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1
Introduction

The purpose of this deliverable is twofold: (i) we want to present the work
that has been conducted by the research community in general on attacks
and defenses on ultra-portable devices, and (ii) we want to describe the
efforts that the partners of the consortium have been doing in the area of
cyberattacks on ultra-portable devices.

In the following two chapters, we discuss and analyze the work of other
research groups, that are conducting State-of-the-Art research in the area.
We then present three systems, that we have been working on for the dura-
tion of the project so far. Those systems are BinderProfiler, Paranoid Android
and Andrubis. Lastly, we close with some final thoughts in Chapter 7.
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2
Attacks

2.1 Privilege Escalation

Davi et al. [18] described a conceptual weakness in the Android permission
model which allowed applications to access resources without the necessary
permissions.

In the Android permission model applications request permissions for
resources at installation time and the user is prompted to either grant these
permissions or deny them. In the Android platform each application runs
in a different virtual machine to ensure that malicious applications stay iso-
lated from the rest of the system, a mechanism called sandboxing. Even
though application run in isolated environments they offer a mechanism
for inter-process communication. Process are allowed to send messages to
other processes and get back results. This feature allows applications to bet-
ter integrate with the platform and each other. For example an application
that wishes to send the user to visit its homepage will send a message to the
browser application containing the URL of the homepage. The browser will
send the user to the homepage and when the user closes the browser they
will be directed back to the original application.

Applications can limit their exposure to other applications. An appli-
cation can request from the system to only receive messages from applica-
tions holding a relevant permission P1. It is paramount for the security of
the system that applications with access to sensitive resources e.g. address
book, location, limit their exposure to other applications and they do not
just serve every message they receive. Unfortunately, limiting the exposure
of this sensitive interface is left to the developer of the application and it is
not enforced by the platform.

The attack called privilege escalation is based on the fact that a mali-
cious (unprivileged) application can take advantage of benign (privileged)
applications to perform malicious actions. Assuring a privileged applica-
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tion, e.g. the browser, has been granted access to the Internet. It is perfectly
normal for the browser to access the Internet, but the application has not
limited the access to its interfaces. Thus any other application can request
the browser to visit a URL or download a file. The user has also installed
in the system a malicious application but without granting any permission
to it. Even though it seems that the malicious application cannot perform
any damaging actions, it is in fact able to connect to a malicious server and
download content by exploiting the lack of filtering of the browser.

2.2 SOUNDCOMBER

SOUNDCOMBER [42] is a trojan designed to eavesdrop the user and ex-
tract valuable information while remaining stealthy. SOUNDCOMBER re-
quests only permission to access the microphone, a seemingly benign per-
mission. When the user is making a call the trojan records the call and
performs signal processing to extract valuable information. The prototype
is designed to steal the user’s credit-card number. Filtering the informa-
tion and extracting only useful pieces of information instead of transmitting
the whole conversation increases the stealthiness of the malware, since it
reduces bandwidth usage.

SOUNDCOMBER avoids to ask permission to access the Internet. Ask-
ing for both Internet and microphone permission could have made the user
suspicious. Thus a second application is needed, with access to the Inter-
net, to transmit the data to the malicious server. SOUNDCOMBER can per-
form a privilege escalation attack or use a colluding application. In the first
case the malware can ask the browser to visit a specifically crafted URL e.g
http://target?number=N with N the credit card number, thus informing
the server of the credit card number. In case of a colluding application the
colluding application can open a socket to the server and transfer the data.
In this scenario, SOUNDCOMBER can use covert channels to transfer the data
to the second application rendering it even more stealthy. Some of the pro-
posed channels are the vibration setting, the volume setting, the screen and
file locks.

SOUNDCOMBER uses a database of known profiles to recognise conver-
sation segments of interests and then uses speech processing to exfiltrate
valuable data. Since, the data is transmitted by a second application the
trojan requires only permission to access the microphone.

www.syssec-project.eu 10 September 13, 2012



2.3. ICLEARSHOT: AUTOMATED SHOULDER SURFING ON
TOUCHSCREENS

2.3 iClearshot: Automated shoulder surfing on touch-
screens

Portable devices increase the risk of shoulder surfing because they are used
in public places (more often than regular personal computers). Touch-
screen mobile devices, which are the majority (e.g., iPhone), are particu-
larly threatened by shoulder surfing attacks, because they directly expose
also the soft keyboard, making it feasible for an attacker to spy on them.
Attackers could indeed steal sensitive information by simply following the
victim and observe his or her portable device.

In [37, 36] the authors study and motivate the feasibility of this type of
attack, which is easier for human attackers on touchscreens than on regu-
lar mobile phones. In addition to human attacks, which outcome is precise
yet tedious to gather, they propose a fully-automatic shoulder surfing attack
against modern touchscreen keyboards, which requires no prior information
(e.g., training) on the specific device, with the exception of the keyboard lay-
out. Other work [41] investigated this threat concurrently to this research
and obtained equivalent performance and precision, although they require
a training phase, which may not always be acceptable. Both of these efforts
focus on touchscreen keyboards that display magnified keys in predictable
positions.

In the adversarial model proposed in [37, 36] the attacker points a cam-
era (e.g., portable camera, or surveillance camera) toward the target touch-
screen while the victim enters a text. No visibility of typed text is required.
The attack works even when fingers partially cover the magnified keys, as
it typically happens while typing. Key magnification is often enabled by de-
fault in popular touchscreen phones and sometimes cannot be deactivated
(except in some older versions of Android OS).

The attack first detects the touchscreen image by leveraging a template
of the target keyboard. When a match is found in the current frame, it
rectifies and crops the screen area. Then, it isolates the high-contrast areas
of the rectified image that are different from the template and previous
frames. Then, it filters out noisy areas and identifies the best-matching key.
The authors evaluated this attack against the Apple iPhone—although it can
work with other layouts and different devices—and show that it recognizes
up to 97.07% (91.03% on average) of the keystrokes, with only 1.15% of
errors, at 37 to 51 keystrokes per minute: About eight times faster than a
human analyzing a recorded video.
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3
Defenses

3.1 TAINTDROID

TAINTDROID [22] is an extension to the Android platform which protects
against privacy leaks using information flow. TAINTDROID monitors the flow
of sensitive information inside the Android and the 3rd party, when sensitive
information leaves the system TAINTDROID logs the event, including the
application that was responsible for the transmission, the destination server
and the content of the message.

The first step to perform information flow, and more specifically dynamic
taint analysis, is to identify the sources of sensitive information in the system.
Fortunately Android’s documentation makes it straightforward to identify
the method calls that return sensitive data, e.g. calls to the location manager
will return the current coordinates of the device which constitute private
information. By identifying the sources of sensitive information you can
inject ‘meta‘ information, named taint, to each piece of data to know that it
is private.

The second step to dynamic taint analysis is to propagate the taint as the
private information is processed during program execution. TAINTDROID

offers taint propagation in different granularities. During code execution in-
side an application TAINTDROID taints sensitive information in the variable-
level. Thus the variable holding the coordinates from the GPS is marked as
tainted, when this variable is used as an operand in an operation the vari-
able that will hold the result of the operation will also be marked as tainted.
Moreover, TAINTDROID handles gracefully the cases where sensitive data is
written to files and sensitive data is sent to other processes using IPC mes-
sages. Conceptually, TAINTDROID can track sensitive information and its
by-products, through intra and inter process propagation.
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As a final step, TAINTDROID needs to identify attempts of sensitive data
leaving the device. TAINTDROID taps into the Java library at the point where
the native socket library is called.

To evaluate TAINTDROID, the authors studied 30 popular applications,
from which 20 were found to potentially compromise user’s privacy. A
performance evaluation showed an 27% overhead over the vanilla Android
platform.

3.2 PIOS

PIOS [21] is a tool for automatically detecting applications that leak users
data without their consent in the iOS platform. PIOS finds privacy leaks
using data flow analysis, which means that it identifies flows from functions
with access to sensitive data (sources) to functions that can send data to
third parties (sinks). Not all flows from sources to sinks are privacy leaks, if
the user has given his consent then it is a legitimate action. To account for
this case PIOS assumes that if the application interact with user between the
point where private data has been accessed and the potential transmission
point then the user has been warned and he has given his consent.

PIOS performs its analysis in three steps. As a first step, PIOS constructs
the interprocedural control flow graph (CFG) from the binary of the applica-
tion. Constructing the CFG can be challenging for the following reasons. i)
iOS applications are written primarily in Objective-C, an object oriented lan-
guage. Thus finding the class and method invocations require knowledge
on the class hierarchy to account for inheritance. ii) All messages from one
object to another pass from a central dispatch function that can obscure the
destination of the message. As a second step, PIOS uses standard reacha-
bility algorithms to identify, in the CFG, all paths from sources of sensitive
data to sinks without user interaction in the path. Finally, to confirm that a
path from a source to a sink is actually being used by the application, PIOS
performs an additional data flow analysis to locate if the sensitive data from
the source reaches one or more of the parameters of the sink.

The authors analyzed 1407 applications with PIOS from the official as
well as unofficial repositories, and concluded that applications, even from
the unofficial repositories, respect user privacy. One exception being the
device ID number which is leaked by almost 15% of the applications.

3.3 Saint

Saint [38], Secure Application INTeraction framework, is an extension to the
traditional Android permission framework. Saint gives applications more
fine-grained control over their interfaces. More specifically it aims to solve
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the following weaknesses of the current Android permissions system: (i) ap-
plications have limited control over who can access their interfaces. (ii) ap-
plications have limited control over how their interfaces are used. (iii) ap-
plications have limited control, at runtime, to dynamically change who can
use their interfaces. Saint defines two new types of policies to work in con-
junction with the existing Android permission system.

Install time policies regulate granting of application defined permissions.
When an application requests a permission during its installation Saint en-
sures that the application satisfies the policy for granting that permission,
otherwise the installation is blocked. The policy for a permission is defined
by the application that declares the permission. Conceptually, an application
can declare a set of permissions that other applications must hold to access
its interfaces and also the policy under which these permissions are granted.

Run time policies mediate the interactions between the applications real-
time. Saint policy enforcement intercepts messages in the IPC middleware
of the Android platform. When the sender initiates an IPC communication
Saint ensures that both the caller’s and the callee’s security requirements are
met.

The authors have integrated Saint in Android 1.5. One of the required
changes for the integration was a new installer that can handle the new
policies. Also, a mediator for enforcing the policy when appropriate was
necessary. Saint enforces its policies in the following cases: 1. Starting Ac-
tivities. 2. Binding Services. 3. Receiving broadcast Intents. 4. Accessing
Content Providers.

