how Facebook’s SA
scheme should be modified so that users can trust it as a second authentica-
tion factor. Finally, in Section 5.4, In this work, we propose a tool that au-
tomatically seeks and identifies cloned profiles in social networks. The key
concept behind its logic is that it employs user-specific (or user-identifying)
information, collected from the user’s original social network profile to lo-
cate similar profiles across social networks. Any returned results, depending
on how rare the common profile information is considered to be, are deemed
suspicious and further inspection is performed. Finally, the user is presented
with a list of possible profile clones and a score indicating their degree of
similarity with his own profile. The contributions of this work are the fol-
lowing. We design and implement a tool that can detect cloned profiles in
social domains, and conduct a case study in LinkedIn. We present a study
of the information publicly available on a large number of social network
profiles we collected.

5.2 Using Social Networks to Harvest Email Addresses

This work is described in detail in its extended version [95].

5.2.1 Harvesting email addresses

In this section we give a brief overview of the current methodologies used
by spammers to harvest email addresses.

Web crawling. Email addresses of users are posted in various places
on the Web. Personal web pages, blogs and forums are such examples.
By crawling the web attackers can gather thousands of email addresses.
However, this methodology suffers from low scalability as web crawling is a
very time-consuming and bandwidth-demanding process.

Crawling archive sites. Attackers can narrow down their crawling to
sites they know contain thousands of email addresses. For example, the
Mailing List Archives site [33] hosts archives for thousands of computer-
related mailing lists. The obfuscation used to prevent crawlers from extract-
ing addresses is very simple to bypass, as addresses are written in the form
“username () domain ! top-level-domain”.

Malware. Attackers can instrument their malware code to collect ad-
dresses from the email clients of infected users or their instant messaging
clients. Given the widespread use of email clients and popularity of instant
messaging networks, this technique provides good scalability.

Malicious sites. Attackers can lure users to sites and request for their
email addresses in exchange for providing porn content and warez sites can
offer access to movies and software provided that the user “registers” with
their service.

www.syssec-project.eu 102 January 9, 2015

5.2. USING SOCIAL NETWORKS TO HARVEST EMAIL ADDRESSES

Dictionary attacks. One can form email addresses by taking words from
a dictionary. For example, the spammer can concatenate “john” with the
domain “hotmail.com” to form the email address “john@hotmail.com”. Dic-
tionary attacks can be classified into one of two types: blind attacks and
search-based ones. Blind attacks try to guess email addresses by random
concatenation of dictionary words and popular email domains. In this case,
the attacker would send spam to “john@hotmail.com” without any knowl-
edge of the validity of the email address. This approach is not efficient and is
limited to the dictionary size. Search-based attacks make use of Web search
engines to validate the addresses acquired by the dictionary concatenation.
The attacker now searches for “john@hotmail.com” and parses the results
for email addresses. This approach is more efficient as it can return more
addresses than expected. As an example, searching for “john@hotmail.com”
can also lead to “other.john@hotmail.com” and “john@hotmail.de”.

In this work, we describe a new approach on how attackers can use
information from social networks to perform more advanced search-based
dictionary attacks. Instead of using words from a dictionary, an attacker can
crawl popular social networks and use the collected user names or pseudon-
ames as search keywords. This approach has two major advantages. First, it
scales with the growth rate of social networks. While dictionaries are limited
to few hundred thousand terms, the number of user names and pseudon-
ames that can be found in social networks is in the order of hundreds of
millions. Second, information from social networks can be used for person-
alizing spam campaigns. For example, attackers can use the full names of
users in order to construct more convincing spam emails. We describe our
approach in more detail in Section 5.2.2.

5.2.2 Using Social Networks to harvest email addresses

Social networks provide a plethora of personal information. Users upload
reports from their daily activities, political and religious status, events they
have or will attend, photos, comments for other users and many more. Once
a user has managed to become a friend with someone, he can extract various
pieces of information that can be used for illegal purposes.

Even though social networking sites cannot protect users from other
malicious users that want to harvest personal information through social
engineering tricks, they protect email addresses from automated harvest-
ing. Before we describe how to use social networks as harvesting engines,
we present the defensive measures taken by two popular social networking
sites, Facebook and Twitter. Facebook does not reveal a user’s email ad-
dress to any other user that is not in his friend list. In case the harvester is
in the list, the user’s email address is presented as a GIF image to prevent
automated extraction. Twitter, on the other hand, does not reveal a user’s

www.syssec-project.eu 103 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

email address in any form. However, the personal information that is re-
vealed includes the user’s name, personal web page, location and a short
bio description.

We identify and outline two different strategies that spammers may fol-
low depending on the type of spam campaigns they wish to promote. First,
we have spammers that propagate emails that contain advertisements for
various products. This type of spammer will follow the blind harvesting ap-
proach which is the technique that will result in gathering as many email
addresses as possible. Second, we have spammers that use spam emails to
propagate scams, such as phishing campaigns. This type of spammer will
use the targeted harvesting technique that returns a much smaller number of
results, but harvests information that can be used to craft very convincing
personalized emails.

5.2.2.1 Blind harvesting

This technique aims to blindly harvest as many email addresses as possible
in an efficient manner. The spammer does not care for personal information
but simply wishes to gather email addresses. As shown by our results in
Section 5.2.3.1, using social networks in conjunction with search engines is
the most efficient method to harvest large numbers of email addresses.

We follow the same approach for both Facebook and Twitter to harvest
email addresses. We initially crawl both networks to find names. As the
structure and properties of the Facebook and Twitter networks differ, we
have implemented two different crawlers for extracting names. One might
use the Facebook search utility to search for and harvest names. However a
far more efficient way is to use Facebook fan pages. Users become fans of an
artist or an activity. One can freely browse all the names of a fan page. For
example, the fan pages of Madonna and Shakira (popular pop artists) have
1.3 and 1.7 million fans respectively, while Barack Obama has 8.8 million.
Any attacker can visit a popular fan page, and will immediately have access
to millions of names. In the case of Twitter, we started from one initial
account and then crawled the accounts the user follows, then the accounts
they follow and so on. As we were interested only in the users’ names and
nicknames and not the actual tweets, this simple crawling is effective and
fast for harvesting names.

Once the names have been harvested, they are used as terms in a
search engine query. We used the Google search engine to locate email
addresses. For each search term we query 8 different combinations
(“term@hotmail.com”, “term”, “term@msn.com”, “term@windowslive.com”,
“term@“, “term at“, “term@gmail.com”, “term@yahoo.com”) and for each
query we retrieve the first 50 results. For scalability and efficiency reasons
we do not open the URLs returned by the search engine. Instead, we parse
the two-line summary provided in the results, for email addresses. This re-

www.syssec-project.eu 104 January 9, 2015

5.2. USING SOCIAL NETWORKS TO HARVEST EMAIL ADDRESSES

sults in us missing a number of email addresses that may not be returned in
the summary, however we remove a large overhead of having to parse the
whole page. Our parser takes into account the various techniques used to
hide email addresses from web crawlers, such as “username [at] domain”.

5.2.2.2 Targeted harvesting

Attackers that rely on spam messages to propagate phishing schemes, can
craft personalized phishing emails that are far more efficient than tradi-
tional techniques, by using personal information publicly available in social
networks. Even though the blind harvesting technique can collect millions
of email addresses efficiently, it presents a low probability of having these
addresses matched to the name of their owners. The targeted harvesting ap-
proach links names to email addresses with a high probability, if not, abso-
lute certainty. Furthermore, it enables the gathering of additional informa-
tion that can render a targeted message much more convincing. Depending
on the attack and the amount of personal information the attacker wants to
collect, we describe three different methodologies for targeted harvesting.

Reverse lookup emails on Facebook. In the first case, we rely solely
on the email-based search functionality of Facebook. Facebook allows users
to search for other users based on their email address. We were surprised
to find that even if the user has protected his email address through the pri-
vacy settings, and has made it visible only to him, his name will still show
up in the search results when someone searches his email address. Only if
the user disables his inclusion in public search results, we will not be able
to find him using his email address. However, by default, Facebook includes
users in search results. We collect names from highly populated Facebook
fan pages and use the blind harvesting technique to search for email ad-
dresses using Google. We then search for the harvested email addresses in
Facebook and obtain the results. This way we have a pair of a user’s profile
and his email address (and any other information that is public), the ba-
sic information needed for a personalized phishing email. We can augment
the collected information of the matched users by inviting them to become
our friends. Once a user has accepted, we now have access to all the infor-
mation posted in his Facebook profile. Our results from a series of initial
experiments showed that 30% of the random invitations were accepted.

A major advantage of this technique is that it does not only maps an
email address to the owner’s social profile, but also provides a technique for
validating email addresses without the need of sending “probing” emails.
When no profile is returned for a specific email address we cannot con-
clude if the email address is valid or not. However, when a user’s pro-
file is returned, we ascertain that the specific email is valid, since the user
has entered it in his profile’s contact information. Therefore, all the email
addresses harvested using this technique are valid and eliminate the over-

www.syssec-project.eu 105 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

head of sending spam emails to many email addresses that are not valid.
This is another advantage for spammers, since by eliminating all the emails
that would be sent to invalid addresses and reducing the overall volume
of the spam emails they send, they may be able to evade spam detection
systems [116] that rely on the collection of a large number of spam emails.

Nickname-based Email Harvesting. In the second case we aim to use
information that is available on Twitter in order to narrow down the search
space of our first technique and improve its efficiency. This is done by us-
ing the nickname information available on Twitter. Many people tend to
create a nickname that they consistently use across different domains and
email providers. Our method crawls Twitter and collects name and nick-
name pairs. We then query Google using the nickname as a search term and
extract email addresses that are an exact match (for example, if the nick-
name was “john doe 1” we would only extract emails of the form “john -
doe 1@domain.com”). This provides an association between a name and
one or more email addresses. Next, we use the harvested email addresses as
terms in the email-based search functionality of Facebook, exactly as in the
first technique. Using this approach, one has to check much fewer email ad-
dresses than the first technique and, additionally, the success rate is higher
as Twitter users will probably also have a Facebook account. The innovation
of this technique is that it combines disjoint sets of personal information
publicly available on different social networks and can be fully automated.

Site-aware Harvesting. In the third case, we employ Google’s Buzz [27],
a recently launched social networking service. In a nutshell, Buzz is a
Twitter-like social networking service (based on follower/followee rela-
tions), along with content feeds and integration with other Google services
(Gmail, Google Reader, Picassa, YouTube etc.). Each Buzz user has a Google
profile page that contains basic information about him and his follower/-
followee relations. The Google profile page URL can either be based on
the Google account username or a random long numeric identifier. The
Google account username acts as a global identifier for all Google services,
including the Gmail service. This means that if a user’s Google profile URL
includes his username and the user appears in the Buzz graph, then we au-
tomatically know his Gmail address. Thus, we can use the social graph of
Buzz as a means to discover Gmail addresses. This approach has two major
advantages. First, all harvested emails are valid. Second, and most im-
portant, for all collected email addresses we have the name of their owner,
as we can extract it from the corresponding profile page. Moreover, since
Buzz actually prompts the user to link and fetch content from other sites
such as Twitter, Flickr, Google Reader, YouTube, FriendFeed and LinkedIn,
the attacker can enrich the amount and type of information assembled and
utilized for the targeted spam campaign. We crawl Buzz profiles, through
the Buzz search feature, by looking up names collected from Facebook and
extract the follower/followee relations, wherever it is feasible. Additionally,

www.syssec-project.eu 106 January 9, 2015

5.2. USING SOCIAL NETWORKS TO HARVEST EMAIL ADDRESSES

references to unrelated profiles are returned by the search results as part
of the indexed content. In the case where the user hides his relations, we
are still able to process the profile contents, comprised of messages from
and to other users. All names, that are rendered as clickable links to their
respective profile pages, have their profile identifiers exposed. Even if Buzz
decides to remove these links, effectively crippling the usability of the pro-
file page, we could simply collect their names and look them up separately
through the Buzz search feature.

5.2.3 Measurements

Here we evaluate the proposed email harvesting techniques described in
detail in Section 5.2.2. Furthermore we compare our techniques with the
currently used approaches described in Section 5.2.1. Finally, we perform a
study regarding the use of harvested information in a spam campaign.

5.2.3.1 Blind Harvesting

We evaluate the use of our blind harvesting technique in comparison to
current approaches. For obvious reasons we have omitted the malware and
malicious site approaches from our comparison. Before proceeding to the
analysis we first present and explain the comparison axes of our evaluation.
We use three metrics:

• Addresses-per-keyword ratio. It is one of the most important met-
rics. A low ratio means that for each keyword queried the number of
email addresses harvested is low. A high ratio means that the method-
ology can extract tens or hundreds of email addresses per keyword.

