
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

Trustworthy ICT

NETWORK OF EXCELLENCE

A European Network of Excellence in Managing Threats and
Vulnerabilities in the Future Internet: Europe for the World †

Deliverable D7.3: Advanced Report on Cyberattacks
on Lightweight Devices

Abstract: In this deliverable, we will “report our research results in the
area of Cyberattacks on lightweight devices”. We begin by putting our work in
the context of the SysSec roadmap, and specifically how our reseach results
address the various threats identified. We then proceed in presenting the
various tools and systems we have developed that address those threats.
Finally we survey the research on the use of biometrics for improving the
security of lightweight devices.

Contractual Date of Deliv-
ery

August 2013

Actual Date of Delivery September 2013
Deliverable Dissemination
Level

Public

Editors Sotiris Ioannidis, Manolis Stamatogiannakis,
Thanasis Petsas

Contributors All SysSec Partners
Quality Assurance Magnus Almgren, Ali Rezaki

† The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257007.

www.syssec-project.eu 2 September 23, 2013

The SysSec consortium consists of:

FORTH-ICS Coordinator Greece
Politecnico Di Milano Principal Contractor Italy
Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Institut Eurécom Principal Contractor France
IICT-BAS Principal Contractor Bulgaria
Technical University of Vienna Principal Contractor Austria
Chalmers University Principal Contractor Sweden
TUBITAK-BILGEM Principal Contractor Turkey

www.syssec-project.eu 3 September 23, 2013

www.syssec-project.eu 4 September 23, 2013

Contents

1 Introduction 11
1.1 Lightweight Devices in the SysSec Research Roadmap 11
1.2 The Edge of Mobile Malware 11
1.3 Research Topics Covered in This Report 13

1.3.1 Mobile Malware Research 13
1.3.2 Resources Used by Mobile Security Products 14
1.3.3 Biometrics and Mobile Devices 15

2 BinderProfiler 17
2.1 Architecture . 18

2.1.1 Background . 18
2.1.2 BINDERPROFILER Overview 19

2.2 Evaluation . 19
2.2.1 Experimental Setup 20
2.2.2 Accuracy . 20
2.2.3 Overhead . 23

2.3 Further Applications . 24
2.3.1 Private Information Exfiltration 24
2.3.2 Real-time Detection 25
2.3.3 Colluding Applications 26

2.4 Deployment . 27
2.4.1 Overview of Operation 27

2.5 Limitations and Considerations 28
2.5.1 Evading Detection . 28
2.5.2 Performance Overhead 29
2.5.3 Message Parsing . 29
2.5.4 Device Rooting . 29

5

2.6 Discussion . 30

3 TraceDroid: Method Tracing for Andrubis 33
3.1 Specification . 33

3.1.1 Specification . 34
3.1.2 Existing Solutions . 35

3.2 Implementation . 36
3.2.1 Start Tracing . 36
3.2.2 Profiler Control Flow 37
3.2.3 Stop Tracing . 42
3.2.4 Added Extra VM Options 42

3.3 Benchmarks . 43
3.3.1 Andrubis Background 43

3.4 Code Coverage Evaluation . 44
3.4.1 Compared to Manual Analysis 45
3.4.2 Breakdown of Simulation Actions 48
3.4.3 Coverages Results . 50

3.5 Case Study: ZitMo: ZeuS in the Mobile 51
3.5.1 Dissecting a1593777ac80b828d2d520d24809829d . . . 53

3.6 Discussion . 58

4 AndroTotal: A Flexible for Platform Scalable Android Antivirus
Testing 61
4.1 Mobile Antivirus Testing . 61

4.1.1 Need for Appropriate Testing Tools 63
4.1.2 Mechanizing Android Applications 65
4.1.3 State of the Art . 67

4.2 Goals, Definitions and Design 68
4.2.1 Antivirus Features to Test 69
4.2.2 Antivirus Updates . 70

4.3 Implementation . 70
4.3.1 AndroPilot . 73

4.4 Deployment and Evaluation 77
4.4.1 Resource Utilization 78
4.4.2 Scalability . 82

4.5 Discussion . 83

5 Accuracy vs. Power Consumption of Android Anti-malware Tools 85
5.1 Design . 85
5.2 Implementation . 87
5.3 Datasets . 88
5.4 Experimental Results . 89

5.4.1 Methodology of Our Experiments 89
5.4.2 Detection Accuracy . 90

www.syssec-project.eu 6 September 23, 2013

5.4.3 Energy Consumption of Anti-malware Tools 91
5.4.4 Energy Consumption Versus Execution Time 91
5.4.5 Energy Consumption Versus Detection Accuracy 93
5.4.6 Energy Consumption per Malware Sample 94

5.5 Discussion . 95

6 Biometrics Security Aspects for Lightweight Devices 97
6.1 Basic State-of-the-Art Achievements 97
6.2 Fingerprints, Face Modalities and Voice Examples 98
6.3 Writing, Typing and Gesturing Modalities Examples 98
6.4 Key Problems . 99
6.5 Multimodal Perspectives . 99
6.6 Discussion . 100

7 Conclusions 101

www.syssec-project.eu 7 September 23, 2013

www.syssec-project.eu 8 September 23, 2013

List of Figures

2.1 Receiver Operating Characteristic (ROC) curve for the two
scoring functions. 21

2.2 Latency overhead of BINDERPROFILER. 22
2.3 CDF of the average throughputs needed to transmit a com-

pressed IPC trace. 23
2.4 An example scenario of two colluding applications. 24
2.5 The home page screen of our experimental BINDERPROFILER

prototype. 27
2.6 The page hosting the analysis results of our experimental

BINDERPROFILER prototype. 31

3.1 Example stack layout. 39
3.2 CDF for TRACEDROID coverage results. 50
3.3 Code coverage breakdown per simulation. 52
3.4 ZitMo. 53
3.5 Callgraph for ZitMo. 60

4.1 Top 20 Android antivirus products. 62
4.2 User interaction needed to perform an on-demand device scan

with Zoner AntiVirus Free 1.7.0. 64
4.3 Basic workflow of the ANDROTOTAL analysis process. 71
4.4 ANDROTOTAL multi-tier architecture. 72
4.5 ANDROTOTAL web frontend advanced scan. 73
4.6 AndroPilot library architecture overview. 74
4.7 ANDROTOTAL web application MVC architecture. 78
4.8 CPU and RAM utilization while testing on-install detection

capabilities of 3 commercial antivirus products. 79

9

LIST OF FIGURES

4.9 CPU and RAM utilization while testing on-demand detection ca-
pabilities of 3 commercial antivirus products. 80

4.10 Throughput evolution while adding new workers to ANDRO-
TOTAL. 84

4.11 Average test execution time while adding new workers to AN-
DROTOTAL. 84

5.1 Overview of the system for power consumption and accuracy
measurements. 86

5.2 Detection accuracy across the anti-malware tools. 90
5.3 Total energy consumed in the Baseline Case and in the Final

Case for each anti-malware product. 91
5.4 Energy versus execution time across anti-malware tools. . . . 92
5.5 Energy versus detection accuracy across anti-malware tools. . 93
5.6 Energy Efficiency Ratio across the different anti-malware tools. 94
5.7 Execution time and average energy consumption of the anti-

malware tools in order to scan a single malicious application. 95

6.1 Biometric security profiler framework. 99
6.2 Multiple biometric modalities security profiler implementation.100

www.syssec-project.eu 10 September 23, 2013

1
Introduction

1.1 Lightweight Devices in the SysSec Research Roadmap

Mobile computing devices have become ubiquitous in our everyday life and
in every facet of our society. Their ubiquity, combined with their inher-
ent limitations and intricacies make them prime attack targets for all kinds
of cyber-miscreants. The SysSec project has placed security of mobile and
lightweight devices in a prominent place in the security research landscape
of the years to come. In our 2012 Second Report on Threats on the Future
Internet and Research Roadmap[13] we have already outlined several topics
which should be investigated.

We followed up our initial roadmapping effort with the 2013 Red Book:
Roadmap for Systems Security Research[15]. To realize this book, SysSec put
together a “Task Force” of top, young researchers in the area, steered by the
advice of SysSec work-package leaders. The Task Force also consulted with
the project community in order to make the new roadmap as comprehen-
sive as possible. Of course, coverage of Security of Mobile Devices couldn’t be
missing from this updated roadmap. Specifically, the Red Book calls for more
focused research on the development of defensive tools and techniques
that can be deployed on the current smartphone systems to detect and pre-
vent attacks against the device and its applications. More importantly, it
also identifies privacy as the foremost challenge to meet on such devices.

1.2 The Edge of Mobile Malware

Along with the rise of lightweight devices, also came the rise of mobile mal-
ware. Over the past three years, mobile devices and apps have become an
attractive target for cyber criminals. Indeed, since 2010, when the first ma-
licious application for Android was identified, the spread and complexity of
so-called “mobile malware” is constantly on the rise. According to Kasper-

11

CHAPTER 1. INTRODUCTION

sky, 99.9% of the new mobile threats detected in the first quarter of 2013
target the Android platform [41]. This comes as no surprise, as Android is
currently the most popular mobile device platform with marketshare around
80% [33]. Recent (PC) history has shown that malware authors prefer to
make a target of the most popular platform, leaving competing platforms
relatively safe (but not necessarily secure).

Security vendors responded to this increasing trend with antivirus prod-
ucts tailored for mobile devices. Moreover, the research community has
shown considerable interest in the detection and prevention of this new
kind of malicious software.

Before proceeding with the rest of the report, it would be desirable to
give a definition of ”mobile malware”. In general, malware is considered to
be an undesirable piece of software that is developed by an attacker for mali-
cious purposes (e.g., to steal sensitive information, to cause denial of service
to a system or to gain access to forbidden resources etc.). Malware can be
classified into various types according to its malicious nature (e.g., viruses,
worms, trojan horses, rootkits, keyloggers, spyware etc.). The malware that
targets mobile devices is called ”mobile malware” and is also divided into
several types. The most popular of these types are Mobile Device Data Steal-
ers that try to steal information such as OS version, device ID, International
Mobile Equipment Identitiy (IMEI) number, in order to be used for future
attacks, Rooting-capable malware that attempt to gain root privileges aim-
ing to give remote access to attackers and charge-ware that charges the user
(without being visible), by communicating with premium numbers (e.g.,
Dialer and SMS Trojans). All these categories of nefarious mobile software
reach end users in the form of applications (malicious apps). Along with
these malicious apps that try to exploit mobile users, there is a large num-
ber of applications that is difficult to be classified into malicious or benign.
These suspicious apps can pose privacy concerns or collect unwanted infor-
mation from the users. Such application are, for example, Mobile Spy 1,
Stealth Genie 2, MobiStealth 3, etc.; although they are not malware, they
have the potential to create risks for mobile users.

In the next section, there is an overview of the research conducted within
the project SysSec for the detection of such malicious software and for mo-
bile security in general.

1http://www.mobile-spy.com/
2http://www.stealthgenie.com/
3http://www.mobistealth.com/

www.syssec-project.eu 12 September 23, 2013

http://www.mobile-spy.com/
http://www.stealthgenie.com/
http://www.mobistealth.com/

1.3. RESEARCH TOPICS COVERED IN THIS REPORT

1.3 Research Topics Covered in This Report

In this report we present the research that the SysSec partners have con-
ducted in the past year to address issues related to lightweight devices and
identified in our research roadmaps.

Our research covers different aspects of mobile security. We first fo-
cus on defensive tools and techniques by giving a technical description of
two malware analysis tools (chapters 2 and 3) we implemented, capable of
detecting malicious activities on lightweight devices. These sandbox tools
combine static and dynamic analysis in order to detect malicious software
in mobile devices, against the common antivirus products that have to rely
only on predefined signatures to detect attacks. One could argue that these
tools cannot run on lightweight devices due to limited resources and energy
supply available on such devices. Nonetheless, sandbox tools can detect
zero-day malware and their results can be used to create new ”fresh” signa-
tures, which is very important in order to keep mobile antivirus tools up to
date and thus enhance the safety of the mobile users.

Next, we turn our attention towards the most popular antivirus prod-
ucts for mobile devices available from reputable security vendors. In this
context, we present a testing framework designed to streamline the evalua-
tion process of these antivirus tools in Chapter 4. The presented framework
has also been deployed as a publicly available web service that enables users
to analyse suspicious applications. Moreover, we evaluated and compared
the effectiveness of these antivirus products in terms of accuracy and power
consumption and we present our results in Chapter 5. Such an analysis is
very important for lightweight devices owners who are interested in both
the level of security provided by such tools and the power constraints that
these products may imply.

Finally, part of our research also explores how the particularities of
mobile devices may affect their security in Chapter 6.

1.3.1 Mobile Malware Research

Specifically, in Chapter 2, we present further results from our work on
BINDERPROFILER, a tool which is able to detect malicious Android appli-
cations by means of monitoring their IPC activity. The architecture and
operation of the tool has already been presented in our 2012 Intermediate
Report on Cyberattacks on Ultra-portable Devices[14]. In this document we
present an extensive evaluation of the tool and its efficiency in detecting
mobile malware. We also demonstrate how BINDERPROFILER can identify
groups of colluding applications. Such groups could be an important threat
to privacy as, they are able to essentially bypass the Android permissions
model and exfiltrate sensitive user information without being noticed.

www.syssec-project.eu 13 September 23, 2013

CHAPTER 1. INTRODUCTION

Another piece of work which we extended during the past year is AN-
DRUBIS. ANDRUBIS (also presented in [14]) is a fully automated dynamic
analysis framework for Android applications. It employs both static and
multi-layered dynamic approaches to analyze unknown Android applica-
tions. In Chapter 3 we present TRACEDROID, a new ANDRUBIS extension,
which allows tracing method calls made within applications. TRACEDROID

does not require access to the source of the analyzed applications and pro-
vides richer information than existing tracing solutions. For this we believe
that it is a significant tool for the analysis of mobile phone malware and
the reverse engineering of malicious applications in general. We demon-
strate its potential by analyzing ZitMo[42], the mobile variant of the infa-
mous Zeus[32] trojan.

Last, in Chapter 4 we describe AndroTotal, a scalable framework and
web service to streamline the evaluation of mobile antivirus products with
a rigorous, scientific methodology, which overcomes the technical issues
posed by such task. We released AndroTotal, in April 2013, as a publicly
accessible web service4 that allows users to submit APK for analysis. So far,
we collected 18,758 distinct submitted samples and received the attention
of several research groups (1,000 distinct accounts), who integrated their
malware-analysis services with ours.

1.3.2 Resources Used by Mobile Security Products

Recent research has shown that mobile security is still in its infancy, so the
continuous evaluation of mobile security products is very important in order
to monitor the progress we make. In Chapter 4 we present ANDROTOTAL.
This is a new effort which aims to provide a rigorous, systematic evaluation
of the off-the-shelf security suites available for Android mobile devices. AN-
DROTOTAL was relased in April 2013 as a publicly accessible web service. In
this report we detail the architecture and implementation of the platform.
More important, we present some results produced by the platform that con-
cern the use of resources (CPU and RAM) by the different mobile antivirus
suites.

In Chapter 5 we further explore the use of resources by Android secu-
rity products. Specifically, we investigate if there is a correlation between
the amount of resources they use and the detection accuracy they achieve.
Moreover, we profile the power consumed by each major component of the
device while scanning for malware. This allows us to pinpoint any how we
can make existing protection mechanisms more power-efficient. Our re-
sults also highlight the need to research solutions specifically devised for
mobile devices rather than relying on ideas borrowed from traditional (PC)
malware research.

4http://andrototal.org

www.syssec-project.eu 14 September 23, 2013

http://andrototal.org

1.3. RESEARCH TOPICS COVERED IN THIS REPORT

1.3.3 Biometrics and Mobile Devices

Finally, in Chapter 6 we explore the use of biometrics as an additional secu-
rity mechanism for lightweight devices. The work on this area is surveyed
and we draw some conclusions based on the State-of-the-Art and own re-
search achievements. Studying such mechanisms is important in order to
improve security of mobile devices while still retaining their usability.

www.syssec-project.eu 15 September 23, 2013

CHAPTER 1. INTRODUCTION

www.syssec-project.eu 16 September 23, 2013

2
BinderProfiler

As stated in the previous Chapter, mobile malware has rapidly became a
serious threat. There are many research efforts for identifying malware in
mobile devices utilizing static and dynamic analysis techniques, like taint-
ing and framework API monitoring. In this work, we observe that Android
is service oriented, that is, applications exchange Interprocess Communica-
tion (IPC) messages for accessing the system’s resources. For example, an
application sends an SMS by making an IPC call to the telephony service.
The IPC traffic, which is sent and received by a particular Android appli-
cation is enough for creating an accurate profile of the high-level actions
performed by the under analysis application. We created a system that pas-
sively monitors all IPC activity exports application profiles based solely on
that information. We analyzed known malware and legitimate applications,
and stored their profiles in a library. Finally, we used the library to clas-
sify unknown software. The classifier successfully distinguishes legitimate
applications from malware with low false positive and false negative rates.
However, we must stress that the main goal in this work is to develop a
system that assists the security analyst, rather than creating a purely unsu-
pervised detector.

Apart from malware identification, the system can be also used for generic
application profiling and data tracking. For example, it can passively iden-
tify premium numbers or address book information in IPC messages. Finally,
it can graphically visualize all collected IPC activity in application graphlets;
graphs depicting how an Android application is communicating with other
applications and services. In this way, the system can be utilized for dis-
covering colluding applications, which try exfiltrate sensitive information
by evading Android’s permission model by permission-sharing among many
collaborating applications.

We present BINDERPROFILER, a tool that passively monitors IPC traffic
and classifies malware based on their IPC behavior. The architecture and

17

CHAPTER 2. BINDERPROFILER

operation of the tool has already been presented in our 2012 Intermediate
Report on Cyberattacks on Ultra-portable Devices [14]. In the following sec-
tions we provide overview about the system architecture and we present
experimental results in terms of accuracy and overhead. Finally, we discuss
about further applications where this technique could be used.

2.1 Architecture

In this section we review BINDERPROFILER. We begin with some background
information about Android and IPC, and then we give a short overview of
the system.

2.1.1 Background

Instead of using the traditional IPC techniques offered by the Linux Kernel,
the Android implemented Binder, based on OpenBinder [3]. Android mod-
els applications as a set of components with distinct roles, namely Activities,
Services, Content Providers and Broadcast Receivers. Activities provide the
UI to interact with the user. Services stay in the background and perform op-
erations without engaging the user. Content Providers provide a consistent
method to store and access data.

Android implements all IPC using Remote Procedure Calls (RPC). The
most common technique for issuing an RPC in Android is through intents.
An intent is a type of object designed to deliver messages across Android
components. Intents are capable of determining the destination of the mes-
sage dynamically. The developer can set the criteria that are needed for the
delivery of the intent. Android, based on these criteria, dynamically resolves
and decides which is the destination of a particular intent.

Services requiring advanced RPC capabilities, for instance multithread-
ing support, have to create an AIDL specification. The Android Interface
Definition Language (AIDL) is the specification of the API that the service
wishes to expose to other components. Based on that specification, Android
generates the necessary proxy class used by the clients and a stub class used
by the service to implement RPC. Android Binder uses these two classes to
transmit method calls and parameters from the client process to the server
process. More specifically, Android Binder initiates a transaction from the
client to the server containing all the necessary information for the RPC in
the payload. In the Java model the transaction data is expressed as a Parcel

object. A parcel can contain Java primitives, objects or references to other
interfaces (IBinder) objects. All these have to be marshalled before be-
ing sent across process boundaries. Another structure, heavily used in IPC,
is bundles; a special type of payload holding key/value pairs and it is de-

www.syssec-project.eu 18 September 23, 2013

2.2. EVALUATION

signed for type-safety and improved performance, it is used extensively by
the applications for convenience.

Besides Android Binder, which is implemented and accessed in Java,
there is middleware written in C++ that mediates the interaction between
the Java objects and the Android Binder kernel module. Finally, Android
Binder includes a custom kernel component that passes messages between
processes. Android Binder follows the “thread migration” model. That is, an
IPC call between processes looks as if the thread issuing the IPC has hopped
over to the destination process to execute the code there, and then hopped
back with the result.

2.1.2 BINDERPROFILER Overview

BINDERPROFILER is based solely on traffic produced by the Android Binder.
Applications that need extra resources, for example access to the video or to
the SMS functionality of a smartphone, produce messages towards the ser-
vice that provides the particular functionality. These messages, along with
their responses, are delivered through the Android Binder. Our system runs
on a modified Android kernel, which passively logs all the Android Binder
traffic. It then associates a graph, which we call application graphlet, with
each application. As we show later in the discussion, graphlets can be used
for characterizing an unknown application. For example, a security ana-
lyst can be assisted in deciding whether an application may be considered
offensive by searching for particular patterns in the monitored traffic.

The captured Android Binder traffic expresses high-level application ac-
tivity. For example, an application that exfiltrates sensitive information, such
as the IMEI or the address book, will eventually request this information by
sending an IPC message to the System service, which will eventually be de-
livered through Android Binder. In the same fashion, an application that
issues calls or SMSes towards premium numbers, will acquire the function-
ality by requesting, through Android Binder, the telephony or texting service.
Our intuition suggests that Android malware aggressively performs such ac-
tions in short time-windows, which can be identified solely by monitoring
the traffic produced by IPC calls. Recent work on Android malware analysis
also monitor IPC traffic in addition to VMI-based dynamic system call-centric
analysis for reconstructing malware behaviors [52].

2.2 Evaluation

In this section we evaluate the malware classification algorithm. We first
give an overview of the experimental setup and then we present the ac-
curacy of the classifier. We finally discuss various overheads introduced in
Android due to our modifications.

www.syssec-project.eu 19 September 23, 2013

CHAPTER 2. BINDERPROFILER

Malware set size 1000
Malware excluded 175
Legitimate applications set size 825
Malware used for training 400
Legitimate applications used for training 400
Unknown malware used for classification 425
Unknown legitimate applications used for classification 425

Table 2.1: Summary of the experimental setup.

2.2.1 Experimental Setup

We have a set of 1,000 malware from the Android Malware Genome Project [66]
and a few hundred legitimate applications, which we have manually col-
lected. We randomly select 400 malware and 400 legitimate applications
for training the system.

In both phases, training and classification, some applications do not pro-
duce any Android Binder activity. This is mainly because they crash or they
do not run as expected. There were no applications that run normally in
our testbed and produced zero Android Binder activity in the three min-
utes testing period. The diversity of different Android versions is the main
reason for application crashes or abnormal runs. All these problematic ap-
plications are not taken into account. We plan to port BINDERPROFILER on
older Android versions for having a multi-version environment for covering
a broader range of software in the future.

The weights described in [14] are calculated multiple times, since the
application taxonomies are computed for multiple depths. Unknown ap-
plications that are classified are not added to the training set. We could
have our system dynamically adapt by extending the training set each time
a correct classification happens. Adding the application needs recomput-
ing the taxonomies and weights. The results presented in this section do
not include this dynamic behavior. However, in Section 2.4 we discuss a
prototype service based on BINDERPROFILER, which periodically updates all
weights based on manually confirmed classifications. We present a summary
of the experimental setup in Table 2.1.