3.4 Aurasium

Aurasium [47] is a novel technique to enhance security in the Android
ecosystem. One of Aurasium’s strengths is that it does not require any
changes in the underlying operating system. Aurasium works by automat-
ically rewriting application to contain policy code that restrict each action.
The main observation is that all interactions between the application and
the OS happen through well-defined communication channels. Aurasium
rewrites the application to interpose policy code in all such channels. Some
of the policies that Aurasium can check are the following: 1. By interpos-
ing ioctl() calls the system is capable of mediating all IPC calls, thus
blocking the application from calling premium numbers. 2. By interposing
getaddrinfo() and connect() Aurasium can effectively block the appli-
cation from ever accessing the Internet. By monitoring the return data of
the ioctl() it is possible to locate applications trying to access the IMEI or
IMSI of the device. Upon finding a possible breach Aurasium prompts the
user about the desired action and stores the decision for the future.
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Aurasium poses a small overhead in the application, for accessing device
information for instance the overhead is 35%. By rewriting the application
Aurasium effectively creates a sandbox around the application without need-
ing to modify the OS. The rewriting increases the application by around 50
KB.

3.5 QUIRE

QUIRE [19] is designed to solve the following issues: i) most applications
can access the Internet, making it difficult for a remote server to trust the
source of the information. ii) malicious applications can take advantage
of other, benign, applications with more privileges to perform malicious ac-
tions. QUIRE tries to defend against these attacks by allowing applications to
reason about the call chain and data provenance of requests, coming either
from another application using IPC or to a remote server though RPC.

QUIRE taps into the Android binder to allow endpoints that protect sen-
sitive data to reason about the source of the request by looking at the call
chain of the applications that causes this request. QUIRE modifies the An-
droid binder to automatically build and propagate information about the
source of each request.

3.6 Crowdroid

Crowdroid [15] is a system that takes advantage of crowd sourcing to obtain
traces of application executions. Based on a sufficient number of traces a
clear profile of the application’s behaviour can be created and can be used to
differentiate between benign and malicious applications. Crowdroid consists
of three components:

• Users, the crowd, install a lightweight application that monitors the
behaviour of the application in the smartphone and reports the data
back to a central server. This application collects the system calls pro-
duced by each application using Strace.

• The traces of each user are sent to a central server where they are
parsed and organized by application. Thus grouping the observed be-
haviour of an application by different users.

• Using clustering algorithms the data sets are analyzed and applications
are grouped as malicious or benign.
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3.7. CELLS

3.7 Cells

Smartphones are increasingly ubiquitous, and many users carry multiple
phones to accommodate work, personal, and geographic mobility needs.
The Cells project revolves around a virtualization architecture for enabling
multiple virtual smartphones to run simultaneously on the same physical
cellphone in an isolated, secure manner. Cells introduces a usage model
of having one foreground virtual phone and multiple background virtual
phones. This model enables a new device namespace mechanism and novel
device proxies that integrate with lightweight operating system virtualiza-
tion to multiplex phone hardware across multiple virtual phones while pro-
viding native hardware device performance.

The idea is that you can run unsafe application in one virtual phone
without jeopardizing the security of the other virtual phones. This gives us
something equivalent to ’red’ zones and ’green zones’.

Cells virtual phone features include accelerated 3D graphics, complete
power management features, and full telephony functionality with sepa-
rately assignable telephone numbers and caller ID support. The Cells pro-
totype supports multiple Android virtual phones on the same phone. Cells
imposes modest runtime and memory overhead, works seamlessly across
multiple hardware devices including Google Nexus 1 and Nexus S phones,
and transparently runs Android applications at native speed without any
modifications. The Cells research was commercialised in a start-up com-
pany called Cellrox1.

3.8 MockDroid

MockDroid [12] is a modified version of Android permitting users to fake
granting a resource to an application. The application thinks that it is given
access to a particular resource, but the resource appears unavailable when
the application tries to access it.

MockDroid gives the user the ability to install software without having
to grant access to all the requested resources. Moreover, based on what in-
formation the user is feeling comfortable to share and the functionality the
users uses to use from the application, the user can fine-graine the permis-
sions wishing to actually grant and those wishing to ‘mock‘. Some examples
of the mocking functionality are the following:

Location The user can cause the GPS receiver to always return No location
fix or fixed coordinates.

Internet The application is allowed to open socket, but they will always
time-out.

1http://www.cellrox.com/
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Calendar/Contact The application may try to read the address book, but no
information will be returned, and writes will not update the address
book.

Device ID The application can access a mock ID instead of the real.

Broadcast Intents Applications are tricked to believe that they can send and
receive broadcast intents. But in reality, no generating intents will
reach other application and no intent will ever be received by this
application.

3.9 XManDroid

XManDroid [14] is a solution to mitigate the privilege escalation attacks in
Android. The authors consider two attack vectors. The first is the confused
deputy attack where a malicious application with limited privileges uses a
benign application to perform malicious actions. The second attack vector
is colluding applications where two or more malicious application, each with
limited permissions, collaborate to perform malicious actions.

The user defines policies that limit the communication between appli-
cations with dangerous permission combinations. An example of a policy
would be, ‘Applications with can read the user contact database must not
communicate with an application that has network access’. At run time a
reference monitor examines each ICC (inter-component communication) to
ensure that it follows the policy.

The system caches known decisions on whether communications should
be granted or denied to improve performance. Evaluation with real applica-
tions show that the overhead is below humans perception.

3.10 Kirin

Kirin [25] is a security framework for Android which allows to reason about
the security state of the whole device. Kirin allows the user of the device a
set of policies, called invariants, that must hold in order to install applica-
tions. Some examples of Kirin policies are the following: 1. An application
must have an explicit permission to make an outgoing call. 2. An application
holding a dangerous permission must have no unprotected components.

Kirin extracts the policy of newly downloaded applications and turns
them into Prolog statements. It then merges the new statements with the
existing policy knowledge. The result of the merge represents the state of
the policy after the application installs. On that knowledge Kirin evaluates
the set of invariants to ensure that they still hold. If the invariants hold then
the installation is allowed to proceed, otherwise the installation stops.
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4
BinderProfiler

4.1 Introduction

Android malware has received a lot of attention. For the work presented
here, we used the Android Malware Genome Project [51], which we con-
sider as the State-of-the-Art malware sample. Furthermore, there are many
proposals for identifying malware in mobile devices. Ded [24] decompiles
Dalvik programs to Java and use the many available Java tools for perform-
ing static analysis to the recovered code. They study more than 21 million
lines of source code and they identify potential misuses by legitimate appli-
cations. A similar effort has been done in PiOS for iOS [21]. Source analysis
is a well studied technique and has many advantages. However, many times,
it is hard to analyze the code, which may be either obfuscated or native in
a proprietary library. We believe that source analysis is a microscopic tech-
nique for identifying malicious activity, where our approach is macroscopic,
since we analyze the high-level actions of an applications. We argue that
there are many cases where hiding information at the microscopic level is
feasible (obfuscating the code), but hard at the macroscopic level, where
concrete actions must take place.

Tainting and dynamic analysis have been also explored for tracking in-
formation flow and the behaviour of applications in the mobile environ-
ment [22, 40, 13, 45, 15, 46] and Taintdroid [22] is probably the most com-
plete and mature tainting framework for Android at the time of writing. It
provides a system-wide tainting system for Android with realistic overhead.
However, it suffers from propagating the tainted information in native code,
as well as from well known problems associated with tainting [44].

Finally, there are many research efforts for enhancing and optimizing
the permission model of Android, which is fundamental for the security of
the platform. Saint [38] enhances Android’s permission model with poli-
cies, which is more powerful than static permissions enforced at installation
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time. Saint policies can assist in trusted communication between applica-
tions and components. For a short example, consider an application which
is linked with an Ad framework. The application could outsource fake Ad
clicks by hijacking the communication between itself and the component
offering the Ads functionality. On the other hand, Kirin [25] attempts to
resolve potentially dangerous combinations of permissions at install-time
and warn the user. The authors also provide the implementation of a ser-
vice offering application certification based on Kirin. Aurasium [47] en-
forces policies through user-level sandboxing. The authors automatically
repackage Android applications with custom code, which is able to resolve
offensive actions similar to the ones we identify here (e.g. calling or tex-
ting premium numbers). The great advantage of Aurasium is that it needs
no system modifications, since applications are automatically extended to
support the framework.

In this work, we observe that Android is service oriented, that is, appli-
cations exchange Interprocess Communication (IPC) messages for accessing
the system’s resources. For example, an application sends an SMS by making
an IPC call to the telephony service. The IPC traffic, which is sent and re-
ceived by a particular Android application is enough for creating an accurate
profile of the high-level actions performed by the under analysis application.
We created a system that passively monitors all IPC activity exports applica-
tion profiles based solely on that information. We analyzed known malware
and legitimate applications, and stored their profiles in a library. Finally,
we used the library to classify unknown software. The classifier successfully
distinguishes legitimate applications from malware with low false positive
and false negative rates. However, we must stress that the main goal in
this work is to develop a system that assists the security analyst, rather than
creating a purely unsupervised detector.

Apart from malware identification, the system can be also used for generic
application profiling and data tracking. For example, it can passively iden-
tify premium numbers or address book information in IPC messages. Finally,
it can graphically visualize all collected IPC activity in application graphlets;
graphs depicting how an Android application is communicating with other
applications and services. In this way, the system can be utilized for dis-
covering colluding applications, which try exfiltrate sensitive information
by evading Android’s permission model by permission-sharing among many
collaborating applications.

4.1.1 Contributions

Our work makes the following contributions:

1. We present BinderProfiler, a novel system that classifies Android appli-
cations based solely on observed traffic produced by IPC activity.
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Figure 4.1: Schematic overview of the architecture. We feed a modified
Android emulator, running BinderProfiler, with applications taken from a
pool of malware and legitimate ones. We record all IPC traffic generated.
We then analyze all recorded IPC activity and we export graphlets. We
form a library of known classified graphlets, which we use to further classify
unknown software.

2. We introduce application graphlets for characterizing Android soft-
ware. Application graphlets are graphs, which encapsulate the high-
level behavior of an application.

3. We evaluate our system in terms of accuracy and performance.

4. We design an on-line public service, which utilizes BinderProfiler for
profiling Android applications before installation.

4.2 Malware Classification

BinderProfiler can be effectively used for producing the profile of an An-
droid application in terms of interprocess communication. From a security
perspective, this profiling can be leveraged for distinguishing malware from
legitimate software. In this section, we discuss how BinderProfiler can be
used for malware classification.

4.2.1 Training

BinderProfiler generates application graphlets. A graphlet depicts the eso-
teric high-level functions, expressed in the form of IPC communication, of a
running application. Our intuition suggests that Android malware is char-
acterized by the accumulation of certain subsequent activities (e.g. touch-
ing the address book, sending SMS messages or calling premium numbers),
which inevitably will trigger IPC traffic. This intuition mainly stems from
recent studies about malware behavior in Android [51]. Thus, we seek of
a malware classification algorithm based solely on application graphlets or
information that can be exported from them.
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Depth Nodes
1 system server, android.app.IActivityManager
2 com.android.phone, com.android.internal.telephony.ISms,

1066156686
3 system server, android.app.IActivityManager, com.zft

android.provider.Telephony.SMS RECEIVED, an-
droid.permission.BROADCAST SMS

full system server, android.app.IActivityManager, an-
droid.intent.action.VIEW, vnd.android-dir/mms-sms, sms body,
*, vnd.android-dir/mms-sms

Table 4.1: Example payload entities used for creating taxonomies. Each
taxonomy is characterized by its depth, d, describing the maximum amount
of intermediate nodes, i.e. payload entities, which we take into account
for connecting two individual nodes. A taxonomy with great depth is more
descriptive, but less general for further capturing unknown malware. A
taxonomy with less depth is more general and it fails to distinguish malware
from legitimate applications.