• Traffic volume ratio. Using search engines and sites for harvesting
purposes requires downloading millions of pages. Downloading Gi-
gabytes of data to harvest only a few email addresses decreases the
scalability of the approach.

• Automation. Harvesting methodologies must be automated in order
to be efficient. Although some approaches present high addresses-per-
keyword ratio, they require manual intervention as they use informa-
tion that does not expand and is located in multiple locations.

Address-per-keyword Ratio. Our first measurement evaluated the
addresses-per-keyword ratio between our blind harvesting technique and
four traditional harvesting methods: crawling archive sites, crawling the
web for documents, a generic dictionary attack and a specialized dictio-
nary attack. We crawled the MARC [33] and the W3C archive [42] sites
to search for email addresses. For the document harvesting experiment, we

www.syssec-project.eu 107 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

Dataset Unique
emails

Ratio

Facebook
Names

82,383 3,706,493 1:45

Twitter
Names

87,334 2,012,391 1:23

Twitter Nicks 31,358 784,099 1:25
Dictionary 146,973 3,630,071 1:24.7
Surnames 23,300 2,200,225 1:94
Documents 680,973 445,678 1:0.65
MARC 438,722 5,265 1:0.012
W3C 376,641 330,436 1:0.87

Table 5.1: A detailed listing of the dataset size and the number of unique
email addresses harvested for each technique.

Harvesting method

F
a

c
e

b
o

o
k

T
w

it
te

r_
n

a
m

e

T
w

it
te

r_
n

ic
k
_

a
ll

D
ic

t_
g

e
n

e
ri
c

D
ic

t_
s
u

rn
a

m
e

s

W
e

b
_

d
o

c
s

A
rc

h
iv

e
s
_

M
A

R
C

A
rc

h
iv

e
s
_

W
3

C

A
d

d
re

s
s
e

s
 p

e
r

k
e

y
w

o
rd

0

10

20

30

40

50

60

70

80

90

100

45

23 25 24.7

94

0.65 0.012 0.87

Figure 5.1: Ratio of unique email ad-
dresses per keyword for various email
harvesting methodologies.

Harvesting method

F
a

c
e

b
o

o
k

T
w

it
te

r_
n

a
m

e

T
w

it
te

r_
n

ic
k
_

a
ll

D
ic

t_
g

e
n

e
ri
c

D
ic

t_
s
u

rn
a

m
e

s

W
e

b
_

d
o

c
s

A
rc

h
iv

e
s
_

M
A

R
C

A
rc

h
iv

e
s
_

W
3

C

T
ra

ff
ic

 v
o

lu
m

e
 p

e
r

a
d

d
re

s
s
 (

K
B

)

0

50

100

150

200

250

300

350

400

23.1
44 40.6 41.1

10.7

408 417

8

Figure 5.2: Ratio of traffic volume per
email address for various harvesting
methodologies

only retrieved MS Word, Excel, Powerpoint and PDF documents as a step to
narrow down our search space. For the generic dictionary attacks, we used
keywords from an English dictionary [31]. For the specialized dictionary
attack we used the 23,300 most popular English surnames [26]. For our
harvesting techniques we extracted user names from Facebook and Twit-
ter as well as user “nicknames” from Twitter. In all the experiments, we
extracted all email addresses from the Google query results, and addition-
ally evaluated the case where email addresses were an exact match to the
Twitter nicknames.

The results are summarized in Figure 5.1. In the case of Facebook, we
extracted emails with a ratio of 1:45, i.e., we were able to harvest, on av-
erage, 45 unique email addresses per name queried. Using Twitter names,
we achieved a ratio of 1:23, while a dataset of nicknames returned 25 ad-
dresses per query. The highest ratio observed was by the specialized version

www.syssec-project.eu 108 January 9, 2015

5.2. USING SOCIAL NETWORKS TO HARVEST EMAIL ADDRESSES

of the dictionary attack, which yielded 94 addresses per keyword. In fact,
this methodology was expected to harvest a larger number, as it follows a
similar approach but takes the most popular English names. However, this
method suffers from scalability issues as described later in this section. The
generic dictionary attack, contrary to the specialized one, achieved a lower
ratio of 1:24.7. Crawling the web for documents returned 0.65 addresses
per file downloaded. Finally, in the case of archive site crawling, the ratio
for MARC and W3C archives is 1:0.012 and 1:0.87 respectively, where the
ratio is defined as addresses extracted per page fetched. The low ratio for
crawling sites is due to the download of structure pages, which are pages
without any email address that contain hyperlinks to pages deeper in the site
hierarchy. In fact, 96.7% of the MARC pages were structure pages as this
site is deeply nested. The W3C archive follows a more flat structure: 16.5%
of the pages were structure pages. Ideally, if we exclude the structure pages,
the ratios for the MARC and W3C archive become 1:0.4 and 1:1.05 respec-
tively. Table 5.1 depicts the size of the aforementioned datasets, along with
the count of harvested email addresses which produce the respected ratios.

Traffic Volume Ratio. Our second metric focuses on the cost per email
address in Kbytes. The results are summarized in Figure 5.2. The traffic
volume for the Facebook case is the number of names times the page size
of Google results, that is 82,383 names times 130 Kbytes per Google result
page times 8 (8 search combinations per name). The total traffic volume
is around 79.8 Gbytes for approximately 23.1 Kbytes per email address.
In the case we use names taken from Twitter, the ratio is 44 Kbytes per
email address. When we use Twitter nicknames, the ratio drops down to
40.6 Kbytes per address. In the case of downloading office documents, the
total volume of files was 181.6 Gbytes plus an additional 1.6 Gbytes for
the Google queries, that is 408 Kbytes per email address. For the generic
dictionary attack, we retrieved 142.3 Gbytes of search results which gives a
ratio of 41.1 Kbytes per email address. For the specialized dictionary attack
using popular surnames, we fetched 22.5 Gbytes of search results, that is a
ratio of 10.7 Kbytes per email address. Finally, for the archive site crawling
experiments, we downloaded 4.6 Gbytes, a ratio of 14.8 Kbytes per address
in total. If we examine the two archive sites separately, the ratio for MARC
is 417 Kbytes per address and for W3C is 8 Kbytes per address.

Automation. Our proposed harvesting technique is highly scalable. As
we use information retrieved from social networks, our approach follows
their growth rate. Therefore, our technique is fully automated as it ex-
pands, and no further manual intervention is needed for collecting more
names that will be used as seeds. On the other hand, document crawling,
generic dictionary attacks, and attacks based on surnames present very low
scalability as the search terms are static, unlikely to change and have a lim-
ited dictionary size. Therefore, the process is semi-automated as customized
crawlers have to be implemented for all new sites incorporated. Crawling

www.syssec-project.eu 109 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

mailing list archives presents medium scalability as we extract information
from communities that expand, but that are interested in specific topics and
expand with a much slower rate than social networks. This technique is also
a semi-automated process, as most of the sites follow their own format to
depict email addresses, and the appropriate regular expressions have to be
written by hand.

Overall, while the harvesting technique that uses surnames presents a
higher ratio for keywords per email and a smaller cost, it is not the optimal
and most efficient one as it relies on a finite and limited dictionary that
does not expand. On the other hand, while the blind harvesting technique
exhibits a lower ratio and slightly higher cost, it has the advantage of being
scalable, as it follows the expansion rate of social networks. In the long run,
we consider this to be the optimal solution for large-scale efficient harvesting.

5.2.3.2 Effectiveness of Targeted Harvesting

The second part of our evaluation focuses on our targeted harvesting tech-
niques. Our experiment aims at measuring the effectiveness of these tech-
niques for conducting personalized phishing campaigns. The results depict
the percentage of names for which we can harvest at least one of their ac-
tual email addresses with each technique and therefore represent its effec-
tiveness. We created two datasets containing randomly selected names from
our databases. For reasons explained below, we selected names comprised
solely of a first and last name, excluding middle names, dots or hyphens.

The first dataset contained 9000 names collected from a Facebook fan
page. We used this dataset to evaluate our first targeted harvesting tech-
nique: for each name, we blindly harvested email addresses using the name
as a search term in the Google engine and collected any search results. We
then looked up the harvested email addresses using the Facebook search
feature. If one or more profiles were returned, we checked whether any
of them had a matching name with the one collected from the Facebook
fan page and coupled with the email address in question. Overall, about
11.5% of unique names were associated with an email address that yielded
a matching profile result from Facebook.

The second dataset was collected from crawling the Twitter network.
For the second targeted harvested technique we wanted to measure the
effectiveness of employing strict heuristics during the initial collection of
email address through Google Search. For that matter, we included only
exact match results of email addresses, i.e. only those whose prefix was
identical to the Twitter username of the user being queried. Overall, using
this strict Google search heuristic, we assembled 38986 <name,email> tu-
ples, corresponding to 15627 unique names collected by our Twitter crawler.
From those names, we selected 8,986 which did not contain middle names
or special characters, just like in the first experiment. The reason for this

www.syssec-project.eu 110 January 9, 2015

5.2. USING SOCIAL NETWORKS TO HARVEST EMAIL ADDRESSES

filtering lies on the straightforward verification heuristic we employed; for
each email address coupled with a name, we looked it up using Facebook
search and, from any profile results returned, considered a match only if
the name was exactly the same as the one in the dataset. Therefore, en-
tries with middle names or special characters, having a larger possibility of
being written differently across disjoined social networks, were excluded.
The addresses were grouped by the Twitter nickname that resulted in their
discovery. From the 8,986 users, 3,588 (39.9%) returned a Facebook profile
and 1,558 (17.8%) were an exact match. Thus, 43.4% of the names, that
returned a profile, had a user name that was an exact match to the Twitter
profile name. By using a fuzzy string matching approach we could improve
the success percentage. It should be noted that names, that their harvested
emails did not yield any Facebook results, may or may not be true positives
of the targeted harvesting technique.

In comparison, the first and second methodologies, i.e., loose and strict
collection of email address from Google search, may appear to be similarly
effective with 11.5% and 17.8% of the names being a match. However, in
the first case, a name is coupled with a much greater set of possible email
addresses, requiring far more lookups in the Facebook than the second. In
detail, in the first case, each name was coupled with an average of 104
email address, while, in the second case, only 4 address lookups took place
for each name. Consequently, in the first case, 0.2% of email address re-
turned a profile result with a matching name, while in the second case the
effectiveness climbed to 7%.

In regards to the Google Buzz approach, we used 1705 names and 850
of the most common English words (such as book, chair etc.) as search
terms. We gathered a total of 59,680 Google profile URLs. 40.5% of the
Google profile URLs (24,206 profiles) included the users’ Google username,
also used by default as their email address prefix, while the rest of the pro-
files were assigned random identifiers. This means that for each search term
we gather approximately 22 Google profile URLs and around 9 valid Gmail
accounts. As mentioned in section 5.2.2, all email addresses extracted from
the profile usernames are valid Gmail accounts.

5.2.3.3 Study of harvested personal info

In this section, we present a study based on the personal information pub-
licly available on Facebook profiles harvested from our second targeted har-
vesting technique. As mentioned in Section 5.2.3.2, 1,558 unique names
were associated with at least one email address which yielded an exact-
match profile match in Facebook, thus verifying the initial <name,email>
association made by the Twitter crawler. Some of those names had more
than one email addresses providing matching profiles. We investigated

www.syssec-project.eu 111 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

Label Popularity
Current City 41.8% (667)
Hometown 38.8% (619)
Employers 24.9% (397)

College 24.5% (391)
High School 24.1% (385)

Relationship Status 21.0% (335)
Grad School 8.8% (140)

Birthday 3.9% (63)
Anniversary 3.4% (54)

Religious Views 2.5% (40)
Political Views 2.3% (36)

Table 5.2: Selected labels of personal information available on a Facebook
profile page and their respective popularity among the matching profiles of
the targeted harvesting evaluation.

Category Frequency
TV/Cinema 50%

Music 24%
Activity/Sports 10%

City/Travel 11%
Various 3%

Technology 2%

Table 5.3: Content categorization of the 100 most frequent items in a Face-
book profile page.

those cases and concluded that the profiles belonged to different people that
shared the same name. Overall, 1,558 names led to 1,597 distinct profiles.