2.2.2 Accuracy

We plot the Receiver Operating Characteristic (ROC) curve in Figure 2.1
for the two scoring functions, namely the application frequency aware and
the non application frequency aware one, for various depths in each case.
Notice, that our system achieves the best performance for two setups. If the
non application frequency aware scoring function is used, then for depth 6
we receive 8.72% false positives and 9.88% false negatives. On the other

www.syssec-project.eu 20 September 23, 2013

2.2. EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate

Receiver Operating Characteristic

Non Application freq. aware

(0.9,0.087) FPs: 8.72% FNs: 9.88% depth:6

Application freq. aware

(0.93,0.14) FPs: 14.53% FNs: 6.58% depth:4

Figure 2.1: Receiver Operating Characteristic (ROC) curve for the two scor-
ing functions, namely the application frequency aware and the non applica-
tion frequency aware one, and for various depths in each case. Notice, that
our system receives the best performance for two setups. If the non applica-
tion frequency aware scoring function is used, then for depth 6 we receive
8.72% FPs and 9.88% FNs. On the other hand, if the application frequency
aware scoring function is used, we receive FPs 14.53% and FNs 6.58% for
depth 4.

hand, if the application frequency aware scoring function is used, we receive
false positives 14.53% and false negatives 6.58% for depth 4.

There are a number of observations. First, using the application fre-
quency increases false positives, but reduces false negatives. Recall that
application frequency described in [14] expresses the percentage of mali-
cious applications sharing a particular offensive path (i.e. a path, which
was mainly recorded in the malware set), or the percentage of legitimate
applications sharing a particular non offensive path (i.e. a path, which was
mainly recorded in the legitimate applications set). Generally, the malicious
activity is usually a small part of the whole application graphlet. As a re-
sult, it’s common to notice possible malicious paths at low frequency. The
application frequency aware scoring function increases the score for those
paths, hence there is an increased chance to identify malware reducing false
negatives. As a trade-off, the legitimate applications that are identified as
malware increase.

www.syssec-project.eu 21 September 23, 2013

CHAPTER 2. BINDERPROFILER

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000

C
D

F

Latency (milliseconds)

Send (vanilla)
Receive (vanilla)
Send (modified)

Receive (modified)

Figure 2.2: We use two custom applications. One application is sending an
intent to the other and is receiving the reply. We measure the time needed
for the message to be delivered from one application to the other, and the
time needed for the reply. The overhead for capturing all IPC taffic is less
than 10ms/message on average.

Second, remember that our technique is based only on IPC activity. By
looking only at IPC communication we can classify the majority of unknown
malware with approximately 9 to 15% of false positives. A two-digit per-
centage of false positives might seem high , but recall that BINDERPROFILER

aims primarily at assisting the security analyst and not operating as detec-
tor. Moreover, we strongly believe that if we apply our technique to larger
datasets, while being capable of supporting more Android versions, then our
results will improve further.

We believe that our technique is effective for two reasons mainly. First,
the malware set is rich in applications performing IPC communication for
accessing the telephony functionality. Second, as it has already pointed out
by similar works [66, 64], many of the malicious applications are repack-
aged variants of a single application, i.e. there are malware families, which
share common IPC patterns. Thus, currently deployed malware can be eas-
ily exposed in terms of IPC. In Section 2.5, we discuss how malware can be
evolved to evade detection in the IPC domain.

www.syssec-project.eu 22 September 23, 2013

2.2. EVALUATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
D

F

KBits/sec

Figure 2.3: CDF of the average throughputs needed to transmit a com-
pressed IPC trace of each application from our pool of Android software,
both legitimate and malware. On average we need tens of KBits/sec for
transmitting the IPC traffic created by a 5-minutes analysis.

2.2.3 Overhead

We measure the overhead imposed by the emulator when BINDERPROFILER

is used for capturing all IPC traffic. We use two custom applications. One
application is sending an intent to the other and is receiving the reply. We
measure the time needed for the message to be delivered from one applica-
tion to the other, and the time needed for the reply. We perform thousands
of such transactions in a modified and non-modifed emulator. We plot the
CDF of the times needed for each message, and each reply, to be delivered
with BINDERPROFILER running and not in Figure 2.2. Observe that BINDER-
PROFILER introduces less than 10 ms per message.

We further explore the volume of IPC traffic generated by each applica-
tion during an analysis of 5 minutes, to see whether it is realistic to out-
source all information collected by BINDERPROFILER to a cloud infrastruc-
ture. Notice, that this is the raw IPC traffic, i.e. all captured information,
which has received zero analysis. We plot the CDF of the average through-
puts needed to transmit a compressed IPC trace of each application in Fig-
ure 2.3. Observe that on average we need tens of Kbits/sec. This is of the

www.syssec-project.eu 23 September 23, 2013

CHAPTER 2. BINDERPROFILER

1:Alice:1 234-567-890 :2:John Doe:(999) 999-99 :3:Bob:(555) 588-888

com.example .malware2 (538)

t 4

system_server (83)

t 2

com.example .malware1 (552)

t 1

Android Kernel (0)

t 3

Figure 2.4: An example scenario of two applications that collude for export-
ing the address book of a device. com.example.malware1 has permissions
for accessing the address book, but has no permissions for using the net-
work. com.example.malware2 has permissions to used the network, but
has no permissions for accessing the address book. com.example.malware1
requests the address book at time t1 through system server and fi-
nally the address book is delivered to com.example.malware2 at time t4.
com.example.malware2 can exfiltrate the address book, since it has net-
work access. By just inspecting IPC traffic is trivial to identify such behavior.

same order as similar infrastructures [48]. Also notice that IPC traffic is trig-
gered artificially by Android Monkey [4] and not by normal human usage.

BINDERPROFILER is primarly designed for off-line usage. In Section 2.3
we explore some ideas for real-time operation. There is space for further
improvement of the currently deployed prototype. We plan to perform var-
ious optimizations in our future work for making BINDERPROFILER more
lightweight for real-time usage.

2.3 Further Applications

BINDERPROFILER is a generic system that can be applied in various security
and privacy applications. So far, we have explored an algorithm for classi-
fying malware. We now explore how the collected IPC information can be
used for other applications.

2.3.1 Private Information Exfiltration

Many applications, intentionally or not, leak information, which may be
considered private and sensitive. This may include location coordinates,
address book information, etc. The State-of-the-Art in detecting such in-
formation leakage is by using tainting [20]. However, there are two main
problems with tainting. First, system-wide tainting imposes significant over-
head. Second, tainting detects information, before leaving the device, and

www.syssec-project.eu 24 September 23, 2013

2.3. FURTHER APPLICATIONS

thus cannot capture implicit control flows. Consider, for example an appli-
cation receiving the geographical location of the user, and transmitting them
using a side-channel. Instead of sending the actual location in the network,
it transmits a number of packets towards a particular colluding host, which
can eventually decode them, by inspecting various packet headers and not
the actual contents of them, in values that reveal the location of the de-
vice. Using side-channels in mobile devices has been extensively explored
in Soundcomber [53].

BINDERPROFILER can not detect side-channels, but can easily identify ap-
plications that request private information, since sensitive information will
be requested through IPC communication. Most importantly, BINDERPRO-
FILER can do that with low overhead. BINDERPROFILER can have a list of
services offering sensitive information and alert the user, whenever an ap-
plication communicates with the particular service. The user, then, will be
able to add the running application in a white or black list.

2.3.2 Real-time Detection

We have demonstrated how BINDERPROFILER can assist in malware identi-
fication in off-line mode. The system can be potentially leveraged for real-
time detection. We can achieve this by using the following two models of
operation. First, we can capture all activities towards malicious resources.
For example, calling or texting to premium numbers can be detected in real-
time if a list of known premium numbers is stored in the host smartphone.
We expect that this information needs limited storage resources. Second,
we can apply the malware identification algorithm in real-time for all run-
ning applications. There are two challenges here. First, the classification
algorithm is developed for capturing the IPC activity of isolated applications
running in an emulator. A real system is expected to have multiple appli-
cations running at the same time, something which can potentially increase
unwanted noise in IPC. Second, the library of known graphlets needs fur-
ther storage requirements. One possible workaround for mitigating these
issues is to outsource all computation needed for classification in the cloud,
where all graphlets are securely stored, in the spirit proposed in Paranoid
Android [48].

In Section 2.2 we have explored overheads imposed in Android due to
our modifications (see Figure 2.2), as well as the throughput required for
outsourcing all information in a cloud infrastructure for further processing
(see Figure 2.3). Notice, that the overhead imposed is not significant (less
than 10 ms per message exchanged) and the throughput is of the same scale
with proposed infrastructures that collect information related to system calls
activity [48].

www.syssec-project.eu 25 September 23, 2013

CHAPTER 2. BINDERPROFILER

2.3.3 Colluding Applications

In contrast to iOS, where Apple monitors all software available for the plat-
form, Android applies security constraints in applications using a permission-
based model. Each installed application declares all permissions it requires
at install time, and the user is free to decide whether the software’s re-
quirements are compatible with their needs or not. This permission model
has been explored by the research community [23], and many systems
have been proposed for making this model more secure and more accu-
rate [21, 45, 67]. Some researchers have also identified permission viola-
tions from stock applications shipping with smartphones [28].

Detecting and enforcing the right permissions at installation time can
mitigate or reveal a number of over-privileged applications. Unfortunately,
we expect that malware authors will soon be motivated to distribute many
less-privileged applications, which, if combined, can be considered as an
application composition powerful enough as the union of the permissions
each one of the individual applications has. This tactic, known also as per-
mission re-delegation [24], was demonstrated in Soundcomber [53], where
multiple applications collude to steal data from the victim’s device. One
may argue that forcing the user to install many applications is considered
hard. However, since many malicious applications are re-packaged forms of
popular legitimate ones [64], and taking into account that Android markets
are overflowed with popular software, the probability of having multiple
malicious applications installed can be considered significant. Especially, if
we consider that an application may lure a user to download another one,
which pretends to enhance the overall user experience by adding new func-
tionality.

BINDERPROFILER can be efficiently used to detect such application com-
munities that communicate with each other. We developed one such setup
with two malicious applications that collude in order to exfiltrate the Ad-
dress Book from the device and transmit it to a server. Notice, that nor-
mally you need one application for carrying out this task. However, this
application requires access to both android.permission.READ CONTACTS

and android.permission.INTERNET, which, at installation time, may raise
privacy concerns. In our scenario, which is heavily inspired by Sound-
comber [53], we develop one application asking permission for android.

permission.READ CONTACTS and one for android.permission.INTERNET.
The second application, denoted as com.example.malware2 asks from the
first one, denoted as com.example.malware1, for the address book. After
receiving the information, com.example.malware2 can transmit the address
book, which was never permitted to acquire, to an external server.

We depict the traffic as was captured by BINDERPROFILER in Figure 2.4.
We have labeled each arrow with a timestamp ti. The following convention
is used: t1 < t2 < t3 < t4. Thus, each communication is ordered in the

www.syssec-project.eu 26 September 23, 2013

2.4. DEPLOYMENT

Figure 2.5: The home page screen of our experimental BINDERPROFILER

prototype. The service is designed similarly to other related services, such as
on-line antiviruses or malware analyzers [1, 2]. The user can anonymously
upload an Android archive and receive a dynamically generated URL, which
hosts the results of the analysis.

time domain. By applying time correlation for this series of events we can
speculate that two application communicate. Identifying application cliques
through IPC activity can be potentially be effective, especially, in combina-
tion with tools that investigate the effect of Android permissions [67].

We consider that colluding applications and communication over side-
channels in Android malware is a new field of research. We expect this
work to assist in developing event-based algorithms for identifying malware
synergies.

2.4 Deployment

In this section we present the deployment of our prototype.

2.4.1 Overview of Operation

BINDERPROFILER was originally designed for assisting the security analyst.
However, while conducting the experiments, we discovered that BINDER-
PROFILER could be potentially implemented as a service and assist the end-
user. The nature of the system is such that it permits any user, no matter
their technical background, to utilize its results. Any user can reconsider
installing an innocent looking application after quickly inspecting its appli-
cation graphlet. Notice, that our system is not powerful enough to convince

www.syssec-project.eu 27 September 23, 2013

CHAPTER 2. BINDERPROFILER

someone to install an application by providing guarantees that the applica-
tion is legitimate, but it is able to raise concerns about a possibly malicious
application.

We implemented a first on-line prototype based on BINDERPROFILER,
which runs over the web. The service is designed similarly to other related
services, such as on-line antiviruses or malware analyzers [1, 2]. The user
can anonymously upload an Android archive and receive a dynamically gen-
erated URL, which hosts the results of the analysis. On the background we
have implemented scripts that automatically install the Android application
in an emulator which runs BINDERPROFILER. The under-analysis application
runs for three minutes in the modified emulator, its application graphlet is
exported, as well as its scores as they are calculated based on the classifier
we have built using our existing malware database [66].

The user is able to visit the web site at a later time and inspect the ap-
plication graphlet and the various scores exported by the system. Together
with the scores, there is text, which advices the user about the level of ma-
liciousness of the application, according to the system. Each application is
processed for a few minutes, so we have implemented a virtual queue that
hosts user requests. So far, our system is based on a few emulator instances,
but we plan to enhance this with actual devices in the near future.

Finally, the user has the ability to give feedback to the system. They
can confirm that the application is indeed malware or legitimate based on
the application graph. The system then puts the application in a group of
classified applications which are used to retrain the existing database of
application graphlets. We depict screenshots of the home and results page
of the BINDERPROFILER prototype, in Figure 2.5 and Figure 2.6, respectively.

2.5 Limitations and Considerations

2.5.1 Evading Detection

Our system associates particular IPC communication patterns with suspi-
cious behavior. An obvious strategy to evade detection is enhancing the
malware with dummy IPC communication, which conceals all patterns that
can be considered malicious. This can be combined with non-aggressive,
stealthy malware. The design of BINDERPROFILER was mainly driven by the
observation that much malware performs similar actions, and there are of-
ten variants of a main malware that defines a particular family. Applying the
aforementioned strategies raises the bar for malware authors. It may be easy
to introduce dummy IPC activity, but it is really hard to remove the funda-
mental actions that imply malicious behavior. We believe that all malware
classification techniques experience an arms race between the algorithm’s
accuracy and the techniques malware employs to evade detection. Finally,

www.syssec-project.eu 28 September 23, 2013

2.5. LIMITATIONS AND CONSIDERATIONS

we believe that BINDERPROFILER can provide complementary information
to the many other tools that perform malware analysis.

2.5.2 Performance Overhead

BINDERPROFILER was initially designed for off-line operation. However, it is
possible to port some functionality on an actual device for collecting all IPC
traffic. Making BINDERPROFILER operate in real-time has many challenges.
First, IPC traffic is significant in an Android system. This is why we believed
that simply by looking at IPC traffic you are able to characterize applications
in the first place. Logging and transmitting all this traffic incurs high over-
heads. As we showed in Section 2.3 a device must transmit Kbits/sec for
profiling just one application. Much of this traffic is redundant as it is as-
sociated with GUI activity. Applying a pre-filtering at the device can reduce
this overhead, but so far we have no simple way of achieving this.

2.5.3 Message Parsing

Parsing an IPC message is not trivial, since it has been already serialized
and it possibly includes Java objects, whose semantics we are not aware
of. Thus, we extract only printable strings, because class names and other
sensitive information, such as contacts or telephone numbers, are expressed
in text. Moreover, Android processes delegate other services for performing
the actual actions. These delegated services act as proxies. In this work,
we have not attempted to analyze some of the most popular services used
for delegating the communication, and shipped with the Android operating
system. Our original goal was to show that IPC activity can be an efficient
descriptor for Android applications, even in cases where the exact payload
of the communication is not known. However, some of the core Android ser-
vices could be analyzed, in order to reveal the actual IPC activity (the exact
payload of each communication). In that case, our presented classification
algorithm could be further improved.

2.5.4 Device Rooting

There are malicious applications, which attempt to compromise a device.
This process is called rooting or jailbreak, and is essentially happening by
using a core vulnerability of the software running at the device. After com-
promising the smartphone the malicious application is literally free to do
anything. If BINDERPROFILER was enabled in real-time mode, the malicious
application could easily turn off its operation or replace the kernel with one
of its own. Detecting such attempts is out of the scope of this work. There
are many proposed techniques for detecting device compromising. Ensur-

www.syssec-project.eu 29 September 23, 2013

CHAPTER 2. BINDERPROFILER

ing Control Flow Integrity (CFI) [5] is one of the methodologies that have
enjoyed attention by the research community [38, 16].

Although, we do not account for this kind of malware, we believe that
BINDERPROFILER is still valuable to the research community. Consider that
the majority of Android malware does not aim at rooting the device, but
exploiting it by calling or texting premium numbers, stealing the address
book, etc [66]. All these actions can be effectively captured by inspecting
all IPC communication.

2.6 Discussion

We developed BINDERPROFILER, a novel system for analyzing Android soft-
ware based solely on IPC activity. We showed that Android malware can
be effectively described by simply observing the IPC communication. We
argued that, in contrast with source-analysis methodologies, which exam-
ine applications at the microscopic level, we can enjoy similar efficiency by
examining software at the macroscopic level, i.e. by looking at high-level
operations. Android is a suitable platform for our technique, since it is built
as a service-oriented platform. Each process needs to request access from a
service for acquiring the permission to use particular resources of the sys-
tem, such as the telephony functionality of a smartphone. This involves a
series of IPC transactions, which expose the functionality of the application.

We introduced application graphlets; graphs that depict all IPC commu-
nication performed by an Android process. Based on application graphlets,
we developed a classification algorithm, which efficiently identifies unknown
malware with 9 to 15% false positives. BINDERPROFILER is designed to be a
tool for assisting the security analyst and the end-user, and thus, is more tol-
erant to false positives, than an isolated detector. We further discussed var-
ious applications, where information encapsulated in application graphlets,
such as privacy exfiltration or permission re-delegation, can be utilized. We
delivered a prototype implementation of BINDERPROFILER, which can be ac-
cessed through the web. Finally, we present evaluation results of the tool
and its efficiency in detecting mobile malware and groups of colluding appli-
cations. We believe that the graphical results produced by BINDERPROFILER

can be useful even to non-expert end-users.

www.syssec-project.eu 30 September 23, 2013

2.6. DISCUSSION

Figure 2.6: The page hosting the analysis results of our experimental
BINDERPROFILER prototype. The under analysis application runs for three
minutes in the modified emulator, its application graphlet is exported, as
well as its scores as they are calculated based on the classifier we have built
using our existing malware database [66].

www.syssec-project.eu 31 September 23, 2013

CHAPTER 2. BINDERPROFILER

www.syssec-project.eu 32 September 23, 2013

3
TraceDroid: Method Tracing for Andrubis

With its static and multi-layered dynamic approach, ANDRUBIS offers an
extensive amount of information that helps analysts to quickly grasp the
behavior of an Android app and identify security critical behavior that is
necessary for the detection of mobile malware.

In its current state, ANDRUBIS already provides more than sufficient in-
formation on what an app is doing. However, to be able to dissect how this
behavior is achieved, even more detailed information is required. To allow
for more in-depth analysis, we implemented TRACEDROID, a fine-grained
method tracer extension for ANDRUBIS. In essence, TRACEDROID is another
dynamic analysis tool for Android as the BINDERPROFILER, which has al-
ready been described in Chapter 2, but follows a different approach. In a
nutshell, TRACEDROID is a modification of the Dalvik VM that will trace the
execution of an app’s bytecode. Based on method traces, analysts can gain
a deeper understanding on how the behavior of an app comes into being
without the need for source code. They are thus a valuable information
source for the analysis of mobile phone malware.

The use of TRACEDROID is not limited to ANDRUBIS, it can also be de-
ployed as a stand-alone tool. As such, it could replace the Dalvik VM on a
real Android device to allow for on-device method tracing of applications.

3.1 Specification

In this section, we establish a soft requirement and desired output overview
for the method tracer, followed by a short discussion of existing solutions
and why they are not sufficient.

33

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

3.1.1 Specification

We like our method tracer to produce readable and easy to understand out-
put files. Ideally, the output shall look similar to the original source files
of the analyzed application. This is hard to achieve using dynamic analy-
sis alone, as the automated simulation of events may not be able initiate
all possible control flow paths, resulting in incomplete output. We would
also have to consider loop detection and rewrite for and while statements,
something we think is out of scope for a first version. We decided that only
an overview of all called methods (and API calls in particular) would already
be of tremendous value for the analyzer. We would like to see all the method
calls that an app makes, including the value of the provided parameters and
their concluding return statements or thrown exceptions. In the future, we
may then add the tracing of field operations on objects or primitives.

Considering a really simple Android application as depicted in Listing 3.1,
we would like to have a single output that looks like the one listed in List-
ing 3.2.

1 package com.example1;

2
3 import android.os.Bundle;

4 import android.app.Activity;

5
6 public class MainActivity extends Activity {

7
8 /* Entry point */

9 protected void onCreate(Bundle b) {

10 super.onCreate(b);

11
12 SimpleClass sc = new

13 SimpleClass("new class", 42, 7);

14
15 int min = sc.min();

16 System.out.println("minimum: " + min);

17
18 int mul = sc.mul();

19 System.out.println("multiplied: " + mul);

20 }

21
22
23
24
25
26 }

(a) MainActivity.java

1 package com.example1;

2
3 public class SimpleClass {

4 String name;

5 int i1, i2;

6
7 public SimpleClass(String name ,

8 int i1,

9 int i2) {

10 this.name = name;

11 this.i1 = i1;

12 this.i2 = i2;

13 }

14
15 public int min() {

16 if (i1 < i2) return i1;

17 else return i2;

18 }

19 public int mul() {

20 return i1 * i2;

21 }

22
23 public String toString () {

24 return this.name;

25 }

26 }

(b) SimpleClass.java

Listing 3.1: Source code for a very simple Android app.

As can be derived from Listing 3.2, we would like to display a lot of
information about the objects and packages that are used. This will be useful
when analyzing large applications that come with many different classes.

www.syssec-project.eu 34 September 23, 2013

3.1. SPECIFICATION

Listing 3.2: Desired trace output.

1 protected void com.example1.MainActivity(<this >).onCreate()

2 protected void android.app.Activity(<this >).onCreate()

3 return

4 new com.example1.SimpleClass((String) "new class", (int) 42, (int)

7)

5 return

6 public int com.example1.SimpleClass("new class").min()

7 return (int) 7

8 public void System.out.println("minimum: 7")

9 return

10 public int com.example1.SimpleClass("new class").mul()

11 return (int) 294

12 public void System.out.println("multiplied: 294")

13 return

14 return

(a) Source code for a very simple Android app.

We also think that displaying parameters and return values will be of high
value for the analysis results.

To sum up, the updated Dalvik Virtual Machine should fulfill the follow-
ing requirements:

• Enable or disable method tracing on a per app basis to avoid a bloat
of unrelated trace output for apps running in the background.

• Stick to the bytecode of the target app to avoid a bloat of internal
system library calls (we are not interested in the implementation of,
for example, System.out.println()).

• For each called method, include the name of the class it belongs to.
• For non-static methods, include the .toString() result of the corre-

sponding object.
• Print the provided parameters and return values. Call .toString() if

the value is an object.
• Separate output files per thread to get a better understanding of what

is happening when and where.
• Include some form of indentation to indicate call depth.
• Add a timestamp to each line of output.
• Process thrown exceptions correctly (i.e., notice exceptions being for-

warded from children to parents).