An application graphlet is the IPC profile of an application. It is question-
able whether this information is enough for distinguishing malicious from
legitimate behavior. The classification algorithm we present in this section
is not perfect, but recall that we are tolerant in false positives mainly for
two reasons. First, our system can be used in combination or as part of an
existing system [1, 5]. Second, BinderProfiler acts more as a warning sys-
tem assisting the security analyst, or even the end-user, in characterizing
an application’s behavior, rather than as a sensitive detector which blindly
decides whether an application is malware or not.

Application graphlets are graphs with nodes representing processes or
payload entities. These graphs are formed by connecting individual nodes
with each other when there is IPC between them. Comparing two such
graphlets, in the general case, is non-trivial. Moreover, we are interested in
particular legitimate actions, which if we encounter in groups, we consider
them as offensive. For example, getting the address book and sending an
SMS produces a graph, which can be hardly considered offensive. However,
getting the address book, accessing the network, and sending a series of
SMSs in a short time window, produces a graph that is unlikely to be asso-
ciated with legitimate behavior, or at the very least should raise concerns
about the goals of the application. Thus, we need to use partial information
extracted from graphlets for deciding about the probability of a given appli-
cation encapsulating malicious features. Ideally we want to accomplish that
with minimum overhead. Although, our system operates in off-line mode,
we envision a service that will test multiple Android applications in paral-
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Figure 4.2: Taxonomies expressing paths of different level. We begin with
the original graphlet (top and left). From left to right, the second graphlet
depicts a taxonomy with depth 1. Only processes that receive a message
are taken into account. The third graphlet depicts a taxonomy with depth
2, where processes that receive a message, as well as the first payload en-
tity (usually the class name, which receives the message), are taken into
account. In the same fashion, graphlets in the second row, from left to right,
represent paths of depth 3 and 4, respectively.

lel, and thus incur low computation overhead. This also makes our system
suitable for inline run-time operation.

To summarize, we leverage BinderProfiler for malware classification in
the following way. First, we produce the application graphlets of a series
of malicious applications and legitimate ones. We use the Android Mal-
ware Genome Project as a malware source [51]. Collecting legitimate ap-
plications is a harder task, since there is no official set composed by prov-
ably non-malicious applications. We collect all legitimate applications from
Slideme market [8], since Google prevents crawling the official Android
market. Slideme is a popular unofficial market for Android software and we
expect it incorporates security auditing technologies. Although, it has been
demonstrated that such technologies can be bypassed [3], we believe that
currently, malware authors have not reached such a level of sophistication.
Nevertheless, we select the most popular ones for reducing the probabil-
ity in getting malware, that has not yet been identified and reported. Each
graphlet is produced by running the application for three minutes on a mod-
ified Android emulator running BinderProfiler. We selected a three-minutes
time for analysis period, since, as we discussed in Section 4.3, we observed
that the most of IPC activity occurs during the first few minutes of a running
process (see Figure 4.6). The specification of the platform is exactly the
same as the one analyzed in Section 4.3.
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Second, we group all graphlets as benign or malicious. Now, recall how
the graphlet is composed. Two connected nodes represent two processes
that exchange an IPC message. All IPC messages encapsulate a payload. We
parse the payload and export all entities that reflect an API call. Parsing
an IPC message is not trivial as it has been already serialized and it possi-
bly includes Java objects whose semantics we are not aware of. Thus, we
extract only printable strings, because class names and other sensitive in-
formation, such as contacts or telephone numbers, are expressed in text.
These entities are further nodes that interconnect the two initial nodes (see
Figure 4.3). We use these entities for producing taxonomies based on the
popularity of paths that occur more frequently in the malware set than the
legitimate one. Each taxonomy is characterized by its depth, d, describing
the maximum amount of intermediate nodes, i.e. payload entities, which
we take into account for connecting two individual nodes. A taxonomy with
great depth is more descriptive, but less general for further capturing un-
known malware. A taxonomy with less depth is more general and it fails to
distinguish malware from legitimate applications.

An example of how taxonomies are extracted based on different path
depth, d, is shown in Figure 4.2, where we depict 4 different taxonomies,
each one having depth from 1 to 4. We begin with the original graphlet
(top and left). From left to right, the second graphlet depicts a taxonomy
with depth 1. Only processes that receive a message are taken into account.
The third graphlet depicts a taxonomy with depth 2, where processes that
receive a message, as well as the first payload entity (usually the class name,
which receives the message), are taken into account. In the same fashion,
we depict two cases, where taxonomies represent paths of depth 3 and 4,
respectively.

We use taxonomies for extracting weights. More precisely, we observe
which graph paths are dominating in the malware set and which are rare
in the legitimate set, and we assign each path with a positive weight. We
also take into account the reverse behavior, i.e. paths that are dominating
in the legitimate set and are rare in the malicious one. We assign each such
path with a negative weight. The largest positive weight is assigned to the
path that occurred the most times in the malicious set and least times in
the legitimate one. The minimum negative weight is assigned to the path
that occurred the most times in the legitimate set and least times in the
malicious one. We, finally, calculate the application frequency, f, i.e. the
percentage of applications a particular path was observed in. We do this
both for the malware and legitimate application set. All collected weights,
and application frequencies are used in scoring functions, discussed later. A
schematic overview of the architecture is shown in Figure 4.1.
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Figure 4.3: An example application graphlet. At the top we depict the
graphlet of the malware identified as com.keji.danti. At the bottom we
zoom in a particular area of the whole graphlet. If two nodes are connected
with a solid line then these nodes have exchanged a message we are not
able to parse. Otherwise, the message is parsed and decomposed in print-
able entities. These entities are drawn as nodes between the communicating
nodes and interconnected with dashed line. For example, com.keji.danti
is communicating with com.android.phone through a message that encap-
sulates the com.android.internal.telephony service. Nodes, highlighted
with red are part of a path that contributes in malware classification.

4.2.2 Classification Algorithm

We use two scoring functions for classifying unknown applications, one ap-
plication frequency aware, denoted as Faf (ni) ← (wi, fi, d), and one non
application frequency aware, denoted as Fnaf (ni) ← (wi, d). Notice, that
each function depends on the collected weights from the training phase and
from the taxonomy’s depth, d. For a particular depth, the analytic expres-
sions of these scoring functions are the following:

Faf (ni) =
∑
i

wini
1− fi

,

Fnaf (ni) =
∑
i

wini.

All weights are normalized to 1. The sum is over all paths composing
a non classified graphlet. If a path has no weight then we remove it from
the sum (we implicitly assume a weight of zero). We use these functions
to evaluate graphlets of applications that are not pre-classified. For each
graphlet, the final score is an indicator of how similar it is with the graphlet
with either a malware one or a legitimate app. The higher the score, the
greater the probability of an application containing malicious functionality.
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com.android. internal . te lephony.ISms 10621900
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com.RZStudio.cube

com.android. internal . te lephony.ISms 10626213 com.android. internal . te lephony.ISms 10665123085 com.android.phone com.android. com.android. internal . te lephony.ISms 106691819

Figure 4.4: The graphlet of RZStudio as generated by BinderProfiler. Notice,
that the fundamental actions that have been already documented [2] can
be easily identified just by looking at the exported graphlet.

4.3 Architecture

In this section we present BinderProfiler. We begin with some background
information about Android and IPC, and then we give a short overview of
the system. We discuss how we implemented it for Android, we present
application graphlets, and how we use them as descriptors for identifying
malicious patterns in application execution. We close this section by pre-
senting our system’s two modes of operation, namely blind and deep.

4.3.1 Background

Instead of using the traditional IPC techniques offered by the Linux Kernel,
the Android implemented Binder, based on OpenBinder [7]. Android mod-
els applications as a set of components with distinct roles, namely Activities,
Services, Content Providers and Broadcast Receivers. Activities provide the
UI to interact with the user. Services stay on the background and perform
operations without engaging the user. Content Providers provide a consis-
tent method to store and access data.

Android implements all IPC using Remote Procedure Calls (RPC). The
most common technique for issuing an RPC in Android is through intents.
An intent is a type of object designed to deliver messages across Android
components. Intents are capable of determining the destination of the mes-
sage dynamically. The developer can set the criteria that are needed for the
delivery of the intent. Android, based on these criteria, dynamically resolves
and decides which is the destination of a particular intent.

Services requiring advanced RPC capabilities, for instance multithread-
ing support, have to create an AIDL specification. The Android Interface
Definition Language (AIDL) is the specification of the API that the service
wishes to expose to other components. Based on that specification, Android
generates the necessary proxy class used by the clients and a stub class used
by the service to implement RPC. Binder uses these two classes to transmit
method calls and parameters from the client process to the server process.
More specifically, Binder initiates a transaction from the client to the server
containing all the necessary information for the RPC in the payload. In
the Java model the transaction data is expressed as a Parcel object. A
parcel can contain Java primitives, objects or references to other interfaces
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Figure 4.5: IPC activity of each analyzed application, excluding events re-
lated to GUI. Observe, that all applications generate tens of IPC events in the
running period. Also, legitimate applications are more active. Recall, that
all applications run in an emulator, which incorporates Android Monkey [9].
We speculate that some of the malicious applications are repackaged appli-
cations [48] with some of the originally functionality turned off.

(IBinder) objects. All these have to be marshalled before being sent across
process boundaries. Another structure, heavily used in IPC, is bundles; a
special type of payload holding key/value pairs and it is designed for type-
safety and improved performance, it is used extensively by the applications
for convenience.

Besides Binder, which is implemented and accessed in Java, there is mid-
dleware written in C++ that mediates the interaction between the Java
objects and the Binder kernel module. Finally, Binder includes a custom
kernel component that passes messages between processes. Binder follows
the “thread migration” model. That is, an IPC call between processes looks
as if the thread issuing the IPC has hopped over to the destination process
to execute the code there, and then hopped back with the result.

4.3.2 BinderProfiler Overview

BinderProfiler is based solely on traffic produced by Binder. Applications that
need extra resources, for example access to the video or to the SMS function-
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Figure 4.6: IPC activity as recorded for three randomly selected malicious
applications for a running period of 30 minutes. We depict IPC messages
exchanged per minute. Observe, that most of the IPC activity takes place
during the first few minutes. This is the main reason we selected a three-
minutes period analysis for our further experiments.

ality of a smartphone, produce messages towards the service that provides
the particular functionality. These messages, along with their responses, are
delivered through Binder. Our system runs on a modified Android kernel,
which passively logs all Binder traffic. It then associates a graph, which we
call application graphlet, with each application. As we show later in the dis-
cussion, graphlets can be used for characterizing an unknown application.
For example, a security analyst can be assisted in deciding whether an ap-
plication may be considered offensive by searching for particular patterns in
the monitored traffic.