In Table 5.2, we present some selected labels of information, availabe
on the Facebook profiles we harvested, which we consider to reveal per-
sonal information that can be exploited by attackers for targeted phishing
attacks. For instance, one may use information about current employers or
a person’s studies to fake a workplace or college-related message. By adding
such information, the email becomes more convincing and is therefore more
likely to fool its recipient. For a full list of the categories, the reader may
refer to the Appendix, at the end of this work.

Subsequently, we proceed to examine the content of the Facebook pro-
file, i.e., the page elements. We select the top 100 that appear more fre-
quently among our dataset and apply a manual categorization. Table 5.3
summarizes the results. One may observe that items related to TV and
cinema are the most common. An attacker could lure victims by crafting
phishing messages to include references to such popular content.

www.syssec-project.eu 112 January 9, 2015

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION

As shown by recent phishing campaigns [29], attackers use information
regarding a victim’s Facebook contacts, to impersonate their friends and
trick them into giving them money. This type of attack could easily propa-
gate to email phishing campaigns. To measure the feasibility of such attack,
we calculate the percent of the harvested profiles which expore their re-
spective friend lists. Overall, 72.6% of them, leak such information and the
mean number of friends is 238.

5.2.4 Lessons Learned

In this work, we present how information, that is publicly available in social
networking sites, can be used for harvesting email addresses and deploy-
ing personalized phishing campaigns. We argue that an inherent challenge
of a social network is the visibility of its members. The mere participation
of a user renders him a target for personalized. We present two different
approaches to harvesting email addresses. Blind harvesting uses names col-
lected from social networking sites and aims to collect as many email ad-
dresses as possible. Using this technique we were able to harvest millions
of email addresses in an efficient fashion. Targeted harvesting aims to har-
vest email addresses that can be mapped to a name and publicly available
information and, thus, greatly enhance the efficiency of a spam campaign.
We present three such techniques. The first technique blindly harvests email
addresses and uses Facebook to map them to a user name, with a success
rate of 11.5%. By using information available in the Twitter network we
are able to narrow the search space and accurately map 43.4% of the user
profiles.

5.3 Breaking Facebook’s Social Authentication

An extended version of this work can be found in [96].

5.3.1 Social Authentication

We first here describe the nature of Facebook’s SA in terms of functionality
and heuristics. We go beyond a general description and evaluate its behavior
under real-world conditions. Facebook’s SA was announced in January 2011
and, to the best of our knowledge, is the first instance of an authentication
scheme based on the “who you know” rationale: A user’s credentials are
considered authentic only if the user can correctly identify his friends.

5.3.1.1 How Social Authentication Works

After the standard, password-based authentication, the user is presented
with a sequence of 7 pages featuring authentication challenges. As shown

www.syssec-project.eu 113 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

Figure 5.3: Example screenshot of the user interface of a Facebook SA page.

in Fig. 5.3, each challenge is comprised of 3 photos of an online friend; the
names of 6 people from the user’s social circle are listed and he has to select
the one depicted. The user is allowed to fail in 2 challenges, or skip them,
but must correctly identify the people in at least 5 to pass the SA test.

5.3.1.2 Requirements for Triggering

Based on our analysis, Facebook activates the SA only for the fraction of
accounts that have enough friends with a sufficient amount of tagged photos
that contain a human face.

Friend list. SA requires that the user to be protected has a reasonable
number of friends. From our experiments we have concluded that, in the
case of Facebook, a user must have at least 50 friends. To obtain this infor-
mation, we created 11 distinct dummy profiles and increased the number of
friends of these accounts on a daily basis, until we managed to trigger the
SA (detailed in Section 5.3.6).

Tagged photos. The user’s friend must be tagged (placed in a labeled
frame) in an adequate number of photos. Keep in mind that since these are
user-submitted tags, Facebook’s dataset can get easily tainted. People often
erroneously tag funny objects as their friends or publish photos with many
friends tagged, several of whom may not actually be present in the photo.

Faces. SA tests must be solvable by humans within the 5 minute (circa)
time window enforced by Facebook. We argue that Facebook employs a face
detection algorithm to filter the dataset of tagged people to select photos
with tagged faces. From our manual inspection of 127 instances of real SA
tests (2,667 photos), we have noticed that Facebook’s selection process is
quite precise, despite some inaccuracies that lead to SA tests where some
photos contain no face. Overall, 84% of these 2,667 photos contained at
least one human-recognizable face, and about 80% of them contained at
least one face such that an advanced face detection software can discern—
in this test, we used face.com. To validate our argument on the use of face
detection filtering, we repeated the same manual inspection on a different
set of 3,486 photos drawn at random from our dataset of 16,141,426 photos

www.syssec-project.eu 114 January 9, 2015

face.com

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION

(detailed in Section 5.3.4). We then cropped these images around the tags;
hence, we generated a SA dataset in the same manner that Facebook would
if it naively relied only on people’s tagging activity. Only 69% (< 84%) of
these photos contain at least one recognizable human face, thus the baseline
number of faces per tag is lower in general than in the photos found in the
real SA tests. This confirms our hypothesis that Facebook employs filtering
procedures to make sure each SA test page shows the face of the person in
question in at least one photo.

Triggering. Facebook triggers the SA when it detects a suspicious login
attempt, according to a set of heuristics. Our experiments reveal that this
happens when (i) the user logs in from a different geographical location, or
(ii) uses a new device (e.g., computer or smartphone) for the first time to
access his account.

5.3.1.3 Advantages and Shortcomings

The major difference from the traditional two-factor authentication mech-
anisms (e.g., confirmation codes sent via text message or OTP tokens) is
that Facebook’s SA is less cumbersome, especially because users have grown
accustomed to tagging friends in photos. However, as presented recently
by Kim et al. [80], designing a usable yet secure SA scheme is difficult in
tightly-connected social graphs, not necessarily small in size, such as uni-
versity networks.

Our evaluation suggests that SA carries additional implementation draw-
backs. First of all, the number of friends can influence the applicability and
the usability of SA. In particular, users with many friends may find it difficult
to identify them, especially when there are loose or no actual relationships
with such friends. A typical case is a celebrity or a public figure. Even nor-
mal users, with 190 friends on average1, might be unable to identify photos
of online contacts that they do not interact with regularly. Dunbar’s num-
ber [65] suggests that humans can maintain a stable social relationship with
at most 150 people. This limit indicates a potential obstacle in the usabil-
ity of the current SA implementation, and should be taken into account in
future designs.

Another parameter that influences the usability of SA is the number
of photos that depict the actual user, or at least that contain objects that
uniquely identify the particular user. As a matter of fact, feedback [77]
from users clearly expresses their frustration when challenged by Facebook
to identify inanimate objects that they or their friends have erroneously
tagged for fun or as part of a contest which required them to do so.

Finally, in certain cases, Facebook currently presents users with the op-
tion to bypass the SA test by providing their date of birth. This constitutes

1https://www.facebook.com/notes/facebook-data-team/
anatomy-of-facebook/10150388519243859

www.syssec-project.eu 115 January 9, 2015

https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

a major flaw in their security mechanism. Obtaining the victim’s date of
birth is trivial for an adversary, as users may reveal this information on their
Facebook profile.

5.3.1.4 Threat Model and Known Attacks

Throughout this work we refer to the people inside a user’s online social
circle as friends. Friends have access to information used by the SA mecha-
nism. Tightly-connected social circles where a user’s friends are also friends
with each other are the worst scenarios for SA, as potentially any member
has enough information to solve the SA for any other user in the circle. How-
ever, Facebook designed SA as a protection mechanism against strangers,
who have access to none or very little information. Under this threat model,
strangers are unlikely to be able to solve an SA test. We argue that any
stranger can position himself inside the victim’s social circle, thereby gain-
ing the information necessary to defeat the SA mechanism. Kim et al. [80]
suggest that the progress made by face-recognition techniques may enable
automated attacks against photo-based authentication mechanisms. At the
same time, Dantone et al. [61] have demonstrated that social relationships
can also be used to improve the accuracy of face recognition. Moreover, Ac-
quisti et al. [48] went beyond the previous approach and presented a system
that can associate names to faces and, thus, de-anonymize a person solely by
using a picture of his or her face. Although no scientific experimentation on
real-world data has been made to measure the weakness of SA, these studies
suggest that the face-to-name relation, which is the security key behind SA,
may be exploited further to demonstrate that the scheme is insecure. Our
intuition that attackers can overcome the limitations of Facebook’s perceived
threat model has been the motivation behind this work.

5.3.1.5 Attack Surface Estimation

In our attack model, the attacker has compromised the user’s credentials.
This is not an unreasonable assumption; it is actually the reason behind
the deployment of the SA. This can be accomplished in many ways (e.g.,
phishing, trojan horses, key logging, social engineering) depending on the
adversary’s skills and determination [64]. Statistically speaking, our initial
investigation reveals that Facebook’s current implementation results in 2 out
of 3 photos of each SA page (84% of 3 is 2.523) with at least one face that
a human can recognize. This makes SA tests solvable by humans. However,
our investigation also reveals that about 80% of the photos found in SA tests
contain at least one face that can be detected by face-detection software.
This rationale makes us argue that an automated system can successfully
pass the SA mechanism. To better understand the impact of our attack,
we provide an empirical calculation of the probabilities of each phase of

www.syssec-project.eu 116 January 9, 2015

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION
C

o
m

p
ro

m
is

ed

a
cc

co
u

n
ts

Friend list

reachable

Photos

reachable

Private
friend list

Public
friend list

Accept
befriend
request

Refuse
befriend
request

Public
photos

Private
photos

Accept
befriend
request

Refuse
befriend
request

Untagged
photos

Tagged
photos

Tags

reachable

Tags of "private" UIDs
found on public

photos of friends

Friend list reachability Photos reachability Tags reachability

P(F) ≃ 47%

1−
P(F

) ≃
53%

P
(B

)
≃
70
%

84% (determined attacker)

P(P) ≃ 71%

1−
P
(P
) ≃

29%

P
(B

)
≃
70
%

1−
P(B

) ≃
30%

77% (determined attacker)

P(T
) =

17%
42%

100%

Reachable by Facebook
(100% of tagged photos)

Reachable by
a casual attacker

Casual attacker

Determined attacker

Access only to publicly-available information or
private tags that appears on public photos.

Access publicly-available information and
issues befriend requests to (friends of) victims.

33% (casual attacker)47% (casual attacker)

Dead branch

Figure 5.4: Attack tree to estimate the vulnerable Facebook population.

our attack. In other words, if an attacker has obtained the credentials of
any Facebook user, what is the probability that he will be able to access
the account? What is the probability if he also employs friend requests to
access non-public information on profiles? To derive the portion of users
susceptible to this threat, we built the attack tree of Fig. 5.4.

We distinguish between a casual and a determined attacker, where the
former leverages publicly-accessible information from a victim’s social graph
whereas the latter actively attempts to gather additional private information
through friendship requests.

Friends list. Initially, any attacker requires access to the victim’s friends
list. According to Dey et al. [62] P(F) = 47% of the user’s have their friends
list public—as of March 2012. If that is not the case, a determined attacker
can try to befriend his victim. Studies have shown [111, 53, 88, 54] that a
very large fraction of users tends to accept friend requests and have reported
percentages with a 60–90% chance of succeeding (in our analysis we use
70%, lower than what the most recent studies report). Therefore, he has a
combined 84% chance of success so far, versus 47% for the casual attacker.

Photos. Ideally the attacker gains access to all the photos of all the
friends of a victim. Then with a probability of 1 he can solve any SA test. In
reality, he is able to access only a subset of the photos from all or a subset
of the friends of a victim. Our study of 236,752 Facebook users revealed
that P (P) = 71% of them exposed at least one public photo album. Again
we assume that a determined attacker can try to befriend the friends of his
victim to gain access to their private photos with a chance of P (B) ' 70%
to succeed, which is a conservative average compared to previous studies.
At the end of this step, the determined attacker has on average at least one
photo for 77% of the friends of his victim while a casual attacker has that

www.syssec-project.eu 117 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

for 33%. This is versus Facebook which has that for 100% of the friends with
uploaded photos.