3.1.2 Existing Solutions

The Android OS and its SDK already provide a method tracing and profiling
solution that collects detailed information on the executed methods during

www.syssec-project.eu 35 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

a profiling session1. Although the output seems to be pretty complete al-
ready, the data does not contain parameter and return values. It is also
not possible to start the method tracer right at the start of a new applica-
tion without modifying the source of the app. On top of that, the Android
method tracer is including internal system library to system library method
calls, something we would like to omit. Finally, the overhead that is intro-
duced by the Android tracer is quite big (results in Chapter 2.2) and we aim
to find a more efficient solution.

Another existing solution would be the use of JDWP (Java Debug Wire
Protocol) and a Java debugger (e.g., jdb). For this to work though, we
would have find a way to make target applications debuggable, and script
the setting and unsetting of breakpoints in jdb to still get automated code ex-
ecution. Using the Java debugger, however, would be a fairly interesting ap-
proach to get even more information about the app’s internal mechanisms,
including field operations.

We decided to extend the existing method tracing and profiling function-
ality.

3.2 Implementation

In this Section, we discuss the implementation of a method tracer for the An-
droid Operating System. We first provide a technical analysis of the source
code modifications made to the Dalvik Virtual Machine internals. A bench-
mark of the final method tracer can be found in Chapter 2.2.

By extending the profiling section of the Android Dalvik VM implemen-
tation, we were able to obtain the log output similar to our desired output
as depicted in Listing 3.2 on Page 35. Most of the work here involved modi-
fying the dvmMethodTraceAdd() method which is called each time a method
is entered or exited. This enables us to look up the calling class, the method
name and the parameters for each method that gets executed, as well as any
return value whenever the current method returns.

3.2.1 Start Tracing

Since we do not want method traces from the entire Android framework,
we need to tell the VM which app to trace. As discussed earlier, each app
generally has its own uid, which would be a perfect value to use as a con-
ditional variable. For this, we modified the Dalvik VM initialization code in
two ways.

• The -uid:<uid> option is added to the initialization function of the
VM. When the emulator is started, one can forward this option to the

1http://developer.android.com/tools/debugging/debugging-tracing.
html

www.syssec-project.eu 36 September 23, 2013

http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/debugging/debugging-tracing.html

3.2. IMPLEMENTATION

Zygote process (the parent of all VM instances) by providing the -prop
"dalvik.vm.extra-opts=-uid:<uid>" argument. It is important to
note that the Zygote is only started once, and providing the uid pa-
rameter is thus only possible during the boot procedure.
Whenever the Zygote fork()s and gains a new uid, we check whether
it matches the provided uid and enable the method tracer in case it
does. Note that if an application fork()s new processes itself, the
uid will remain the same. This means that method tracing is enabled
automatically for children created by the application.

• A second check is added just after a new VM is fork()ed and starts
its initialization. We try to read an integer from the file /sdcard/uid.
If this succeeds, and if it matches the uid of the new VM process, we
will enable the method tracer. This mechanism can be used to start
method tracing an app for which we did not know the uid before the
emulator was booted.

The uid of an app can be found by parsing the /data/system/packages.list
file. The method tracer is started by calling dvmMethodTraceStart(), an ex-
isting function which does all the initialization.

By default, trace output is written to /sdcard/. However, since VMs are
running as ordinary users, they do not have write access to the /sdcard/

filesystem by default. This is a special permission that has to be set in
the app’s AndroidManifest.xml. Permissions are implemented using Linux
groups. During VM initialization, the VM will become a member of the re-
quested permissions groups. To make sure that we can always write trace
files to /sdcard/, we modified the initialization code so that new apps are
always a member of the WRITE EXTERNAL STORAGE group.

3.2.2 Profiler Control Flow

Whenever the original VM’s bytecode interpreter enters of leaves a function,
the special inlined methods TRACE METHOD ENTER, TRACE METHOD EXIT and
TRACE METHOD UNROLL (for unrolling exceptions) are called. These functions
check for a global boolean methodTrace.traceEnabled to be true, and if it
is, call dvmMethodTraceAdd() which writes trace data to an output file. To
extend the method tracer, we modified the prototypes of these functions so
that they expect two extra variables:

• int type is used to identify the origin of the call to TRACE METHOD *.
We need this to distinguish specific inlined function calls from regular
functions, which we will discuss in more detail later.

• void *options is used to store extra options that we need inside the
method tracer. For entering an inlined function, the function’s param-
eters will be stored in this pointer as a u4[4]. For TRACE METHOD EXIT,

www.syssec-project.eu 37 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

it will contain the return value as a JValue pointer and for TRACE -

METHOD UNROLL, the exception class is stored in this pointer.

We now describe the control flow inside dvmMethodTraceAdd() when-
ever a target function f is entered.

3.2.2.1 Initialization

First, a check is performed to see if the caller of f is a function from a system
library. If this is true, we only continue if f is not a system library function as
well. To distinguish system library bytecode from target app bytecode, we
introduced a new boolean isSystem in the DvmDex struct, which contains
additional VM data structures associated with a DEX file (a filename pointer
to the .apk or .jar filename was added as well for debugging purposes).
The value of isSystem is set in dvmJarFileOpen() in JarFile.c whenever
the loaded file has a filename that starts with /system/framework/.

What follows is a sanity check to make sure that we are not already
inside dvmMethodTraceAdd(). This may happen when we call toString()
on objects in a later stage and by doing so we avoid an endless loop. As soon
the test passes, we set inMethodTraceAdd to true for the current thread.

Depending on the action we found, we now take a different branch in
the tracing code.

3.2.2.2 Entering a Method: handle method()

The handle method function is responsible for generating a function entry
method trace line. We start with generating the prefix of the output line
that consists of a timestamp and some indentation to get readable output.
Next, getModifiers() generates a list of Java modifiers that are applica-
ble to f (final, native, private, . . .). We then get f ’s return type using
dexProtogetReturnType() which returns a type descriptor2. We convert
the return type descriptor as well as f ’s class descriptor to something more
readable by using convertDescriptor().

If f is not a constructor call (i.e., new Object()), we now generate
a string representation of the object. In getThis(), we first test if f is
static as static methods never have a this value. If f is non-static, we call
objectToString() on the appropriate argument to convert this to a string
representation. For normal functions, this will be the first argument3.

The reference to the first argument can be found by adding the off-
set method->registersSize - method->insSize to the current thread’s
frame pointer. To understand why this particular offset is used, consider

2http://source.android.com/tech/dalvik/dex-format.html
3http://source.android.com/tech/dalvik/dalvik-bytecode.html

www.syssec-project.eu 38 September 23, 2013

http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dalvik-bytecode.html

3.2. IMPLEMENTATION

1 public void func2(int j1,

int j2) {

2 int a, b, c = 0;

3
4 a = j1 * j2;

5 b = j1 + j2;

6 c = j1 / j2;

7
8 /* Current instruction

pointer

9 * points here.

10 */

11 }

12
13 public void func1(int i1,

int i2) {

14 int x = 0;

15
16 func2(i1, i2);

17 }

18
19 func1(42, 7);

(a) Source code (b) Stack layout

Figure 3.1: Example stack layout.

the example source listed in Listing 3.1a and its corresponding stack layout
in Figure 3.1b.

Although Figure 3.1 shows the stack layout at the moment that func2()
is about to return, it looked the same when the function was entered. The
only difference would be that the values of v0, v1 and v2 were not yet
initialized.

Now all that is left is populating the parameters. We generate a string
array of parameters in getParameters(), followed by constructing a read-
able string containing these parameters in getParameterString(). In get

Parameters(), we loop over the in-arguments of f . We must keep in mind
that some functions do not have a this reference, which complicates the
for loop a bit. We use the DexParameterIterator struct and dexParameter

IteratorNextDescriptor() function to get the corresponding descriptor
along with the parameter. For each parameter, we then call parameterTo
String() to convert the parameter to a string.

parameterToString() expects two u4 argument values that represent
the parameter: low and high. high will only be used when the parameter
is a 64 bit width argument (doubles and longs). The function also expects
a char pointer to the type descriptor of the parameter. The function then
performs a simple case/switch statement to construct the correct format
string, depending on the descriptor. Up to void, all transformations are
pretty straightforward. chars are a bit more complex due to the fact that

www.syssec-project.eu 39 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

∆t thread A thread B

0 Trace is started . . .
1 dvmMethodTraceAdd()

2 LOGD TRACE()

3 fd2 = fopen("outputB", ‘a’)

4 am profile <pid> stop

5 fclose(fd1)

6 fclose(fd2)

4 fwrite(fd2, ...)

Table 3.1: Possible race condition in LOGD TRACE.

Java UTF-16 encoded characters must be converted to printable UTF-8 C
strings. For arrays, we simply fall through to the next case, which is the
L (object) descriptor. Note that we could do a bit more effort here and
try to convert arrays of a primitive type to readable output as well. For
objects, objectToString() is called to convert the reference to a valid C
string representation.

handle method() now calls LOGD TRACE() to print the final formatted
string to the appropriate file. LOGD TRACE() is an inline function that first
locks a dedicated writelock mutex, followed by preparing the output file (if
this was not yet done before) using prep log(). prep log() opens a new
file in append mode, called dump.<process-id>.<thread-id> in the preset
output directory (/sdcard/ or /data/trace/). true is returned if the file is
ready for writing, false otherwise (we ran into a couple of samples where
fopen() failed since there was no space left on the device). The writelock
mutex is used to make sure that there will be no writes when the method
tracer is being disabled. An example race conditition that we avoid using
the writelock mutex is illustrated in Table 3.1

The remaining bits in handle method() relate to freeing the memory re-
gions that were used to store the (temporary) output lines. When handle -

method() returns, we increase the depth value for this thread so that inden-
tation is setup correctly for the next function entry.

It must be noted here that the TRACEDROID performance may be im-
proved by replacing the LOGD TRACE() calls with a modified version of the
log writing function for the existing Android method tracer: if we’re run-
ning on the emulator, there’s a magic page into which we can put interpreted
method information. This allows interpreted methods to show up in the em-
ulator’s code traces. This is an Android modification to the qemu sources
to add support for tracing Java method entries/exits. The approach uses
a memory-mapped page to enable communication between an application

www.syssec-project.eu 40 September 23, 2013

3.2. IMPLEMENTATION

and the emulator4. Further research is necessary to figure out how this can
be achieved and if there really is a notable performance gain.

3.2.2.3 Returning from a Method: handle return()

When the action given to dvmMethodTraceAdd() equals METHOD TRACE -

EXIT (which is true whenever a return statement is interpreted), and if
there is no pending exception, handle return() will be called to print a
return <type> [<value>] trace line. When finished, the depth value for
this thread is decreased to setup the indentation corretly for the next func-
tion entry. Its implementation is similar to handle method().

3.2.2.3.1 Throwing an Exception: handle throws() When the action
given to dvmMethodTraceAdd() equals METHOD TRACE UNROLL or METHOD -

TRACE EXIT while there is a pending exception, handle throws() will be
called to print a throws <exception> trace line. A pending exception dur-
ing a METHOD TRACE EXIT action indicate that f ’s parent catches the thrown
exception, while the METHOD TRACE UNROLL action indicate that the excep-
tion will be forwarded to the next parent in line and that intermediate func-
tions are ‘unrolling’. The implementation is similar to handle method and
handle return(). For unrolling methods, the exception will be stored in the
options argument as a Object*. For METHOD TRACE EXIT actions, we fetch
the exception ourself using dvmGetException(). By using this schema, the
example source code shown in Listing 3.3 will result in the method trace
output as shown in Listing 3.4.

1 public void f3() throws NullPointerException {

2 throw new NullPointerException ();

3 }

4
5 public void f2() throws NullPointerException {

6 f3();

7 }

8
9 public void f1() {

10 try {

11 f2();

12 } catch (NullPointerException e) {

13 }

14 }

Listing 3.3: Method trace for thrown exceptions: source.

4https://android.googlesource.com/platform/external/qemu/+/
9980bbb9965ee2df42f94aafa817e91835dad406

www.syssec-project.eu 41 September 23, 2013

https://android.googlesource.com/platform/external/qemu/+/9980bbb9965ee2df42f94aafa817e91835dad406
https://android.googlesource.com/platform/external/qemu/+/9980bbb9965ee2df42f94aafa817e91835dad406

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

1 public void f1()

2 public void f2()

3 public void f3()

4 new java.lang.NullPointerException ()

5 return (void)

6 throws java.lang.NullPointerException

7 throws java.lang.NullPointerException

8 return (void)

Listing 3.4: Method trace for thrown exceptions: trace output.

3.2.2.4 Inline Functions

Inline functions require a special approach since their arguments can no
longer be fetched from the frame pointer. During a profiling session, dvmPer
formInlineOp4Dbg(u4 arg0, u4 arg1, u4 arg2, u4 arg3) is responsi-
ble for interpreting inlined methods. We modified this function so that it
passes an u4 array to the TRACE METHOD ENTER prototype that contains the
arguments. As outlined earlier, we identify inline methods in dvmMethod

TraceAdd() by providing a type value equal to TRACE INLINE.
The DEX optimization mechanism is in charge for deciding whenever a

function shall be inlined or not. In general, we see that many equals() calls
get inlined.

3.2.3 Stop Tracing

Since method trace lines are written to files on disk using fprintf(), one
needs to explicitly stop the method tracer in order to flush all buffers to disk.
During a normal execution flow, method tracing is stopped by executing
the am profile <pid> stop command, which triggers a call to dvmMethod

TraceStop(). In here, code is added that loops over the thread list and
fclose()s any open method trace output file.

Unfortunately, apps that run into an uncaught exception, do not call dvm
MethodTraceStop() before their VM is destroyed. To avoid incomplete log
files, we added a similar fclose() loop in threadExitUncaughtException()

which is called whenever a thread runs into an uncaught exception. It is not
stated that uncaught exceptions will result in a total VM crash, which is why
trace output files may be reopened again in append mode by prep log().

3.2.4 Added Extra VM Options

To conclude, below is an overview of added VM options and a short de-
scription. VMs will be started with these extra options by providing the
-prop "dalvik.vm.extra-opts=<option1> <option2> ..." argument to
the emulator binary.

www.syssec-project.eu 42 September 23, 2013

3.3. BENCHMARKS

• -uid:[UID] Enable method tracing for the app with uid equals UID.
• -tracepath:/data/trace Store trace output files in /data/trace/

instead of /sdcard/. This option can be used if the tracer will be
started during boot and /sdcard/ is not yet mounted. The caller has
to make sure that the /data/trace/ directory is created in order to
successfully start tracing.

• -no-timestamp Disable timestamps in the method traces. Used for
debugging and benchmarking purposes.

• -no-tostring Disable toString() lookups. Used for debugging and
benchmarking purposes.

• -no-parameters Disable parameter lookups. Used for debugging and
benchmarking purposes.

3.3 Benchmarks

To decide whether TRACEDROID could be integrated into ANDRUBIS without
having its performance overhead causing a drop in the number of detected
operations, we setup a special ANDRUBIS benchmark test. In this Section,
we first describe ANDRUBIS in a bit more detail in Section 3.3.1. We then
describe our benchmark setup and conclusions.

3.3.1 Andrubis Background

ANDRUBIS uses a combination of static and dynamic analysis techniques to
track interesting API calls and specific personal data leaks. Depending on
the activities detected during analysis, ANDRUBIS generates a report that
contains a number of different operation sections. The operations that are
currently being detected by ANDRUBIS are described in Table 3.2.

Most operations described in Table 3.2 come with a number of different
fields. A file read operation, for example, would have two fields: path for
indicating which file was read, and data to list the exact stream of bytes read
from the file. As another example, network read/write operations come
with three fields: host for storing the targetted host IP address, port for
storing the used port number and data for any data that was written over
this connection. Currently, ANDRUBIS does not keep track of the protocol
used (TCP/UDP).

Since Andrubis runs samples for a small amount of time only (180 sec-
onds), we need to understand whether the TRACEDROID performance over-
head will have a negative impact on the operations that are reported by
ANDRUBIS.

www.syssec-project.eu 43 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

operation group subsections description

file operations
file read Reading file contents
file write Writing file contents

network operations
network open Opening a network socket
network read Reading from a socket
network write Writing to a socket

broadcast receivers - A list of (dynamically) installed broad-
cast receivers

data leaks
network leak Leaking personal data via network traffic
file leak Leaking personal data via file writes
sms leak Leaking personal data via SMS texts

crypto operations
crypto key Initializing a cryptographic key
crypto operation Cryptographic operations (encrypt/de-

crypt)
dex classes loaded - A list of dynamically loaded DEX classes
native libraries loaded - A list of native libraries loaded
bypassed permissions - A list of permissions bypassed by using

another app’s capabilities
sent sms - SMS text messages sent
phone calls - Phone calls made
started services - A list of started services

Table 3.2: Overview of operations detected by Andrubis.

3.4 Code Coverage Evaluation

In this Section, we evaluate the effectiveness of ANDRUBIS by looking at the
code that was covered during dynamic analysis. In Section 3.4.1, we first
compare automated results against manual analysis, followed by a break-
down of different simulation techniques in Section 3.4.2. We conclude with
an extensive evaluation of 500 Android applications in Section 3.4.3.

The samples used for analysis consist of a set of 250 malicious and 250
benign samples as selected by the ANDRUBIS team. Unfortunately, the mali-
cious set contained a couple of non-functioning samples, so we were able to
use a set of 242 malicious and 250 benign Android applications to run our
tests on.

3.4.0.1 Coverage Measurement

Having a list of methods that were executed during dynamic analysis as a re-
sult of the TRACEDROID method tracer, we could compute a code coverage
value that shows the percentage of APK functions triggered during analy-
sis. We get a list of functions provided by the apk (by doing some static
analysis on the package) and then map the dynamically found functions
against it. We map functions based on their Java method signature exclud-
ing parameter types and modifiers, i.e., on their <package>.<subpackage>.
<classname>.<methodname> representation.

www.syssec-project.eu 44 September 23, 2013

3.4. CODE COVERAGE EVALUATION

This concept is realized in the coverage.py module. It is worth mention-
ing that the coverage plugin distinguishes two types of coverage computa-
tion: conservative and naive. If the latter type is used, all method signatures
that match popular external Android library APIs are ignored. Since many
apps come with third party advertisement libraries such as Google’s AdMob5

or AMoBee’s Ad SDK6, and these APIs usually come with many method sig-
natures, we exclude a number of such APIs from coverage computation to
get a better indication of the number of methods called that were written by
the app authors themself. The current list of excluded libraries is depicted
in Table 3.3.

API description

AMoBee AdSdk Advertisement library
AdWhirlSDK Advertisement library
Android API Official Android API
Android Support API Official Android support library
GCM Google Cloud Messaging library
Google AdMob Advertisement library
Millennial Media Adview Advertisement library
Mobclix Advertisement library
MobFox SDK Advertisement library
Netty Network application framework library

Table 3.3: Excluded libraries for naive code coverage computation.

Methods are excluded from code coverage computation if their signature
matches one of the signatures found in the excluded APIs. By doing so, we
take the risk to lose signatures that are part of the app’s core packages,
but are named according to one of the popular APIs. For this reason, the
conservative option was kept as default computation approach.

3.4.1 Compared to Manual Analysis

In order to use code coverage as a measuring technique for our analysis
framework, we first set our expectations by running manual analysis on a
subset of samples. By comparing the code coverage achieved during man-
ual analysis against the code coverage gained during automated analysis,
we can make statements on the effectiveness of the used simulations tech-
niques.

We randomly picked 20 malicious and 20 benign samples. We used a
small script that installed each app on a freshly emulated Android platform
before giving us a 180 seconds runtime window for our manual stimulation.
After 180 seconds (the default ANDRUBIS runtime), the app was closed au-

5http://www.google.com/ads/admob
6http://www.amobee.com/technology/ad_sdk.shtml

www.syssec-project.eu 45 September 23, 2013

http://www.google.com/ads/admob
http://www.amobee.com/technology/ad_sdk.shtml

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

tomatically and code coverage was computed. Within these 180 seconds,
we tried to activate as many components of the app as possible. We then
analyzed the app automatically using both the ANDRUBIS and TRACEDROID

platforms while the runtime window of three minutes remained the same.

md5sum manual calls of total andrubis

03aaf04fa886b76303114bc430c1e32c 34.52% 107 of 310 -4.19%
128a971ff90638fd7fc7afca31dca16b 100.00% 2 of 2 0.00%
12b7a4873a2adbd7d4b89eb17d57e3aa 7.55% 216 of 2860 -0.80%
12dc6496fdd54a9df28d991073f26749 35.24% 160 of 454 -32.38%
1390e4fecca9888cdf0489c5fe717839 24.43% 472 of 1932 -5.33%
37eacdc7366403eac3970124c3a3fc32 37.70% 184 of 488 -17.83%
3a11d47f994ec85cfeff8e159de46c54 24.08% 657 of 2728 -3.45%
f240abe83b8da844f5dfdaceba9a6f7e 31.47% 772 of 2453 -12.27%
f2c3afe177ef70720031f2fb0d0aa343 8.91% 27 of 303 +1.32%
f40759b74eff6b09ae53a0dbcabc07d4 20.90% 98 of 469 -0.64%
f5d6b6b019949329ef0de89aca6ac67e 58.14% 125 of 215 -27.91%
f6a0e9573810d3da8a292b49940b09e2 100.00% 3 of 3 0.00%
f81fbe1113db6ca4c25ec54ed2e04f42 47.95% 105 of 219 -12.79%
f9b5afdff92f1eb5c870cf4b601e8dc1 3.89% 166 of 4269 -0.56%
fb891ea00a8758f573ce1b274f974634 20.68% 97 of 469 -0.21%
fbefbe3884f5a2aa209bfc96e614f115 41.95% 146 of 348 -16.09%
fd1af0690436028285a889c1928041ca 56.83% 79 of 139 -9.35%

average for 17x benign 38.49% -8.38%

0018874837a567609e289661cd418639 17.10% 85 of 497 -4.30%
003d668ef73eef4aaa54a0deb90715de 22.39% 245 of 1094 -18.65%
12436ccaf406c2bf78cf6c419b027d82 39.77% 35 of 88 -11.05%
128629e7a3fd7f28ecff2039b5fd8b62 46.80% 476 of 1017 -30.07%
f181409e206cbe2a06066b79f1a39022 10.31% 234 of 2269 +1.06%
f3194dee0dc6e8c245dc94c5435750a5 13.17% 64 of 486 -1.64%
f342d8f0c18410e582441b19de8dd5bb 32.59% 305 of 936 -13.30%
f458ca5d41347a69c1c8dc99812485ee 10.05% 584 of 5813 -9.16%
f46f75e4eb294d5f92c0977c48f5af4f 15.83% 132 of 834 +18.35%
f4d80df6710b3848bf8c78c1b13fe3b5 14.81% 16 of 108 +9.87%
f55a7ad2ab8b3ac2447964614493fffe 14.15% 15 of 106 +10.21%
f7ad9e256725dd6c3cab06c1ab46fcc2 22.31% 620 of 2779 -11.71%
f98ae3c49ce8d4d5ec70f45f06601629 67.74% 21 of 31 -33.92%
fd225d8afd58cdec5f0c9b0f7fd77f58 41.34% 296 of 716 -19.07%
fd48609ba4ee42f05434de0a800929ad 52.00% 52 of 100 +9.76%
fdbce10ece29f14adfb7ebe99931d978 28.30% 30 of 106 +0.94%
fe3cb50833c74c60708e4e385bb8b4fc 8.74% 41 of 469 -6.25%
fead2a981fc24a2f9dd16629d43a6969 39.56% 36 of 91 -11.73%

average for 18x malicious 27.61% -6.70%

Table 3.4: Coverage results for benign and malicious samples.