The captured Binder traffic expresses high-level application activity. For
example, an application that exfiltrates sensitive information, such as the
IMEI or the address book, will eventually request this information by send-
ing an IPC message to the System service, which will eventually be delivered
through Binder. In the same fashion, an application that issues calls or SM-
Ses towards premium numbers, will acquire the functionality by requesting,
through Binder, the telephony or texting service. Our intuition suggests that
Android malware aggressively performs such actions in short time-windows,
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which can be identified solely by monitoring the traffic produced by IPC
calls.

4.3.3 Implementation

We implemented BinderProfiler on the Android emulator. It can be argued
that malware can detect whether it is running on the emulator or on an
actual device. However, we selected this approach for convenience, since
it is easier to build and debug Android on the emulator than on an actual
smartphone. Now that our system has been finished and tested, porting
BinderProfiler on a device is trivial.

We used Android emulator version 18.0 (build id MASTER-306762) run-
ning Android 4.0.3 (API level 15). Unfortunately, the variety of different
Android versions, makes developing a security testbed hard. Some of the
malware we run were crashing or not running at all. We assume that this
is because the particular malware was originally written for a different An-
droid version. One can argue that this hardens the task of malware authors,
as well. This is evident, since many families of malware exist, presumably
translating the same application for different Android versions [51].

To collect IPC traffic the application must perform some computation.
Usually, Android applications incorporate a user interface and almost all
actions are delivered through it. We expect that malware may perform ma-
licious activities without the user doing anything special with the applica-
tion. However, our system can be used more broadly for characterizing
applications in general, not simply from a security perspective, and most
importantly, our system needs a training phase (see Section 4.2), which in-
corporates both malware and legitimate applications as samples. We use
Android Monkey [9], an automated UI exerciser for triggering functionality
in each application. This tool has also been used for similar purposes in
other papers [13].

4.3.4 Application Graphlets

The core idea of BinderProfiler is application graphlets. Initially, we were
inspired from BLINC [31], a system for characterizing network hosts by
inspecting headers of exchanged network flows. Since Android is heavily
based on communicating services over IPC, we seek of a similar framework
for characterizing Android applications. An application graphlet is the visual
representation of an application interacting with other services over IPC
calls. We depict such an example graphlet in Figure 4.3. We present the
complete graph as well as a area zoomed in area. This graphlet visualizes
the IPC activity of a known malware running on BinderProfiler for three
minutes.
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Two nodes are connected with each other if they exchange a message
through Binder. The connection is directed; the direction is from the node
sending the message to the node receiving it. Notice, that the graphlet
has solid and dashed lines. If two nodes are connected with a solid line
then these nodes have exchanged a message we are not able to parse.
Otherwise, the message is parsed and decomposed in printable entities.
These entities are drawn as nodes between the communicating and inter-
connected nodes with dashed line. For example, in the zoomed portion of
Figure 4.3, com.keji.danti, the under inspection malware, is communi-
cating with com.android.phone through a message that encapsulates the
com.android.internal.telephony service. Thus, we draw com.android.

internal.telephony in between the com.keji.danti and com.android.

internal.telephony, and we connect all nodes with a dashed directed
line. Nodes, that are drawn in red color are nodes with high weights in
the classification algorithm. We discuss this in more detail in Section 4.2.

We can make many important observations simply by inspecting this ex-
ample application graphlet. First, the graphlet is of high complexity. Recall
that we only run the malware for three minutes. The size of the graph
suggests that IPC traffic generated by an application may be sufficient for
profiling the application. Second, many actions performed by the applica-
tion can be easily identified semantically. For example, notice how accessing
the telephone functionality of the device is visualized through the intercon-
nected nodes com.keji.danti and com.android.internal.telephony. In
this work, we argue that the application graphlet expresses the higher-level
semantic functionality of an application, which is hard to obfuscate or hide.
For example, observe in Figure 4.4 a part of the application graphlet ex-
ported by RZStudio, a malware that has been analyzed by security experts.
The results of the analysis [2] can be instantly identified in its application
graphlet. Certainly, a malware can be stealthier, i.e. perform all actions
slowly, but this reduces the aggressiveness of the malware.

To get a clearer picture for IPC activity, we plot all IPC events recorded
for each analyzed application, excluding events related to GUI, in Figure 4.5.
Observe, that all applications generate tens of IPC events in the running pe-
riod. Running period is three minutes. Also, legitimate applications are
more active. Recall, that all applications run in an emulator, which in-
corporates Android Monkey [9]. We speculate that some of the malicious
applications are repackaged applications [48] with some of the originally
functionality turned off. For selecting an adequate running period, we do
the following: We randomly select three malicious applications and analyze
them for a running period of 30 minutes. We depict IPC messages exchanged
per minute in Figure 4.6. Observe, that most of the IPC activity takes places
during the first few minutes. Thus, we select a three-minute analysis period
for our further experiments.
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4.3.5 Blind and Deep Mode

All communication through Binder involves the exchange of custom mes-
sages. Some of them are hard to parse. Even if we are currently able to
parse some of them, applications can be modified to exchange encrypted
messages, and thus, evade BinderProfiler. We were tempted to simply use
the end-points of the communication, and not to take into account the pay-
load of messages. We refer to this as blind mode. As expected, in blind mode
a large training phase needs to be used. This has several disadvantages.
First, it is difficult to collect a large amount of applications, compared to
other application domains such as passive network monitor. Second, many
Android processes delegate other services for performing the actual actions.
These delegated services act as proxies (see for example system server in
Figure 4.3). This delegation hides the actual end-points. It may be possible
to perform time correlation analysis for matching which messages belong to
a set of two communicating end-points; we plan to explore this in future
work.

Despite, blind mode appearing inefficient for characterizing Android
software in practice, it can be effectively used for identifying colluding
applications, even if these applications communicate with encrypted mes-
sages [42, 27].
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Paranoid Android

The idea behind Paranoid Android [40] is to transfer the malware detection
from the actual smartphone to virtualized replicas running in server. Such
server will not be subject to same physical constrains in terms of processing
power and energy consumption as the actual device.

A small lightweight process, the tracer, records all the necessary infor-
mation so that the execution of a process can be replicated in the server. The
tracer works similar to the popular Linux utility ptrace. To reduce the trans-
mission overhead a set a optimizations is used. 1. Record only system calls
that produce non-determinism. System call for open a socket or a file are
not recorded. 2. Use a proxy to store inbound traffic temporarily. It is com-
mon for a mobile device to read data from the network, normally these data
should have be to forwarded to the cloud server. To avoid such overhead the
mobile device uses a proxy where inbound traffic is stored, the cloud server
can then download the data from that proxy. 3. Perform compression in the
generated stream of system calls. To defend against attackers who would
try to take control of the device and then erase incriminating logs before the
phone sends the trace to the server, the authors employ HMAC signing and
use of one time cryptographic keys.

The server can perform a series of advanced malicious detection tech-
niques since it does not impede the users satisfaction. The series contains,
but not limited to: 1. Virus scanner performing file scanning using known
signatures. 2. Dynamic taint analysis which marks input coming from un-
trusted sources and tracks its propagation. The system requires from 2-
64Kib/s of bandwith and an additionan 15% CPU overhead.

In the context of the SysSec project, VU University Amsterdam recently
initiated a major overhaul of the Paranoid Android system. Rather than us-
ing a ptrace-based tracer as a basis for the record and replay functionality,
the new version of Paranoid Android moves all of the instrumentation into
the kernel. It employs a technique for efficient recording and replaying pi-
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oneered by Columbia University (known as Scribe [32]) to make the entire
Paranoid Android system much more performant.

In addition, a taint analysis implementaion for the ARM processor (used
by Android Phones) was written from scratch. The reason for the rewrite is
that the previous system was buggy and not portable. The new implemen-
tation is much leaner and can be easily ported to other architectures.
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6.1 Introduction

With over 700.000 new device-activations per day, Android is undoubtedly
the most popular operating system for smartphones and tablets, rivaled only
by Apple’s iOS. Naturally, cyber criminals are also aware of this significant
spread. The fact that, unlike iOS, Android allows installation of apps from
arbitrary sources, is an additional incentive for them to focus on subverting
the supply of apps with malicious software. Reports by Anti-Virus companies
back the increasing interest in malware for Android with concrete numbers.
In the second half of 2011, the number of backdoors alone has risen by
285% [33, 17].

Google has reacted swiftly: in February 2012 they revealed the existence
of bouncer [35], a service that transparently checks apps in the Google Play
Store for malware. They further report that this service has led to a decrease
of the share of malware in the Play Store by nearly 40%. However, Android
users are not limited to the official Google Play Store when it comes to in-
stalling software. Apps are available from various sources – these can either
be bulk archives which can be retrieved via torrents or one-click-hosting
services, or complete alternative app markets that come with a dedicated
installer app and host their own repositories. The possibility to install arbi-
trary applications is one of the major differences between Android and iOS
and reflects the credo of Google and Apple respectively. Naturally, especially
bulk archives are very unlikely to be checked for malware before they are
released and so the question arises whether they really contain a large share
of malware.

Analyzing or detecting malware follows the same basic principle that
research on x86 malware relies on. On one hand, static analysis yields in-
formation immediately by just looking at a sample, while dynamic analysis
actually executes the sample and provides details on its true behavior with
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the disadvantage of being slower and more resource intensive. A large body
of research [52, 15, 30, 28] uses these methods, while none of them pro-
vides a comprehensive technical solution that combines them to provide a
thorough feature set for a sample. However, post-analysis techniques such
as clustering tend to generate more meaningful results if they are applied to
a rich feature set.

As a consequence, we significantly extended, combined and automated
state of the art analysis solutions for Android. Our dynamic analysis is multi-
layered: On the Dalvik-VM-level, we enhance the well known DroidBox[20]
to record additional information. To also cover system-level events, we in-
strumented the Qemu-based Goldfish emulator to keep track of system calls
and native library activity. As some characteristics are only exposed if they
are triggered by specific interaction with the sample, we also provide tar-
geted stimuli during the analysis. To be able to customize the set of stimuli
for each sample we leverage information from prior static analysis.

Our contributions can be summarized as follows:

• We introduce ANDRUBIS, a fully automated dynamic analysis frame-
work that includes both static and multi-layered dynamic approaches
to analyze unknown Android applications.

• We provide a detailed analysis of different sources for Android appli-
cations and compare their behavior to known malware apps.

• Using ANDRUBIS, we analyze and cluster more than 27.000 samples
from different sources. We further give an insights whether specific
sources are prone to deliver specific strains of mobile malware. We
also provide a set of properties which were identified as common ele-
ments in mobile malware, paving the way for an automated filtering
procedure of suspicious applications.