Tags. The next step is to extract labeled frames (tags) of people’s faces
from the above set of photos to compile 〈uid, face〉 tuples used by Face-
book to generate SA tests and by the attacker to train facial models so as
to respond to those tests. By analyzing 16, 141, 426 photos from out dataset,
corresponding to the 33% of friends’ photos for the casual attacker, we found
that 17% of these photos contain tags (hence usable for generating SA tests),
yet only the 3% contain tags about the owner of the photo. This means that
by crawling a profile and accessing its photos, it is more likely to get tags
of friends of that profile than of that profile itself. The astute reader notices
that Facebook also has to focus on that 17% of photos containing tags to
generate SA tests: Facebook will utilize the 17% containing tags of all the
photos uploaded by a user’s friends and therefore generate SA tests based
on 100% of the friends for whom tags are available, whereas an attacker
usually has access to less than that. In the extreme case, having access to
a single friend who has tagged photos of all the other friends of the target
user (e.g., he is the “photographer” of the group), the attacker will acquire
at least one tag of each friend of the user and will be able to train a face
recognition system for 100% of the subjects that might appear in an SA test.
In practice, by collecting the tags from the photos in our dataset we were
able to gather 〈uid, face〉 tuples for 42% of the people in the friend lists of
the respective users. Therefore, assuming that all of a user’s friends have
tagged photos of them on Facebook, a casual attacker is able to acquire
this sensitive information for 42% of the tagged friends used by Facebook to
generate SA tests. As we show in Section 5.3.6, with only that amount of
data, we manage to automatically solve 22% of the real SA tests presented
to us by Facebook, and gain a significant advantage for an additional 56%
with answers to more than half the parts of each test. We cannot calculate
the corresponding percentage for the determined attacker without crawling
private phots. However, we simulate this scenario in Section 5.3.5 and find
that we are able to pass the SA tests on average with as little as 10 faces per
friend.

Faces. Finally, from the tagged photos, the attacker has to keep the pho-
tos that actually feature a human face and discard the rest—we can safely
suppose that Facebook does the same, as discussed in Section 5.3.1.2. We
found that 80% of the tagged photos in our dataset contain human faces that
can be detected by face-detection software, and Facebook seems to follow
the same practice; therefore, the advantage for either side is equal. Over-
all, our initial investigation reveals that up to 84% of Facebook users are
exposed to the crawling of their friends and their photos. They are, thus,
exposed to attacks against the information used to protect them through
the SA mechanism. A casual attacker can access 〈uid, face〉 tuples of at
least 42% of the tagged friends used to generate social authentication tests

www.syssec-project.eu 118 January 9, 2015

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION

for a given user. Such information is considered sensitive, known only to
the user and the user’s circle, and its secrecy provides the strength to this
mechanism.

5.3.2 Breaking Social Authentication

Our approach applies to any photo-based SA mechanism and can be ex-
tended to cover other types of SA that rely on the proof of knowledge of
“raw” information (e.g., biographies, activities, relationships and other in-
formation from the profiles of one’s social circle). We focus on Facebook’s
SA, as it is the only widespread and publicly-available deployment of this
type of social authentication. As explained in Section 5.3.2.1, our attack
consists of three preparation steps (steps 1-3), which the attacker runs of-
fline, and one execution step (step 4), which the attacker runs in real-time
when presented with the SA test. Fig. 5.5 presents an overview of our sys-
tem’s design.

CRAWL

VICTIM'S

FRIEND LIST

ISSUE

BEFRIEND

REQUESTS

PHOTO

COLLECTION

AND MODELING

UIDs

MODELS

<Face model, UID>

UIDs

UIDs

UIDs

UIDs

Victim's UID

Step 1 Step 2

Step 3

?

UIDs

NAME

LOOKUP

Step 4

Suggested
names

Query

Figure 5.5: Overview of our automated SA-breaking system.

5.3.2.1 Implementation Details

Step 1: Crawling Friend List
Given the victim’s UID, a crawler module retrieves the UIDs and names

of the victim’s friends and inserts them in our database. As discussed in
Section 5.3.1.5, casual attackers can access the friend list when this is pub-
licly available (47% of the users), whereas determined attackers can reach
about 84% of the friend lists by issuing befriend requests. We implement
the crawling procedures using Python’s urllib HTTP library and regular
expression matching to scrape Facebook pages and extract content. We
store the retrieved data in a MongoDB database, a lightweight, distributed
document-oriented storage suitable for large data collections, and keep the
downloaded photos in its GridFS filesystem.

Step 2: Issuing Friend Requests
An attacker can use legitimate-looking, dummy profiles to send friend

requests to all of the victim’s friends. As shown in Fig. 5.4, this step can ex-
pand the attack surface by increasing the reachable photos. We implement

www.syssec-project.eu 119 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

a procedure that issues befriend requests via the fake accounts we have cre-
ated for our experimental evaluation (see Section 5.3.4). Even though we
do not collect any private information or photos of these users for our ex-
periments, we need an adequate number of friends in our accounts to be
able to trigger the SA mechanism. We select users for our requests, based
on the friends suggested by Facebook. Also, as shown by Irani et al. [76],
to achieve a high ratio of accepted friend requests, we create profiles of at-
tractive women and men with legitimate-looking photos2 (i.e., avoiding the
use of provocative or nudity photos). In addition, we inject some random
profile activity (e.g., status messages, like activities). If Facebook triggers
CAPTCHA challenges at some point, our system prompts a human operator
to intervene. However, Bilge et al. [53] have demonstrated the use of auto-
mated systems against the CAPTCHA countermeasure. Moreover, to hinder
spammers, Facebook limits the number of friend requests each profile is al-
lowed to issue in a short period of time and enforces a “cooldown” period of
two days on misbehavior. To overcome this obstacle and still have profiles
with an adequate amount of friends, we spread our friend requests over
a period of one week. We also noticed that for profiles that have educa-
tion and employment information and send requests to people within these
circles, Facebook enforces more relaxed thresholds and allowed us to send
close to 100 requests in a single day. In addition, the method described by
Irani et al.[76] allows an increase in the number of friends passively as op-
posed to requesting friendships explicitly.

Step 3: Photo Collection/Modeling

Photo collection We collect the URLs of all the photos contained in the
albums of the target’s friends using the same screen-scraping approach
that we described in Step 5.3.2.1. We then feed the collected URLs into
a simple module that does the actual download. This module stores in
the database the metadata associated with each downloaded photo:
URL, UID of the owner, tags and their coordinates (in pixels).

Face Extraction and Tag Matching We scan each downloaded photo to
find faces. Specifically, we use a face detection classifier part of the
OpenCV toolkit3. There are plenty of face detection techniques avail-
able in the literature more precise than the one that we decided to
use. However, our goal is to show that face-based SA offers only a
weak protection, because even with simple, off-the-shelf tools, an ad-
versary can implement an automated attack that bypasses it.

Subsequently, we label each face with the UID of the nearest tag found
in the adjacent 5%-radius area, calculated with the euclidean distance

2We selected photos from a database of models.
3http://opencv.itseez.com/

www.syssec-project.eu 120 January 9, 2015

http://opencv.itseez.com/

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION

between the face’s center and the tag’s center. Unlabeled faces and
tags with no face are useless, thus we discard them. We save the
selected faces as grayscale images, one per face, resized to 130 × 130
pixels.

Facial Modeling We use the sklearn library4 to construct a supervised clas-
sifier. We first preprocess each face via histogram equalization to en-
sure uniform contrast across all the samples. To make the classifica-
tion job feasible with these many features (i.e., 130 × 130 matrices
of integers), we project each matrix on the space defined by the 150
principal components (i.e., the “eigenfaces”). We tested K-nearest-
neighbors (kNN), tree, and support-vector (with a radial-basis kernel)
classifiers using a K-fold cross-validation technique. We found that
support-vector classifiers (SVC) yield the highest accuracy, but are very
expensive computationally. Therefore, we use kNN classifiers, with
k = 3 as they provide a faster alternative to SVC with comparable
accuracy.

Step 4: Name Lookup When Facebook challenges our system with a SA
test, we submit the photos from the SA test to the classifier, which attempts
to identify the depicted person and select the correct name. We detect the
faces in each of the 7 photos of an SA page and extract the 150 principal
components from each face’s 130 × 130 matrix. Then, we use the classifier
to predict the class (i.e., the UID) corresponding to each unknown face, if
any. If, as in the case of Facebook, a list of suggested names (i.e., UIDs) is
available, we narrow its scope to these names. Then, we query the classifier
and select the outcome as the correct UID for each unknown face, choosing
the UID that exhibits more consensus (i.e., more classifiers output that UID)
or the highest average prediction confidence.

5.3.2.2 Face Recognition as a Service

Automatic face recognition is approaching the point of being ubiquitous:
Web sites require it and users expect it. Therefore, we investigate whether
we can employ advanced face recognition software offered as a cloud ser-
vice. We select face.com which offers a face recognition platform for de-
velopers to build their applications on top of. Incidentally, face.com was
recently acquired by Facebook5. The service exposes an API through which
developers can supply a set of photos to use as training data and then query
the service with a new unknown photo for the recognition of known indi-
viduals. The training data remains in the cloud. Developers can use up to
two different namespaces (i.e., separate sets of training data) each one able

4http://scikit-learn.org
5http://face.com/blog/facebook-acquires-face-com/

www.syssec-project.eu 121 January 9, 2015

face.com
face.com
http://scikit-learn.org
http://face.com/blog/facebook-acquires-face-com/

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

to hold up to 1,000 users, where each user may be trained with a seemingly
unbound number of photos. Usage of the API is limited to 5,000 requests
an hour. Such a usage framework may be restrictive for building popular
applications with thousands of users but it is more than fitting for the tasks
of an adversary seeking to defeat photo-based social authentication. Assum-
ing the free registration to the service, one may create a training set for
up to 1,000 of a victim’s friends (the max limit for Facebook is 5,000 al-
though the average user has 190 friends). After that, one can register more
free accounts or simply delete the training set when no longer necessary
and reclaim the namespace for a new one. We develop a proof-of-concept
module for our system that leverages the face.com API as an alternative,
service-based implementation of steps 3 and 4 from Fig. 5.5. We submit the
photos to the service via the faces.detect API call to identify any exist-
ing faces and determine whether they are good candidates for training the
classifier. The next step is to label the good photos with the respective UIDs
of their owners (tags.save). Finally we initiate the training on the pro-
vided data (faces.train) and once the process is complete we can begin
our face recognition queries—the equivalent of step 4 from Fig. 5.5. Once
the training phase is finished, the service is able to respond within a cou-
ple of seconds with a positive or negative face recognition decision through
the faces.recognize call. We take advantage of the ability to limit the
face matching to a group of uids from the training set and we do so for the
suggested names provided by Facebook for each SA page.

5.3.3 Experimental Evaluation

Here we evaluate the nature of Facebook’s SA mechanism and our efforts
to build an automated SA solving system. We first assess the quality of our
dataset of Facebook users (Section 5.3.4). We consider this a representa-
tive sample of the population of the online social network. We have not
attempted to compromise or otherwise damage the users or their accounts.
We collected our dataset as a casual attacker would do. Next we evaluate
the accuracy and efficiency of our attack. In Section 5.3.5, we use simula-
tion to play the role of a determined attacker, who has access to the majority
of the victims’ photos. In Section 5.3.6, we relax this assumption and test
our attack as a casual attacker, who may lack some information (e.g., the
victims may expose no photos to the public, there are no usable photos, no
friend requests issued). More details on the capabilities of these two types
of attacker are given in Section 5.3.1.5.

To perform our experiments we implemented custom face recognition
software. This was done for two reasons. First, because we needed some-
thing very flexible to use, that allowed us to perform as many offline exper-
iments as needed for the experiments of the determined attacker. Second,
we wanted to show that even off-the-shelf algorithms were enough to break

www.syssec-project.eu 122 January 9, 2015

face.com

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION

TOTAL PUBLIC PRIVATE

UIDs 236,752 167,359 69,393

Not tagged 116,164 73,003 43,161
Tagged 120,588 94,356 26,232

Mean tags per UID: 19.39 10.58

Tags9 2,107,032 1,829,485 277,547

Photos 16,141,426 16,141,426 (not collected)

Albums 805,930 805,930 (not collected)

Table 5.4: Summary of our collected dataset. The terms “public”, and “pri-
vate” are defined in Section 5.3.4.

the SA test, at least in ideal conditions. However, superior recognition algo-
rithms exist, and we conducted exploratory experiments that showed that
face.com, although less flexible than our custom solution, has much better
accuracy. Therefore, we decided to use it in the most challenging conditions,
that is to break SA tests under the hypothesis of the casual attacker.

