
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

Trustworthy ICT

NETWORK OF EXCELLENCE

A European Network of Excellence in Managing Threats and
Vulnerabilities in the Future Internet: Europe for the World †

Deliverable D6.4: Final Report on Smart Environments

Abstract: This deliverable presents a number of research results produced in
the SysSec project, relevant to the Smart Environment WorkPackage and in relation
to the Research Roadmap.

Contractual Date of Delivery September 2014
Actual Date of Delivery October 2014
Deliverable Dissemination Level Public
Editor Magnus Almgren
Contributors All SysSec partners
Quality Assurance IICT-BAS, POLIMI

The SysSec consortium consists of:

FORTH-ICS Coordinator Greece
Politecnico Di Milano Principal Contractor Italy
Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Institut Eurécom Principal Contractor France
IICT-BAS Principal Contractor Bulgaria
Technical University of Vienna Principal Contractor Austria
Chalmers University Principal Contractor Sweden
TUBITAK-BILGEM Principal Contractor Turkey

† The research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n° 257007.

www.syssec-project.eu 2 October 30, 2014

Document Revisions & Quality Assurance

Internal Reviewers

1. Vladimir Dimitrov (IICT-BAS)
2. Vincenzo Gulisano (Chalmers)
3. Marina Papatriantafilou (Chalmers)
4. Philippas Tsigas (Chalmers)
5. Stefano Zanero (POLIMI)

Revisions
Ver. Date By Overview

0.0.11 29/10/2014 #2 Final review of deliverable consistency.
0.0.10 28/10/2014 #4 Further updates by internal review.
0.0.9 27/10/2014 #5 Second review by QMC on deliverable concerning format,

style, and content.
0.0.8 24/10/2014 #1 Thorough review of QMC for all chapters.
0.0.7 20/10/2014 #3 Detailed review of introduction, conclusions, and roadmap

relations.
0.0.6 24/9/2014 Editor Consistency check from all partners.
0.0.5 23/9/2014 #4 Feedback on introduction.
0.0.4 23/9/2014 Editor Quality check by all chapter contributors.
0.0.3 4/9/2014 #2 Merging of packages, references, macros, etc.
0.0.2 15/7/2014 Editor Chapters committed by partners.
0.0.1 28/5/2014 Editor Outline and preliminary article selection complete.
0.0.0 10/2/2014 Editor First outline of document.

www.syssec-project.eu 3 October 30, 2014

www.syssec-project.eu 4 October 30, 2014

Contents

Foreword 13

1 Introduction 15
1.1 Background . 15
1.2 Focus of the workpackage . 15
1.3 The workpackage deliverables 17
1.4 Outline of the volume . 18
1.5 Smart Environment Related Works of the SysSec Consortium . . . 19

2 Avatar: A Framework to Support Dynamic Security Analysis of Em-
bedded Systems’ Firmwares 23
2.1 Introduction . 24
2.2 Dynamic Firmware Analysis . 26
2.3 Avatar . 28
2.4 Overcoming the limits of Full Separation 34
2.5 Extending Avatar . 36
2.6 Evaluation . 41
2.7 Related work . 51
2.8 Conclusion . 53

3 A Large-Scale Analysis of the Security of Embedded Firmwares 55
3.1 Introduction . 56
3.2 Challenges . 59
3.3 Setup . 63
3.4 Dataset and Results . 70
3.5 Case Studies . 74
3.6 Ethical Discussion . 77
3.7 Related Work . 78

5

3.8 Conclusion . 80

4 Dowsing for overflows: A guided fuzzer to find buffer boundary viola-
tions 81
4.1 Introduction . 82
4.2 Big picture . 85
4.3 Dowsing for candidate instructions 86
4.4 Using tainting to find inputs that matter 92
4.5 Exploring candidate instructions 94
4.6 Evaluation . 97
4.7 Related work . 104
4.8 Conclusion . 106

5 Body armor for binaries: preventing buffer overflows without recom-
pilation 107
5.1 Introduction . 108
5.2 Some buffer overflows are hard to stop: the Exim attack on non-

control data . 111
5.3 What to Protect: Buffer Accesses 111
5.4 Code Coverage and Modes of Operation 113
5.5 BA-objects mode: Object-level Protection 114
5.6 BA-fields mode: a Colorful Armor 117
5.7 Efficient Implementation . 122
5.8 Evaluation . 123
5.9 Related Work . 127
5.10 Discussion . 129
5.11 Future work . 130
5.12 Conclusions . 130