• To provide our solution for the research community, we integrated the
system as part of the well-known Anubis analysis framework. It is
open for submissions under http://anubis.iseclab.org.

6.2 System Description

The basic idea behind our framework parallels several other approaches
developed for x86 or, more specific, Windows systems. The core component
is a virtual machine which is running the sample under scrutiny and records
every action down to the last detail. However, due to the special structure
of the Android operating system, some of the components are different. In
this section, we discuss every major component, how they are integrated
into the system and how they differ from their x86 counterparts.
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6.2.1 Sandbox

Unlike Windows malware, Android is based upon the ARM architecture, a
fact which heavily influences the sandboxing system as a whole. As it auto-
matically implies the use of an emulator if used under a large-scale analysis
environment, the choices when choosing the sandbox itself are quite limited.
For ANDRUBIS, we utilized DroidBox[20], a Qemu-based virtualization envi-
ronment which was initially designed to run arbitrary Android applications
and monitor behavior that happens within the operating system. Since An-
droid is based on Java, it closely monitors the Java Virtual Machine (JVM)
and essentially records actions happening within this environment. For a
comprehensive analysis, however, these capabilities are not sufficient.The
original emulator has been extended with the following facilities.

• Tainting: To track privacy sensitive information ANDRUBIS uses Taint-
Droid which enables us to detect sensitive information leaving the
phone through taint analysis. This part comes with the usual restric-
tions applicable to data tainting and is limited to JVM level. Therefore,
tainting of native libraries is not supported.

• Deployment: For a large-scale automated approach it is imperative
to automatically deploy and undeploy samples within the analysis en-
vironment. As each sample uses its own virtual machine and its re-
sources, we have a limited amount of time to analyze each sample.

• VMI: To overcome the shortcomings of DroidBox and Taintdroid, we
implemented a VMI (virtual machine introspection) based solution to
track system calls of potentially harmful native libraries. A detailed
discussion of this feature is presented in 6.2.7.

To mitigate potentially harmful effects of our analysis environment, we
took precautions to prevent samples from executing DoS attacks, send Spam
mails or propagate itself over the network. This part is essentially based on
our experience with x86 malware analysis and proved to be effective in the
past. The rest of the sandboxing system (host environment, network setup,
database, etc.) is comparable to conservative analysis systems and thus not
described further. In Figure 6.1, the structure of our system and its elements
are shown in detail.

6.2.2 Static Analysis

Before actually executing a sample in ANDRUBIS, the first advantage when
analyzing Android apps comes into effect. Android applications are packed
in Android Application Package files (APK) which must contain an Android-
Manifest.xml file. This description file is mandatory and cannot be bypassed
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by any means. Without this information, the file cannot be installed or exe-
cuted. In a first step, we parse Meta information from the manifest, like re-
quested permissions, services, broadcast receivers, activities, package name
and SDK version. This information can not only be used to assist in automat-
ing the dynamic analysis, it is also possible to identify permissions which are
dangerous or commonly used by malware. Furthermore, it gives us an idea
on how many permissions are requested by the app in the first place, com-
pared to what was actually used during execution. Without anticipating our
evaluation results, the set of used and requested permissions greatly dif-
fer between malware and benign samples. Compared to approaches where
this data was used to distinguish between malware and goodware [10], we
merely use static analysis results for a guided execution and analysis in our
dynamic part.

Figure 6.1: Architecture of ANDRUBIS

6.2.3 Stimulation

The elements presented so far comprised the static parts of our framework.
The first relevant dynamic property we like to discuss is event stimulation.
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Stimulation is essentially about code coverage. One major drawback of dy-
namic analysis in general is the fact that not all execution paths are certain
to be traversed within one analysis run. In traditional programs, this prob-
lem is even more severe, because the only function which is guaranteed
to be called is the main function or the main dialog. What happens from
there depends on the program itself. Fortunately, the Android OS again
provides the facility to partially overcome this problem. Defined within the
application’s manifest file (AndroidManifest.xml), a list of services, broad-
cast receivers and activities can be found. Some of them are not necessarily
defined within the manifest but can be registered programmatically.
After the initialization of the emulator, ANDRUBIS installs the application
which should be analyzed and starts the main activity. At this point, all
predefined and programmatically registered entry points are known, which
enables ANDRUBIS to perform the following stimulation events.

6.2.3.1 Activities

An activity provides a screen for the user to interact with. Like services,
activities have to be registered in the AndroidManifest.xml and cannot be
added programmatically. These activities define the interaction sequences
presented to the user and come with a defined layout, which must be known
in advance. By parsing the manifest, ANDRUBIS can invoke each activity sep-
arately, effectively iterating all existing dialogs within an application. How-
ever, this method comes at a price. Poorly written applications have the
potential to crash if they are not thoroughly tested. Rarely used and badly
implemented activities, like About screens, for example, are capable of end-
ing the analysis run prematurely. More precisely, it ends the analysis of the
current activity. As soon as the next activity is triggered, a new process is
spawned by the Dalvik VM for the analyzed app. While this does not hinder
dynamic execution of a sample, the changing process ids negatively impact
id-specific analysis results like JNI invocations for instance.

Although we found no malware sample in our analysis which uses this
technique to disrupt dynamic analysis, we acknowledge the fact that it could
be used to distort our analysis results. In our current version, erroneous
activities are simply omitted if the error is recoverable. Besides, applications
that crash are immediately tagged with bad reviews if they appear on the
market. For a malware-infested application that is certainly not desirable.

6.2.3.2 Services

Background processes on the Android platform are usually implemented as
services. Other than activities, they come without a graphical component
and are designed to provide some background functionality for a program.
Naturally, they are interesting for malware writers as well, as they can be
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used to implement data transfers to botmasters, upload personal informa-
tion or send received SMS to an adversary. Again, all services used by an ap-
plication must be listed in the manifest. Their existence, however, does not
automatically mean the service is started under every circumstance. To save
battery life and conserve memory, services have to be started on-demand,
with a lifetime defined by the programmer. ANDRUBIS iterates and starts all
listed services automatically after the application is deployed. This is done
with the Android Debug Bridge (ADB) provided by the ActivityManager.

Stimulation Event Target
Activities All activities from manifest
Services All services from manifest
Broadcast Receivers All Broadcast Receivers from manifest, register-

Receiver() from android
Common events send/receive SMS, connect/disconnect

WLAN/3G, GPS lock, send/receive phone
call, boot completed phone-state-changed

Random events Random input stream by Application Exercise
Monkey

Table 6.1: Stimulation events

6.2.3.3 Broadcast receivers

Another possibility to enter an Android application, is by utilizing a broad-

castreceiver. They can be used to receive events from the system or other
applications on the Android platform. Just like services and activities, they
can be registered in the manifest but that is not mandatory. To provide the
possibility to react to certain events and realize communication with other
applications dynamically, they can be registered and unregistered at run-
time. For example a broadcast receiver for the android.intent.action.-

BOOT COMPLETED event could be registered to start an application after the
phone has finished its starting sequence. Similar to the previous stimuli,
broadcast receivers from the manifest are always called within ANDRUBIS.
All information to create and broadcast the necessary event is available from
the manifest. Again, the ActivityManager is used to cast the message glob-
ally.

The case is a bit different for dynamically registered broadcast receivers.
To find out if a program registers one, we intercept calls to register-

Receiver(). As a result, we are provided with a list of dynamically reg-
istered events that should be triggered. To transport information between
the caller and the receiver, however, Google implemented so-called extras,
simple key-value pairs that can be filled as needed. While the content of
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the extra field for Android-specific events (e.g. alarms, wifi connect, etc.)
is predefined, a programmer could use it to transport arbitrary, but seman-
tically important data. Automatically and reliably creating such an extra
field would require a tremendous amount of effort. To derive all possible
elements of this dictionary, a complete call graph of the application and a
considerable amount of back tracing would be necessary. Besides, the gain
when triggering dynamically registered, non-Android broadcast receivers is
questionable at least. In our first approach, we filled extra fields with empty
lists and stimulated the receiver, risking to crash the application if a possible
null pointer exception was not properly handled by the programmer. If that
happened, we restarted the sample and continued with another broadcast
receiver. While this approach works in principle, it causes unwanted side
effects. Restarting a process, for instance, changes the process id, which
in turn complicates a proper system-level analysis. Therefore, we decided
to use an alternative method to stimulate dynamically registered broadcast
receivers.

6.2.3.4 Common events

A far superior method compared to stimulating broadcast receivers with a
targeted event is to emulate some common events a sample is bound to
react to. In contrast to directed stimuli, these events are implemented on
emulator-level and therefore also trigger receivers from the Android OS it-
self. That, in turn, avoids causing inconsistent states the OS would have
to recover from. By broadcasting these common events (e.g. SMS-received,
GPS-lock, boot-completed, phone-state-changed, etc.), we are able to trigger
most functions even if they propagate data by custom broadcast receivers.
A list of currently implemented common events can be found in Table 6.1.

6.2.3.5 Application Exercise Monkey

The last elements that need to be stimulated are actions based on user input
(e.g. button clicks, file upload, entry fields, etc.). For this purpose, we use
the Application Exercise Monkey, which is a part of the Android SDK and
generates semi-random user input. Originally designed for testing Android
applications, it randomly creates a stream of user interaction sequences that
can be restricted to a single package name. Its hit ratio for buttons is quite
astonishing and we found it triggers a good amount of functionality that we
could otherwise not see. For a sophisticated interface stimulation, however,
some sort of GUI fuzzing would be needed which leverages static analysis
results and derives GUI layout and interface elements from this information.
This part is currently being developed but not yet ready to be deployed and
therefore listed under future work.
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6.2.4 Tainting

Data tainting is a double-edged sword when it comes to malware analysis.
On one hand, it is the perfect tool to keep track of interesting data, on the
other hand it can be tricked quite easily if a malware author is aware of this
mechanism within an analysis environment [16]. By leaking data through
implicit flows, for instance, it would be possible to circumvent tainting. A
shortcoming which could be mitigated by a complete static analysis, for
instance. Furthermore, enabling data tainting always comes at the price
of additional overhead to produce and track taint labels. Still, the possi-
bility to track explicit flows, like device IMEI to network for instance, is
a valuable property of a dynamic analysis framework. ANDRUBIS leverages
TaintDroid [23] to track different kinds of sensitive information across appli-
cation boarders in the Android system. The introduced overhead in process-
ing time of approximately 15% [23] is also acceptable for our purpose. As
a result, ANDRUBIS can log tainted information leaving the system through
sinks (network, SMS or files). Table 6.2 shows which kinds of sensitive in-
formation ANDRUBIS tracks during the execution phase. The scope column
denotes the scope of the taint source. We basically distinguish between three
different options:

• User: Data that is primarily used to identify the user operating the
device. A good example is the address book with all the contacts which
is sent over the network by some apps.

• Device: Independent of the user, each device running Android can
be identified by several properties. The best example is probably the
device IMEI, a unique number that is often used by ad libraries to
count and report installation numbers.

• Carrier: Information about the mobile carrier. Just like unique device
identifiers, this information uniquely describes the used SIM card and
therefore the user operating the phone.