5.3.4 Overall Dataset

Our dataset contains data about real Facebook users, including their UIDs,
photos, tags, and friendship relationships, as summarized in Table 5.4.
Through public crawling we collected data regarding 236,752 distinct Face-
book users. 71% (167,359) of them have at least one publicly-accessible
album. We refer to these users as public UIDs (or public users). The remain-
ing 29% of UIDS (69,393) keep their albums private (i.e., private UIDs, or
private users). We found that 38% of them (26,232 or 11% of the total
users) are still reachable because their friends have tagged them in one of
the photos in their own profile (to which we have access). We refer to these
UIDs as semi-public UIDs (or semi-public users). Data about the remaining
62% of UIDs (43,161 or 18% of the total users) is not obtainable because
these users keep their albums private, and their faces are not found in any
of the public photos of their friends. The public UIDs lead us to 805,930
public albums, totaling 16,141,426 photos and 2,107,032 tags that point
to 1,877,726 distinct UIDs. It is therefore evident that people exposing (or
making otherwise available) their photos are not only revealing information
about themselves but also about their friends. This presents a subtle threat
against these friends who cannot control the leakage of their names and
faces. Albeit this dataset only covers a very small portion of the immense

9On 11 April 2012, our crawler had collected 2,107,032 of such tags, although the
crawler’s queue contains 7,714,548 distinct tags.

www.syssec-project.eu 123 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100 110 120

S
o
lv

ed
 S

A
 p

ag
es

 (
o
u
t

o
f

7
 -

 m
in

.
5
 t

o
 p

as
s)

Faces per UID used as training

Figure 5.6: Successfully-passed tests as a function of the training-set size.

Facebook user base, we consider it adequate enough to carry out thorough
evaluation experiments.

5.3.5 Breaking SA: Determined Attacker

The following experiment provides insight concerning the number of faces
per user needed to train a classifier to successfully solve the SA tests. We
create simulated SA tests using the following methodology. We train our
system using a training set of K = 10, 20, . . . , 120 faces per UID. We extract
the faces automatically, without manual intervention, using face detection
as described in Section 5.3.2.1. We then generate 30 SA tests. Each test
contains 3 target photos per 7 pages showing the face of the same victim.
The photos are selected randomly from the pool of public photos we have
for each person, from which we exclude the ones used for the training. For
each page and K we record the output of the name-lookup step (step 4),
that is the prediction of the classifier as described in Section 5.3.2.1, and
the CPU-time required. Fig. 5.6 shows the number of pages solved correctly
out of 7, and Fig. 5.7 shows the CPU-time required to solve the full test (7
pages).

In order for an SA test to be solved successfully, Facebook requires that
5 out of 7 challenges are solved correctly. Our results show that our at-
tack is always successful (i.e., at least 5 pages solved over 7) on average,
even when a scarce number of faces is available. Clearly, having an ample
training dataset such as K > 100 ensures a more robust outcome (i.e., 7
pages solved over 7). Thus, our attack is very accurate. As summarized in
Fig. 5.7, our attack is also efficient because the time required for both “on

www.syssec-project.eu 124 January 9, 2015

5.3. BREAKING FACEBOOK’S SOCIAL AUTHENTICATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8

S
ec

o
n
d
s

p
er

 t
es

t

Solved SA pages (out of 7 - min. 5 to pass)

Figure 5.7: Time required to lookup photos from SA tests in the face recog-
nition system.

the fly” training—on the K faces of the 6 suggested users—and testing re-
mains within the 5-minute timeout imposed by Facebook to solve a SA test.
An attacker may choose to implement the training phase offline using faces
of all the victim’s friends. This choice would be mandatory if Facebook—or
any other Web site employing SA—decided to increase the number of sug-
gested names, or remove them completely, such that “on the fly” training
becomes too expensive.

5.3.6 Breaking SA: Casual Attacker

In the following experiment we assume the role of a casual attacker, with
significantly more limited access to tag data for the training of a face recog-
nition system. At the same time we attempt to solve real Facebook SA tests
using the following methodology. We have created 11 dummy accounts that
play the role of victims and populate them with actual Facebook users as
friends and activity. Then, we employ a graphical Web browser scripted via
Selenium6 to log into these accounts in an automated fashion. To trigger the
SA mechanism we employ Tor7 which allows us to take advantage of the ge-
ographic dispersion of its exit nodes, thus appearing to be logging in from
remote location in a very short time. By periodically selecting a different
exit node, as well as modifying our user-agent identifier, we can arbitrarily
trigger the SA mechanism. Once we are presented with an SA test, we it-

6http://seleniumhq.org
7http://www.torproject.org

www.syssec-project.eu 125 January 9, 2015

http://seleniumhq.org
http://www.torproject.org

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

 0

 1

 2

 3

 4

 5

 6

 7

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

 9
0

 9
5

 1
0
0

 1
0
5

 1
1
0

 1
1
5

 1
2
0

 1
2
5

 1
3
0

S
o
lv

ed
 S

A
 p

ag
es

 (
o
u
t

o
f

7
 -

 m
in

.
5
 t

o
 p

as
s)

Actual Facebook SA tests

Full solution

Solution aid

Figure 5.8: Efficiency of automated SA breaker against actual Facebook
tests.

erate its pages and download the presented photos and suggested names,
essentially taking a snapshot of the test for our experiments. We are, then,
able to take the same test offline as many times necessary. Note that this is
done for evaluation purposes and that the same system in production would
take the test once and online. Overall, we collected 127 distinct SA tests.

We tried breaking the real SA tests using our module for face.com de-
scribed in Section 5.3.2.2. Fig. 5.8 presents the outcome of the tests. Over-
all, we are able to solve 22% of the tests (28/127) with people recognized
in 5–7 of the 7 test pages and significantly improve the power of an attacker
for 56% of the tests (71/127) where people were recognized in 3–4 of the 7
test pages. At the same time, it took 44 seconds on average with a standard
deviation of 4 seconds to process the photos for a complete test (21 photos).
Note that the time allowed by Facebook is 300 seconds.

We further analyzed the photos from the pages of the SA tests that failed
to produce any recognized individual. In about 25% of the photos, face.com
was unable to detect a human face. We manually inspected these photos and
confirmed that either a human was shown without the face being clearly vis-
ible or no human was present at all. We argue that humans will also have a
hard time recognizing these individuals unless they are very close to them so
that they can identify them by their clothes, posture or the event. Moreover,
in 50% of the photos face.com, was able to detect a human face but marked
it as unrecognizable. This indicates that it is either a poor quality photo
(e.g., low light conditions, blurred) or the subject is wearing sunglasses or
is turned away from the camera. Finally, in the remaining 25% of the pho-

www.syssec-project.eu 126 January 9, 2015

face.com
face.com
face.com

5.4. DETECTING SOCIAL NETWORK PROFILE CLONING

tos, a face was detected but did not match any of the faces in our training
set.

Overall, the accuracy of our automated SA breaker significantly aids an
attacker in possession of a victim’s password. A total stranger, the threat
assumed by Facebook, would have to guess the correct individual for at
least 5 of the 7 pages with 6 options per page to choose from. Therefore,
the probability 8 of successfully solving an SA test with no other information
is O(10−4), assuming photos of the same user do not appear in different
pages during the test. At the same time, we have managed to solve SA
tests without guessing, using our system, in more than 22% of the tests and
reduce the need to guess to only 1–2 (of the 5) pages for 56% of the tests,
thus having a probability of O(10−1) to O(10−2) to solve those SA tests
correctly. Overall in 78% of the real social authentication tests presented
by Facebook we managed to either defeat the tests or offer a significant
advantage in solving them.

After these experiments, we deleted all the photos collected from the real
SA tests, as they could potentially belong to private albums of our accounts’
friends, not publicly accessible otherwise.

5.3.7 Lessons Learned

In this work we pointed out the security weaknesses of using social authenti-
cation as part of a two-factor authentication scheme, focusing on Facebook’s
deployment. We found that if an attacker manages to acquire the first factor
(password), he can access, on average, 42% of the data used to generate the
second factor, thus, gaining the ability to identify randomly selected photos
of the victim’s friends. Given that information, we managed to solve 22% of
the real Facebook SA tests presented to us during our experiments and gain
a significant advantage to an additional 56% of the tests with answers for
more than half of pages of each test. We have designed an automated social
authentication breaking system, to demonstrate the feasibility of carrying
out large-scale attacks against social authentication with minimal effort on
behalf of an attacker. Our experimental evaluation has shown that widely
available face recognition software and services can be effectively utilized to
break social authentication tests with high accuracy. Overall we argue that
Facebook should reconsider its threat model and re-evaluate the security
measures taken against it.

5.4 Detecting social network profile cloning

A more detailed version of our study is found in [83].

8Calculated using the binomial probability formula used to find probabilities for a series
of Bernoulli trials.

www.syssec-project.eu 127 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

t

Figure 5.9: Diagram of our system architecture.

5.4.1 Design

In this section we outline the design of our approach for detecting forged
profiles across the Web. Our system is comprised of three main components
and we describe the functionality of each one.

1. Information Distiller. This component is responsible for extracting
information from the legitimate social network profile. Initially, it an-
alyzes the user’s profile and identifies which pieces of information on
that profile could be regarded as rare or user-specific and may there-
fore be labeled as user-identifying terms. The information extracted
from the profile is used to construct test queries in search engines and
social network search services. The number (count) of results returned
for each query is used as a heuristic and those pieces of information
that stand out, having yielded significantly fewer results than the rest
of the information on the user’s profile, are taken into account by the
distiller. Such pieces of information are labeled as user-identifying
terms and used to create a user-record for our system along with the
user’s full name (as it appears in his profile). The record is passed
on to the next system component that uses the information to detect
other potential social network profiles of the user.

2. Profile Hunter. This component processes user-records and uses the
user-identifying terms to locate social network profiles that may poten-
tially belong to the user. Profiles are harvested from social-network-
specific queries using each network’s search mechanism that contain
these terms and the user’s real name. All the returned results are com-
bined and a profile-record is created. Profile-records contain a link to
the user’s legitimate profile along with links to all the profiles returned
in the results.

3. Profile Verifier. This component processes profile-records and ex-
tracts the information available in the harvested social profiles. Each
profile is then examined in regards to its similarity to the user’s origi-
nal profile. A similarity score is calculated based on the common val-

www.syssec-project.eu 128 January 9, 2015

5.4. DETECTING SOCIAL NETWORK PROFILE CLONING

ues of information fields. Furthermore, profile pictures are compared,
as cloned profiles will use the victim’s photo to look more legitimate.
After all the harvested profiles have been compared to the legitimate
one, the user is presented with a list of all the profiles along with a
similarity score.

We can see a diagram of our system in Figure 5.9. In step (1) the Infor-
mation Distiller extracts the user-identifying information from the legitimate
social network profile. This is used to create a user-record which is passed
on to the Profile Hunter in Step (2). Next, Profile Hunter searches online
social networks for profiles using the information from the user-record in
step (3). All returned profiles are inserted in a profile-record and passed on
to the Profile Verifier in step (4). The Profile Verifier compares all the pro-
files from the profile-record to the original legitimate profile and calculates
a similarity score based on the common values of certain fields. In step (5)
the profiles are presented to the user, along with the similarity scores, and
an indication of which profiles are most likely to be cloned.

5.4.2 Implementation

In this section we provide details of the proof-of-concept implementation
of our approach. We use the social network LinkedIn [32] as the basis for
developing our proposed design. LinkedIn is a business-oriented social net-
working site, hosting profiles for more than 70 million registered users and
1 million companies. As profiles are created mostly for professional reasons,
users tend to make their profiles viewable by almost all other LinkedIn users,
or at least all other users in the same network. Thus, an adversary can easily
find a large amount of information for a specific user. For that matter, we
consider it a good candidate for investigating the feasibility of an attack and
developing our proposed detection tool.

5.4.2.1 Automated Profile Cloning Attacks

We investigate the feasibility of an automated profile cloning attack in
LinkedIn. Bilge et al. [53] have demonstrated that scripted profile cloning is
possible in Facebook, XING and the German sites StudiVZ and MeinVZ. In all
these services but XING, CAPTCHAs were employed and CAPTCHA-breaking
techniques were required. In the case of LinkedIn CAPTCHA mechanisms
are not in place. The user is initially prompted for his real name, valid
e-mail address and a password. This suffices for creating a provisionary ac-
count in the service, which needs to be verified by accessing a private URL,
sent to the user via e-mail, and entering the account’s password. Receiv-
ing such messages and completing the verification process is trivial to be
scripted and therefore can be carried out without human intervention. To

www.syssec-project.eu 129 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

address the need for different valid e-mail addresses, we have employed
services such as 10MinuteMail [14] that provide disposable e-mail inbox ac-
counts for a short period of time. Once the account has been verified, the
user is asked to provide optional information that will populate his profile.

We have implemented the automated profile creation tool and all sub-
sequent experiments detailed in this work rely on this tool and not manual
input from a human. This was done to test its operation under real-world
conditions. Let it be noted that all accounts created for the purposes of
testing automated profile creation and carrying out subsequent experiments
have been now removed from LinkedIn, and during their time of activity
we did not interact with any other users of the service. Furthermore, due
to ethical reasons, in the case where existing profiles were duplicated, they
belonged to members of our lab, whose consent we had first acquired.