6 Online and Scalable Data Validation in Advanced Metering Infrastruc-
tures 131
6.1 Introduction . 132
6.2 System Model . 134
6.3 Streaming-based validation analysis 136
6.4 Evaluation . 141
6.5 Related Work . 143
6.6 Conclusions . 143

7 METIS: a Two-Tier Intrusion Detection System for Advanced Meter-
ing Infrastructures 145
7.1 Introduction . 146
7.2 Preliminaries . 148
7.3 METIS - Overview . 151
7.4 Detecting anomalies by means of continuous queries 153

www.syssec-project.eu 6 October 30, 2014

7.5 Energy exfiltration use-case - Sample Execution 155
7.6 Energy Exfiltration use-case - Evaluation 157
7.7 Related Work . 161
7.8 Conclusions . 162

8 Analysis of the Impact of Data Granularity on Privacy for the Smart
Grid 163
8.1 Introduction . 164
8.2 Data Privacy in the Advanced Metering Infrastructure 166
8.3 Methodology . 172
8.4 Evaluation study . 177
8.5 Conclusion . 183

Conclusion 185

www.syssec-project.eu 7 October 30, 2014

www.syssec-project.eu 8 October 30, 2014

List of Figures

1.1 The topics of the compilation . 18

2.1 Overview of Avatar. 28

2.2 Avatar architecture and message exchange in full separation mode. 31

2.3 The disk drive used for experiments. The disk is connected to a
SATA (Data+Power) to USB interface (black box on the right) and
its serial port is connected to a TTL-serial to USB converter (not
shown) via the 3 wires that can be seen on the right. 43

2.4 Hard drive memory layout. 45

2.5 Econotag memory layout (respective scales not respected). 46

2.6 The Econotag device. From left to right: the USB connector, serial
and JTAG to USB converter (FTDI), Freescale MC13224v con-
troller and the PCB 2.4 GHz antenna. 47

2.7 The Motorola C118. The clip-on battery (on the right) has been
wired to the corresponding power pins, while the ribbon cable is
connected to the JTAG pads reachable on the back (not shown). . 48

2.8 Motorola C118 memory layout (respective scales not respected). . 49

3.1 Architecture of the entire system. 63

3.2 Architecture of a single worker node. 68

3.3 OS distribution among firmware images. 72

3.4 Correlation engine and shared self-signed certificates clustering. . 76

9

LIST OF FIGURES

3.5 Fuzzy hash clustering and vulnerability propagation. A vulnera-
bility was propagated from a seed file (*) to other two files from
the same firmware and three files from the same vendor (in red) as
well as one file from another vendor (in orange). Also four non-
vulnerable files (in green) have a strong correlation with vulnerable
files. Edge thickness displays the strength of correlation between
files. 77

4.1 A simplified version of a buffer underrun vulnerability in nginx. . 89

4.2 Dowser– high-level overview. 89

4.3 Data flow graph and analysis group associated with the pointer u from
Figure 4.1. For the sake of clarity, the figure presents pointer arithmetic
instructions in pseudo code. The PHI nodes represent locations where
data is merged from different control-flows. The numbers in the boxes
represent points assigned by Dowser. 90

4.4 The figure shows how Dowser shuffles an input to determine which fields
really influence an analysis group. Suppose a parser extracts fields of the
input one by one, and the analysis group depends on the fields B and D
(with colors B and D, respectively). Colors in handlers show on which
fields the subsequent handlers are strictly dependent [32], and the shaded
rectangle indicates the colors propagated to the analysis group. Excluded
colors are left out of our analysis. 93

4.5 Scores of the analysis groups in nginx. 99

4.6 A comparison of random testing and two scoring functions: Dowser’s
and count. It illustrates how many bugs we detect if we test a particular
fraction of the analysis groups. 103

5.1 BinArmor overview. 109

5.2 BinArmor colors in BA-objects mode (c) and BA-fields modes (d,e) for
sample data structures (a) and code (b). 114

5.3 BA-fields mode: a possible scenario leading to false positives. . . 121

5.4 Instrumentation for an array pointer dereference (with 16b colors and
tags). The original instruction is mov 0x1234,(%edx,%eax,4).
We replace it by code similar to that presented in the figure (but more
efficient). 124