We distinguish between these three scopes so we can describe which
type of privacy concern may arise when analyzing a sample.
One restriction when using TaintDroid is that it refuses to let an application
drop to native code execution. The reason for that is quite simple. Taint-
ing mechanisms only trace labels within the Dalvik VM. When native code
is executed, there is almost no restriction on what the application can do,
as long as it is within the permissions granted. Related studies [52] claim,
that around 5% of all available applications use native code during their
execution. What may sound as a negligible amount is in truth a good indi-
cator for malware. Apps that heavily rely on native code to fulfill their task
have a good chance of being malware simple because the possibilities for the
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malware author are so much greater. As a result, prohibiting native code ex-
ecution is unacceptable. Consequentially, we have removed the restriction
that forbids the loading of custom native code (i.e. native code which is not
located in the /system/ directory) from the original TaintDroid implemen-
tation. ANDRUBIS logs the use of native code and therefore can warn the
auditor that the results of the taint analysis may not be trustworthy. Since
the operations performed in the native code library are of particular interest
for a thorough analysis, we decided to instrument the Qemu framework and
utilize virtual machine introspection (VMI) to monitor the resulting actions.
A detailed description of our native code analysis is provided in the next
section.
The following listing exemplarily shows how ANDRUBIS traces information
leakages:

<data−l eak s>
<network−l eak seconds=” 59.0080029964 ” tag=”TAINT CONTACTS ,

TAINT SMS , TAINT CALL LOG , TAINT BROWSER”>
<host><! [CDATA[ gi60s . com]]></ host>
<port>80</ por t>
<data><! [CDATA[ code=67 f f c&data={” con tac t s ” : [{ ”name” : ”Qm9i ” , ”

numbers ” : ”MDEyLTM0NS02Nzg5Ow==”},{ ”name” : ”QWxpY2U=” ,”
numbers ” : ”MDgwLTAwOC0xNTs=”}] ,” sms ” : [{ ” address ” : ”
MDgxNTEyMzQ1Njc4OQ==”,” type ” : ”1 ” , ” date ” : ”1329836847907” ,”
body ” : ”SGVsbG8gV29ybGQh”} ,{ ” address ” : ”MDEyMzQ1Njc4OQ==”,”
type ” : ”1 ” , ” date ” : ”1329836407315” ,”body ” : ”
SGVsbG8hIFRva2VuIGFzZGxmaWkyODIyNzdq ”} ] , ” recent ” : [{ ”
number” : ”0815123456789” ,” type ” : ”1 ” , ” date ” :
”1329836847797” ,” durat ion ” : ”0”} ,{ ”number” : ”0123456789” ,”
type ” : ”1 ” , ” date ” : ”1329836383176” ,” durat ion ” : ”0”} ,{ ”number
” : ”08000815” ,” type ” : ”2 ” , ” date ” : ”1329836360814” ,” durat ion ” :
”3 ”} ] , ” u r l ” : [{ ” u r l ” : ” aHR0cDovL3d3dy5nb29nbGUuY29tL3VybD9z
YT10JnNvdXJjZT13ZWImY2Q9MSZ2ZWQ9MENCMFFGakF

BJnVybD1odHRwJTNBJTJGJTJGd3d3LmlzZWNsYWIub3
JnJTJGJmVpPUxySkRUOURJQmNYT3NnYTZpcjNnQkEmd
XNnPUFGUWpDTkdETUFKdG5wcUhfZElESVBURE1LejRG ZUdUbkE=”}

. . .
] ]>
</ data>

</network−l eak>
</ data−l eak s>

Listing 6.1: Example information leakage section in ANDRUBIS report

In this example, private information like contacts, the call log, etc. were
sent over the network to a server (gi60s.com) on port 80. In this particu-
lar case, however, the application is a backup solution that stores contact
information, SMS, etc. on the provided Webserver.
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Scope Taint Source
Device Location
User Address Book (ContactsProvider)
Device Microphone Input
Carrier Phone Number
User GPS Location
User NET-based Location
User Last known Location
Device Camera
Device Accelerometer
User SMS
Device IMEI
Carrier IMSI
Carrier ICCID (SIM card identifier)
Device Device serial number
User User account information
User Browser data, history or bookmarks
Any Other database data
Any File content
User Installed packages
User Call history
User Email data
User Calendar data
Device System settings

Table 6.2: Tracked taint tags

6.2.5 Logging

In ANDRUBIS, all interesting and dangerous API calls, along with the activi-
ties on native level, are logged and processed as XML files. We patched the
key API functions, like reading or writing of network streams directly on the
emulator and on JVM level to provide this information. Currently, these are
the actions logged by ANDRUBIS:

• Incoming/outgoing network data

• File read and write operations

• Started services

• Loaded classes through DexClassLoader

• Loaded native code libraries
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• Information leaks via the network, file and SMS

• Circumvented permissions

• Cryptography operations performed using Android API

• Listed broadcast receivers

• Sent SMS and phone calls

• Native system calls including call parameters

Our basic assumption was, that malware writers are certainly able to
find a way and circumvent the permission system. One thinkable method
would be to use a local exploit that drops a root shell and grants the needed
permissions. We deal with this scenario by comparing the statically analyzed
permissions to the called APIs and their required permissions. Therefore, if
an operation was used without having the required permission beforehand,
this action would be triggered. In all of our over 27,000 analyzed samples
(and a good portion of those are malware), we did not encounter such a
case even once. A fact that speaks in favor of Android’s security structure.
Once this action is triggered, it is a good indicator that mobile malware is
becoming more sophisticated.

6.2.6 Network Analysis

Capturing network traffic is one of the essential parts when dealing with
modern malware - C&C communication is undoubtedly one of its corner
stones. In addition to tracking sensitive information to network sinks via
tainting, we also record all the network activity during analysis regardless
of the performed action or the application causing it. The dumped network
trace is post-processed by customized BRO [39] scripts. We extract high-
level network protocol features that are suitable for identifying interesting
samples. Currently, we focus on well-known protocols such as HTTP, DNS,
FTP and IRC. In general, network traffic is one of the most important fea-
tures for establishing a malware-detection metric. If a piece of malware is
supposed to do something else than destroy local data it is bound to request
Internet permissions. Sending Spam, leaking private data or connecting to a
botmaster is not possible otherwise. Therefore, the fact alone that an appli-
cation is not requesting Internet permissions rules it out as being interesting
malware. According to studies performed in production environments [29],
more than 98% of x86 malware samples established a TCP/IP connection.
Given the incentives of malware authors, we don’t expect this behavior to
change for mobile malware.
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6.2.7 System Level Analysis

The last element of ANDRUBIS we want to describe in more detail is the
aforementioned possibility to track native code execution. By default, An-
droid apps are Java programs, being distributed as an apk file, which is ba-
sically a jar container. Hence the default way of programming for Android
and executing Android applications is by running Java byte code within the
Dalvik JVM. Analyzing a sample at the Java-bytecode level is an absolute
necessity and the previously described parts of the system are dedicated to
that purpose. However, Android apps are not limited to Java byte code.
Via the Java Native Interface (JNI) it is possible to use native code system-
level libraries. This functionality is mainly intended for performance-critical
use-cases such as displaying 3D graphics. But apps are not limited to load
the Android OS’ native libraries, they can just as well load their own na-
tive libraries and thus execute their own system-level code. Naturally, such
code would not be covered by a mere observation at the JVM-level, like the
one implemented by Droidbox. Actually, most of recent research on Android
malware only deals with the JVM-level and would thus miss malicious activ-
ity at the system-level. There are a couple of ways to implement system-level
instrumentation in Linux, such as using LD PRELOAD, ptrace or a loadable
kernel module. We decided to use the most transparent and non-intrusive
way - virtual machine introspection. With virtual machine introspection our
analysis code is placed outside of the actually running Android OS, right in
the codebase of the Goldfish emulator. To capture system-level behavior, we
ultimately need to know what the library code loaded via JNI actually does.
The first step towards that goal is to intercept the Android dynamic linker’s
actions. This allows us to track down when shared objects are loaded via
JNI and gives us the memory region of the text segment as well as the ad-
dresses of the exported functions. System call tracking bundled with this
information enables us to associate system calls with invocations of certain
functions of loaded libraries. The result is a complete list of system calls
done by the emulator as a whole. This data is processed and structured to
reflect only system calls invoked by the app under scrutiny.

6.3 Evaluation

The evaluation of the system we presented in the previous sections consists
of multiple parts that all aim to answer one basic question:”Is the system
fit to produce the needed data for automated malware analysis of Android
apps?” To answer this question, we did not restrict our evaluation to a sin-
gle procedure. For example, a possibility would have been to simply extract
used and requested permissions for malware and benign samples, span a
vector space with each permission as a dimension and produce a malicious-
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ness percentage for new samples according to their Euclidean distance from
malware groups. This method would ignore data leaks completely, one of
the main contributions of our approach. Consequently, we evaluate the sys-
tem from different angles with particular focus on comparing the malicious-
ness of the different sources we used to gather our samples.

6.3.1 Data sets

A critical part was how to choose the data set for the evaluation. We aimed
for a high diversity in our collected samples and therefore did not restrict
our gathering process to Android markets or the Google Play Store. We
also downloaded application archives via BitTorrent networks and one-click
hoster (OCH) like rapidshare, uploaded.to etc. Table 6.3 depicts the actual
numbers for each source.

GP VT PS DD1 DD2 T1 T2 T3 Malware Total

APKs
down-
loaded

1260 615 14141 2425 1341 2872 1982 9586 191 34413

Size (in
GB)

1.6 0.8 22 2.8 2.2 4.4 3.1 11 0.4 48,3

Unique
md5
hashes

1260 615 14141 1277 1331 1940 1960 4551 187 27262

PS over-
lap

0 1 14141 1 1 2 15 4 4 -

Table 6.3: Dataset size (GP = Genome Project, VT = Virus Total, PS = Play Store, T =
Torrent, DD = Direct Download)

Feature
group

GP VT PS DD1 DD2 T1 T2 T3 Malware

File activ-
ity

94% 82% 70% 52% 47% 70% 66% 62% 79%

Network
activity

76% 34% 61% 20% 17% 28% 27% 25% 59%

Phone
activity
(SMS)

4% 29% 0% 0% 0% 0% 0% 0% 10%

Native li-
brary load

18% 9% 10% 7% 6% 18% 14% 12% 18%

Data leak 50% 17% 17% 7% 4% 8% 9% 8% 40%
Crypto
Opera-
tions

24% 4% 2% 1% 2% 6% 6% 5% 14%

Table 6.4: Share of samples per dataset that exhibited certain dynamic feature groups (GP
= Genome Project, VT = Virus Total, PS = Play Store, T = Torrent, DD = Direct Download)
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All samples, with the exception of the Genome Project, were down-
loaded from May to June 2012. Genome project samples stem from a larger
period starting in August 2010 and are verified to contain malware from 50
different malware families [50]. We used this set as our malware baseline.
One disadvantage is embodied by the age of some malware samples. Espe-
cially malware that relies on a functioning server is problematic to analyze
if this server was already shut down. Nevertheless, our baseline showed a
good overall activity as explained in the next section.
Our second malware indicator is provided by Virus Total [43]. Almost every
modern virus scanner already contains signatures for Android apps. Virus
Total, which utilizes 40 different scan engines to produce their result, is
used as a control mechanism in this evaluation. For all 1260 samples within
the Genome Project for example, Virus Total reported that 1218 (97%) con-
tained malware. The remainder of the samples were collected as follows:

• Virus Total: By courtesy of Virus Total [43], we downloaded over 600
Android samples from their database, where multiple scanning results
indicated the app to be malware.