In Table 3.4, we display the achieved code coverage for all samples that
were successfully tested. Studying the results, we can make the following
observations.

www.syssec-project.eu 46 September 23, 2013

3.4. CODE COVERAGE EVALUATION

• Despite the fact that naive coverage computation was used, coverage
results are still fairly low. We try to explain possible causes for this
later in this section.

• The analysis platforms seem to perform better on malicious samples.
This is likely caused by the external simulations (e.g., simulate a re-
boot or receive a SMS text message) that were not triggered during
manual analysis. In general, malicious applications are more likely to
act upon these events than benign apps, as it allows a malware writer
to automatically start intruding background services whenever such
event occurs. This could also explain why code coverage for our ma-
licious set is about 10% less than for benign samples. We test this
hypothesis in Section 3.4.3.

• There is a large fluctuation between the number of functions that are
declared by an app (ranging from 2 to 5813 for this small subset). A
closer look at samples with such low amount of methods teaches us
that these apps heavily rely on Webkit capabilities and are in essence
just an easy web browser where all the app’s functionality is imple-
mented on a server.

• Differences between manual and automated ANDRUBIS analysis are
not excessive. It is obviously not expected that the currently used au-
tomated simulations outreach manual analysis, due to the complicated
nature of most applications.

3.4.1.1 Understanding Low Code Coverage Results

Table 3.4 shows us that code coverage is relatively low (< 40%), even for
manual analysis. It is desired to understand why this is the case so we
analyzed the analysis log output in more detail and conclude that there are
a number of reasons that may have a negative effect on the code coverage
numbers.

3.4.1.1.1 External Libraries Many apps include external libraries used
for a variety of purposes. It is unlikely that an app uses the complete feature
set of an external library, which causes a lower percentage of code covered.
Methods from these libraries that are not invoked by the app, have thus
a negative effect on the percentage of code coveraged. If an app includes
large libraries, it is likely that the coverage results drop significantly.

External libraries may be generalized into three classes: advertisement
APIs; APIs for component access; and vendor-specific libraries. Most li-
braries seem to relate to the first two classes: processing advertisements
(e.g., Google’s AdMob7 or AMoBee’s Ad SDK8) and component access APIs

7http://www.google.com/ads/admob
8http://www.amobee.com/technology/ad_sdk.shtml

www.syssec-project.eu 47 September 23, 2013

http://www.google.com/ads/admob
http://www.amobee.com/technology/ad_sdk.shtml

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

(e.g., social media APIs for Twitter9 or Facebook10 or special JSON or XML
parsers11,12). Vendor-specific libraries are found in apps developed using a
visual development environment (such as MIT’s App Inventor13 or commer-
cial software like AppsBuilder14), but may also be special ‘helper’ libraries
that appear in all apps developed by the same company.

We are, unfortunately, not yet able to distinguish and exclude external
libraries automatically other than by using a whitelist.

To illustrate the impact that external libraries have on the code coverage,
we took a closer look at the sample with md5sum 12b7a4873a2adbd7d4b89eb17d5

7e3aa. Table 3.4 shows that 2644 methods were missed during dynamic anal-
ysis. Analysing the code coverage log output teaches us that of these missed
calls, an immense 2522 methods are external library functions (Twitter:
1293, Facebook: 753, OAuth15: 160, Google (data, analytics, ads): 112,
and vendor-specific: 204). Recomputing the code coverage while excluding
these libraries resulted in an increase of the coverage percentage of more
than 40%: from 7.55% to 49.61%.

3.4.1.1.2 Unreachable Code As with normal x86 applications, apps are
likely to contain a number of functions that are (almost) never executed.
These include specific exception handlers or other methods that are only
reachable via an improbable branch.

3.4.1.1.3 Complex Applications When manually analyzing large com-
plex applications such as games for only 180 seconds, it is likely that the
analyser does not have enough time to complete all levels or to trigger all
options and thus ‘unlock’ new method regions in the codebase. This is even
harder when there is no knowledge about the app’s semantics at all, as is
the case during automated analysis. Thus the monkey exerciser is unable to
simulate all the available options that are provided by the application.

3.4.2 Breakdown of Simulation Actions

To understand how code coverage is distributed among the different simula-
tion actions and to determine which action is responsible for which percent-
age of code coverage, we analyzed the ANDRUBIS sample set while keeping
track of the simulation intervals. To ensure a clean environment, each sam-
ple was reinstalled between two simulation actions. It must be noted that

9http://twitter4j.org
10http://developers.facebook.com/android
11http://jackson.codehaus.org
12http://kxml.sourceforge.net
13http://appinventor.mit.edu
14http://www.apps-builder.com
15http://code.google.com/p/oauth-signpost

www.syssec-project.eu 48 September 23, 2013

http://twitter4j.org
http://developers.facebook.com/android
http://jackson.codehaus.org
http://kxml.sourceforge.net
http://appinventor.mit.edu
http://www.apps-builder.com
http://code.google.com/p/oauth-signpost

3.4. CODE COVERAGE EVALUATION

this approach limits the total percentage of code covered since receivers or
timers installed during simulation x, will be lost during simulation x+ n.

The following list describes the simulation groups as identified for AN-
DRUBIS.

common Send text messages and initiate phone calls.
broadcast Send intents to all broadcast receivers found in the Manifest.
activities Start all exported activities found in the Manifest.
services Send intents to all services found in the Manifest.
monkey Monkey exerciser.

The breakdown results are listed in Table 3.5. In these tables, sum is the to-
tal percentage of code that was covered during analysis. Due to overlapping,
this does not equal the sum of the coverages during individual simulation
rounds. It must also be noted that ANDRUBIS failed analysis on some sam-
ples.

set common broadcast activities services monkey sum

219x benign 0.00% 0.79% 21.83% 0.56% 24.81% 27.74%
210x malicious 0.00% 4.68% 15.14% 7.14% 19.17% 27.80%

Table 3.5: ANDRUBIS breakdown.

Studying the results, we observe the following behavior.

• Activity simulation and monkey exercising (which also visits numer-
ous activities) are responsible for the largest portions of code cover-
age. This is due to the fact that activities are, in general, main entry
points for an application and often contain method invocations for ini-
tialzing objects, installing action listeners, and setting viewpoints. It
is expected for the monkey exerciser to gain the highest amount of
code coverage as its randomized sequence of input events (pressing
buttons, selecting options, switching tabs, . . .) likely result in the ex-
ecution of new application components.

• The ANDRUBIS common simulation group did not initiate any method
invocations. Inspection of the framework teaches us that this is caused
by its implementation: the operations listed under the common simu-
lation round are non-blocking. This means that after the last emulated
event, the app was immediately uninstalled and the app was given no
time to execute any method.

• Malicious applications tend to initiate more services than their benign
counterparts. This comes not unexpected: services are allowed to run
in the background and offer a malware writer possibilities to secretly
send data to a remote server. On a similar note, we see that common
phone activities such as receiving text messages or receiving phone

www.syssec-project.eu 49 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

calls are of limited interested for benign applications, while malicious
apps are more attentive. SMS text messages, for example, could be
used by a mobile botnet for C&C communcation, while a banking tro-
jan could forward detected mobile TAN (Tranasction Authentication
Number) codes to a remote server.

3.4.3 Coverages Results

Analysis was repeated without reinstalling the package between each sim-
ulation round. It was expected that this would have a positive effect on
the coverage results, as receivers or services started during round x may
now be activated in round x + n. Results are depicted in Table 3.6 while a
cumulative distribution function (CDF) is shown in Figure 3.2.

set code coverage uncaught exceptions VM crashes

233x Andrubis benign 26.76% 18.88% 13.73%
231x Andrubis malicious 27.29% 49.13% 6.09%

Table 3.6: Code coverage results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
o
ve

ra
g
e

Percentage of samples

Coverage distribution

Benign
Malicious

Figure 3.2: CDF for TRACEDROID coverage results.

Aside from the code coverage results, Table 3.6 also includes the per-
centage of detected uncaught exceptions and VM crashes. This first number
indicates the percentage of applications that threw an unexpected excep-
tion during analysis (mostly a NullPointerException or the more general
RuntimeException) and points to faulty apps as such exceptions should —

www.syssec-project.eu 50 September 23, 2013

3.5. CASE STUDY: ZITMO: ZEUS IN THE MOBILE

under normal circumstances — always be caught. The second number il-
lustrates the percentage of apps that caused a complete VM crash during
analysis. This normally indicates a bug in the native code of the VM and
may be related to the TRACEDROID implementation.

Surprisingly, the code coverage results for ANDRUBIS from Table 3.6 are
worse than when we computed the coverage for each simulation separately
in Section 3.4.2. We feel that this is probably caused by the true randomness
of the ANDRUBIS monkey exerciser setup as discussed earlier.

From Figure 3.2, we deduce that for 80% of the samples a code cover-
age of 50% or less was achieved. This corresponds to our earlier observation
during the manual analysis session that, on average, code coverage is rela-
tively low. Also noticable is the drop around 75–85% for malicious samples
compared to the benign set. After studying the results in more detail, we
conclude that the dip is caused by a cluster of malware samples that are
likely related to each other (i.e., from the same family).

Overall, we conclude that Andrubis is able to gain an average code cov-
erage of about 30%, which, compared to manual analysis results discussed
earlier, is a decent value and should provide a good insight in the app’s
capabilities.

We conclude with two figures that illustrate the increase of code cover-
age per second for all analysed samples in Figure 3.3. The x tics are set on
the start of a new simulation action.

The plots from Figure 3.3 confirm our previous statements and expecta-
tions that malicious apps are attentive for the special simulations like reboot
emulation (so that background services can be started as soon as a possible)
and emulation of an incoming text message.

3.5 Case Study: ZitMo: ZeuS in the Mobile

In this section, we analyze an existing malicious Android application to
demonstrate our framework’s capabilities. Although the sample does not
use a complicated code obfuscation scheme and can easily be dissected by
using statical code analysis only, the techniques described here are also ap-
plicable to more complex samples.

Our example is a mobile variant of the Zeus trojan horse family. Zeus’
botnets are estimated to include millions of compromised computers and
are used to collect personal information of victims that include credentials
for social networks or online bank accounts [32]. For the latter, PC-based
ZeuS uses a scheme wherein the bank’s official webpage is modified so that
money can be transfered to arbitrary accounts.

To prevent these attacks, banking services introduced the use of mobile
Transaction Authentication Number (TAN) messages as a form of two-factor
authentication. When a transaction is initiated, a TAN is generated by the

www.syssec-project.eu 51 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

0%

20%

40%

60%

80%

100%

B i o I O N L P M A S E 350s

Code coverage breakdown for 250 benign samples

(a) Benign

0%

20%

40%

60%

80%

100%

B io I O N L P M A S E 350s

Code coverage breakdown for 242 malicious samples

(b) Malicious

Figure 3.3: Code coverage breakdown per simulation.

bank and sent to the user’s mobile phone by SMS. To complete the online
transaction, the user has to insert the received TAN into the bank’s web-
page. The received SMS message may contain additional information about
the transaction such as account number and amount of money that will be
transfered.

www.syssec-project.eu 52 September 23, 2013

3.5. CASE STUDY: ZITMO: ZEUS IN THE MOBILE

The mobile ZeuS variant is used as an addition to PC-based ZeuS to com-
plete malicious transactions. By intercepting and forwarding mTAN mes-
sages to a remote server, it bypasses the two-factor authentication scheme [42].
PC’s infected with ZeuS trick users in installing the malicious app by stating
that their phone needs be activated as part of extra security measurements.
Once the victim entered his phone number, a text message is sent to the
phone that contains a link to the malicious application.

3.5.1 Dissecting a1593777ac80b828d2d520d24809829d

We ran our dynamic analysis tool on the ZitMo malware sample with md5sum
a1593777ac80b828d2d520d24809829d of which VirusTotal reports that it was de-
tected as malicious by 32 out of 46 AntiVirus (AV) vendors16. After com-
pletion of the automated analysis run, we first have a quick look at the
generated screenshot during analysis of the Main activity as depicted in Fig-
ure 3.4a.

(a) Main activity

0%

20%

40%

60%

80%

100%

B i o I O N L P M A S E 215s
 0

 200

 400

 600

 800

 1000

Code coverage breakdown for ZitMo

Code coverage
Methods called

(b) Code coverage distribution

Figure 3.4: ZitMo.

The screenshot shows a huge security logo that contains the activation
code. It appears that there are very little possibilities to interact with the
app. This is confirmed by inspecting the output of the code coverage pro-
cessing script while using the --interval option. The graph for the cover-
age distribution as depicted in Figure 3.4b clearly shows that the monkey
excerciser has a very limited effect on the overall percentage of code cover-
age.

To get an overview of the app’s internal data flow, we generated a call
graph that is illustrated in Figure 3.5. Colored, clustered output was used

16https://www.virustotal.com/en/file/8ae9e08578b24ad61385eebbc17d78b0230e9177/
analysis

www.syssec-project.eu 53 September 23, 2013

https://www.virustotal.com/en/file/8ae9e08578b24ad61385eebbc17d78b0230e9177/analysis
https://www.virustotal.com/en/file/8ae9e08578b24ad61385eebbc17d78b0230e9177/analysis

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

to easily identify the origin of method invocations between the different
components of the application. API calls were omitted to reduce the size of
the graph.

Studying the callgraph, we observe that this particular ZitMo variant
does not obfuscate its method or class names which eases analysis. We iden-
tify a receiver named SecurityReceiver with a suspicious GetLastSMS()

method. Noteworthy is also the MakeHttpRequest() method that is respon-
sible for making a HTTP request via Apache’s HttpURLConnection class. If
we recall that the app has a very limited set of possible interactions, this
indicates that the HTTP request is likely initiated as a reaction to one of our
simulated events.

Our next step involves constructing a list of features that may indicate
malicious behavior. The following Listing displays loading the output log di-
rectory and generating the feature set. Its outcome confirms that there was
some network activity initiated by the app during the analysis session. It also
shows that some personal data was read by the application that includes the
phone’s Internal Mobile Station Equipment Identity (IMEI) and Internaional
Mobile Subscriber Identity (IMSI), as well SMS reading or writing activity.

1 ./trace --logdir a1593777ac80b828d2d520d24809829d

.2013 -07 -14.14.08.57.143089

2 Dropping an ipython shell. You can now play with the traces.

3 In [1]: import features

4 In [2]: f = features.Features ()

5 In [3]: f.get_features(traces , api_classes , ’unknown ’)

6 In [4]: f.dump()

7 ...

8 io_database : True

9 network : True

10 telephony_imei : True

11 telephony_imsi : True

12 telephony_msisdn: True

13 telephony_sms : True

We start with dissecting the HTTP request. Continuing the current trace
session, we search for invocations of getResponseCode():

1 In [5]: for f in functions:

2 ...: if f.name == ’getResponseCode ’: print f.target_object_s

3 ’org.apache.harmony.luni.internal.net.www.protocol.http.

HttpURLConnectionImpl:

4 http :// android2update.com/biwdr.php?to =15555215403

5 &i=310260000000000&m=000000000000000& aid =103&h=0&v

=1.2.3

6 &from =4224& text=incoming+text+message+XLastMessage&

last=1’

The sample is forwarding our received message to a remote webpage
at http://android2update.com/biwdr.php. To understand how the request
URL is constructed, we search for method invocations that return the URL’s
parameters:

1 In [6]: for f in functions:

www.syssec-project.eu 54 September 23, 2013

http://android2update.com/biwdr.php

3.5. CASE STUDY: ZITMO: ZEUS IN THE MOBILE

2 ...: if f.return_value and f.return_value == ’310260000000000 ’:

3 ...: print ’%s.%s()’ % (f.target_object , f.name)

4 android.telephony.TelephonyManager.getSubscriberId () #IMSI

5
6 In [7]: for f in functions:

7 ...: if f.return_value and f.return_value == ’000000000000000 ’:

8 ...: print ’%s.%s()’ % (f.target_object , f.name)

9 android.telephony.TelephonyManager.getDeviceId () # IMEI

10
11 In [8]: for f in functions:

12 ...: if f.return_value and f.return_value == ’103’:

13 ...: print ’%s.%s()’ % (f.target_object , f.name)

14 com.android.security.ValueProvider.GetActivationCode ()

It is also interesting to see if there is maybe a special method that dynam-
ically constructs the URL in order to hinder static analysis. In the following
Listing, we first search for functions that return the final URL, followed by
printing the method traces for this particular function. Note that some out-
put was omitted or reformatted to maintain readability.

1 In [9]: for f in functions:

2 ...: if f.return_value and

3 ...: f.return_value == ’http :// android2update.com/biwdr.php’:

4 ...: print ’%s.%s()’ % (f.target_object , f.name)

5 com.android.security.ValueProvider.GetAntivirusLink ()

6 java.lang.String.replace ()

7 java.lang.String.valueOf ()

8
9 In [10]: for f in functions + constructors:

10: if isinstance(f.called_by , Function) and

11 f.called_by.name == ’GetAntivirusLink ’:

12: print ’%s(%s).%s(%s);’ % (f.target_object ,f.

target_object_s ,f.name ,

13 f.parameters)

14: print ’return "%s"’ % f.return_value

15 java.lang.String("qh’t,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a>=tqe.cqo ,%m

/,bi -w=dr.p,h’p").replace(’[’, ’’);

16 return "qh’t,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a>=tqe.cqo ,%m

/,bi-w=dr.p,h’p"

17 java.lang.String("qh’t,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a>=tqe.cqo ,%m

/,bi -w=dr.p,h’p").replace(’=’, ’’);

18 return "qh’t,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a>tqe.cqo ,%m/,

bi-wdr.p,h’p"

19 # output omitted for readability

20 java.lang.String("http %%:%// and%roid2upd%ate.co%m/biwdr.php").replace(

’%’, ’’);

21 return "http :// android2update.com/biwdr.php"

A similar approach can be used to print the method trace for a specific
function. In our process of disassembling the internals of SecurityReceiver,
consider the following Listing for printing the method trace of the suspicious
GetLastSms() method.

1 In [11]: for f in functions:

2: if f.name == ’GetLastSms ’:

3: print ’%05d - %05d’ % (f.linenumber_enter , f.

linenumber_leave)

4 00489 - 00536

www.syssec-project.eu 55 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

5 In [12]: for f in functions + constructors:

6: if f.linenumber_enter >= 489 and f.linenumber_leave <= 536:

7: if isinstance(f, Function):

8: print ’%s %s %s.%s()’ % (’ ’*f.depth ,f.return_type ,f.

target_object ,f.name)

9: print ’%s return %s’ % (’ ’*f.depth ,f.return_value)

10: if isinstance(f, Constructor):

11: print ’%s new %s()’ % (’ ’*f.depth ,f.class_name)

12 # output reformatted for readability

13 com.android.security.NumMessage com.android.security.SecurityReceiver.

GetLastSms ()

14 android.net.Uri android.net.Uri.parse()

15 return ’content :// sms/inbox’

16 android.content.ContentResolver android.content.ContextWrapper.

getContentResolver ()

17 return ’android.app.ContextImpl$ApplicationContentResolver@4053e060 ’
18 android.database.Cursor android.content.ContentResolver.query()

19 return ’android.content.ContentResolver$CursorWrapperInner@40537e70 ’
20 boolean android.database.CursorWrapper.moveToFirst ()

21 return true

22 int android.database.CursorWrapper.getColumnIndexOrThrow ()

23 return 11

24 java.lang.String android.database.CursorWrapper.getString ()

25 return ’incoming text message ’

26 int android.database.CursorWrapper.getColumnIndexOrThrow ()

27 return 2

28 java.lang.String android.database.CursorWrapper.getString ()

29 return ’4224’

30 java.lang.StringBuilder java.lang.StringBuilder.append ()

31 return ’incoming text message ’

32 java.lang.StringBuilder java.lang.StringBuilder.append ()

33 return ’incoming text message XLastMessage ’

34 new com.android.security.NumMessage ()

35 return com.android.security.NumMessage@4053ba70

As its name already reveals, we see that the GetLastSms() method
fetches the latest received SMS text message from the user’s inbox and re-
turns it as a NumMessage object.

Continuing our study, we open the dumped method trace file and search
for more interesting execution traces. We find the following string compari-
sions called by the AlternativeControl() method that deserve some more
attention:

1 public boolean java.lang.String("incoming text message").startsWith("%

")

2 return (boolean) "false"

3 public boolean java.lang.String("incoming text message").startsWith(":

")

4 return (boolean) "false"

5 public boolean java.lang.String("incoming text message").startsWith("*

")

6 return (boolean) "false"

7 public boolean java.lang.String("incoming text message").startsWith(".

")

8 return (boolean) "false"

The AlternativeControl() method seems to test whether the first char-
acter of the emulated text message matches a particular character. We ini-

www.syssec-project.eu 56 September 23, 2013

3.5. CASE STUDY: ZITMO: ZEUS IN THE MOBILE

tate another analysis session and restart analyzing the sample. This time,
however, we provide the --manual flag in order to have full control over the
content of emulated SMS messages.

1 ./ analyze.py --input ../ apks/zitmo/a1593777ac80b828d2d520d24809829d --

manual

2 ...

3 In [1]: self.emu.sms_recv (1234 ,’%44444444 ’)

4 In [2]: self.emu.sms_recv (1234 ,’:33333333 ’)

5 In [3]: self.emu.sms_recv (1234 ,’*22222222 ’)

6 In [4]: self.emu.sms_recv (1234 ,’.11111111 ’)

By analysing the dumped method trace for this last session, we can re-
construct the control flow of AlternativeControl(). Received SMS mes-
sages that start with a % sign indicative of an info request. Alternative

Control() will send an SMS text message containing device information to
a phone number that is extracted from the incoming message. Once fin-
ished, the broadcast for the received message is aborted so that it will not
appear in the user’s inbox:

1 public boolean com.android.security.SecurityReceiver ().

AlternativeControl("%44444444")

2 public boolean java.lang.String("%44444444").startsWith ((java.lang.

String) "%")

3 return (boolean) "true"

4 public java.lang.String

5 com.android.security.SecurityReceiver ().ExtractNumberFromMessage("

%44444444")

6 return (java.lang.String) "+44444444"

7 public void

8 com.android.security.SecurityReceiver ().SendControlInformation("

+44444444")

9 public static boolean com.android.security.ValueProvider.

IsTotalHideOn ()

10 return (boolean) "false"

11 public static boolean com.android.security.ValueProvider.

IsAlternativeControlOn ()

12 return (boolean) "false"

13 public static java.lang.String com.android.security.ValueProvider.

GetActivationCode ()

14 return (java.lang.String) "103"

15 public static java.lang.String java.lang.String.format ((java.lang.

String)

16 "Model:%s AC:%s H:%d AltC:%d V:%s Mf:%s/%s", [Ljava.lang.Object;

@40533340)

17 return (java.lang.String) "Model:generic AC:103 H:0 AltC:0 V:1.2.3

Mf:unknown /2.3.4"

18 public static void com.android.security.SecurityReceiver.sendSMS("

+44444444",

19 "Model:generic AC:103 H:0 AltC:0 V:1.2.3 Mf:unknown /2.3.4")

20 public static android.telephony.SmsManager android.telephony.