5.5 Performance overhead for real world applications: lighttpd – for 5 object
sizes (in connections/s as measured by httperf), gzip – for 3 object sizes,
htget and wget. 126

5.6 Performance overhead for the compute-intensive nbench bench-
mark suite. 126

6.1 Sample schema of tuples carrying energy information readings. . . 135

www.syssec-project.eu 10 October 30, 2014

LIST OF FIGURES

6.2 Sample sequence of tuples carrying energy information readings
and evolution of a time-based window of Size and Advance of 12
and 3 hours, respectively. 136

6.3 Throughput (tuples/second) of validation rules V1, V2 and V3 for
different batch sizes. 141

6.4 Latency (milliseconds, logarithmic scale) of validation rules V1, V2
and V3 for different batch sizes. 143

7.1 Sample query that computes the number of messages forwarded
by each MCU during the last hour. The figure includes the abstract
schema and a set of sample tuples for each stream. 150

7.2 Sample Bayesian Network. 150
7.3 Overview of METIS two-tier architecture. 151
7.4 Input provided by the system expert for METIS’ Interaction Mod-

eler and Pattern Matcher . 152
7.5 Overview of the query created by METIS. 153
7.6 Continuous query used to compute P (Y |X). The figure includes

the abstract schema and a set of sample tuples for each stream. . . 155
7.7 Sample execution of the query compiled for the energy exfiltra-

tion use-case. The figure includes the abstract schema and a set of
sample tuples for each stream. 156

7.8 True Positive and False Positive rates for varying thresholds T. . . 159
7.9 Throughput and latency for increasing input rates and batch sizes. 160

8.1 The Advanced Metering Infrastructure (AMI) 165
8.2 Characteristics of AMI data . 172
8.3 Fraction of unique smart meters - seven months of data - estimation

case . 179
8.4 Fraction of unique smart meters - 30 days of data - estimation case 180
8.5 Fraction of unique smart meters - seven months of data - dataset case181
8.6 Fraction of unique smart meters - 30 days of data - dataset case . . 182

www.syssec-project.eu 11 October 30, 2014

LIST OF FIGURES

www.syssec-project.eu 12 October 30, 2014

Foreword

One of the objectives of the SysSec Network of Excellence is to strengthen the
system security research in Europe. In the Smart Environment workpackage, we
consider the security of networks and devices that comprise smart environments.
With previous deliverables, we have given an overview of the field. The objective
of this fourth and final deliverable is to demonstrate ongoing research.

The deliverable is a compilation of important results obtained within the Sys-
Sec Network of Excellence. We have chosen to include the research results, in the
actual form of published articles, based on two criteria. First, we consider their
relation to the research defined in the Red Book [178]. Second, the objective is
to let the compilation as a whole paint a picture of the diversity of the research
needed for smart environments. The chapters illustrate important steps for smart
environments: analysis of software, vulnerability discovery and the resulting sys-
tem hardening, detection of attacks as a complement to hardening techniques, and
privacy implications.

Each chapter is also introduced with a preamble to relate the research to the
roadmaps produced by SysSec. Together, the chapter selection and the relationship
to the roadmap will help established researchers, but also new PhD students in
system security, to be more involved in the European research scene.

The result of the smart environment workpackage is the four-volume set of de-
liverables. The first three volumes describe the research efforts for the focal points
of the work package: the sensor network, the smart car, and the smart grid. Thus,
they serve as an introduction to the field by giving a succinct but useful summary
of the state of the art. This fourth deliverable completes the set by investigating a
set of advanced and more complex research questions.

13

FOREWORD

Previous deliverables in this series

In the first deliverable, Report on The State of the Art in Security in Sensor Net-
works, we considered low-capability devices such as sensor nodes and their re-
spective networks. Research-wise, we considered the fundamental network-service
algorithms for such environments.

In the second deliverable, Intermediate Report on the Security of The Con-
nected Car, we considered a specific application area to focus the discussion. The
connected car, as a research area, is being developed actively both by industry and
in academia and with reported security problems.