5.4.2.2 Detecting Forged Profiles

In this section we present the details of implementing our proposed detec-
tion design in Linkedin. We employ the cURL [22] command-line tool to
handle HTTP communication with the service and implement the logic of
the various components of our tool using Unix bash shell scripts.

1. Information Distiller. This component requires the credentials of the
LinkedIn user, who wishes to check for clones of his profile informa-
tion, as input. The component’s output is a user-record which contains
a group of keywords, corresponding to pieces of information from the
user’s profile, that individually or as a combination identify that pro-
file. After logging in with the service, this component parses the HTML
tags present in the user’s profile to identify the different types of infor-
mation present. Consequently, it employs the Advanced Search feature
of LinkedIn to perform queries that aim to identify those keywords
that yield fewer results that the rest 9. Our goal is to use the mini-
mum number of fields. If no results are returned, we include more
fields in an incremental basis, according to the number of results they
yield. In our prototype implementation, we identify the number of
results returned for information corresponding to a person’s present
title, current and past company and education. We insert the person’s
name along with the other information in a record and provide that
data to the next component.

2. Profile Hunter. This component employs the user-record, which con-
tains a person’s name and information identified as rare, to search
LinkedIn for similar user profiles. We employ the service’s Advanced

9Those that yield a number of results in the lowest order of magnitude or, in the worst
case, the one with the least results.

www.syssec-project.eu 130 January 9, 2015

5.4. DETECTING SOCIAL NETWORK PROFILE CLONING

Search feature to initially find out the number of returned matches
and subsequently use the protected and, if available, public links to
those profiles to create a profile-record which is passed on to the next
component. The upper limit of 100 results per query is not a problem
since at this point queries are designed to be quite specific and yield
at least an order of magnitude less results, an assumption which has
been validated during our tests.

3. Profile Verifier. This component receives a profile-record which is a
list of HTTP links pointing to protected or public profiles that are re-
turned when we search for user information similar to the original
user. Subsequently, it accesses those profiles, uses the HTML tags of
those pages to identify the different types of information and performs
one to one string matching with the profile of the original user. This
approach is generic and not limited to a specific social network, as the
verifier can look for specific fields according to each network. In our
prototype implementation, we also employ naive image comparison.
We assume that the attacker will have copied the image from the orig-
inal profile. We use the convert tool, part of the ImageMagick suite, to
perform our comparisons. In detail, to discover how much image ’A’
looks like image ’B’, we calculate the absolute error count (i.e. num-
ber of different pixels) between them and then compare image ’A’ with
an image of random noise (i.e. random RGB pixels). The two error
counts give the distance between ’A’ and something completely ran-
dom and the distance between ’A’ and ’B’. This way we can infer how
much ’A’ and ’B’ look alike. To correctly estimate the threshold of error
that can be tolerated, we plan on conducting a study where images
will be manipulated so as to differ from the original photo but remain
recognizable. The component outputs a similarity score between the
original profile and each of the other profiles.

5.4.3 Evaluation

In this section we evaluate the efficiency of our proposed approach for de-
tecting forged social network profiles. First, we provide data from a study
on LinkedIn regarding the amount of information exposed in public or pro-
tected 10 user profiles.

5.4.4 LinkedIn Study

In order to understand how much information is exposed in public profiles
of LinkedIn users, we compiled three distinct datasets of profiles and studied
their nature. The idea is that an adversary seeking to perform automated

10To view the profile information, a service account is required.

www.syssec-project.eu 131 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

Trace Name Description Profiles
surnames Popular 100 English names 11281
companies Fortune 100 companies 9527
universities Top 100 U.S. universities 8811

Table 5.5: Summary of data collected.

profile cloning, can create such datasets and copy their information. Here
we study the type and amount of information available for such an attack.

Table 5.5 presents those three distinct datasets. To do so, we created
a fake LinkedIn account, that contains no information at all, and used the
service’s search feature to locate profiles that matched our search terms. In
the free version of the service, the number of search results is bound to
100 but one can slightly modify his queries to count as different searches
and at the same time return complementary sets of results. In our case,
we used three lists as search terms to retrieve user profiles; one with the
most common English surnames, one with the top companies according to
Fortune Magazine [25] and one with the top U.S. universities.

Each of the∼30K search results returned a summary of the user’s profile,
which we consider adequate information to convincingly clone a profile. As
we can see in table 5.6, almost one out of every three returned search results
is public and contains the user’s name, along with current location and cur-
rent title or affiliation. These profiles are accessible by anyone on the web,
without the need for a LinkedIn account. In detail, in the surnames dataset
89% of the profiles has a public presence on the web. On the other hand, for
profiles collected from the companies and universities datasets, public pres-
ence is merely 2.3% and 1.6% respectively. The big discrepancy is probably
due to the fact that users from the industry and academia use LinkedIn for
professional purposes and therefore set their profiles as viewable by other
LinkedIn users only.

Table 5.7 presents the core profile information in all the profiles that are
publicly available. What is interesting is the fact that, besides the person’s
name, almost all public profiles carry information about the present loca-
tion and relative industry. Additionally, about half of the profiles include a
person’s photo, current title or affiliation and education information.

In Table 5.8, we can see the information available in all the profiles that
require a LinkedIn account for viewing. While the percentage of profiles
from which we can access the user’s photo is smaller compared to the public
profiles, all the important information fields present a much higher avail-
ability. The fact that we cannot access the photos in many profiles is due to
default privacy setting of LinkedIn where a user’s photo is viewable only to
other users from the same network. Nonetheless, an adversary could set his
account to the specific network of the targeted victims in order to harvest the
photo. Furthermore, all users reveal their location, and connections, and al-

www.syssec-project.eu 132 January 9, 2015

5.4. DETECTING SOCIAL NETWORK PROFILE CLONING

surnames companies universities
Public Name 90.5% 2.5% 2.0%
Public Profile 89% 2.3% 1.6%

Table 5.6: Exposure of user names and profile information.

surnames companies universities
Photos 47% 59% 44%

Location 98% 99% 99%
Industry 85% 97% 98%

Current Status 70% 86% 72%
Education 53% 66% 82%
Past Status 42% 54% 63%

Website 36% 50% 39%
Activities / Societies 21% 22% 55%

Table 5.7: Information available in public LinkedIn profiles for each dataset.

most all their industry field. Most profiles from the surname dataset contain
information regarding the user’s current work status and education (86%
and 70% respectively). The other datasets have an even larger percentage
verifying the professional usage orientation of the users. Specifically, 99%
of the profiles from the companies dataset contained information on current
status and 92% revealed the user’s education, and profiles from the universi-
ties dataset stated that information in 94% and 99% of the cases. Therefore,
any user with a LinkedIn account can gain access to user-identifying infor-
mation from profiles in the vast majority of cases.

A short study by Polakis et. al [94] concerning the type and amount of
information publicly available in Facebook profiles, demonstrated a similar
availability of personal information. While their results show a lower per-
centage of Facebook users sharing their information publicly, close to 25%
of the users revealed their high school, college and employment affiliation,
and over 40% revealed their current location.

As demonstrated from both of these studies, it is trivial for an adversary
to gather information from social network accounts that will allow him to
successfully clone user profiles. With the creation of a single fake account,
an adversary can gain access to a plethora of details that we consider suf-
ficient for deploying a very convincing impersonation attack. Even so, this
information is also sufficient for the detection and matching of a duplicate
profile from our tool.

5.4.4.1 Detection Efficiency

Initially, we evaluated our hypothesis that different pieces of information
from a user profile yield a variable number of results when used as search

www.syssec-project.eu 133 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

surnames companies universities
Photos 22% 52% 26%

Location 100% 100% 100%
Industry 94% 100% 100%

Connections 100% 100% 100%
Current Status 86% 99% 94%

Education 70% 92% 99%
Past Status 58% 96% 95%

Twitter Username 13% 0% 1%
Websites 41% 2% 1%

Table 5.8: Information available in protected LinkedIn profiles.

C
D

F

0

10

20

30

40

50

60

70

80

90

100

Range of Search Results

10 100 1000 10000 100000

Figure 5.10: CDF of the range of search results returned for different pieces
of information on a user profile.

terms, for instance in a social network’s search engine. To do so, for each
profile in our datasets, we extracted the values from different types of in-
formation and used them as search terms in the Advanced Search feature
of the service. Next, we recorded the minimum and maximum number of
results returned by any given term. Finally, we calculated the range (max-
imum - minimum) of search results for information on that profile. Figure
5.10 presents the CDF of the range of search results returned for each pro-
file in our dataset. One may observe a median range value of ∼1000 and
also that only 10% of profiles had a range of search results lower that 20.
Overall, we can see that the majority of profiles exhibited diversity in the
number of search results returned by different pieces of information, and by
leveraging this can be uniquely identified by the carefully crafted queries of
our system.

Next, we conducted a controlled experiment to test the efficiency of our
tool. Due to obvious ethical reasons, we were not able to deploy a massive
profile cloning attack in the wild. Thus, we selected a set of 10 existing
LinkedIn profiles, that belong to members of our lab, and cloned them inside
the same social network using the automated method described in 5.4.2.

www.syssec-project.eu 134 January 9, 2015

5.4. DETECTING SOCIAL NETWORK PROFILE CLONING

We, then, employed our tool to try and find the duplicates. In total, we were
able to detect all the profile clones without any false positives or negatives.

Finally, we used public user profiles as seeds into our system to try and
detect existing duplicates inside LinkedIn. The Information Distiller pro-
duced user-records using information from current or past employment and
education fields. Overall, we used 1,120 public profiles with 756 derived
from the surnames dataset, the 224 public profiles from the companies
dataset and the 140 public profiles from the universities dataset. The Profile
Hunter component returned at least one clone for 7.5% of the user profiles
(in 3 cases our tool discovered 2 cloned instances of the profile). Our pro-
totype system relied on the exact matching of fields and did not employ our
image comparison technique to detect cloned profiles. Furthermore, simi-
larity scores were based on the number of fields that contained information
on both profiles (in several cases, one profile had less fields that contained
information). After manual inspection, we verified that all detected profiles
pointed to the actual person and that the score produced by the Profile Ver-
ifier was accurate. We cannot be certain if those clones are the result of a
malicious act or can be attributed to misconfiguration. Furthermore, our
prototype may have missed cloned profiles where the attacker deliberately
injected mistakes so as to avoid detection.

5.4.5 Lessons Learned

In this work, we propose a methodology for detecting social network profile
cloning. We first present the design and prototype implementation of a
tool that can be employed by users to investigate whether they have fallen
victims to such an attack. The core idea behind our tool is to identify any
information contained in a user’s profile that can uniquely identify him. We
evaluate our assumption regarding the effectiveness of such a tool and find
that user profiles usually reveal information that is rare and, when combined
with a name, can uniquely identify a profile and thereby any existing clones.
In that light, we present the findings from a study regarding the type and
amount of information exposed by social network users and conclude that
the same user-identifying information which allows an attacker to clone a
profile also assists us in identifying the clone. This is demonstrated by a test
deployment of our tool, in which we search LinkedIn for duplicate profiles,
and find that for 7% of the user profiles checked, we discover a duplicate
profile in the same social network.

www.syssec-project.eu 135 January 9, 2015

CHAPTER 5. ATTACKS ON SOCIAL NETWORKS

www.syssec-project.eu 136 January 9, 2015

6
Conclusions

In this deliverable we gave an overview of the research conducted by the
SysSec consortium during the project on the area of cyberattacks. This work
deals with many of the properties of the research topics that we have iden-
tified in the SysSec Research Roadmaps [57, 58].

Briefly, in Chapter 2, we present our research work related to attacks
on web applications and services. In the following Chapter 3, we introduce
our work that deals with attacks on smart and mobile devices. Then, we
present cyberattacks on users privacy in Chapter 4. Finally, in Chapter 5, we
overview our research work related to cyber threats on social networks.

A significant part of our research on cyberattacks area was performed
around social networks and privacy. This is because of the tremendous pop-
ularity that these systems have gained recently. Hundreds of millions of
users are registered in social networking sites and regularly use their fea-
tures, but, also expose sensitive information valuable for intruders. The stu-
pendous popularity as well as the big amount of sensitive information that
these sites expose, was the reason behind the fact that we focused more on
social networks in our cyberattacks study.

137

CHAPTER 6. CONCLUSIONS

www.syssec-project.eu 138 January 9, 2015

Bibliography

[1] http://www.blade-defender.org/.