SmsManager.getDefault ()

21 return (android.telephony.SmsManager) "android.telephony.

SmsManager@40534448"

22 public void android.telephony.SmsManager("android.telephony.

SmsManager@40534448").

23 sendTextMessage("+44444444", "null",

24 "Model:generic AC:103 H:0 AltC:0 V:1.2.3 Mf:

unknown /2.3.4",

www.syssec-project.eu 57 September 23, 2013

25 "null", "null")

26 return (void)

27 return (void)

28 return (void)

29 return (boolean) "true"

30 final public void android.content.BroadcastReceiver ().abortBroadcast ()

31 return (void)

Examining the trace output file in more detail, we can determine the
purpose of AlternativeControl(). For this sample, alternative control
stands for the use of SMS text messaging instead of Internet connectivity
to distribute personal information. Alternative control can be enabled by
sending a :<phone-number> message to the infected phone. Once enabled,
all incoming text messages will be forwarded via SMS to the specified phone
number. It can be disabled again by sending a text message that starts with
a dot (.). Finally, a message starting with * seems to disable the software
entirely.

3.6 Discussion

In this chapter, we illustrated the power of TRACEDROID in the analysis of
mobile phone malware by an in-depth analysis of ZitMo. We successfully
identified and reconstructed core components of the app while using only
analysis output results without relying on further information than the one
provided by ANDRUBIS. This shows that TRACEDROID is an essential en-
hancement of ANDRUBIS that helps in revealing details of an app’s internal,
potentially malicious, operation.

3.6. DISCUSSION

1 1372630874895660: new com.example1.MainActivity ()

2 1372630874937955: new android.app.Activity ()

3 1372630874938174: return (void)

4 1372630874938249: return (void)

5 1372630874942135: protected void com.example1.MainActivity("com.example1.

6 MainActivity@40516f98").onCreate ((android.os.Bundle)

"null")

7 1372630874942666: protected void android.app.Activity("com.example1.

8 MainActivity@40516f98").onCreate ((android.os.Bundle)

"null")

9 1372630874974343: return (void)

10 1372630874974504: public java.lang.Class java.lang.ClassLoader("dalvik.system.

PathClassLoader [/data/

11 app/com.example1 -1.apk]").loadClass ((java.lang.String) "com.example1.SimpleClass")

12 1372630874975984: return (java.lang.Class) "class com.example1.SimpleClass"

13 1372630874976467: public java.lang.Class java.lang.ClassLoader("dalvik.system.

PathClassLoader [/data/

14 app/com.example1 -1.apk]").loadClass ((java.lang.String) "java.lang.String")

15 1372630874976876: return (java.lang.Class) "class java.lang.String"

16 1372630875013498: new com.example1.SimpleClass ((java.lang.String) "new class",

17 (int) "42", (int) "7")

18 1372630875013675: return (void)

19 1372630875013739: public int com.example1.SimpleClass("new class").min()

20 1372630875013836: return (int) "7"

21 1372630875013955: public java.lang.Class java.lang.ClassLoader("dalvik.system.

PathClassLoader [/data/

22 app/com.example1 -1.apk]").loadClass ((java.lang.String) "java.lang.System")

23 1372630875014380: return (java.lang.Class) "class java.lang.System"

24 1372630875014793: public java.lang.Class java.lang.ClassLoader("dalvik.system.

PathClassLoader [/data/

25 app/com.example1 -1.apk]").loadClass ((java.lang.String) "java.lang.StringBuilder")

26 1372630875015190: return (java.lang.Class) "class java.lang.StringBuilder"

27 1372630875015477: new java.lang.StringBuilder ((java.lang.String) "minimum: ")

28 1372630875015692: return (void)

29 1372630875015755: public java.lang.StringBuilder java.lang.StringBuilder("minimum: ")

30 .append ((int) "7"

)

31 1372630875015938: return (java.lang.StringBuilder) "minimum: 7"

32 1372630875016121: public java.lang.String java.lang.StringBuilder("minimum: 7").

toString ()

33 1372630875016277: return (java.lang.String) "minimum: 7"

34 1372630875016363: public void com.android.internal.os.LoggingPrintStream("

35 com.android.internal.os.AndroidPrintStream@4050e590").println ((java.lang.String) "

minimum: 7")

36 1372630875056811: return (void)

37 1372630875056916: public int com.example1.SimpleClass("new class").mul()

38 1372630875057051: return (int) "294"

39 1372630875057463: new java.lang.StringBuilder ((java.lang.String) "multiplied: ")

40 1372630875057637: return (void)

41 1372630875057700: public java.lang.StringBuilder java.lang.StringBuilder("multiplied:

")

42 .append ((int) "

294")

43 1372630875058035: return (java.lang.StringBuilder) "multiplied: 294"

44 1372630875058154: public java.lang.String java.lang.StringBuilder("multiplied: 294").

toString ()

45 1372630875058309: return (java.lang.String) "multiplied: 294"

46 1372630875058405: public void com.android.internal.os.LoggingPrintStream("

47 com.android.internal.os.AndroidPrintStream@4050e590").println ((java.lang.String) "

multiplied: 294")

48 1372630875059565: return (void)

49 1372630875059649: return (void)

Listing 3.5: Actual trace output.
www.syssec-project.eu 59 September 23, 2013

CHAPTER 3. TRACEDROID: METHOD TRACING FOR ANDRUBIS

com
.android.security.D

ataStorage$O
penH

elper

com
.android.security.M

ainA
ctivity

com
.android.security.V

alueProvider

android.content.C
ontentR

esolver$C
ursorW

rapperInner

com
.android.security.D

ataStorage

com
.android.security.N

um
M
essage

com
.android.security.SecurityR

eceiver

com
.android.security.SecurityService

android.app.C
ontextIm

pl$SharedPreferencesIm
pl

android.app.C
ontextIm

pl$SharedPreferencesIm
pl$EditorIm

pl

org.apache.harm
ony.luni.internal.net.w

w
w
.protocol.http.H

ttpU
R
LC

onnectionIm
pl

com
.android.security.W

ebM
anager

<init>()

onC
reate()

Schedule()

G
etA

ctivationC
ode()

SetC
ontext()

close()

<init>()

insert()

<init>()

getM
essage()

getN
um

ber()

A
lternativeC

ontrol()

G
etLastSm

s()

IsA
lternativeC

ontrolO
n()

LogTrace()

R
eportFrom

Scheduler()

onR
eceive()

G
etB

oolV
alue()

G
etM

essageR
eportU

rl()

SaveB
oolV

alue()

M
akeH

ttpR
equestW

ithR
etries()

G
etStaticD

ataString()

IsTotalH
ideO

n()

IsU
nInstalled()

onStartC
om

m
and()

C
ancelA

larm
()

getB
oolean()

edit()
com

m
it()

putB
oolean()

G
etA

ntivirusLink()

getR
esponseC

ode()

M
akeH

ttpR
equest()

Figure 3.5: Callgraph for ZitMo.

www.syssec-project.eu 60 September 23, 2013

4
AndroTotal: A Flexible for Platform Scalable Android

Antivirus Testing

In Chapter 1, it is mentioned that security vendors have produced a num-
ber of antivirus tools in order to address the ever rising malware in mobile
devices. Given Android’s security model, where the interaction between
the sandboxed apps, and between the apps and the kernel, is regulated by
a strict permission system, the natural question of whether such antivirus
products can effectively detect malware samples. More generally, the ques-
tion is how to scientifically test antivirus products to measure their effective-
ness. Answering this question is challenging, even when facing traditional,
desktop-based antivirus products.

The remainder of this chapter describes ANDROTOTAL, a practical, scal-
able framework to streamline the evaluation of mobile antivirus products
with a rigorous, scientific methodology, which overcomes the technical is-
sues posed by such a task. We released ANDROTOTAL, in April 2013, as a
publicly accessible web service1 that allows users to submit APK for analysis.
So far, we collected 18,758 distinct submitted samples and received the at-
tention of several research groups (1,000 distinct accounts), who integrated
their malware-analysis services with ours. ANDROTOTAL has been recently
accepted for publication [40].

4.1 Mobile Antivirus Testing

As of April 2013 we identified more than 80 commercial (free or paid) an-
tivirus applications distributed through the Google Play Store. Figure 4.1
shows the 20 most popular products in the Google Play Store, which statis-
tics allowed us to estimate that such applications have been installed about

1http://andrototal.org

61

http://andrototal.org

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Bitdefender - Mobile Security & Antivirus

ESET - ESET Mobile Security

MYMobileSecurity Ltd - MYAndroid Protection Security

Superdroid.net - Super Security Standard

TrustGo Inc. - TrustGo Antivirus

Android Antivirus - Android Antivirus.

Doctor Web, Ltd - Dr.Web Antivirus

Kaspersky Lab - Kaspersky Mobile Security Lite

McAfee Mobile Security - McAfee Antivirus & Security

TrustGo Inc. - Antivirus & Mobile Security

ZONER, Inc. - Zoner AntiVirus Free

shiftworks co.,ltd - Web Antivirus

ESTsoft Corp. - ALYac Android

NQ Mobile Inc. - NQ Mobile Security & Antivirus

NortonMobile - Norton Security & Antivirus

AVAST Software - avast! Mobile Security

Creative Apps - Antivirus Free

Doctor Web, Ltd - Dr.Web Antivirus Light

Lookout Mobile Security - Lookout Security & Antivirus

AVG Mobilation - AntiVirus FREE

Millions

Figure 4.1: Top 20 Android antivirus products by average installations count
on the Google Play Store (April 2013).

250 million of times. This roughly translates to 1 Android antivirus installa-
tion for every 2 Android users.

The mobile context has peculiar characteristics that makes it different
from traditional desktop environments. These differences sets new chal-
lenges that antivirus vendors must face.

Security model: Android relies on two layers of isolation. Non-native code
is executed within a Dalvik virtual machine instance, which is basically
a process. Such process resources are isolated from those of other
applications. This second layer of isolation is guaranteed by the OS,
because each process runs as a distinct user. Although this is generally
an effective security mechanism, it turns out to be a limitation for
antivirus engines, which need to access other applications’ space to
perform signature matching, or to monitor their execution for more
advanced behavioral profiling (e.g., heuristics).

Hardware constraints: Mobile handsets have limited hardware resources
with respect to traditional computers. Even if modern mobile devices
are quite powerful, the heavy dependency on batteries is still a major
issue. This factor limits the sophistication of possible security solu-
tions. Indeed, complex detection algorithms or real-time monitoring
systems that we may find on traditional antiviruses are still hard to
port on mobile devices without impacting the battery lifetime. In some

www.syssec-project.eu 62 September 23, 2013

4.1. MOBILE ANTIVIRUS TESTING

cases, having an antivirus installed on a mobile phone can make a dif-
ference in the overall battery lifetime.

Today’s Android antivirus products adopt various ways to detect the ma-
licious applications. Most of them rely on analyzing the APKs when the
user installs them (i.e., on-install scan) or when (s)he explicitly requests a
system-wide scan (i.e., on-demand scan). Note that the “system-wide” scan
is limited to the external SD card (or to the examination of the installed-
application package’s name for suspicious strings), unless the device is rooted
and the antivirus is granted root access. In order to overcome the device
hardware constraints, some of them (e.g., BitDefender, F-Secure, Kaspersky)
offload the analysis processing to a remote server, implementing a cloud-
based scan. This choice, however, has a negative impact on the battery
consumption and does not always appear to be the best. Indeed, the radio
communication heavily impacts the battery life, sometimes more than the
CPU does.

Current antivirus apps appear to rely on some sort of signature based
static analysis, rather than on dynamic analysis, as the former would violate
the native Android security model (or need a custom OS).

4.1.1 Need for Appropriate Testing Tools

Given the above premises, a natural question that arises is how effective
these security products are at detecting malware. This is by no means
a novel question. In the Android context, the most recent report on the
effectiveness of Android malware protection products is [22], where the
authors elaborate on the aforementioned inherent limitations imposed on
antivirus applications by the Android security model. To this end, the au-
thors tested 11 popular Android antivirus products against 10 popular mal-
ware families, plus 1 proof-of-concept malware that deliberately attempted
to evade antivirus checks. The results confirm that the outlined limitations
are actually a barrier to the flexibility of the detection capabilities of cur-
rent antivirus products. Similar researches on the Android platform have
been proposed in the past by other researchers, as further explained in Sec-
tion 4.1.3. Appropriate evaluation of security products, and in particular of
antiviruses, has been a long-debated issue, which still causes considerable
confusion. For example, a recent report by the security firm Imperva [34]
has been heavily criticized for its methodology [30], in particular for relying
blindly on Google’s VirusTotal2. VirusTotal analyzes submitted files with 49
antivirus products; it aggregates the output of such tools and reports it to
the user along with the exact detection label returned by each engine (e.g.,
I-Worm.Allaple.gen). However, using tools such as VirusTotal for antivirus

2http://www.virustotal.com

www.syssec-project.eu 63 September 23, 2013

http://www.virustotal.com

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

Event waitingTap Tap

Screen scraping

Figure 4.2: User interaction needed to perform an on-demand device scan
with Zoner AntiVirus Free 1.7.0.

testing, as natural as it may seem, may lead to incomplete or misleading re-
sults. Although VirusTotal can give insights in detection rates or false posi-
tives, it uses the limited command-line versions of scanners. In other words,
VirusTotal detection relies only on signature scanning, and not, for instance,
on behavioral heuristics.

Besides the difficulty of creating appropriate protocols for testing virus
scanners, automating the comparison of mobile antivirus applications poses
(further) non-trivial challenges, mostly rooted in the inherently interactive
nature of mobile devices. Touch-based user interfaces are not easily au-
tomatable. For instance, Figure 4.2 shows the interaction needed by the
user who wants to perform a device scan using the free version of Zoner An-
tiVirus3. Despite its simplicity, having a generic way to automate this pro-
cedure demands for a method to simulate the tapping operation on some
particular screen coordinate, to programmatically wait for the occurrence
of an event related to the end of the scan, and to capture the text from the
application through screen scraping.

More advanced tests (such as on-install detection, browser protection
effectiveness) need even more complex user interactions. The most signif-
icant example is the one of those antivirus apps that rely on the Android
notification bar to alert users of potentially malicious activities. As dis-
cussed in Section 4.1.2, this poses challenges for black-box testing because

3The antivirus is available on Google Play Store: https://play.google.com/store/
apps/details?id=com.zoner.android.antivirus

www.syssec-project.eu 64 September 23, 2013

https://play.google.com/store/apps/details?id=com.zoner.android.antivirus
https://play.google.com/store/apps/details?id=com.zoner.android.antivirus

4.1. MOBILE ANTIVIRUS TESTING

accessing notifications by other applications is normally not allowed by the
Android platform, as a security measure. Moreover, adapting the Android
framework—or the antivirus application—for the specific purpose of test-
ing may end up producing unexpected side effects, which could bias the
evaluation (with respect to the same evaluation conducted on an unmodi-
fied device and original OS). Finally, automation is even harder when deal-
ing with custom view components, such as image-based buttons, decorated
textboxes, or other graphical elements that are not provided by the Android
SDK. For the very fact of not being standard, this kind of components require
specific implementations that can be hard to include in a standard testing
library.

In addition, performing tests on physical mobile devices is expensive in
terms of the amount of time required for “freezing” the state and restoring
the same testing conditions across experiments. Re-flashing a chosen NAND
partition on an Android device takes several minutes and, more importantly,
cannot be performed an arbitrary number of times. Furthermore, several
versions of the same operating system exist, each providing a different set
of API, which may result in a different behavior of the antivirus being tested.

4.1.2 Mechanizing Android Applications

To mechanize an antivirus product for executing tests programmatically, an
appropriate UI-testing library is needed. Based on our manual analysis of
the most popular Android antivirus products, such a library must have the
following characteristics:

À User Input Simulation. The library must be able to stimulate the device
user interface by reproducing the typical gestures a user would per-
form when using an antivirus.

Á User Interface Feedback. The library must be able to retrieve feedback
about the displayed views and activities on a device. This is needed
to synchronize the testing procedures with the state of the running
antivirus. The library must also be able to scrape information from
the display in order to retrieve possible useful information (e.g., name
of an identified threat).

Â Multi-application Testing. The library must support testing procedures
over multiple applications. This is needed not only to develop com-
plex testing procedures, which may involve more than one application
(e.g., antivirus and browser), but also for basic operations (e.g., noti-
fication management), which still require accessing different Android
application contexts.

Ã Require no Antivirus Modifications. Any modification to the antivirus
package may alter its original behavior, which in turn may bias the

www.syssec-project.eu 65 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

results of a test. Therefore, the library must avoid modifying the an-
tivirus package by adding new (instrumenting) code, changing its sig-
nature, or repackaging it.

Ä Support any Android Version. In order to provide effective antivirus per-
formance measurements, ANDROTOTAL must be able to support any
Android version and no limitations should be introduced by the cho-
sen testing library.

Å Support for Android Notifications. The library should (natively) sup-
port Android notifications operations (e.g., waiting for notification
to appear, open notification bar, checking for notification existence),
because many antivirus applications rely on notifications as the only
feedback view.

With respect to the above requirements, we examined six publicly available
UI-testing libraries, namely Robotium4, monkey5, MonkeyRunner6, Android
UI Automator7, AndroidViewClient8, Apk-view-tracer9. As summarized in
Table 4.1, none of the existing libraries meets all the above requirements.

Robotium is well known, with a growing user base and an active devel-
oper community. It excels in white-box testing, allowing application devel-
opers to write functional and unit test cases by leveraging a clean and com-
plete API. Unfortunately, it does not perform so good when dealing with
black-box testing, especially if the application source code is not directly
available. Under the hood, Robotium relies on the Android Instrumentation

4http://code.google.com/p/robotium/
5http://developer.android.com/tools/help/monkey.html
6http://developer.android.com/tools/help/monkeyrunner_concepts.

html
7http://developer.android.com/tools/testing/testing_ui.html
8https://github.com/dtmilano/AndroidViewClient
9http://code.google.com/p/apk-view-tracer

Feature Robotium Monkey
Runner

Android UI
Automator

Android
ViewClient

apk-view-
tracer

Andro
Pilot

À User input simulation X X X X unstable X
Á User Interface feedback X X slow slow slow
Â Multi-application
testing

X X X X X

Ã Avoiding antivirus
tampering

X X X X X

Ä Support any Android
version

X X X X X

Å Built-in notification
mgmt.

unstable X

Table 4.1: Existing Android testing libraries comparison with respect to AN-
DROTOTAL purposes.

www.syssec-project.eu 66 September 23, 2013

http://code.google.com/p/robotium/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/testing/testing_ui.html
https://github.com/dtmilano/AndroidViewClient
http://code.google.com/p/apk-view-tracer

4.1. MOBILE ANTIVIRUS TESTING

capabilities to interact with the application under test. This turns out to
have some important limitations, such as the impossibility to write a test
that spans over two or more applications (violates req. Â and Å) and the
need to resign each application under test (violates req. Ã).

We also explored other testing libraries, such as the Android provided
monkeyrunner and Monkey. Both of them allow to effectively send inputs
to any Android instance, perfectly meeting requirements À, Â, Ã, and Ä.
Unfortunately, retrieving data from a running device or emulator is not sup-
ported and therefore, requirements Á Å are not met.

When releasing the Android SDK Tools R21, Google also introduced a
new testing framework called Android UI Automator. This new library came
in an effort to simplify the Android UI testing tasks. It provides a GUI tool
to scan and analyze the UI components of an Android application (uiau-
tomatorviewer), a library containing pAPI to create customized functional
UI tests, and an execution engine to automate and run the tests against
multiple physical devices. Despite being a significant improvement with re-
spect to the previous Android official testing tools, this framework can only
be used with the Android SDK API 16 or higher, which means it cuts out
the possibility to test any application running on a previous version of the
Android SDK, violating our requirements Ä, and Å.

Although less known and supported than the previous libraries, Android-
ViewClient and Apk-view-tracer are a good trade off with respect to our
aforementioned requirements. They both effectively simulate typical user
inputs and can retrieve information about displayed activities, thus meeting
requirements À, Á, and Â. Under the hood, they rely on monkeyrunner and
monkey. They support all the existing Android versions (req. Ä) and do not
need any package modifications to interact with an application (req. Ã). Un-
fortunately, although Apk-view-tracer should support the notification man-
agement, we tested the library and noted that the notification support, as
well as most of the other implemented functionalities, were rather unstable
and slow.

4.1.3 State of the Art

Researchers, practitioners and vendors have proposed methodologies and
published a multitude of analysis reports with the common goal of com-
paring mobile antiviruses in terms of performance measures (e.g., detection
capabilities, or power consumption) [50, 7, 8, 47, 31].

Unfortunately, the existing methodologies require time-consuming man-
ual actions, which are obviously the bottleneck. Manual tests entail a num-
ber of tedious tasks such as preparing a clean testing image (about 2–3
minutes each), installing the antivirus under analysis and the suspicious ap-
plication (about 2–5 minutes), restoring a clean state of the system (up to
10–15 minutes). We estimate that this approach would normally allow to

www.syssec-project.eu 67 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

scan with a single antivirus up to 25-30 applications per man/day of effort.
Although some mechanisms can automate these tasks, state-of-the-art tools
(i.e., [50, 7, 8, 47]) still require an operator to check the outcome of each
single scan, which is clearly a major barrier. This strategy does not scale,
especially if we consider the speed at which new variants of malicious ap-
plications are found every day, and the pace at which protection tools are
released and updated.

Another related research branch considers the problem of reproduc-
ing the obfuscation (and other evasion) techniques (that will be) possibly
adopted by malware writers, now and in the near future, in order to stress
test the robustness of the existing signatures. The main works in this di-
rection are [63] and [51], which both propose several code-transformation
techniques for APK files and use them to evaluate current antivirus products.
We consider this research branch as orthogonal to ANDROTOTAL; indeed,
existing work do not concentrate on the scalability part of the problem, nor
they propose mechanisms to automate the tests in a generic way.

4.2 Goals, Definitions and Design

Given the above motivations and having considered the state of the art, the
main goal of ANDROTOTAL is to provide a framework to streamline parallel
testing of many antivirus products on different Android platforms. In this
context we define the notion of test as follows:

1. Antivirus: the APK of the antivirus product version under analysis
(e.g., Avast! Mobile Security 2.0.3380, AVG Antivirus 2.12.3, Look-
out Security & Antivirus 8.10.2).

2. Environment: the Android platform (e.g., Android 2.3.3 on an ARM-
based device, Android 4.1.2 on x86 with 2 GB of RAM).

3. Recipe: a set of interactions that need to be executed in order to obtain
an outcome from the antivirus product.

The test procedure applies the recipe to a running instance of the given an-
tivirus previously installed in the chosen environment. In practice, a test is
a function that pilots an antivirus product installed on a running Android
device to programmatically check some features or capabilities of said an-
tivirus. For instance, an ANDROTOTAL test could be the process piloting the
last version of Avast Mobile Security & Antivirus, installed on Android 4.1.2,
which checks whether the antivirus detects (when) a malicious application
(is installed). The result of each test produces metadata such as the name
of the detected threat (if supported by antivirus), the time required to com-
plete the testing procedure, or the network data utilization.