In the third deliverable, Advanced Report on Smart Environments, we focused
on the smart grid, the common term to refer to the new, evolving future grids with
adaptive functionality. We gave an overview of this complex domain, suitable
for researchers and students in computer science, and then highlighted security-
relevant issues. We surveyed the SCADA and AMI, discussed privacy issues, as
well as showing related work in building intrusion detection systems for this envi-
ronment.

www.syssec-project.eu 14 October 30, 2014

1
Introduction

1.1 Background

The objective of the SysSec Network of Excellence is to strengthen the system se-
curity community in Europe in three dimensions. Firstly, we develop and collect
material for teaching system security to students. Secondly, we produce a yearly
roadmap of threats and important research areas; an effort that culminated with the
Red Book [178]. The objectives of the Red Book is for policy makers to under-
stand future research needs but also to guide PhD students searching for a viable
thesis topic in system security. Thirdly, in addition to these activities, the members
of SysSec also conduct research in system security topics aligned to the defined
roadmap and publish the results in established international conferences and jour-
nals. The research is structured along three topics (workpackages).

In the Smart Environment workpackage, we especially consider the security of
networks and devices that comprise smart environments. Sensors are becoming
ubiquitous; they exist all around us and are able to collect data from the environ-
ment, calculate or aggregate values, and then transmit them elsewhere. People and
companies speak about ubiquitous computing, pervasive computing and the Inter-
net of things as having a profound impact on the future where everything will be
connected. The challenge is to take these concepts, where the range and composi-
tion of what they mean vary from person to person, into concrete ideas and topics
useful for the European system security community.

1.2 Focus of the workpackage

We define the focus of the smart environment work package to be low-capability
devices, such as simple sensor networks, but also example environments to demon-
strate more complex concepts with heterogeneous systems with more capable hard-
ware (a system of systems). As low-capability devices grow in both sophistication
and market penetration, users start to use them for a wide variety of purposes,

15

INTRODUCTION

thus trusting these devices by collecting and storing vital private information on
them even though the devices are not capable of running simple traditional secu-
rity mechanisms.

Parameters of the individual devices will remain limited in the near future,
compared to normal ICT equipment. Such limitations will, in turn, have conse-
quences on the security mechanisms that can be deployed. A good example is
cryptographic primitives. These limited devices may not today have the capability
to use asymmetric ciphers. Even though they become more capable in the future,
one still will have to consider the resource-constrained environment when design-
ing and implementing the security primitives. Actually, the increased security of
being able to add one more bit to a node’s key might be negated if the adversary
can use a regular computer for his attack, as a regular computer will have similar
or even better performance gains in the same time frame.

Devices in smart environments are also exposed to many hostile environments,
where assumptions made for traditional security solutions no longer hold (as ex-
plored in deliverable D6.1). Furthermore, as there is a continuous range of such
devices and what they are capable of, a threat and the corresponding mitigating
security mechanism may look very different depending on the type of device and
the environment it is located within. In some environments, a single compromised
unit might be unacceptable. In others, a few compromised units will not affect
the system detrimentally as long as the aggregate data in the whole environment is
almost correct. For yet other environments, the two cases are very similar. These
environments consist of simple but many very homogeneous units, meaning that if
a single one is compromised the attack can easily be repeated to control the whole
network. Sometimes, the research community has a clear understanding of the
vulnerabilities (e.g. RFID tags), but no solutions for the problems. In other cases,
we cannot model the complexity of the environment and we need fundamental re-
search to understand capabilities and limitations. Thus, one emphasis of the work
package is to survey security solutions for very constrained devices such as the
sensor network.

Even though the individual devices of the smart environment are important,
also the network and the applications built on top of the infrastructure will play a
crucial role for the security of the system. The second emphasis for the workpack-
age is thus on example environments. These environments are complex (system
of systems), important for society (critical infrastructures, closely related to hu-
man health, etc.), as well as being actively researched and deployed by society as
whole. In SysSec, we chose early on to especially consider vehicular systems and
the smart grid, as these environments are

• in the process of being deployed or modernized,

• very complex, and

• with a need for research efforts to better understand them.

www.syssec-project.eu 16 October 30, 2014

1.3. THE WORKPACKAGE DELIVERABLES

Both the smart car and the electricity grid contain legacy systems or use legacy
protocols, which may have a profound effect on the overall security.

1.3 The workpackage deliverables

The overarching guidelines described in the previous section set the scene for the
work that has been completed during the SysSec project for the smart environment
work package. The goal has been to involve more European researchers in topics
of interest in system security, and especially smart environments. For that reason,
there has been an educational component, to help established researchers but also
new PhD students in system security to understand the special security challenges
faced in smart environments. Seminal results have been described and state of the
art research (aligned to the roadmap) has been performed and reported for several
important aspects of smart environments.