• Play Store: This is a snapshot of some of the most recent apps pub-
lished on the Google Play Store that were crawled during these two
months.

• DD1/2: These samples indicate direct downloads from various one-
click hosters. DD1 originated from crawled forum entries aggregated
by http://filestube.com. The original sources stem from various fo-
rum entries. DD2 originated from a single site called http://iload.to,
before the administrators decided to take the site down to avoid legal
issues.

• Torrents 1/2/3: These samples stem from downloads from http://

thepiratebay.se, http://torrentz.eu and http://isohunt.com respec-
tively. Each torrent with more than 10 seeders was downloaded. To
avoid distribution of copyright-protected content, we prohibited our
torrent client from uploading any data at all. As a result, the download
speed for some samples was rather slow as ”leechers” get punished by
limited downstream.

• Malware: This is a small collection of manually gathered malware
samples we encountered during our studies. They also stem from
various sources which are too many to list here. This collection was
designed to act as our manually vetted malware baseline before we
received the samples from the Genome Project.

Torrents and direct downloads were kept separate on purpose. It allows us
to see possible deviations in our results not only between different sources
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but also within the sources themselves. One noteable difference between
the dataset is the percentage of paid apps. All samples crawled from the
official Google Play store are free to download. Direct downloads, torrents
and even some of the malware samples, however, partially contain non-
free commercial apps. Before downloading the samples, we presumed that
external sources exclusively distributed non-free apps. This assumption was
wrong, however. Most of the uploads are collections of apps and games the
publisher deems useful. And that comprises freeware apps as well as paid
ones.

6.3.2 Quantitative Results

With this dataset, we conducted our first tests. During our evaluation phase,
we constantly upgraded our system to provide new features for a public
release. For our evaluation environment that meant we had to freeze our
system on a certain point to get homogenous results. Before deployment,
we had a limited throughput of about 1500 samples per day, which also
explains the size of our dataset. The complete analysis of the dataset took
roughly a month. For each sample, we executed three steps.

1. We performed static analysis

2. We performed dynamic analysis with a timeframe of 5 minutes per
sample

3. We submitted the sample to Virus Total directly after execution. If no
report existed for the specific sample, we re-queried Virus Total again
after 48 hours and 7 days.

Table 6.4 shows to which extent the samples exhibited certain feature
groups.

Data Leaks GP VT GP DD1 DD2 T1 T2 T3 Malware

IMEI 45.6% 14.3% 9.4% 1.4% 1.5% 2.7% 2.0% 2.0% 28.3%
IMSI 26.2% 6.3% 0.8% 0.3% 0.0% 0.5% 0.3% 0.2% 20.3%
Phonebook 0.8% 0.3% 0% 0.2% 0.0% 0.1% 0.1% 0.0% 2.5%
Phone Number 15.0% 8.0 % 0.7% 0.2% 0.2% 0.2% 0.2% 0.2% 11.4%
Location 1.6% 1.4% 2.1% 1.2% 0.8% 1.6% 1.2% 1.1% 1.7 %

Table 6.5: Share of samples per dataset that leaked sensitive information over the net-
work (GP = Genome Project, VT = Virus Total, PS = Play Store, T = Torrent, DD = Direct
Download)

Overall, the Genome Project has very high overall activity in the main
feature groups such as file and network activity, even though some of the
samples remained dormant while we executed them. We limited the phone-
specific facilities in the Table to the SMS service, as none of the samples
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in all datasets initiated phone calls while we executed them. Sending SMS
does not seem to be a very widespread feature as it is not represented in the
Torrent and DD datasets.

At this point we are further able to analyze claims of previous research
papers. In [52] 4.52% of all investigated apps used native code libraries,
in [49] it was given with roughly 5%. The values we depict in our Table are
18% for the Genome Project and 10% for market apps. At a finer granu-
larity, we can also distinguish between total libraries loaded, system native
libraries loaded and non-system libraries loaded. Here the respective values
are 17.88% / 7.17% / 12.08% for the Genome Project and 9.63% / 8.19%
/ 1.99% for the market. The last digit represents custom libraries which
are far more dangerous than those provided by the Android system itself.
Overall, we can say that native library usage has drastically risen in general.
The reason for system library usage is simple. More developers are creating
games and graphically enhanced apps. For this purpose they have to load
the system’s openGL library, which is of course implemented natively to uti-
lize the onboard GPU. Custom libraries are, however, a good indicator for
malware and are heavily used in the samples we analyzed. We conclude that
dynamically loaded native code is ostensively used for updating purposes.

Another observation supporting this assessment is represented by the
Java-based method to dynamically load modules. Instead of using JNI to
invoke native code libraries, it is also possible to implement classes and
load them with the DEX classloader. This practically never happened in
samples from the market, direct downloads or torrents (< 0.1%) but in
over 16% of all malware apps. Furthermore, these elements are exclusive,
meaning that either a sample loaded a native library or a java class, but
never both. In total, a third of all malware samples loaded non-system code
at runtime. Something that happened in less than 2% for other samples.
Overall, dynamically loading code on either native or Dalvik level is a strong
hint that a sample is malicious.

The next observation we want to discuss deals with data leaks. Of partic-
ular interest is sensitive information that was transmitted over the network.
For the sake of clarity, we therefore omit results where information was sent
via SMS messages or directly written to a file. The same information was
collected for iPhone applications in 2011 [21]. Here, the authors found
that 21% of all applications they analyzed, leaked the device id. The main
reason for that is that freeware programs often use ad libraries to create rev-
enue. The most popular library is Admob which in turn is owned by Google.
On Apple smartphones, the device id is used to identify installations. Since
Google requires every Android user to create a Google account to use the
Play Store anyway, they don’t need arbitrary means to track app installations
on their devices. That explains the low number of apps leaking the device
IMEI over the network. The detailed figures on privacy leaks shown in Table
6.5 additionally give a hint on how the various sources are composed.
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Figure 6.2: Average permissions

The first hint that external sources like OCH and torrents are not partic-
ulary dangerous was shown in the previous table. Most of the apps did not
load any native or Dalvik code. This claim is also supported by the num-
bers for privacy leaks. In general, malware primarily leaks device identifiers
(IMEI and IMSI) and phone numbers. Personal information like current lo-
cation or even phone book entries seem to be less interesting. The Interna-
tional Mobile Subscriber Identity (IMSI) is almost never leaked in traditional
samples. The IMEI on the other hand is seen in 9.4% of all samples from
the traditional market. As mentioned before, these are mostly third party
advertisement libraries that need to track devices to estimate installations.
Interestingly, values for IMEI are mostly below 2% for direct downloads and
torrents. That, in turn, supports the claim that these channels are not pri-
marily used to distribute malware but to share pay-apps. Furthermore, our
evaluation shows very consistent values across external sources.

As expected, Android apps distributed via OCH and torrents do not show
very distinct behavior. They are simply collections of useful tools, if possible
in their full version without advertisement.

6.3.2.1 Permissions

The next feature used in related papers [26] to detect malware-specific ab-
normalities is the set of permissions an app uses. During our evaluation
we noticed two properties that were different between malware and con-
trol sets. First, malware apps tend to request a lot more permissions than
benign samples. Figure 6.2 shows in detail, how the distribution across our
sets looks like. Apps downloaded from the Google store, for instance, re-
quest a third of the number of permissions that samples from our ground
truth do.

The concrete numbers for download sources again support our assump-
tion that neither OCH-hosted files, nor torrents are overly infected with ma-
licious apps.
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Figure 6.3: Permission usage ratio

Figure 6.3 shows which permissions were actually used during dynamic
execution. The assumption was, that malware samples request more per-
missions during installation than are actually needed so later they have the
possibility to load other code parts that use these permissions. We could only
partially prove this assumption. The official market exhibits a 99% ratio of
used versus requested permissions. Almost each application used all the re-
quested permission during its 5 minutes execution window. We see this as
proof, that our stimulation engine described in 6.2.3 does a very satisfactory
job in nudging broadcast receivers and activities. The only non-malware set
that dropped below 90% in this ratio was DD2. Upon further investigation
we discovered that this set contains a large amount of games. Games are,
in general, hard to guide. Even with a GUI stimulator, we are not confident
that all actions can be triggered in a reliable way.

In comparison, the malware sets did exhibit a lower percentage in their
permission usage ratio. With 73-78%, however, it is not significant to dis-
tinguish between malware and goodware. The total amount of requested
permissions is a far better hint. On a side note, the total amount of exist-
ing permissions is 55. ANDRUBIS records permission uses on a finer grained
level, amounting to 263 possible permissions and their corresponding invo-
cation.

We assume that the main reason for the high permission utilization of
malware samples also lies in our stimulation engine. By triggering all broad-
cast receivers and activities, we also trigger functionality that would other-
wise lie dormant during ordinary execution. Finally, a look into the frequen-
cies of requested permissions shows that dynamic behavior is almost com-
pletely in line with the static results presented in [50]. Even on this much
larger sample base and with dynamic analysis, the suspicious permissions
are the same.

The same pattern can be observed for the frequency of registered Broad-
cast receivers. Table 6.7 shows that market samples above all watch for a
user being present. To save battery power, most apps switch to idle mode
when the phone is locked or the screen is turned off. Malware, on the other
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Play Store Genome Project
Permission Name Percentage Permission Name Percentage
INTERNET 86% INTERNET 98%
ACCESS NETWORK STATE 54% READ PHONE STATE 94%
WRITE EXTERNAL STORAGE 33% ACCESS NETWORK STATE 82%
READ PHONE STATE 22% WRITE EXTERNAL STORAGE 67%
ACCESS COARSE LOCATION 21% ACCESS WIFI STATE 65%
ACCESS FINE LOCATION 21% READ SMS 64%
VIBRATE 17% RECEIVE BOOT COMPLETED 55%
ACCESS WIFI STATE 11% WRITE SMS 53%
WAKE LOCK 11% SEND SMS 43%
CALL PHONE 8% RECEIVE SMS 39%

Table 6.6: Top 10 used Permissions

hand, often registers as a service which is running in the background and
does not care for user input in may cases. The most prevalent event they lis-
ten for is BOOT COMPLETED, which triggers as soon as the phone is switched
on and reports ready for operation.