We identify the following main actors within ANDROTOTAL:

www.syssec-project.eu 68 September 23, 2013

4.2. GOALS, DEFINITIONS AND DESIGN

Android antivirus vendors provide ANDROTOTAL with the antivirus prod-
ucts to test. They are given access to our sample repository and have
complete access to all the reports deriving from testing their products.

Android users access the system to submit suspicious applications for scan-
ning. They also can access aggregated data about previously scanned
application samples.

Researchers and practitioners access the system to obtain new Android
application samples, analyze suspicious applications, and check statis-
tics on the antivirus detection capabilities against each sample.

which are allowed to execute the following actions:

Test definition and execution. ANDROTOTAL supports the definition and
execution of (a set of independent) single tests, where each test is
a function as defined above:

Android environment interaction. ANDROTOTAL supports the piloting of
an Android application. Such a component can reproduce the gestures
required to use the application as well as to retrieve runtime data from
the user interface. We further discuss this point in Section 4.1.2, where
we specifically analyze the requirements for the testing library of our
system.

Support for different Android platforms. As some Android antivirus prod-
ucts may take advantage of specific SDK features, ANDROTOTAL is ver-
sion agnostic.

Support for different features to test. Most antivirus products allow users
to check for malicious applications in different ways (e.g., manual scan
on installed applications, manual scan of the external storage content,
or automatic scan at installation time). This is further discussed Sec-
tion 4.2.1.

Support for antivirus updates. Antivirus vendors periodically release up-
dates. ANDROTOTAL supports the possibility to easily include such
updates. This is further discussed in Section 4.2.2.

4.2.1 Antivirus Features to Test

In most of today’s Android antivirus products, the scan can execute in two
ways:

On-demand scan. The user manually requests a scan of the “entire system”
(i.e., often limited by the sandboxing mechanism, unless the device is
rooted and the antivirus is granted root privileges). The scan may

www.syssec-project.eu 69 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

include the analysis of the files stored on the external storage card in
addition to the analysis of the applications installed on the system.

On-install scan. This is often referred to as realtime protection; it is basi-
cally a scan performed right when an app is installed on the system.

Some security products also includes other minor features such as browser
protection, phone call filtering, remote wiping, or SMS scanning. Such fea-
tures are not present in all the antivirus products and do not appear to be
strictly related to the specific malware detection capabilities. Therefore, we
consider them outside ANDROTOTAL’s scope.

4.2.2 Antivirus Updates

Regarding the signature update procedures, some distinction should be made
between engine updates and signature updates. After manually testing vari-
ous antivirus products, we can distinguish the following 2 types of update
mechanisms:

Engine updates. The engine of the antivirus product is updated by com-
pletely installing a new Android app. This basically coincides with the
release of a new version of the antivirus on the Google Play Store.

Signature updates. Basing the majority of their protection features on static
analysis techniques, most antivirus require periodic updates of a sig-
nature database. From our analysis, it turns out that each antivirus
product belongs to one of the following categories:

Internal database. The antivirus maintains an internal database of
the required signatures. Usually, it also provides a function to
manually update such a database by downloading the new signa-
tures from an online remote server.

Bundle package. Some antivirus products are bundled with their sig-
nature database in the application package, and updating such a
database requires installing an entire new app.

No signatures. In some other cases the antivirus implements a cloud-
based solution for analyzing the suspicious apps, not requiring
any signature update at all.

4.3 Implementation

The 5-step workflow of the ANDROTOTAL analysis process is summarized in
Figure 4.3:

www.syssec-project.eu 70 September 23, 2013

4.3. IMPLEMENTATION

Test definition
and request Task dispatching Task retrieval

and execution
Result return
and storageSample storage

Figure 4.3: Basic workflow of the ANDROTOTAL analysis process.

1. Test definition and request: a user defines some tests to be per-
formed on ANDROTOTAL. The user chooses the Android platform, an-
tivirus version, and detection features to test. Last, the user uploads
an Android application sample to be used during the test.

2. Sample storage: after performing some consistency and security checks,
the uploaded sample is stored into the ANDROTOTAL sample reposi-
tory.

3. Task dispatching: the requested tests are dispatched to the system
job queue in order to be asynchronously executed.

4. Task retrieval and execution: an available worker pulls a task to
execute. It then builds the proper environment for the test, executes
the test, and locally stores the results.

5. Result return and storage: once test execution is over, the worker
pushes its local results back to the ANDROTOTAL core system for archival.

The testing workflow is implemented on the multi-tier architecture de-
picted in Figure 4.4.

Client tier. The entry point from which users define the tests to be per-
formed, upload their application samples, and explore the results of
their tests. This can be either a graphical browser or an HTTP client
(e.g., REST client).

Middle tier. It is composed by the ANDROTOTAL core system, which in-
cludes the web application backend receiving the samples uploaded
by users, the functions to dispatch the tasks to be executed and the
task queue server.

Data tier. It includes a storing system for the results of the tests, the reposi-
tory for the uploaded samples and the repository for the Android emu-
lator clean images. In our case, it is a relational database with proper
abstraction layers.

Worker tier. This is the level where worker machines reside. Each worker
is devoted to the actual test execution and is completely independent
from the ANDROTOTAL core system.

www.syssec-project.eu 71 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

User

Web application
Step 1

(Test definition
and request)

Task dispatcher

RDBMS

File system

Task queue

Step 4a
(task retrieval)

Client tier

RESTful API

Middle tier

Step 5a
(Result return)

Step 5b
(Result storage)

Worker tier

……

Workers cluster

Step 4b
(job execution)

Data tier

Step 2
(sample storage)

Step 3
(task dispatching)

Result and
samples

repository
Android

emulator image
repository

Figure 4.4: ANDROTOTAL multi-tier architecture. Highlighted steps refer to
the workflow previously described in Figure 4.3.

ANDROTOTAL’s main frontend is a web/RESTful application, through which
authenticated users can submit 2 types of tests:

Basic scan. The user uploads a sample to be analyzed and does not choose
any specific product, platform or detection method. By default the
test will be performed by selecting the latest version of each antivirus
product available on the system and by using the fastest detection
method implemented in the system (usually, on-install detection).

Advanced scan. The user specifies a list of tests. Each item of this list de-
fines 4 parameters: product, version, Android platform, and detection
method (Figure 4.5).

Upon submission of a new sample, ANDROTOTAL checks whether the
submitted sample appears to be a valid Android application package. After-
ward, the system checks whether the sample is already present in the repos-
itory by using the MD5 of the package as the search key. Users can explicitly
force the analysis of a package that is already present in the ANDROTOTAL

database. Once the test has completed, the requester is redirected to the
result page, which shows the progress of each submitted test by periodi-
cally refreshing part of the page layout with new data retrieved through

www.syssec-project.eu 72 September 23, 2013

4.3. IMPLEMENTATION

Figure 4.5: ANDROTOTAL web frontend advanced scan. Authenticated users
can customize the test list to submit to ANDROTOTAL.

asynchronous JavaScript calls (AJAX). The user is also informed about the
existing sample on the repository by giving him the direct link to the specific
sample analysis page.

The actual execution of each test is performed by asynchronous workers,
which pull tasks from a distributed queue implemented with Celery, a wrap-
per of RabbitMQ (an open-source AMQP implementation). Each worker im-
plements the core procedures for executing a test. Instead of detailing how
the task-dispatching is implemented, which is fairly simple, we concentrate
on the AndroPilot library, which is the main component of each worker.

4.3.1 AndroPilot

To overcome the limitations described in Section 4.1 and meet the afore-
mentioned requirements we developed AndroPilot, the library that ANDRO-
TOTAL uses to execute the tests.

We selected the library fulfilling most of our requirements (i.e., Apk-
view-tracer) and extended it, obtaining ANDROPILOT. We re-wrote part of
the existing code to improve its stability and fix several bugs. More specif-
ically, by further leveraging the Android ViewServer component we intro-
duced new procedures to properly manage application synchronization dur-
ing testing stages, including functions that wait for an arbitrary view, text
or notification to appear on the screen. We improved the view management
to correctly report when a view is shown on the running Android instance
and implemented a new function to retrieve the screenshot from a running
device or emulator. Overall, we improved the code stability and speed. AN-
DROPILOT is written in Python and leverages monkey and ViewServer as the
main tools for interacting with the Android system.

As shown in Figure 4.6, ANDROPILOT follows a “facade” design pattern,
where the AndroPilot class plays the role of public interface. The underlying
4 main modules are:

www.syssec-project.eu 73 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

andropilot library

controllers

monkey_controller
(MonkeyController)

viewserver_controller
(ViewServerController)viewserver_parser

ViewServer

monkey

screenshot.jar pilot
(AndroPilot)

Client script

from andrototal.pilot import AndroPilot

Figure 4.6: AndroPilot library architecture overview.

• pilot – Main entry point of the library. It contains the AndroPilot class,
which exposes all the methods needed to interact with any running
Android instance.

• monkey controller – It contains the functions needed to interact with
the monkey server.

• viewserver controller – This module includes the functions necessary
to communicate with the ViewServer process.

• viewserver parser – It includes all the functions and classes to deseri-
alize the data received from the ViewServer and to locally build the
hierarchy of views displayed on the device or emulator.

In addition to these 4 modules, ANDROPILOT includes an external Java li-
brary used to retrieve the screenshot of the running Android instance.10

Being based on monkey and ViewServer tools, ANDROPILOT works on any
Android system that supports these tools. Therefore, AndroPilot (and thus
ANDROTOTAL) can be run on any Android device, while using ViewServer
would have required a rooted device.

10 The screenshot library is available online at: https://github.com/roman10/
roman10-android-tutorial/tree/master/screenshot

www.syssec-project.eu 74 September 23, 2013

https://github.com/roman10/roman10-android-tutorial/tree/master/screenshot
https://github.com/roman10/roman10-android-tutorial/tree/master/screenshot

4.3. IMPLEMENTATION

From the developer’s perspective, the main class to consider when devel-
oping a script to interact with Android is the one named AndroPilot11, which
comes bundled in the pilot module and contains all the main methods used
to interact with the Android environment.

As an example to illustrate the functioning of ANDROPILOT, we summa-
rize the UI interactions needed to perform an on-demand scan with the free
version of the Zoner AntiVirus (previously reported in Figure 4.2):

1. Launching the antivirus.

2. Tapping on the button with label “Antivirus”.

3. Tapping on the button with label “Scan device”.

4. Waiting for the scanning process to complete.

5. Detecting the result of the scan.

6. Scraping the shown malware label (if any malicious app is detected).

This UI interaction flow can be automated with ANDROPILOT as follows.
For simplicity, we suppose that a running emulator with Android 4.1.2 is
available, with the antivirus application already installed.

1 from andropilot.pilot import AndroPilot

2
3 # declare the AndroPilot driver

4 ap = AndroPilot(’emulator -5554’, ’localhost ’, 4939, 10000)

5
6 # we may install an application sample

7 #ap.install_package(sample_path)

8
9 # start the Zoner main activity

10 ap.start_activity("com.zoner.android.antivirus", ".ActMain")

11 if not ap.wait_for_activity("com.zoner.android.antivirus.ActMain"):

12 raise Exception(’Activity %s not found!’, ’com.zoner.android.

antivirus.ActMain ’)

13
14 # click the view element with label ’Antivirus ’ and wait for the right

activity to come up

15 ap.click_view_by_text("Antivirus")

16 if not ap.wait_for_activity("com.zoner.android.antivirus.ActMalware"):

17 raise Exception(’Activity %s not found!’, ’com.zoner.android.

antivirus.ActMalware ’)

18
19 # click the view element with label ’Scan device ’ and wait for the

right activity to come up

20 ap.click_view_by_text("Scan device")

21 ap.wait_for_activity("com.zoner.android.antivirus_common.

ActScanResults")

22 raise Exception(’Activity %s not found!’, ’com.zoner.android.

antivirus_common.ActScanResults ’)

23

11Please note the difference between ANDROPILOT (the name of the library we developed),
and AndroPilot (a Python class included in our library).

www.syssec-project.eu 75 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

24 # define an event to periodically check

25 event_checker = lambda: (ap.exist_view_by_text("All scanned files are

clean") or ap.exist_view_by_text("problem found"))

26
27 # wait for the scan to end (45 seconds timeout)

28 if ap.wait_for_custom_event(event_checker , timeout =45, refresh=True):

29 if ap.exist_view_by_text("problem found"):

30 # scrape the threat name

31 threat_name = ap.get_view_by_id("scaninfected_row_virus").

mText

32 result = threat_name

33 else:

34 # no malicious activity

35 result = ’NO_THREAT_FOUND ’

36 else:

37 # timeout reached

38 result = ’SCAN_TIMEOUT ’

39
40 # AndroPilot cleaning procedure

41 ap.close ()

42 return result

The recipe starts by first declaring an instance of the AndroPilot class (namely,
ap), whose constructor takes 4 parameters:

• device serial – The device serial number or qualifier. It is the identifier
that adb uses to keep a reference of the attached devices, and can be
obtained by looking at the output of the adb devices command.

• device address – The device host address. In most cases it is simply
localhost.

• viewserver port – The socket port where the ViewServer service is lis-
tening (or will be started). Any available device port should be fine.
In our example we use the default ViewServer port: 4939.

• monkey port – The socket port where the monkey server is listening (or
will be started). Any available device port should be fine. In our
example we use an arbitrarily chosen port: 10000.

After instantiating the AndroPilot object, the recipe starts the antivirus main
activity. The start activity(package, classname) method requires 2 parame-
ters representing the package and classname of the activity to start. These
values can be obtained, for instance, by looking at the application mainfest
file, checking the logcat dump during application launch, or browsing the
application source code (if available).

Automating an application execution flow requires synchronization be-
tween the controller (e.g., the automation script) and the controlled pro-
cess (e.g., the Android application). ANDROPILOT achieves this by leverag-
ing a set of “waiting procedures” that pause the controller execution until
a certain event takes place. Right after starting the application, we need to
stop the app’s execution until an activity with classname com.zoner.android.

antivirus.ActMain is displayed on the controlled device. If the expected event

www.syssec-project.eu 76 September 23, 2013

4.4. DEPLOYMENT AND EVALUATION

takes place within a fixed amount of time (45 seconds by default), the pro-
cedure returns True, otherwise it returns False and the script raises an ex-
ception.

The automation flow proceeds by simulating the click on the buttons
with label “Antivirus”, and “Device scan”. In both cases we also wait for
the expected activity to be shown, and raise an exception if this does not
happen.

At line 25 we define a lambda function that returns True if it finds any
view with the label containing12 the text “All scanned files are clean” or
the text “problem found”, False otherwise. We use this function to indi-
cate whether the scanning process has completed, given that Zoner shows a
different message in case all the scanned files are clean or some malicious
activity is found.

The defined lambda function is passed as an argument to the function
wait for custom event(), which keeps evaluating it until it returns True or the
specified timeout is reached. We note that the same function includes also
a parameter called refresh, which in our script is set to True. This argument
tells the waiting function whether it has to rebuild the entire view hierarchy
each time it evaluates the lambda function. This is to avoid unnecessary
view hierarchy rebuilds, whose procedure is quite slow and time consuming.

In case the event waiting function returns False (i.e., the scanning pro-
cess is not completed within the timeout limit), the script stops and returns
a result indicating the scan timeout occurrence. On the other hand, if the
event takes place, and the scanning process is correctly completed, the script
needs to realize how this event occurred (i.e., whether the antivirus detected
any malicious activity or not). This is done by checking if there exists any
view including the text “problem found”, as this message is a clear reference
of Zoner showing a report about malicious applications. If this is the case,
the threat name is scraped from the view hierarchy by leveraging the get -

view by id() method, otherwise the script just takes note of the clean scan
result. In any case, the script eventually calls the close() method, in order
to correctly stop the monkey and ViewServer processes as well as to close the
opened socket connections.

4.4 Deployment and Evaluation

We deployed ANDROTOTAL as a WSGI application written in Flask, which ex-
poses a RESTful API (implemented in flask-restful) that we manage through

12We want to stress the fact we used the verb ‘containing’. The exist view by text()

function actually performs a partial string match by using the Python in operator. If one
prefers having an exact string match, the partial match function parameter should be set
to False.

www.syssec-project.eu 77 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

WEB Controller
(andrototal.web.app_web)

Views
(templates/*.html)

API Controller
(andrototal.web.app_api)

Models
(andrototal.core.models)

User

Worker

json

html

forms
(andrototal.web.forms)

Jinja filters
(andrototal.web.custom_filters)

Figure 4.7: ANDROTOTAL web application MVC architecture.

the http://mashape.com API-management service. The web application de-
sign follows an MVC design pattern, as depicted in Figure 4.7.

We evaluated the performance of ANDROTOTAL through preliminary, quan-
titative experiments. More specifically, we evaluated the average resource
utilization of the tasks performed by the workers and the overall scalability
of the system.

4.4.1 Resource Utilization

We analyzed how many parallel working instances could be accommodated
on a single physical worker, to better understand how many Celery con-
current processes could be run on one working machine. To this end, we
defined an experiment consisting in the repeated execution of 6 tests, from
which we derived a profile of the average CPU and RAM utilization.

The chosen tests are summarized Table 4.2. Each test has been per-
formed by selecting the latest Android platform available on ANDROTO-
TAL (i.e., Android 4.1.2), running on an emulated hardware equipped with
an arm cortex-a8 processor and 512 MB of RAM. The malicious applica-
tion sample used to test the on-install and on-demand capabilities of the an-
tivirus, has been randomly choosen from the Malgenome dataset (SHA1 =
630cb29b1385a36b7a811910709c9c0cd856aa98, from the DroidKungFu2 family).

For each of these tests we queued 20 executions on ANDROTOTAL, and
enabled only one worker on a machine equipped with an Intel Core 2 4400
2.00GHz CPU and 2 GB of RAM. The results of such tests are reported in
Figure 4.8 and 4.9, which respectively show the results of the tests involving
the on-install and on-demand detection capabilities of the 3 antivirus used in
our experiment.

www.syssec-project.eu 78 September 23, 2013

http://mashape.com

4.4. DEPLOYMENT AND EVALUATION

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 C

P
U

 [
%

]

Time [s]

(a) CPU utilization while testing
AVAST on-install detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
A

v
e
ra

g
e
 C

P
U

 [
%

]
Time [s]

(b) RAM utilization while testing
AVAST on-install detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(c) CPU utilization while testing Bit-
defender on-install detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(d) RAM utilization while testing Bit-
defender on-install detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(e) CPU utilization while testing Nor-
tonMobile on-install detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(f) RAM utilization while testing Nor-
tonMobile on-install detection.

Figure 4.8: CPU and RAM utilization while testing on-install detection ca-
pabilities of 3 commercial antivirus products.

www.syssec-project.eu 79 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 C

P
U

 [
%

]

Time [s]

(a) CPU utilization while testing
AVAST on-demand detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 C

P
U

 [
%

]

Time [s]

(b) RAM utilization while testing
AVAST on-demand detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(c) CPU utilization while testing Bit-
defender on-demand detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(d) RAM utilization while testing Bit-
defender on-demand detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(e) CPU utilization while testing Nor-
tonMobile on-demand detection.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
v
e

ra
g

e
 C

P
U

 [
%

]

Time [s]

(f) RAM utilization while testing Nor-
tonMobile on-demand detection.

Figure 4.9: CPU and RAM utilization while testing on-demand detection capa-
bilities of 3 commercial antivirus products.

www.syssec-project.eu 80 September 23, 2013

4.4. DEPLOYMENT AND EVALUATION

For each test, we plotted the average CPU and RAM utilization as a per-
centage of the global available resources. As we can see, all the CPU plots
have a similar shape. For simplicity, we refer to the specific graphs showing
the Avast! Mobile Security on-demand tests results reported in Figure 4.8a
and 4.8b, but the following considerations may be applied to any of the
other tests.

We identify 4 main phases in the test execution:

• The task bootstrap phase (first 10 seconds): the worker defines the
AVD, starts the emulator and concurrently downloads the application
sample. In this phase we see the growth of the RAM utilization (due
to the emulator being loaded into main memory), while the CPU uti-
lization is kept low as no high computation is required.

• The ANDROPILOT initialization phase (first CPU peak, seconds 10–15):
the worker starts interacting with the emulator instance, starting the
ViewServer and the monkey processes.

• The test execution phase (second CPU peak, seconds 17–53): the worker
drives the emulator to test the antivirus. It installs the application sam-
ple and replicates the gestures to test the antivirus by leveraging the
ANDROPILOT adapter.

• The emulator unloading phase (last 2-3 seconds): the emulator is
closed and gets unloaded from the main memory.

Based on such tests we can easily see that each task execution occupies
just half of the available processing resources of our test machine. This is
consistent with the fact that the Android emulator—or better, QEMU—does
not fully exploit the computational power of the host multicore machine,
but rather runs on a single thread, leaving one CPU core idle.

A the same time, we notice that RAM utilization is fairly constant during
the entire task execution and roughly reflects the amount of memory we
defined for the emulated environment (indeed, 30% 2GB ≈ 600 MB). Given
such considerations we can conclude that our physical worker can roughly

Antivirus product Antivirus version Tested feature

AVAST Software, Avast! Mobile Security 2.0.3380 On-install scan

Bitdefender, Mobile Security & Antivirus 1.2.209 On-install scan

NortonMobile, Norton Security & Antivirus 3.2.0.769 On-install scan

AVAST Software, Avast! Mobile Security 2.0.3380 On-demand scan

Bitdefender, Mobile Security & Antivirus 1.2.209 On-demand scan

NortonMobile, Norton Security & Antivirus 3.2.0.769 On-demand scan

Table 4.2: Tests used to evaluate task resource utilization.

www.syssec-project.eu 81 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

Total active
workers

Completed
tests

Required
time [s]

Throughput
[tests/minute]

Speedup Efficiency

1 100 5415 ≈ 1.11 - -
2 100 4378 ≈ 1.37 1.24× 62.0 %

3 100 2219 ≈ 2.70 2.44× 81.3 %
4 100 1433 ≈ 4.19 3.78× 94.5 %
5 100 1169 ≈ 5.13 4.63× 92.6 %
6 100 1117 ≈ 5.37 4.85× 80.8 %

Table 4.3: Scalability evaluation experimental results (throughput).

accommodate 2 concurrent Celery instances, each one working on a single
core and occupying an amount of RAM roughly coinciding with the quantity
of memory assigned to the emulator.

4.4.2 Scalability

We consider ANDROTOTAL as black box and observe it for a certain amount
of time, T , and submit C test requests to it. From these, we calculate the
throughput X = C

T , speedup Sn = T1
Tn

, where T1 and Tn represent respec-
tively the time required to perform a task with a sequential system and with
an n-parallel system (n is the number of parallel units), and the efficiency
En = Sn

n .
We submitted C = 100 distinct tests whose parameters were randomly

chosen among a subset of our repository including over 1,200 different ma-
licious application samples, 10 different antivirus products with 2 imple-
mented detection methods each. We timed the duration of the whole test
set execution and repeated the same process by increasing the number of
active workers on one single machine. Then, we added a new machine to
the pool of workers, resubmitted the tests, and repeated again their exe-
cution while increasing the number of active Celery workers of the second
machine. Respectively, we used a dual-core and a quad-core machine. We
assigned one processor core to each Celery daemon, so that each machine
was able to support a maximum number of workers equal to the number of
its processor cores (i.e., 2 and 4).