The result is the four-volume set of deliverables from the smart environment
work package. The first three volumes describe the research efforts for the focal
points of the work package: the sensor network, the smart car, and the smart grid.
These deliverables explain the problems faced in different types of smart environ-
ments, what has been done and currently ongoing research efforts in Europe. Thus,
they serve as an introduction to the field by giving a succinct but useful summary
of the state of the art. In the Report on the State of the Art in Security in Sensor
Networks, we consider low-capability devices such as sensor nodes and their re-
spective networks. The second deliverable, Intermediate Report on the Security of
The Connected Car, focuses on the future connected car. The third deliverable, the
Advanced Report on Smart Environments, describes the idea of the smart grid with
a focus on security of some of its domains.

As the previous deliverables give an overview of the field, the emphasis of this
fourth deliverable is to dive deep into the research questions that are pursued and
to present a selection of the results obtained in the SysSec project during the last
four years.1 Even though the SysSec members have produced significant results,2

we have selected to highlight but a few research contributions in this particular de-
liverable. Simply put, we find that a quality selection of key results produce a more
interesting deliverable than what could have been obtained including a majority of
the results. We also frame the inclusion of each contribution with a discussion on
their relationship to the latest research roadmap. By purpose, we present these con-
tributions in the form of actual research articles to emphasize that they represent
research results in the project.3 These research results, with the discussion on their
relation to the roadmap, will thus serve as examples for European system security
researchers on important topics to be tackled in the near future.

1Previous deliverables have also included some research contributions. In D6.2, we discussed A
security layer for automotive services and Remote control of smart meters: friend or foe?.

2Please see the project home page for a full list of publications: http://www.
syssec-project.eu/publications/

3The contributions are in fact preprints of articles that have been published by the SysSec team.

www.syssec-project.eu 17 October 30, 2014

http://www.syssec-project.eu/publications/
http://www.syssec-project.eu/publications/

INTRODUCTION

1.4 Outline of the volume

The rest of this deliverable is structured along chapters, each representing a re-
search result from SysSec. We have chosen to include the research results based
on two criteria. First, we consider their relation to the research defined in the Red
Book. Second, the objective is to let the collection as a whole paint a picture of
the diversity of the research needed for smart environments. The chapters illustrate
important steps for smart environments: analysis of software, vulnerability discov-
ery and the resulting system hardening, detection of attacks as a complement to the
hardening technique, and privacy implications. We illustrate the parts in Figure 1.1.

Analysis
Vulnerability Discovery

&
System Hardening

Detection Privacy

Fig. 1.1: The topics of the compilation

The first papers describe methodologies for analysis of firmware, followed by
results on correcting or mitigating found problems. As an orthogonal complement,
we also need detection of possible attacks in the systems. For that reason, we
include results for very efficient measurement validation as well as an outline of
a system to detect attacks in one example environment. Finally, we also discuss
privacy implications in relation to smart environments.

In Chapter 2, we describe a methodology to dynamically analyze firmwares of
embedded devices. We presented an early version in Advanced Report on Smart
Environments, but we are now able to report more details of the AVATAR research.
To emphasize the need for such analysis, we include the results of the first public,
large-scale analysis of firmware images in Chapter 3, where over 32.000 firmware
images were statically analyzed.

We then turn to one of the problems found in code – the buffer overflow. In
Chapter 4, we describe Dowser, a guided fuzzer that can be combined with an
analysis technique such as AVATAR to find buffer overflow and underflow vulner-
abilities. However, sometimes with legacy systems we cannot fix and recompile
firmware. In Chapter 5 we describe a novel technique to protect existing C binaries
from memory corruption attacks on both control data and non-control data.

In Chapter 6 and 7 we turn to the problem of detecting attacks and validat-
ing data as efficiently as possible with an IDS for the smart grid. Chapter 8 then
demonstrates risks to privacy by discussing de-anonymization of large datasets.

www.syssec-project.eu 18 October 30, 2014

1.5. SMART ENVIRONMENT RELATED WORKS OF THE SYSSEC
CONSORTIUM

1.5 Smart Environment Related Works of the SysSec Con-
sortium

In this section, there is a more comprehensive list of works of the SysSec project
related to the smart environment workpackage. A majority of these are not covered
in detail in this deliverable due to the limited space of this report.