Play Store Genome Project
Permission Name Percentage Permission Name Percentage
USER PRESENT 14% BOOT COMPLETED 55%
INSTALL REFERRER 12% UMS DISCONNECTED 15%
BOOT COMPLETED 5% SCREEN ON 10%
APPWIDGET UPDATE 4% SMS RECEIVED 9%
CONNECTIVITY CHANGE 2% PHONE STATE 7%
REGISTRATION 2% CONNECTIVITY CHANGE 5%
SERVICE STATE 2% NEW OUTGOING CALL 4%
PURCHASE STATE CHANGED 1% USER PRESENT 4%
SMS RECEIVED 1% ACTION POWER CONNECTED 4%
BATTERY CHANGED 1% UNINSTALL SHORTCUT 3%

Table 6.7: Top 10 registered Broadcast Receivers

6.3.3 Qualitative results

While the quantitative analysis from the previous section provided insights
into the structure of the various sources, it did not deal with concrete ap-
plications and their specifics. In this subsection, we discuss how we used
ANDRUBIS to get a more detailed understanding of our samples.

6.3.3.1 AV labels

One side effect of the Anti Virus (AV) labels we use for our evaluation is
that we get an overview on the current AV landscape. In principle, AV
scanners are fit to scan Android samples and detect signatures for known

www.syssec-project.eu 53 September 13, 2012



CHAPTER 6. ANDRUBIS

malware. Since APK files are nothing more than zip archives, they can be
unpacked and inspected just like their PC counterparts. Therefore, repacked
and newly distributed malware can be detected if a signature exists.

Following up on the results of our quantitative analysis, we submitted
all investigated samples to Virus Total [43] and summarized the results in
Table 6.8. Virus Total performs a scan with 42 different signature-based scan
engines from various AV-companies.

The results are categorized in known and new malware. Known malware
denominates samples that were submitted before we analyzed them while
new malware are samples we submitted first. For both categories, we give
the absolute number of samples that produced either between one to four,
or more than four hits. The reason is simply that samples can hardly be
classified as malicious if just one of 42 AV engines produces a hit. In this
case, the label is often a false positive or, for instance, labeled as Adware or
other, less malicious tags. A good example is the relatively high number of
malicious apps in set Torrents 3. Out of the listed 21 malware apps, 13 are
either programs for rooting a device or flashing firmware images. The rest
are various malware apps, including one named KasperskyMobile Security
which turns out to be of the AndroidOS.Kiser family.

Overall, we see the same picture as in the previous results. Infection
rates are between 1‰and 5‰. Market samples are expectedly even less ma-
licious with only 6 reliable hits in our set (0.5‰). In conclusion it is safe to
say that malware on Android systems is not yet widely spread. Confirmable
infections are individual cases, even in torrents and files downloaded from
OCH. The very low infection ratio on the official market is explainable by
the introduction of Google’s bouncer [35]. Instead of allowing each and ev-
ery app to be published on the official market, Google introduced a vetting
process not unlike Apple’s. If an app does not meet the requirements, it is
simply rejected.

An interesting number is the first time submission rate. Two third of all
market samples were previously not known to Virus Total. This reflects on
the prevalence of equipment to analyze Android executables and of course
sample feeds.

6.3.3.2 Zero Day Malware

To estimate the amount of zero-day malware contained in our datasets, we
also utilized Virus Total. We regard samples that were unknown by Virus
Total at the time of analysis and recognized as malware after we re-checked
them on a weekly basis as zero-day malware. For our complete dataset
that amounted to three samples total. All three samples were found in
the Google Play Store. Two of them were marked as Adware. The sam-
ples themselves were obviously designed to include a good amount of ad
libraries, while the actual content or functionality was next to nothing (e.g.
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just a link to an external site). The third hit was more interesting. The orig-
inal app is called challenging alarm clock, designed to let the user solve a
puzzle before the alarm turns off. In the background, however, it leaks the
user’s IMEI over the network, adds bookmarks to the browser and connects
to a remote server. It belongs to the Plankton family known from various
older malware samples and the Genome Project amongst others. We have
seen this particular malware in various versions and reported the current
one to Google. At the time of this writing, it was still accessible.

VirusTotal GP VT PS DD1 DD2 T1 T2 T3 Malware

Submitted 1260 615 14141 1277 1331 1940 1960 4551 187
First time submission 362 0 9304 199 78 221 227 414 0
First time submission rate 29% 0% 66% 16% 6% 11% 12% 9% 0%
Known Malware (>0 hits) 1232 615 440 13 17 28 17 66 236
Known Malware (>4 hits) 1214 615 6 5 2 2 5 21 220
New Malware (>0 hits) 362 0 394 0 0 2 4 1 0
New Malware (>4 hits) 359 0 3 0 0 0 0 0 0

Table 6.8: Virus Total results for the datasets

6.3.3.3 DEX Class Loader

One of the strongest hints for malicious activity was found to be dynamic
loading of dex classes while executing. We found this behavior in 4 apps
which were not in one of our malware sets (i.e. Genome Project, Malware 1
and Virus Total). In the following we give an overview on the functionality
of each finding.

• Revival 2: A game by herocraft that loads game content on demand.
No malicious activity was found.

• Art of war 2 lite: A game by herocraft that also loads game content as
dex classes. No other malicious activity was found.

• Stolen in 60 Seconds: Again a herocraft game.

• Aareader: A Chinese reader for different kinds of documents. It leaks
private information like IMEI and IMSI to a chinese server and dy-
namically loads classes. Upon investigation we discovered, that the
developers included several versions in their app instead of using the
market for versioning. On runtime, the app decides which version to
use and updates the corresponding classes on demand.

While none of the investigated samples can be rated as outright malicious,
the last example certainly poses a privacy threat. After all, the user has no
control on what is updated. Safe for the initially granted permission set, not
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boundaries are exerted over the loaded code. In the other three cases, it is
questionable if loading game updates as dex files is good practise. The usual
methodology is, to update the game via the Play Store and only download
non-executable game data on demand.

6.3.3.4 Clustering

One of the biggest advantages when dynamically executing programs is the
possibility to create behavioral profiles with the data. In contrast to other
approaches [15, 52, 50], we use the term behavioral for operations observed
while a sample is executed. While requesting permissions is certainly a be-
havioral aspect as well, we entitle these actions as static for clarity’s sake.
Thus, a profile with only static components is strictly speaking not a behav-
ioral profile.

After finishing dynamic analysis for all our samples, we decided to uti-
lize a clustering algorithm and investigate the largest clusters. If applied
correctly, the clusters should expose families with common properties. For
ordinary approaches [34], 27.000 elements are simply too much. Usually,
distance calculation for each element within the feature cloud results in a
computational complexity ofO(n2). To overcome this limitation and process
larger sample sets, we utilized an approximate, probabilistic approach [11].
This clustering algorithm is based on locality sensitive hashing (LSH), and
provides an efficient solution to the approximate nearest neighbor problem
(ε-NNS). LSH can be used to perform an approximate clustering while com-
puting only a small fraction of the n2

2 distances between pairs of points.
Leveraging LSH clustering, we are able to compute an approximate, single-
linkage hierarchical clustering for our complete dataset.

As already mentioned above, we cluster the malware samples in our
dataset based on their dynamic behavior observed during analysis as well
as static features extracted from the APK files. The dynamic behavior in-
cludes features such as reading and writing to files, sending SMS, making
phone calls, the use of cryptographic operations, the dynamic registration
of broadcast receivers, loading dex classes and native libraries and leaking
information to files, the network and via SMS. Additionally, network-related
dynamic features are generated by parsing the captured network dump with
bro rules. Static features include activities, services and broadcast receivers
parsed from the manifest as well as required permissions and URLs. We
define the distance between two samples as the Jaccard distance between
their profiles.

We evaluated our clustering approach in two different configurations:

• Clustering only based on behavior observed during dynamic analysis

• Clustering based on dynamic and static features
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With the already categorized Malware from the Genome Project as well
as Anti-Virus labels from Virus Total we have a ground truth that allows
us to find variants of similar malware samples from other sources. It also
allows us to discover previously unknown samples when they are placed in
the same cluster due to similarities in behavior and/or static features. We
picked the most interesting clusters and provide a short discussion on their
properties in the following two sections.

Dynamic features
The largest clusters that were grouped by dynamic features are defined by
advertisements. Applications that include the same ad library for displaying
advertisements connect to the same server and therefore feature similar dy-
namic results. Unsurprisingly, the largest cluster features apps using Admob
as their ad library. An interesting side-effect of these results is to see the
approximate share of advertisement for each provider.

An interesting cluster is represented by 38 apps. While 65% of the cor-
responding samples belong to the already classified malware family droid-
kungfu, the remaining 35% stem from the official market. The cluster’s
determining factor is a network connection to app.waps.cn, in most cases
connected with leaking the IMEI or the phone number. Spot checking the
market samples revealed that these apps are mostly in Chinese and probably
not overly concerned with privacy.

Comparable elements can be seen in a smaller cluster with 23 elements.
For each sample we observed the app leaking the phone number and other
database content (OTHERDB) to ade.wooboo.com.cn. 69% of the correlating
samples stem from our malware collections, while 31% can be found in the
market.

Static and dynamic features
When combining static results and dynamic behavior to a more complete
profile, the growing feature size enables us to watch for larger clusters with
more defining features.
With 216 elements, we found a set of apps that all belong to the basebridge
malware family. These samples are primarily distinguished by the large set
of permissions they request, 15 per app on average. Elements from this clus-
ter are relatively easy to spot but we could not find a basebridge variant in
the wild. All samples from that cluster belong to one of our malware sets.
Taken as a whole, the combined clustering provides a lot of interesting re-
sults, especially as a means to reduce the set of apps that have to be screened
manually. Discussing all of them in detail, however, would be out of scope
in this context. With a reference set, the data provided by both, static and
dynamic analysis elements can be leveraged to deduce a malware rating
scheme or at least provide a reduced list of suspicious apps to be screened
by a human analyst.

www.syssec-project.eu 57 September 13, 2012

app.waps.cn
ade.wooboo.com.cn


CHAPTER 6. ANDRUBIS

www.syssec-project.eu 58 September 13, 2012



7
Conclusions

In this deliverable we gave an overview of the work that the larger research
community as well as the partners of the SysSec consortium are conducting
in the area of cyberattacks on ultra-portable devices. The proliferation of
these devices has been growing at an amazing pace. It is estimated that
Android users number in the hundreds of millions [4]. Unfortunately, this
great success of the platform has been followed by a simultaneous rise of
malware specifically targeting Android. According to F-Secure, the growth
of Android malware is exponential [6]. We expect to see even more sophisti-
cated malware for ultra-portable devices in the near future. The majority of
the research work, is focusing on devices running the iOS operating system
by Apple or the Android operating system by Google.

This, consquently, primarily affects devices such as smart-phones and
tablets, and that is what this survey has focused on. Adoption of these
operating systems by possibly other light-weight devices, will most likely
cause them to be vulnerable to the same or similar attacks. By the same
token, the defensive technologies described in this report, will also apply.
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