[2] http://www.malwaredomainlist.com/.

[3] http://www.offensivecomputing.net/.

[4] http://www.metasploit.com/.

[5] http://www.javascriptobfuscator.com/.

[6] http://vrt-blog.snort.org/2013/04/changing-imei-provider-model-and-phone.
html.

[7] http://blog.sfgate.com/techchron/2013/10/10/
stanford-researchers-discover-alarming-method-for-phone-tracking-fingerprinting-through-sensor-flaws/.

[8] http://code.google.com/p/openintents/wiki/SensorSimulator.

[9] http://developer.android.com/reference/android/hardware/
SensorManager.html.

[10] http://code.google.com/p/smali/.

[11] http://code.google.com/p/android-apktool/.

[12] https://www.duosecurity.com/blog/dissecting-androids-bouncer.

[13] https://codepainters.wordpress.com/2009/12/11/
android-imei-number-and-the-emulator/.

[14] 10 Minute Mail. http://10minutemail.com/.

[15] ab - Apache HTTP server benchmarking tool. http://httpd.apache.org/docs/
2.0/programs/ab.html.

[16] Android ad networks. http://www.appbrain.com/stats/libraries/ad.

[17] Android Platform Distribution. http://developer.android.com/about/
dashboards/index.html.

[18] Anubis. http://anubis.iseclab.org.

[19] Apache Cordova. http://cordova.apache.org.

[20] Arm: Virtualization extensions. http://www.arm.com/products/processors/
technologies/virtualization-extensions.php.

[21] Contagio. http://contagiominidump.blogspot.com.

139

http://www.blade-defender.org/
http://www.malwaredomainlist.com/
http://www.offensivecomputing.net/
http://www.metasploit.com/
http://www.javascriptobfuscator.com/
http://vrt-blog.snort.org/2013/04/changing-imei-provider-model-and-phone.html
http://vrt-blog.snort.org/2013/04/changing-imei-provider-model-and-phone.html
http://blog.sfgate.com/techchron/2013/10/10/stanford-researchers-discover-alarming-method-for-phone-tracking-fingerprinting-through-sensor-flaws/
http://blog.sfgate.com/techchron/2013/10/10/stanford-researchers-discover-alarming-method-for-phone-tracking-fingerprinting-through-sensor-flaws/
http://code.google.com/p/openintents/wiki/SensorSimulator
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://code.google.com/p/smali/
http://code.google.com/p/android-apktool/
https://www.duosecurity.com/blog/dissecting-androids-bouncer
https://codepainters.wordpress.com/2009/12/11/android-imei-number-and-the-emulator/
https://codepainters.wordpress.com/2009/12/11/android-imei-number-and-the-emulator/
http://10minutemail.com/
http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.appbrain.com/stats/libraries/ad
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://anubis.iseclab.org
http://cordova.apache.org
http://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://www.arm.com/products/processors/technologies/virtualization-extensions.php
http://contagiominidump.blogspot.com

BIBLIOGRAPHY

[22] cURL. http://curl.haxx.se/.

[23] Facebook Developers - Permissions. https://developers.facebook.com/
docs/reference/api/permissions/.

[24] Facebook for Websites. https://developers.facebook.com/docs/guides/
web/.

[25] Fortune magazine. http://money.cnn.com/magazines/fortune/.

[26] Genealogy data: Frequently occurring surnames. http://www.census.gov/
genealogy/www/data/2000surnames/index.html.

[27] Google buzz. http://buzz.google.com/.

[28] Jeremiah Grossman - crossdomain.xml statistics. http://jeremiahgrossman.
blogspot.com/2006/10/crossdomainxml-statistics.html.

[29] Latest Facebook Scam: Phishers Hit Up ”Friends” for Cash. http://techcrunch.
com/2009/01/20/latest-facebook-scam-phishers-hit-up-friends
-for-cash/.

[30] LD PRELOAD Feature. See man page of LD.SO(8).

[31] A lexical database for English. http://wordnet.princeton.edu/.

[32] LinkedIn. http://www.linkedin.com/.

[33] Mailing list archives. http://marc.info/.

[34] Man-in-the-middle proxy. http://mitmproxy.org.

[35] OAuth. http://oauth.net/.

[36] QEMU Internals. http://ellcc.org/ellcc/share/doc/qemu/qemu-tech.
html.

[37] SpiderMonkey (JavaScript-C) Engine. http://www.mozilla.org/js/
spidermonkey/.

[38] Start 2012 by Taking 2 Minutes to Clean Your Apps Permissions. http://
mypermissions.org/.

[39] SunSpider JavaScript benchmark. http://www2.webkit.org/perf/
sunspider-0.9/sunspider.html.

[40] Twellow Directory. http://www.twellow.com/categories/.

[41] VirusTotal. http://www.virustotal.com.

[42] W3C public mailing list archives. http://lists.w3.org/.

[43] 4 ways to die opening a PDF, 2009. http://esec-lab.
sogeti.com/dotclear/index.php?post/2009/06/26/
68-at-least-4-ways-to-die-opening-a-pdf.

[44] Rage against the cage. http://thesnkchrmr.wordpress.com/2011/03/24/
rageagainstthecage/, March 2011.

[45] Abusing WebView JavaScript Bridges. http://50.56.33.56/blog/?p=314, De-
cember 2012.

[46] Adventures with Android WebViews. http://labs.mwrinfosecurity.com/
blog/2012/04/23/adventures-with-android-webviews/, April 2012.

[47] WiFi Pineapple. http://hakshop.myshopify.com/products/
wifi-pineapple, last accessed July 2013.

[48] Alessandro Acquisti, Ralph Gross, and Fred Stutzman. Faces of Facebook: How
the largest real ID database in the world came to be. BlackHat USA, 2011,
http://www.heinz.cmu.edu/~acquisti/face-recognition-study-FAQ/
acquisti-faces-BLACKHAT-draft.pdf.

www.syssec-project.eu 140 January 9, 2015

http://curl.haxx.se/
https://developers.facebook.com/docs/reference/api/permissions/
https://developers.facebook.com/docs/reference/api/permissions/
https://developers.facebook.com/docs/guides/web/
https://developers.facebook.com/docs/guides/web/
http://money.cnn.com/magazines/fortune/
http://www.census.gov/genealogy/www/data/2000surnames/index.html
http://www.census.gov/genealogy/www/data/2000surnames/index.html
http://buzz.google.com/
http://jeremiahgrossman.blogspot.com/2006/10/crossdomainxml-statistics.html
http://jeremiahgrossman.blogspot.com/2006/10/crossdomainxml-statistics.html
http://techcrunch.com/2009/01/20/latest-facebook-scam-phishers-hit-up-friends
http://techcrunch.com/2009/01/20/latest-facebook-scam-phishers-hit-up-friends
-for-cash/
http://wordnet.princeton.edu/
http://www.linkedin.com/
http://marc.info/
http://mitmproxy.org
http://oauth.net/
http://ellcc.org/ellcc/share/doc/qemu/qemu-tech.html
http://ellcc.org/ellcc/share/doc/qemu/qemu-tech.html
http://www.mozilla.org/js/spidermonkey/
http://www.mozilla.org/js/spidermonkey/
http://mypermissions.org/
http://mypermissions.org/
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
http://www.twellow.com/categories/
http://www.virustotal.com
http://lists.w3.org/
http://esec-lab.sogeti.com/dotclear/index.php?post/2009/06/26/68-at-least-4-ways-to-die-opening-a-pdf
http://esec-lab.sogeti.com/dotclear/index.php?post/2009/06/26/68-at-least-4-ways-to-die-opening-a-pdf
http://esec-lab.sogeti.com/dotclear/index.php?post/2009/06/26/68-at-least-4-ways-to-die-opening-a-pdf
http://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage/
http://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage/
http://50.56.33.56/blog/?p=314
http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/
http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/
http://hakshop.myshopify.com/products/wifi-pineapple
http://hakshop.myshopify.com/products/wifi-pineapple
http://www.heinz.cmu.edu/~acquisti/face-recognition-study-FAQ/acquisti-faces-BLACKHAT-draft.pdf
http://www.heinz.cmu.edu/~acquisti/face-recognition-study-FAQ/acquisti-faces-BLACKHAT-draft.pdf

BIBLIOGRAPHY

[49] Elias Athanasopoulos, Antonis Krithinakis, and Evangelos P. Markatos. An architec-
ture for enforcing javascript randomization in web2.0 applications. In Information
Security Conference, ISC, 2010.

[50] Elias Athanasopoulos, Vasilis Pappas, Antonis Krithinakis, Spyros Ligouras, and Evan-
gelos P. Markatos. xJS: Practical XSS Prevention for Web Application Development.
In Proceedings of the 1st USENIX WebApps Conference, Boston, US, June 2010.

[51] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 15th ACM conference on Computer and commu-
nications security, 2008.

[52] A B Bhavani. Cross-site Scripting Attacks on Android WebView. International Journal
of Computer Science and Network, 2(2), 2013.

[53] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All your contacts
are belong to us: automated identity theft attacks on social networks. In WWW ’09:
Proceedings of the 18th international conference on World wide web, pages 551–560.
ACM, 2009.

[54] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu. The so-
cialbot network: when bots socialize for fame and money. In Proceedings of the Annual
Computer Security Applications Conference. ACM, 2011.

[55] Bramley Jacob. Caches and Self-Modifying Code. http://
community.arm.com/groups/processors/blog/2010/02/17/
caches-and-self-modifying-code.

[56] The SysSec Consortium. Deliverable d4.1: First report on threats on the
future internet and research roadmap, September 2011. http://www.syssec-
project.eu/media/page-media/3/syssec-d4.1-future-threats-roadmap.pdf.

[57] The SysSec Consortium. SysSec D4.2: Second Report on Threats on the Future In-
ternet and Research Roadmap, September 2012. http://syssec-project.eu/
nNa#syssec-d4.2-future-threats-roadmap-2012.pdf.

[58] The SysSec Consortium. The Red Book: A Roadmap for Systems Security Research,
September 2013. http://red-book.eu/.

[59] Marco Cova. Malicious PDF trick: XFA. http://www.cs.bham.ac.uk/~covam/
blog/pdf/.

[60] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of
drive-by-download attacks and malicious javascript code. In Proceedings of the 19th
International World Wide Web Conference (WWW), 2010.

[61] M. Dantone, L. Bossard, T. Quack, and L. Van Gool. Augmented faces. In Proceedings
of the 13th IEEE International Workshop on Mobile Vision. IEEE, 2011.

[62] Ratan Dey, Zubin Jelveh, and Keith Ross. Facebook users have become much more
private: A large-scale study. In Proceedings of the 4th IEEE International Workshop on
Security and Social Networking. IEEE, 2012.

[63] Sanorita Dey, Nirupam Roy, Wenyuan Xu, and Srihari Nelakuditi. Acm hotmobile
2013 poster: Leveraging imperfections of sensors for fingerprinting smartphones.
SIGMOBILE Mob. Comput. Commun. Rev., 17(3), November 2013.

[64] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. In Proceedings
of the SIGCHI conference on Human Factors in computing systems. ACM, 2006.

[65] Robin Dunbar. Grooming, Gossip, and the Evolution of Language. Harvard University
Press, 1998.

[66] E. ECMA. 357: ECMAScript for XML (E4X) Specification. ECMA (European Associa-
tion for Standardizing Information and Communication Systems), Geneva, Switzerland,
2004.

www.syssec-project.eu 141 January 9, 2015

http://community.arm.com/groups/processors/blog/2010/02/17/caches-and-self-modifying-code
http://community.arm.com/groups/processors/blog/2010/02/17/caches-and-self-modifying-code
http://community.arm.com/groups/processors/blog/2010/02/17/caches-and-self-modifying-code
http://syssec-project.eu/nNa#syssec-d4.2-future-threats-roadmap-2012.pdf
http://syssec-project.eu/nNa#syssec-d4.2-future-threats-roadmap-2012.pdf
http://red-book.eu/
http://www.cs.bham.ac.uk/~covam/blog/pdf/
http://www.cs.bham.ac.uk/~covam/blog/pdf/

BIBLIOGRAPHY

[67] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda. Defending
browsers against drive-by downloads: Mitigating heap-spraying code injection at-
tacks. In Proceedings of the 6th international conference on Detection of Intrusions and
Malware, & Vulnerability Assessment (DIMVA), 2009.

[68] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI, 2010.

[69] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben,
and Matthew Smith. Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security. In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security (CCS), 2012.