As summarized in Table 4.3, the time required to perform 100 tests de-
creases as the number of active workers increases. This directly translates
in an increase of the throughput (Figure 4.10).

The first two lines in Table 4.3 refer to the tests executed by leveraging
only the first machine (dual core), whereas the following four lines refer to
the tests performed with both machines running (dual core plus quad core).
Such distinction is also highlighted in Figure 4.10, which also shows that
2 cores are not enough to guarantee a fully dedicated core for each Celery

www.syssec-project.eu 82 September 23, 2013

4.5. DISCUSSION

daemon while also the operating system is running. The same saturation
effect can be seen again when the total number of workers is increased
from 5 to 6. The central part of the throughput graph shows instead a
linear trend. This is explained by the fact that passing from 2 to 3, 4, 5
active workers still leaves the quad-core machine with at least one core free
to manage tasks that are not directly related to Celery workers (such as
operating system routines, IO operations).

Figure 4.11 shows the average time for executing a single test while
increasing the number of active workers. The time grows while scaling up,
and decreases when a new machine is added to the pool of workers.

4.5 Discussion

We deployed ANDROTOTAL in April 2013. Since then, it has received a lot of
attention from researchers and practitioners. More precisely, we counts that
1,000 users have registered to the service and submitted samples. ANDRO-
TOTAL analyzes more than 100 distinct samples per day and clusters them
by label name to help users finding related samples. ANDROTOTAL currently
supports 14 antivirus products (not all of them are publicly reported, ac-
cording to the agreements with the vendors). We are currently focusing on
implementing a reliable self-updating procedure for the AV engines, adding
code-transformation steps such as those proposed in [63, 51] to create com-
plex workflows to stress test antiviruses, and deploying workers on physical
hardware.

www.syssec-project.eu 83 September 23, 2013

CHAPTER 4. ANDROTOTAL: A FLEXIBLE FOR PLATFORM SCALABLE
ANDROID ANTIVIRUS TESTING

1 machine (dual-core) 2 machines (dual-core + quad-core)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
[t
e
st

s
/
m

in
u
te

]

Active workers

AndroTotal scalability (real)
Linear scalability (ideal)

Figure 4.10: Throughput evolution while adding new workers to ANDRO-
TOTAL.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 1 2 3 4 5 6

A
ve

ra
g

e
 t

e
st

 t
im

e
 [

se
co

n
d

s]

Active workers

Average test time

1 machine (dual-core) 2 machines (dual-core + quad-core)

Figure 4.11: Average test execution time while adding new workers to AN-
DROTOTAL.

www.syssec-project.eu 84 September 23, 2013

5
Accuracy vs. Power Consumption of Android

Anti-malware Tools

In Chapter 4, we implemented a framework for testing and evaluation of
the mobile anti-malware products. It would be also interesting to see how
energy efficient these products may be. Scanning for malware can be a
very resource and power intensive task. For PCs connected to the mains
this is not a problem. On the other hand, the operation of mobile devices
relying on battery power can be severely impacted by such power inten-
sive tasks. There have already been many efforts that focus on researching
energy-efficient security mechanisms that would be tolerable for mobile de-
vices [10, 49].

In this work, we study the performance of the available anti-malware
products for Android in terms of accuracy and power consumption. To per-
form our experiments we developed an automated analysis tool capable of
producing accurate detection and power results for a set of anti-malware
tools over a set of malicious apps. The main aspect of this work is to evalu-
ate and compare the power efficiency of the current generation of mobile
antivirus suites for Android, as well as to identify any correlation between
the amount of resources they use and the detection accuracy they achieve.

5.1 Design

In this section there are details of the design we used. Figure 5.1 shows an
overview of our system.

The system consists of a smartphone device running a set of Android
anti-malware tools and the AppScope kernel module. AppScope [62] is an
Android-based energy metering framework based on kernel activity moni-
toring. Through AppScope an application’s hardware usage is being moni-
tored at the kernel level and accurate estimation of energy consumption is

85

CHAPTER 5. ACCURACY VS. POWER CONSUMPTION OF ANDROID
ANTI-MALWARE TOOLS

produced. The AppScope kernel module uses event-driven monitoring that
causes low overhead and provides high accuracy.

The system takes as input an APK dataset as shown at the top of the fig-
ure, which contains a set of malicious apps that is described in section 5.3
and will be scanned by the anti-malware products. Moreover, a set of An-
droid Monkeyrunner scripts is provided to the system as input, one for each
anti-malware tool. As described in Chapter 4, Monkeyrunner is a tool that
provides an API for writing programs able to control an Android device or
emulator outside of the Android code, simulating the behavior of an An-
droid user. The Monkeyrunner scripts that are used as input to our system
contain the appropriate events such as clicks, touches etc. needed by a user
so as to run the necessary actions of an anti-malware tool in order to per-
form our analysis. There is one Monkeyrunner script for each anti-malware
product.

In each experiment we perform a scan of each anti-malware tool over
the set of the input APK files. When the scan is finished, all the produced
log files, including the power consumption logs of AppScope as well as the
logs of anti-malware tools are collected and parsed in an end host so as to
produce the detection accuracy and energy results. To this end, the end host
is equipped with a parsing script, the Log Parser module, capable of parsing
the AppScope and anti-malware tools logs and producing overall statistics.

Our system can easily support more anti-malware tools. The effort needed
to add a new anti-malware tool in our system includes a simple run of the
tool in order for the Monkeyrunner script to be generated for the automa-
tion process, as well as the simple patching of the tool so as to perform the
aforementioned HTTP request at the termination of the scanning process.

...
Anti-malware products

AppScope kernel module

APK dataset

Monkeyrunner
scripts

Log Parser

Accuracy / Energy
statistics

Figure 5.1: Overview of the system for power consumption and accuracy
measurements.

www.syssec-project.eu 86 September 23, 2013

5.2. IMPLEMENTATION

5.2 Implementation

This section covers the current implementation of our system. We have im-
plemented the architecture discussed in Section 5.1 using an HTC Google
Nexus One [61] (N1; Qualcomm QSD 8250 Snapdragon 1GHz, 3.7-inch Su-
per LCD display) with Android platform version 2.3. We used this specific
smartphone because AppScope’s current power and energy models are pro-
duced for this device. A new release of the AppScope ported on Galaxy 3 will
be available soon, thus we will be able to develop our system for a multi-
core phone. The end host that collects the data logs and runs the Log Parser
module is an Intel Core i7-2600 3.40GHz. The Log Parser is implemented in
Python.

Challenges. One challenge we faced during the implementation of our
system was the termination of AppScope’s power metering process right at
the end of the scanning process of each anti-malware tool. We need this
feature for both the collection of precise power statistics and for the re-
peatability of the experiments. We found that there is no accurate way to
detect the end of the scanning process for each of the anti-malware tools,
using e.g. the Android API. We also observed that the instantiation of all
of the different activities of each malware tool is appended to Logcat [27],
the Android logging system which collects all the logs of the running ap-
plications and other portions of the system. From this log, we were able
to find which exact activity is being called at the end of the scanning pro-
cess for each tool. Using the information provided by Logcat’s output, one
would argue that it is possible to detect the exact point of termination of a
scanning activity though polling. But the Logcat’s output may involve delays
associated with the current load in the device. To address this problem, we
modify the anti-malware tools to raise an event when termination occurs.
To this end, we used Smali/Baksmali [56] along with Apktool [6] for dis-
assembling and assembling (unpack/repack) the anti-malware applications.
We injected our piece of code in applications’ Dalvik bytecode (modifying
the output of Smali). Our injected code simply sends a request to an HTTP
server running in our end host to inform about the end of the scanning
process. The Android activities (Java classes) related with the scan termi-
nation, which we had to modify, were found from the output of Logcat, as
mentioned before. The activities we patched for each anti-malware product
are listed in Table 5.1. After the patch process we were able to run our sys-
tem and collect accurately all the needed power consumption samples, as
well as repeat our experiments automatically.

www.syssec-project.eu 87 September 23, 2013

CHAPTER 5. ACCURACY VS. POWER CONSUMPTION OF ANDROID
ANTI-MALWARE TOOLS

Vendor Activity

AVG AntivirusMainScreen

Symantec ViewPagerActivity

Eset LogDetailActivity

Doctor Web ScanerActivity

Kaspersky AvScanResultActivity

Trend Micro ScanResultActivity

ESTSoft AYMainTabActivity

Zoner ActScanResults

Avast ScannerLogActivity

Quick Heal ScrScanning

LINE ScanResultListActivity

TrustGo ScanResultBadActivity

Table 5.1: Activities patched with our code in order to inform us of the exact
termination of the scan for each anti-malware vendor.

5.3 Datasets

In this section we describe our anti-malware products used for performance
evaluation, as well as the malware dataset with all the malicious apps tested.

We selected the most popular anti-malware tools for Android that offer
the option of scanning the whole device for malicious files, based on the
number of downloads published on Google Play1 (the official Android mar-
ketplace). Moreover, we included in our dataset tools of representative anti-
virus vendors in the security industry that may have not gained much pop-
ularity in the mobile field yet. Table 5.2 lists all these tools along with their
popularity. All the tools were downloaded from Google Play, in July 2013. A
more complete illustration of the most popular Android anti-malware prod-
ucts in terms of average installations count is given in Figure 4.1.

Table 5.3 contains the sources which constitute our malware dataset.
We chose all the publicly available malware repositories, so as to cover as
many attack vectors as possible. Our malware set contains: the Contagio
Minidump [46] with 210 malware samples, and the Mal Genome [65] dataset
which includes 1260 samples. Overall, we gathered 1470 malicious apps,
1463 of which were unique. All datasets were downloaded on July 2013.

1https://play.google.com/store

www.syssec-project.eu 88 September 23, 2013

https://play.google.com/store

5.4. EXPERIMENTAL RESULTS

Vendor Tool Version # downloads

AVG Antivirus Free 3.1.1.176392 50M - 100M
Avast Mobile Security & Antivirus 2.0.4993 10M - 50M
Doctor Web Dr.Web Anti-virus Light 7.00.4 10M - 50M
Symantec Norton Mobile Security 3.5.0.1023 5M - 10M
ESTSoft ALYac Android 1.4.3.2 5M - 10M
ESET ESET Mobile Security 1.1.995.1221 1M - 5M
Kaspersky Kaspersky Mobile Security Lite 9.10. 1M - 5M
Zoner Zoner Antivirus Free 1.8.0 1M - 5M
Quick Heal Technologies Quick Heal Mobile Security Fre 1.01.056 1M - 5M
LINE LINE Antivirus 1.0.17 1M - 5M
TrustGo Antivirus & Mobile Security 1.3.5 1M - 5M
Trend Micro Mobile Security Personal Ed. 3.1 500K - 1M

Table 5.2: Malware set used for the evaluation of the anti-malware tools.

Dataset # Malware samples

Contagio 210
Mal Genome 1260

Total 1470
Unique 1463

Table 5.3: Anti-malware tools used in our study.

5.4 Experimental Results

In this section, we present experimental results showing the comparison of
the anti-malware tools in terms of malware detection accuracy and power
consumption.

5.4.1 Methodology of Our Experiments

We used the architecture presented in Sections 5.1 and 5.2 to conduct our
experiments. We perform energy measurements for two different setups in
order to collect the necessary data for our analysis. These setups (Baseline
Case and Final Case) is defined below.

Baseline Case. The mobile phone with some basic applications installed.
The /sdcard partition is empty.

Final Case. The state described in the Baseline Case case except that the
/sdcard partition contains the malware dataset descibed in Section 5.3.

At first we measure the energy consumption caused by each anti-malware
tool device scan for the Baseline Case (EB) and then for the Final Case (EF).

www.syssec-project.eu 89 September 23, 2013

CHAPTER 5. ACCURACY VS. POWER CONSUMPTION OF ANDROID
ANTI-MALWARE TOOLS

Thereby, we can compute the energy consumed only for the scan of mali-
cious apps, by subtracting the energy consumption of the Baseline Case, from
the energy consumed in Final Case as shown in Equation 5.1.

EMaliciousApps = EF − EB (5.1)

5.4.2 Detection Accuracy

In our first experiment, we set out to measure the detection accuracy of the
Anti-malware tools over the collected malware dataset.

1463

 600

 750

 900

 1050

 1200

 1350
ALYac
Zoner
Trendmicro
Quickheal
Avast
Norton
TrustGo
DrW

eb
Kaspersky
Line
AVG
Eset

 50

 60

 70

 80

 90

 100

M

al
w

ar
e

sa
m

pl
es

 d
et

ec
te

d

M
al

w
ar

e
de

te
ct

io
n

ra
tio

0.6

99.9
99.5 99.5 99.2 99.1

98.6 98.4

94.0 93.8

72.0

61.4

Figure 5.2: Detection accuracy across the anti-malware tools.

Figure 5.2 illustrates the results of this measurement. As we see, ALYac
exhibits the highest detection ratio equal to 99.9%. Second comes Zoner
along with Trendmicro with a detection ratio equal to 99.5%. Then, fol-
lows Quickheal, Avast, Norton and TrustGo with a very good detection ratio
greater than 98%, and DrWeb with Kaspersky which detected about 94% of
the samples. Line and AVG have a lower detection ratio equal to 72% and
61.4% respectively. Interestingly we see Eset to be the last in line, with a
0.6% detection ratio. The Eset tool detected only 9 out of 1463 samples,
although the fact that Eset is a remarkable IT security company in the an-
tivirus industry.

www.syssec-project.eu 90 September 23, 2013

5.4. EXPERIMENTAL RESULTS

5.4.3 Energy Consumption of Anti-malware Tools

In this section we use our architecture described in Sections 5.1 and 5.2 to
compute the total energy of the Baseline Case and Final Case following the
methodology explained in 5.4.1.

 0

 20

 40

 60

 80

 100

 120

 140

K
aspersky

D
rW

eb
N
orton

TrustG
o

Q
uickheal

A
vast

Trendm
icro

E
set

A
LY

ac
Line
Zoner
A
V
G

E
n

e
rg

y
 (

J
)

Anti-malware products

537 340

CPU
WiFi

Display

(a) Total energy consumed in the Base-
line Case.

 0

 500

 1000

 1500

 2000

 2500

 3000

D
rW

eb
K
aspersky

A
vast

N
orton

TrustG
o

E
set

A
V
G

Q
uickheal

Zoner
Trendm

icro

A
LY

ac
Line

E
n

e
rg

y
 (

J
)

Anti-malware products

6640 4706

CPU
WiFi

Display

(b) Total energy consumed in the Final
Case.

Figure 5.3: Total energy consumed in the Baseline Case and in the Final Case
for each anti-malware product.

Figure 5.3 presents the results of our measurements. As we see in Fig-
ure 5.3a, in the Baseline Case, the majority of the anti-malware tools con-
sumed from 9 J (AVG) to 126 J (Norton) of total energy, while two of them,
DrWeb and Kaspersky spent more than twice (340 J) and quadruple (537 J)
the maximum amount of energy. This extraordinary difference is the result
of a more exhaustive scanning and more complex detection algorithms that
these tools may use. For example, DrWeb obtains the set of method calls of
every method in the suspicious APK file, which it then uses to match against
signatures that have been generated from similar sets of methods found on
malicious apps [51]. A similar pattern is also observed in the Final Case, in
Figure 5.3b, where apart from the phone state in the Baseline Case, we scan
a number of malicious apps stored in /sdcard of the device. In both cases,
the display seems to be the dominant component that drains the most bat-
tery power. Note that the products that consumed the most energy overall
may not have consumed the most CPU energy (e.g., DrWeb and Kaspersky
in Figure 5.3b).

5.4.4 Energy Consumption Versus Execution Time

The energy consumed from the display component is inevitable as every
anti-malware app contains a graphical user interface and is always at the
foreground when the device scanning process is in progress. Nevertheless,
it can be achieved a great display power reduction using power-saving color

www.syssec-project.eu 91 September 23, 2013

CHAPTER 5. ACCURACY VS. POWER CONSUMPTION OF ANDROID
ANTI-MALWARE TOOLS

transformation techniques [19], or better GUI design [58]. The energy con-
sumed from the CPU is the part of energy that is attributed entirely to the
scanning process and can be improved by optimizing the scanning algo-
rithms used for the detection. In general, the energy that is consumed by
running the anti-malware tools in our experiments increases with time. This
effect was observed more clearly for the screen component. Interestingly,
we noticed that this observation applies partially to the CPU component,
which implies a fertile ground for further improvements of the detection
algorithms. Moreover, concerning the energy wasted by the WiFi compo-
nent, we observed that it is not correlated with time and by monitoring the
produced traffic, we inferred that it is attributed to the exchanged HTTP
requests between the anti-malware tools and their online web services for
update requests.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000

En
er

gy
 (J

)

Anti-malware tools execution time (s)

R=0.99

R=0.99

R=0.79

R=0.04

Total
Display

CPU
WiFi

Figure 5.4: Energy versus execution time across anti-malware tools.

These conclusions are also illustrated in Figure 5.4, where we see the en-
ergy versus the execution time of the scanning process for each anti-malware
tool. As we can observe, the total energy and the energy consumed by the
display are highly correlated with execution time, with a correlation coeffi-
cient2 equal to 0.99. In contrast, energy consumed by the CPU is partially
correlated with the execution time across the anti-malware products with
a correlation coefficient equal to 0.79, while energy spent from WiFi is not
correlated with execution time at all (R=0.04).

2We used the Pearson product-moment correlation coefficient (R).

www.syssec-project.eu 92 September 23, 2013

5.4. EXPERIMENTAL RESULTS

5.4.5 Energy Consumption Versus Detection Accuracy

In this section, we attempt to compare the energy consumption and the
detection accuracy of the anti-malware tools.

 0

 20

 40

 60

 80

 100

 100 1000 10000

M
a
lw

a
re

 d
e
te

c
ti
o
n
 r

a
ti
o

 (
%

)

Energy (J)

K
as

pe
rs

ky
D

rW
eb

N
or

to
n

T
ru

st
G

o

Q
ui

ck
he

al

A
va

st

T
re

nd
m

ic
ro

E
se

t

A
LY

ac

Li
ne

Z
on

er

A
V
G

Figure 5.5: Energy versus detection accuracy across anti-malware tools.

Figure 5.5 illustrates this comparison. The y axis shows the malware
detection ratio and the x axis (logscale) the amount of energy consumed
during the scanning process. Each point in the figure has a label that cor-
responds to an anti-malware tool. The best options would be in an area
near to the upper left corner, as our criteria for selection is high detection
accuracy (higher values on the y axis) and low energy consumption (lower
values on the x axis). The first candidates seem to be ALYac (detection ra-
tio: 99.9%, energy consumption: 127.4 J) along with Line (detection ratio:
71.9%, energy consumption: 97.8 J). Then follows Trendmicro and Zoner
achieving the same accuracy levels as ALYac, but consuming about three
times its energy.

In order to perform a more accurate analysis and selection, as well as
to classify these various anti-malware tools taking into account our two
parameters of interest, we define a metric which we call Energy Efficiency
Ratio (EER). EER is defined as the fraction of the malware detection ra-
tio (Mdetection ratio) of an anti-malware tool to the total energy consumed
(Econsumed) during the scanning process, as shown in Equation 5.2.

EER =
Mdetection ratio

Econsumed
× 100 (5.2)

www.syssec-project.eu 93 September 23, 2013

CHAPTER 5. ACCURACY VS. POWER CONSUMPTION OF ANDROID
ANTI-MALWARE TOOLS

The consumed energy(Econsumed) is the amount of energy spent only
for the detection of the malware sample which can be computed by simply
subtracting the energy of the Baseline Case from the one of the Final Case.
We compute the EER for all the anti-malware products and we summarize
the results in Figure 5.6.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

ALYac
Line
Trendmicro
Zoner
Quickheal
TrustGo
AVG
Norton
Avast
Kaspersky
DrW

eb
Eset

En
er

gy
 E

ffi
ci

en
cy

 R
at

io
 (

EE
R

)

Anti-malware products

78.4
73.6

27.8
25.2

17.6

10.3 9.6
6.6

3.8 2.3 1.5 0.1

Figure 5.6: Energy Efficiency Ratio across the different anti-malware tools.

As we see in the figure, ALYac is the best choice in terms of accuracy and
energy consumption achieving an EER equal to 78.4. Then follows Line with
an EER equal to 73.6. The rest of the tools have an EER less than 28. For
Kaspersky and DrWeb we observed an EER equal to 2.3 and 1.5 respectively.
This is due to the high energy consumption that their detection algorithms
entail. Eset has an EER equal to 0.1 due to the low malware detection
efficiency of its scanning process.

5.4.6 Energy Consumption per Malware Sample

In this section we provide statistics about the average energy consumed by
each anti-malware tool in order to scan a malicious app. The results are
shown in Figure 5.7.

As we can observe, for DrWeb and Kaspersky the average scanning pro-
cess of one malware sample takes 4.3s and 2.2s respectively which are 3
orders of magnitude greater than the scanning time of ALYac and Line with
a scanning time equal to 60ms and 40ms respectively. Differences of the

www.syssec-project.eu 94 September 23, 2013

5.5. DISCUSSION

 0

 1

 2

 3

 4

 5

DrW
eb

Kaspersky
Avast
Norton
TrustGo
Eset
Quickheal
AVG
Zoner
Trendmicro
ALYac
LineAv

er
ag

e
En

er
gy

(J
)/T

im
e(

s)
 p

er
 m

al
w

ar
e

Anti-malware tools

Execution Time
Total

Display
CPU
WiFi

Figure 5.7: Execution time and average energy consumption of the anti-
malware tools in order to scan a single malicious application.

same order we observed to the total energy as well as the energy consumed
for the different components. The only component that does not seem to
exhibit such huge differences is the CPU.

5.5 Discussion

In this chapter, we presented a tool capable to measure the detection ac-
curacy and energy consumption of anti-malware tools for the Android
platform. The architecture of our tool is generic and support for additional
anti-malware tools can be added with minimal configuration.

We used our tool to compare the most popular anti-malware tools avail-
able for Android in terms of malware detection accuracy and energy con-
sumption. We also used an Energy Efficiency Ratio metric to infer the most
detection accurate and power efficient anti-malware product. We found
that there is a great disparity in both the detection accuracy and energy
consumption over the tested set of anti-malware tools. Some of the more
power-friendly products also exhibited low malware detection rates. How-
ever there was no consistent correlation between the achieved detection rate
and the total energy consumed.

www.syssec-project.eu 95 September 23, 2013

CHAPTER 5. ACCURACY VS. POWER CONSUMPTION OF ANDROID
ANTI-MALWARE TOOLS

Subsequently, we profiled the power used by individual components of
the mobile phone during the malware scan. We observed that the display
component amounts for a large fraction of the consumed energy and that
the energy it consumes is highly correlated with the execution time. This
implies that there is room to improve the overall power efficiency of anti-
malware tools by means of power-saving color transformation techniques or
power-conscious GUI design. CPU was the second most energy-hungry com-
ponent. This indicates that further improvements in energy efficiency can be
achieved through research on scanning alogrithms designed specifically
for mobile devices.

www.syssec-project.eu 96 September 23, 2013

6
Biometrics Security Aspects for Lightweight Devices

Although the previous chapters (2, 3, 4, 5) are more closely related with
mobile malware, this chapter attempts to highlight other aspects of security
in lightweight devices. Lightweight devices are from one hand fast pro-
gressing, and from another generating a new digital world with a number
unthinkable threats’ challenges. A rather comprehensive problem that cur-
rently could be focused more precisely, into aspects like: users’ digital iden-
tity, privacy in the digital society and even further towards digital artificial
intelligence (AI) autonomy. Though the usage of regular passwords, PIN
codes, access cards, dongles and pattern locks together with device encryp-
tion is producing a reliable to some extent cyber environment, the resulting
types of cyberattacks is rather impressive [37]. So, a new, innovative se-
curity approach towards these cyberattacks has to be found in achieving a
plausible security. One possible facilitator for the problem copying could be
found in biometrics security applications.