[70] K. Fernandez and D. Pagkalos. XSSed.com. XSS (Cross-Site Scripting) information
and vulnerable websites archive. http://www.xssed.com.

[71] Eric Filiol. New viral threats of PDF language. Black Hat Europe, March 2008.

[72] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna. Wepawet. http:
//wepawet.cs.ucsb.edu/.

[73] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran: Timing-
and touch-sensitive record and replay for android. In Proceedings of the 2013 Inter-
national Conference on Software Engineering, ICSE, 2013.

[74] Matthew Van Gundy and Hao Chen. Noncespaces: Using Randomization to Enforce
Information Flow Tracking and Thwart Cross-Site Scripting Attacks. In Proceedings
of the 16th Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 8-11, 2009.

[75] Thorsten Holz. Analyzing malicious pdf files, 2009. http://honeyblog.org/
archives/12-Analyzing-Malicious-PDF-Files.html.

[76] Danesh Irani, Marco Balduzzi, Davide Balzarotti, Engin Kirda, and Calton Pu. Reverse
social engineering attacks in online social networks. In Proceedings of the 8th Interna-
tional Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2011.

[77] David Jacoby. Facebook Security Phishing Attack In The Wild. Retrieved
on January 2012 from http://www.securelist.com/en/blog/208193325/
Facebook_Security_Phishing_Attack_In_The_Wild.

[78] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script Injection Attacks
with Browser-Enforced Embedded Policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 601–610, New York, NY, USA,
2007. ACM.

[79] R. Jones, R. Kumar, B. Pang, and A. Tomkins. I Know What You Did Last Summer:
Query Logs and User Privacy. 2007.

[80] Hyoungshick Kim, John Tang, and Ross Anderson. Social Authentication: Harder
than it Looks. In Proceedings of the 2012 Cryptography and Data Security conference.

[81] G. Kontaxis, M. Polychronakis, and E. Markatos. SudoWeb: Minimizing Information
Disclosure to Third Parties in Single Sign-On Platforms. Information Security Confer-
ence, 2011.

[82] Georgios Kontaxis, Demetris Antoniades, Iasonas Polakis, and Evangelos P. Markatos.
An empirical study on the security of cross-domain policies in rich internet applica-
tions. In The Fourth European Workshop on System Security, EUROSEC, 2011.

[83] Georgios Kontaxis, Iasonas Polakis, Sotiris Ioannidis, and Evangelos P. Markatos. De-
tecting social network profile cloning. In 3rd IEEE International Workshop on SEcurity
and SOCial Networking, SESOC, 2011.

www.syssec-project.eu 142 January 9, 2015

http://www.xssed.com
http://wepawet.cs.ucsb.edu/
http://wepawet.cs.ucsb.edu/
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html
http://www.securelist.com/en/blog/208193325/Facebook_Security_Phishing_Attack_In_The_Wild
http://www.securelist.com/en/blog/208193325/Facebook_Security_Phishing_Attack_In_The_Wild

BIBLIOGRAPHY

[84] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks on Web-
View in the Android System. In Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC), 2011.

[85] Felix Matenaar and Patrick Schulz. Detecting Android Sandboxes. http://
dexlabs.org/blog/btdetect, August 2012.

[86] Mark Meiss, John Duncan, Bruno Gonçalves, José J. Ramasco, and Filippo Menczer.
What’s in a session: tracking individual behavior on the web. In Proceedings of the
20th ACM conference on Hypertext and hypermedia, 2009.

[87] Y. Nadji, P. Saxena, and D. Song. Document Structure Integrity: A Robust Basis
for Cross-site Scripting Defense. In Proceedings of the 16th Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February 8-11, 2009.

[88] Frank Nagle and Lisa Singh. Can friends be trusted? Exploring privacy in online
social networks. In Proceedings of the 2009 International Conference on Advances in
Social Network Analysis and Mining. IEEE, 2009.

[89] S. Nanda, L.C. Lam, and T. Chiueh. Dynamic Multi-Process Information Flow Tracking
for Web Application Security. In Proceedings of the 8th ACM/IFIP/USENIX international
conference on Middleware. ACM New York, NY, USA, 2007.

[90] Matthias Neugschwandtner, Martina Lindorfer, and Christian Platzer. A view to a kill:
Webview exploitation. In Presented as part of the 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats, Berkeley, CA, 2013. USENIX.

[91] Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans.
Automatically Hardening Web Applications Using Precise Tainting. In Proceedings of
the 20th IFIP International Information Security Conference, pages 372–382, 2005.

[92] Panagiotis Papadopoulos, Antonis Papadogiannakis, Michalis Polychronakis, Apos-
tolis Zarras, Thorsten Holz, and Evangelos P. Markatos. k-subscription: Privacy-
preserving microblogging browsing through obfuscation. In The 29th Annual Com-
puter Security Applications Conference, ACSAC. ACM, 2013.

[93] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychroanki, and
Sotiris Ioannidis. Rage against the virtual machine: Hindering dynamic analysis of
mobile malware. In The 7th European Workshop on System Security, EUROSEC, 2014.

[94] Iasonas Polakis, Georgios Kontaxis, Spiros Antonatos, Eleni Gessiou, Thanasis Petsas,
and Evangelos P. Markatos. Using social networks to harvest email addresses. In
WPES ’10: Proceedings of the 9th annual ACM workshop on Privacy in the electronic
society.

[95] Iasonas Polakis, Georgios Kontaxis, Spiros Antonatos, Eleni Gessiou, Thanasis Petsas,
and Evangelos P Markatos. Using social networks to harvest email addresses. In The
9th Annual ACM Workshop on Privacy in the Electronic Society, WPES, 2010.

[96] Iasonas Polakis, Marco Lancini, Georgios Kontaxis, Federico Maggi, Sotiris Ioannidis,
Angelos D. Keromytis, and Stefano Zanero. All your face are belong to us: Breaking
facebooks social authentication. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC, 2012.

[97] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Com-
prehensive shellcode detection using runtime heuristics. In Proceedings of the 26th
Annual Computer Security Applications Conference (ACSAC), December 2010.

[98] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. NOZZLE: A defense
against heap-spraying code injection attacks. In Proceedings of the 18th USENIX Secu-
rity Symposium, August 2009.

www.syssec-project.eu 143 January 9, 2015

http://dexlabs.org/blog/btdetect
http://dexlabs.org/blog/btdetect

BIBLIOGRAPHY

[99] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-centric anal-
ysis and stimulation technique to automatically reconstruct android malware behav-
iors. In Proceedings of the 6th European Workshop on System Security (EUROSEC),
EUROSEC, 2013.

[100] RT. Privacy betrayed: Twitter sells multi-billion tweet archive. http://rt.com/
news/twitter-sells-tweet-archive-529/.

[101] R. Sekar. An Efficient Black-box Technique for Defeating Web Application Attacks. In
Proceedings of the 16th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 8-11, 2009.

[102] Karthik Selvaraj and Nino Fred Gutierres. The rise of PDF malware, 2010. http:
//www.symantec.com/connect/blogs/rise-pdf-malware.

[103] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit: Separating Smartphone
Advertising from Applications. In Proceedings of the 21st USENIX Security Symposium,
2012.

[104] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Jo-
hannes Hoffmann. Mobile-sandbox: Having a deeper look into android applications.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC, 2013.

[105] Didier Stevens. Malicious PDF documents explained. IEEE Security and Privacy,
9(1):80–82, 2011.

[106] Brad Stone. Facebook aims to extend its reach across the web. New York Times, 2008.

[107] The Honeynet Project. Droidbox. https://code.google.com/p/droidbox/.

[108] The SysSec Consortium. Deliverable D7.1: Review of the state-of-the-art
in cyberattacks, June 2011. www.syssec-project.eu/nNa#syssec-d7.
1-SoA-Cyberattacks.pdf.

[109] Twitaholic. Top 100 Twitterholics based on Updates. http://twitaholic.com/
top100/updates/.

[110] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychronakis, and Evangelos P.
Markatos. Combining static and dynamic analysis for the detection of malicious doc-
uments. In Proceedings of the 4th European Workshop on System Security, EUROSEC,
2011.

[111] Blase E. Ur and Vinod Ganapathy. Evaluating attack amplification in online social
networks. In Proceedings of the 2009 Web 2.0 Security and Privacy Workshop.

[112] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-Site
Scripting Prevention with Dynamic Data Tainting and Static Analysis. In Proceeding
of the 14th Annual Network and Distributed System Security Symposium (NDSS), 2007.

[113] Lukas Weichselbaum, Matthias Neugschwandtner, Martina Lindorfer, Yanick Fratan-
tonio, Victor van der Veen, and Christian Platzer. Andrubis: Android Malware Under
The Magnifying Glass. Technical Report TR-ISECLAB-0414-001, Vienna University of
Technology, 2014.

[114] Carsten Willems, Thorsten Holz, and Feliz Freiling. Toward automated dynamic mal-
ware analysis using CWSandbox. IEEE Security and Privacy, 5(2):32–39, 2007.

[115] Julia Wolf. OMG WTF PDF. 27th Chaos Communication Congress (27C3), December
2010.

[116] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, and Geoff Hulten. Spamming
botnets: signatures and characteristics. In In SIGCOMM, 2008.

[117] Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os and
dalvik semantic views for dynamic android malware analysis. In Proceedings of the
21st USENIX Security Symposium, Security’12, pages 29–29, Berkeley, CA, USA, 2012.
USENIX Association.

www.syssec-project.eu 144 January 9, 2015

http://rt.com/news/twitter-sells-tweet-archive-529/
http://rt.com/news/twitter-sells-tweet-archive-529/
http://www.symantec.com/connect/blogs/rise-pdf-malware
http://www.symantec.com/connect/blogs/rise-pdf-malware
https://code.google.com/p/droidbox/
www.syssec-project.eu/nNa#syssec-d7.1-SoA-Cyberattacks.pdf
www.syssec-project.eu/nNa#syssec-d7.1-SoA-Cyberattacks.pdf
http://twitaholic.com/top100/updates/
http://twitaholic.com/top100/updates/

BIBLIOGRAPHY

[118] Bojan Zdrnja. Sophisticated, targeted malicious pdf documents exploiting cve-2009-
4324, 2010. http://isc.sans.edu/diary.html?storyid=7867.

www.syssec-project.eu 145 January 9, 2015

http://isc.sans.edu/diary.html?storyid=7867

	Introduction
	Cyberattacks in the SysSec Research Roadmap
	Research Topics Covered in This Report
	Other Cybersecurity Related Works of SysSec Consortium

	Attacks on Web Applications and Services
	Introduction
	An Empirical Study on the Security of Cross-domain Policies in Rich Internet Applications
	Data Collection
	Policy adoption and security
	Attacks
	Setting up the Attack
	Lessons Learned

	An Architecture for Enforcing JavaScript Randomization in Web2.0 Applications
	Architecture
	Case Studies
	WordPress
	Evaluation
	Lessons Learned

	Combining Static and Dynamic Analysis for the Detection of Malicious Documents
	Background
	Design and Implementation
	Experimental Evaluation
	Lessons Learned

	Attacks on Smart and Mobile Devices
	Introduction
	Evading Dynamic Analysis of Android Devices
	Anti-analysis Techniques
	Static Heuristics
	Dynamic Heuristics
	Hypervisor Heuristics
	Implementation
	Experimental Evaluation
	Data and Tools
	Methodology
	Evasion Results
	Countermeasures
	Lessons Learned

	A Study of WebView-related vulnerabilities in Mobile Applications
	Background
	Threat Scenario
	Case Study
	Large Scale Evaluation
	Mitigation
	Lessons Learned

	Attacks on Privacy
	Introduction
	Minimizing Information Disclosure to Third Parties in Single Sign-On Platforms
	OAuth Protocol
	Social Login vs. User Privacy
	Design
	Implementation
	Lessons Learned

	Privacy-preserving Microblogging Browsing through Obfuscation
	System Design
	Analytical Evaluation
	Simulation-based Evaluation
	Implementation
	Experimental Evaluation
	Lessons Learned

	Attacks on Social Networks
	Introduction
	Using Social Networks to Harvest Email Addresses
	Harvesting email addresses
	Using Social Networks to harvest email addresses
	Measurements
	Lessons Learned

	Breaking Facebook's Social Authentication
	Social Authentication
	Breaking Social Authentication
	Experimental Evaluation
	Overall Dataset
	Breaking SA: Determined Attacker
	Breaking SA: Casual Attacker
	Lessons Learned

	Detecting social network profile cloning
	Design
	Implementation
	Evaluation
	LinkedIn Study
	Lessons Learned

	Conclusions