6.1 Basic State-of-the-Art Achievements

The use of different biometric modalities like: voice, face, iris, hand, ges-
ture, writing recognitions, finger printing, keyboard typing, sensors screens’
tapping dynamics are the mostly wide used biometrics in nowadays lightweight
devices. A nice survey on biometrics for mobile devices has been very re-
cently published from Biometrics Institute [35]. Other significant ones,
including some forecasts for 2015 was given by Goode [36]. Two more sci-
entific studies noticing biometric person identification and verification could
also be noted here [44], [54].

97

CHAPTER 6. BIOMETRICS SECURITY ASPECTS FOR LIGHTWEIGHT
DEVICES

6.2 Fingerprints, Face Modalities and Voice Examples

A brief overview of existing biometric options in today’s mobile phones can
be found in [17]. There the authors are discussing methods for finger-
print recognition, possibilities of embedded high-resolution phone cameras
for motion and face recognition applications together with privacy informa-
tion problems. Generally, the usage of fingerprint biometric templates is
assumed as rather suitable for mobile authentication. The study from [26]
presents multimodal biometrics reliability in the context of spoofing attacks.
The performance is tested against a multimodal system based on face and
iris, showing the vulnerabilities of the system to this new type of threat.
Different fusion techniques are utilized as a facilitator to the problem. The
approach, proposed in [60] is using a model for fingerprint recognition.
The study also concerns several types of possible attacks, including: brute
force, a solving-equation attack, preimage attack of biohashing, lost key at-
tack, finding the quantized pair-minutiae vectors and the corresponding re-
actions. The authors of [25] are also exploring the fingerprints-based recog-
nition systems implementing the automatic authentication systems. The ar-
ticle [11] describes a biometric method for identifying a user, based on
just putting a hand on the display. The method understands the geometry
of a user’s hand by observing the relative positions of the fingertips. The
voice print analysis from [43] accentuates on the voice biometrics usage in
the fields of e-commerce, financial services and payments, healthcare and
insurance, telecommunications and government services.

6.3 Writing, Typing and Gesturing Modalities Exam-
ples

The authors of [9] study user authentication by writing signatures in the air
using a phone with a built-in accelerometer. Pattern recognition techniques
on the basis of Hidden Markov Models, Bayes classifiers and dynamic time
warping are utilized. Two different attacks are noted: zero-effort impos-
tor and spoofing. Generally, the approach of ‘in-air signature’ has a simple
weakness - the fact that the user is fully visible by bystanders. In [57] is
described a remote authentication framework called TUBA (Telling hUman
and Bot Apart), which monitors and stores user’s keystroke patterns. The
authors claim keystroke-dynamics based authentication suitability for client-
server based systems and especially when the client is a mobile device with a
keyboard. Possible attacks of type synthetic forgeries are analysed. A disad-
vantage of this method is that many mobile devices are not equipped with a
keyboard but with touch screens. In [39] an authentication system for mo-
bile devices and consumer electronics called uWave is presented. It is based
on accelerometer and on personalized gestures and physical manipulations.

www.syssec-project.eu 98 September 23, 2013

6.4. KEY PROBLEMS

In-air-signature with mobile phones is described in [29], accentuating on
mobile phone accelerometer application. Another 3D gesture recognizer
is studied in [59]. Keystroke dynamic-based authentications and touch
screens with application in banking as PIN code improvement are noted in
[12], [55].

6.4 Key Problems

Evidently, in todays’ lightweight devices biometrics have already entered
the security field. In order to achieve a plausible one, however special at-
tention should be given to two facts: (i) the multimodal biometric security
approaches look more promising; (ii) different cyberattacks are impossible
to be easily forecast by means of hidden cyberthreats. The spoofing attack
is a main problem that could be solved with fused multimodal approaches
that dynamically check the identification in accordance with the users’ be-
haviour.

6.5 Multimodal Perspectives

Generally, the biorhythm dynamics could be used for encryption or more
futuristic, in the technological sense - user profiling for smart identification.
As far as the usage of static, recordable or copy-capable biometric inputs
could be experimentally overpassed, the implementation of dynamic input
data as a key user’s identifier/profiler looks more promising. This assump-
tion could be easily transformed in the following biometric security profiler
framework (see Figure 6.1).

Figure 6.1: Biometric security profiler framework.

Evidently, this simple framework produces a dynamic avatar of the user,
which is a result of unique biometrics multiple feature extraction that is
specific for each person and emotional state and thus difficult for imitation.
Further on, the framework continues with user space definition, which is
accessible via the user avatar. The approach produces a multiple user access
for mobile lightweight devices from one hand, and from another - generates
a reliable privacy, by means of the data files, applications and contacts. The

www.syssec-project.eu 99 September 23, 2013

CHAPTER 6. BIOMETRICS SECURITY ASPECTS FOR LIGHTWEIGHT
DEVICES

practical realization of this framework (see Figure 6.2) is using multiple bio-
metric inputs, like: EEG, ECG and temperature, lead from the users’ bodies,
processed in a separate hardware system with cable/wireless connectivity.

Figure 6.2: Multiple biometric modalities security profiler implementation.

The presented in Figure 6.2 practical implementation framework was
experimentally prototyped in the context of DMU 03/22 project research ef-
forts and in industrial cooperation [18]. The basis was Texas Instruments
DSP Kit (based on MSP 430G LaunchPad) with additional hardware com-
ponents and allows both wireless (via Xbee) and cable (miniUSB based)
connectivity for the system. The biosignals feature extraction was imple-
menting power spectrum density and fractal analysis. Currently, for security
reasons and reliable performance the DSP analysis are being performed on
the LaunchPad Kit. A bidirectional communication that is basically related
to users’ avatar conformation and working profile access rights permissions
was used. The working environment was Windows 8/Windows Phone user
profiles, accessible via ultrabook and smart phone as lightweight devices
examples.

6.6 Discussion

Generally, the usage of biometrics as a security tool for lightweight devices is
progressing together with the modern technologies. The evolution towards
Web 3.0 and Web 4.0 is opening the question of AI autonomy and mobile
implementation together with users’ privacy in the digital era. Evidently,
today this is not only a question of encryption but more likely of interac-
tion and users’ biometrics multimodality behavior fusion, producing private
avatars access level in the communication environments of social networks,
cloud shared data and social interaction with embedded AI hardware.

www.syssec-project.eu 100 September 23, 2013

7
Conclusions

In this deliverable we gave an overview of the research conducted by the
SysSec consortium during the past year, which concerns issues related to
mobile and lightweight devices. Our work covers many of the research
priorities that are identified in the SysSec Research Roadmaps [13, 15].

Specifically, in Chapters 2 and 3 we presented new defensive tools and
techniques for Android devices. In Chapters 5 and 4 we presented the
results of systematic studies on the effectiveness of the off-the-shelf mo-
bile security solutions of the current generation. Finally, in Chapter 6 we
surveyed the State-of-the-Art and trends in the use of biometrics as an
additional security mechanism for mobile devices.

Arguably, our research revolved mostly around the Android mobile plat-
form. This was a conscious choice, as Android currently dominates the mo-
bile market with a marketshare around 80%[33]. This makes it the primary
target for mobile malware authors, as they seek to maximize the returns
from their nefarious activities. However, we continuously closely follow the
trends in mobile threats, in order to be able to timely adjust our research
priorities if miscreants change their attack strategies.

101

CHAPTER 7. CONCLUSIONS

www.syssec-project.eu 102 September 23, 2013

Bibliography

[1] Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org/. Last visited
in July 2012.

[2] Mobile Sandbox. http://mobilesandbox.org/. Last visited in July 2012.

[3] OpenBinder. http://www.angryredplanet.com/~hackbod/openbinder/
docs/html/index.html. Last visited in July 2012.

[4] UI/Application Exerciser Monkey. http://developer.android.com/tools/
help/monkey.html. Last visited in July 2012.

[5] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In
Proceedings of the 12th ACM conference on Computer and communications security, CCS
’05, pages 340–353, New York, NY, USA, 2005. ACM.

[6] Android Apktool. Android apktool. a tool for reverse engineering android apk files.
https://code.google.com/p/android-apktool/. Last accessed in July 2013.

[7] AV Comparatives e.V. Mobile Security Review. Technical report, AV Comparatives e.V.,
September 2012.

[8] AV-TEST. Determination of the Performance of Android Anti-malware Scanners. Tech-
nical report, AV-TEST, January 2013.

[9] Gonzalo Bailador, Carmen Sanchez-Avila, Javier Guerra-Casanova, and Alberto de San-
tos Sierra. Analysis of pattern recognition techniques for in-air signature biometrics.
Pattern Recognition, 44:2468–2478, 2011.

[10] Jeffrey Bickford, H. Andrés Lagar-Cavilla, Alexander Varshavsky, Vinod Ganapathy, and
Liviu Iftode. Security versus energy tradeoffs in host-based mobile malware detection.
In Proceedings of the 9th international conference on Mobile systems, applications, and
services, MobiSys ’11, 2011.

[11] Bojan Blažica, Daniel Vladušič, and Dunja Mladenić. Mti: A method for user iden-
tification for multitouch displays. International Journal of Human-Computer Studies,
71:691–702, 2013.

[12] Ting-Yi Chang, Cheng-Jung Tsai, and Jyun-Hao Lin. A graphical-based password
keystroke dynamic authentication system for touch screen handheld mobile devices.
Journal of Systems and Software, 85:1157–1165, 2012.

[13] The SysSec Consortium. SysSec D4.2: Second Report on Threats on the Future Inter-
net and Research Roadmap, September 2012. http://syssec-project.eu/nNa#
syssec-d4.2-future-threats-roadmap-2012.pdf.

103

http://anubis.iseclab.org/
http://mobilesandbox.org/
http://www.angryredplanet.com/~hackbod/openbinder/
docs/html/index.html
http://developer.android.com/tools/
help/monkey.html
https://code.google.com/p/android-apktool/
http://syssec-project.eu/nNa#syssec-d4.2-future-threats-roadmap-2012.pdf
http://syssec-project.eu/nNa#syssec-d4.2-future-threats-roadmap-2012.pdf

BIBLIOGRAPHY

[14] The SysSec Consortium. SysSec D7.2: Intermediate Report on Cyberattacks on
Ultra-portable Devices, September 2012. http://syssec-project.eu/nNa#
syssec-d4.2-future-threats-roadmap-2012.pdf.

[15] The SysSec Consortium. The Red Book: A Roadmap for Systems Security Research,
September 2013. http://red-book.eu/.

[16] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf
Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. Mocfi: A framework to mitigate
control-flow attacks on smartphones. In 19th Annual Network & Distributed System
Security Symposium (NDSS), Feb 2012.

[17] Mohammad Omar Derawi. Biometric options for mobile phone authentication. Bio-
metric Technology Today, 2011:5–7, 2011.

[18] DMU 03-22 Project. A study on it threats and users behaviour dynamics in online social
networks, dmu 03-22 project web page. http://www.snfactor.com. Last accessed
in August 2013.

[19] Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power-saving color transformation
of mobile graphical user interfaces on oled-based displays. In Proceedings of the 14th
ACM/IEEE international symposium on Low power electronics and design (ISLPED ’09),
pages 339–342, 2009.

[20] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX con-
ference on Operating systems design and implementation, OSDI’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

[21] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on Computer and
communications security, CCS ’09, pages 235–245, New York, NY, USA, 2009. ACM.

[22] R Fedler, J Schütte, and M Kulicke. On the Effectiveness of Malware Protection on
Android. Technical report, Berlin, 2013.

[23] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM.

[24] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and Erika
Chin. Permission re-delegation: Attacks and defenses. In USENIX Security Symposium,
2011.

[25] M. Fons, F. Fons, and E. Cantó. Biometrics-based consumer applications driven by
reconfigurable hardware architectures. Future Generation Computer Systems, 28:268–
286, 2012.

[26] Marta Gomez-Barrero, Javier Galbally, and Julian Fierrez. Effi-
cient software attack to multimodal biometric systems and its ap-
plication to face and iris fusion. Pattern Recognition Letters,
http://www.sciencedirect.com/science/article/pii/S0167865513001876, 2013.

[27] Google, Inc. Android logcat. http://developer.android.com/tools/help/
logcat.html. Last accessed in July 2013.

[28] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of ca-
pability leaks in stock Android smartphones. In Proceedings of the 19th Network and
Distributed System Security Symposium (NDSS), February 2012.

[29] J. Guerra-Casanova, C. Sánchez-Ávila, A. de Santos Sierra, and G. Bailador del Pozo.
Score optimization and template updating in a biometric technique for authentication
in mobiles based on gestures. Journal of Systems and Software, 84:2013–2021, 2011.

www.syssec-project.eu 104 September 23, 2013

http://syssec-project.eu/nNa#syssec-d4.2-future-threats-roadmap-2012.pdf
http://syssec-project.eu/nNa#syssec-d4.2-future-threats-roadmap-2012.pdf
http://red-book.eu/
http://www.snfactor.com
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html

BIBLIOGRAPHY

[30] David Harley. There’s testing, then there’s VirusTotal. http://blog.isc2.org/
isc2_blog/2012/12/theres-testing-then-theres-virustotal.html,
November 2012.

[31] Steffen Schindler Hendrik Pilz. Are free Android virus scanners any good? Technical
report, AV-TEST, November 2011.

[32] The Hindu. UAB computer forensics links internet postcards to virus. http://www.
hindu.com/thehindu/holnus/008200907271321.htm, Jul. 2009.

[33] IDC. Apple cedes market share in smartphone operating system market as an-
droid surges and windows phone gains. http://www.idc.com/getdoc.jsp?
containerId=prUS24257413n. Last accessed in August 2013.

[34] Imperva. Assessing the effectiveness of antivirus solutions. Technical report, Imperva,
December 2012.

[35] Biometrics Institute. Biometrics Institute Industry Survey. Technical report, Biometrics
Institute, August 2013.

[36] Goode Intelligence. Mobile Phone Biometric Security – Analysis and Forecasts 2011-
2015. Technical report, Goode Intelligence, 2011.

[37] Sotiris Ioannidis(Ed.). D7.2: Intermediate Report on Cyberattacks on Ultra-portable
Devices. Technical report, SySSeC Consortia, 2012.

[38] V. P Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard: Lightweight Kernel Pro-
tection against Return-to-user Attacks. In Proceedings of the 21st USENIX conference on
Security. USENIX Association, 2012.

[39] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave:
Accelerometer-based personalized gesture recognition and its applications. Pervasive
and Mobile Computing, 5:657–675, 2009.

[40] Federico Maggi, Andrea Valdi, and Stefano Zanero. Andrototal: A flexible, scalable
toolbox and service for testing mobile malware detectors. In Proceedings of the 3rd
Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM), volume (to appear). ACM, November 2013.

[41] Denis Maslennikov. It threat evolution: Q2 2013. http://www.securelist.
com/en/analysis/204792292/IT_Threat_Evolution_Q1_2013. Last accessed
in June 2013.

[42] Denis Maslennikov. Zeus-in-the-Mobile — Facts and Theories. http://www.
securelist.com/en/analysis/204792194/, Oct. 2011.

[43] Dan Miller and Benoit Fauve. Mobile e-commerce to drive voice-based authentication.
Biometric Technology Today, 2012:5–8, 2012.

[44] S Mir A.H, Rubab and Z. A. Jhat. Biometrics verification: a literature survey. Journal
of Computing and ICT Research, 5(2):67–80, 2011.

[45] Machigar Ongtang, Stephen E. McLaughlin, William Enck, and Patrick McDaniel. Se-
mantically rich application-centric security in android. Security and Communication
Networks, 5(6):658–673, 2012.

[46] Milla Parkour. Contagio mobile. mobile malware mini dump. http://
contagiominidump.blogspot.com/. Last accessed in June 2013.

[47] Hendrik Pilz. Building a Test Environment for Android Anti-Malware Tests. Technical
report, AV-TEST, October 2012.

[48] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Para-
noid android: versatile protection for smartphones. In ACSAC, pages 347–356, 2010.

www.syssec-project.eu 105 September 23, 2013

http://blog.isc2.org/isc2_blog/2012/12/theres-testing-then-theres-virustotal.html
http://blog.isc2.org/isc2_blog/2012/12/theres-testing-then-theres-virustotal.html
http://www.hindu.com/thehindu/holnus/008200907271321.htm
http://www.hindu.com/thehindu/holnus/008200907271321.htm
http://www.idc.com/getdoc.jsp?containerId=prUS24257413n
http://www.idc.com/getdoc.jsp?containerId=prUS24257413n
http://www.securelist.com/en/analysis/204792292/IT_Threat_Evolution_Q1_2013
http://www.securelist.com/en/analysis/204792292/IT_Threat_Evolution_Q1_2013
http://www.securelist.com/en/analysis/204792194/
http://www.securelist.com/en/analysis/204792194/
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/

BIBLIOGRAPHY

[49] Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. Ana-
lyzing the energy consumption of security protocols. In Proceedings of the 2003 inter-
national symposium on Low power electronics and design (ISLPED ’03), pages 30–35,
2003.

[50] Rahul Ramachandran, Tae Oh, and William Stackpole. Android Anti-Virus Analysis. In
Annual Symposium On Information Assurance & Secure Knowledge Management, June
2012.

[51] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: Evaluating android
anti-malware against transformation attacks. In Proceedings of Eighth ACM Symposium
on Information, Computer and Communications Security (ASIACCS 2013), March 2013.

[52] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-centric analy-
sis and stimulation technique to automatically reconstruct android malware behaviors.
In ACM European Workshop on Systems Security (EuroSec). ACM, 2013.

[53] Roman Schlegel, Kehuan Zhang, Xiao yong Zhou, Mehool Intwala, Apu Kapadia, and
XiaoFeng Wang. Soundcomber: A stealthy and context-aware sound trojan for smart-
phones. In NDSS, 2011.

[54] Sruthy Sebastian. Literature survey on automated person identification techniques.
International Journal of Computer Science and Mobile Computing, 2(5):232–237, 2013.

[55] Sunghoon Park Seong-seob Hwang, Sungzoon Cho. Keystroke dynamics-based authen-
tication for mobile devices. Computers and Security, 28:85–93, 2009.

[56] Smali. Smali. an assembler/disassembler for android’s dex format. https://code.
google.com/p/smali/. Last accessed in July 2013.

[57] Deian Stefana, Xiaokui ShubAuthor Vitae, and Danfeng (Daphne) Yao. Robustness
of keystroke-dynamics based biometrics against synthetic forgeries. Computers and
Security, 31:109–121, 2012.

[58] Keith S. Vallerio, Lin Zhong, and Niraj K. Jha. Energy-efficient graphical user interface
design. IEEE Transactions on Mobile Computing, pages 846–859, 2006.

[59] Radu-Daniel Vatavu. The impact of motion dimensionality and bit cardinality on the
design of 3d gesture recognizers. International Journal of Human-Computer Studies,
71:387–409, 2013.

[60] Song Wanga and Jiankun Hu. Alignment-free cancelable fingerprint template design
a densely infinite-to-one mapping (ditom) approach. Pattern Recognition, 45:4129–
4137, 2012.

[61] Wikipedia. Htc google nexus one. https://en.wikipedia.org/wiki/Nexus_
One. Last accessed in July 2013.

[62] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha. App-
scope: application energy metering framework for android smartphones using kernel
activity monitoring. In Proceedings of the 2012 USENIX conference on Annual Technical
Conference (USENIX ATC ’12), pages 36–36, 2012.

[63] M. Zheng, P.P.C. Lee, and J.C.S. Lui. ADAM: An Automatic and Extensible Platform to
Stress Test Android Anti-Virus Systems. In Proceedings of the 9th Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA 2012), April 2012.

[64] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged smartphone
applications in third-party android marketplaces. In Proceedings of the second ACM
conference on Data and Application Security and Privacy, CODASPY ’12, pages 317–326,
New York, NY, USA, 2012. ACM.

[65] Yajin Zhou and Xuxian Jiang. Android malware genome project. http://www.
malgenomeproject.org/. Last accessed in June 2013.

www.syssec-project.eu 106 September 23, 2013

https://code.google.com/p/smali/
https://code.google.com/p/smali/
https://en.wikipedia.org/wiki/Nexus_One
https://en.wikipedia.org/wiki/Nexus_One
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/

BIBLIOGRAPHY

[66] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evo-
lution. In IEEE Symposium on Security and Privacy, pages 95–109, 2012.

[67] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets. In Proceedings of
the 19th Annual Network & Distributed System Security Symposium, February 2012.

www.syssec-project.eu 107 September 23, 2013

	Introduction
	Lightweight Devices in the SysSec Research Roadmap
	The Edge of Mobile Malware
	Research Topics Covered in This Report
	Mobile Malware Research
	Resources Used by Mobile Security Products
	Biometrics and Mobile Devices

	BinderProfiler
	Architecture
	Background
	BinderProfiler Overview

	Evaluation
	Experimental Setup
	Accuracy
	Overhead

	Further Applications
	Private Information Exfiltration
	Real-time Detection
	Colluding Applications

	Deployment
	Overview of Operation

	Limitations and Considerations
	Evading Detection
	Performance Overhead
	Message Parsing
	Device Rooting

	Discussion

	TraceDroid: Method Tracing for Andrubis
	Specification
	Specification
	Existing Solutions

	Implementation
	Start Tracing
	Profiler Control Flow
	Stop Tracing
	Added Extra VM Options

	Benchmarks
	Andrubis Background

	Code Coverage Evaluation
	Compared to Manual Analysis
	Breakdown of Simulation Actions
	Coverages Results

	Case Study: ZitMo: ZeuS in the Mobile
	Dissecting a1593777ac80b828d2d520d24809829d

	Discussion

	AndroTotal: A Flexible for Platform Scalable Android Antivirus Testing
	Mobile Antivirus Testing
	Need for Appropriate Testing Tools
	Mechanizing Android Applications
	State of the Art

	Goals, Definitions and Design
	Antivirus Features to Test
	Antivirus Updates

	Implementation
	AndroPilot

	Deployment and Evaluation
	Resource Utilization
	Scalability

	Discussion

	Accuracy vs. Power Consumption of Android Anti-malware Tools
	Design
	Implementation
	Datasets
	Experimental Results
	Methodology of Our Experiments
	Detection Accuracy
	Energy Consumption of Anti-malware Tools
	Energy Consumption Versus Execution Time
	Energy Consumption Versus Detection Accuracy
	Energy Consumption per Malware Sample

	Discussion

	Biometrics Security Aspects for Lightweight Devices
	Basic State-of-the-Art Achievements
	Fingerprints, Face Modalities and Voice Examples
	Writing, Typing and Gesturing Modalities Examples
	Key Problems
	Multimodal Perspectives
	Discussion

	Conclusions