• Zhang Fu, Magnus Almgren, Olaf Landsiedel, and Marina Papatriantafilou.
Online Temporal-Spatial Analysis for Detection of Critical Events in
Cyber-Physical Systems. 2014 IEEE International Conference on Big Data
(IEEE BigData 2014), October 2014, Washington DC, USA.

• Vincenzo Gulisano, Magnus Almgren, and Marina Papatriantafilou. Online
and Scalable Data Validation in Advanced Metering Infrastructures.
The 5th IEEE PES Innovative Smart Grid Technologies (ISGT) European
2014 Conference. October 2014, Istanbul, Turkey.

• Vincenzo Gulisano, Magnus Almgren, and Marina Papatriantafilou. METIS:
a Two-Tier Intrusion Detection System for Advanced Metering Infras-
tructures. 10th International Conference on Security and Privacy in Com-
munication Networks (SecureComm) 2014. September 2014, Beijing, China.

• Farnaz Moradi, Tomas Olovsson, and Philippas Tsigas. A Local Seed Selec-
tion Algorithm for Overlapping Community Detection. In Proceedings of
the 2014 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM14). August 2014, Beijing, China.

• Andrei Costin, Jonas Zaddach, Francillon Francillon, Aurlien, Davide Balzarotti.
A Large Scale Analysis of the Security of Embedded Firmwares. In
Proceedings of the 23rd USENIX Security Symposium (USENIX Security).
August 2014, San Diego, CA, USA.

• Vincenzo Gulisano, Magnus Almgren, Marina Papatriantafilou. POSTER:
METIS: a Two-Tier Intrusion Detection System for Advanced Meter-
ing Infrastructures. In Proceedings of the 5th International Conference on
Future Energy Systems (ACM e-Energy). June 2014. Cambridge, UK.

• Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. PROSPECT.
In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2014). June 2014. Kyoto, Japan.

• Erik Bosman and Herbert Bos. Framing Signals A Return to Portable
Shellcode. In Proceedings of the 35th IEEE Symposium on Security and
Privacy (Oakland). May 2014. San Jose, CA, USA.

• Zhang Fu, Olaf Landsiedel, Magnus Almgren, and Marina Papatriantafilou.
Managing your Trees: Insights from a Metropolitan-Scale Low-Power
Wireless Network. In Proceedings of the 3rd Workshop on Communica-

www.syssec-project.eu 19 October 30, 2014

INTRODUCTION

tions and Control for Smart Energy Systems (CCSES), IEEE INFOCOM.
April 2014. Westin Harbour Castle Toronto, ON, Canada.

• William Johansson, Martin Svensson, Ulf Larson, Magnus Almgren, and
Vincenzo Gulisano. T-Fuzz: Model-Based Fuzzing for Robustness Test-
ing of Telecommunication Protocols. In Proceedings of the 7th Interna-
tional Conference on Software Testing, Verification and Validation (ICST).
April 2014. Cleveland, Ohio, USA.

• Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti.
Avatar: A Framework to Support Dynamic Security Analysis of Embed-
ded Systems’ Firmwares. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). February 2014, San Diego, USA.

• Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik Olivier Blass, Au-
relien Francillon, Travis Goodspeed, Moitrayee Gupta, Ioannis Koltsidas.
Implementation and Implications of a Stealth Hard-Drive Backdoor. In
Proceedings of the 2013 Annual Computer Security Applications Confer-
ence (ACSAC). December 2013, New Orleans, LA, USA.

• Gabriele Bonetti, Marco Viglione, Alessandro Frossi, Federico Maggi Ste-
fano Zanero. A Comprehensive Black-box Methodology for Testing the
Forensic Characteristics of Solid-state Drives. In Proceedings of the 2013
Annual Computer Security Applications Conference (ACSAC). December
2013, New Orleans, LA, USA.

• Zlatogor. Minchev and Luben Boyanov. Smart Homes Cyberthreats Iden-
tification Based on Interactive Training. In Proceedings of the 3rd Interna-
tional Conference on Application of Information and Communication Tech-
nology and Statistics in Economy an d Education (ICAICTSEE). December
2013, Sofia, Bulgaria.

• Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, Sotiris
Ioannidis. ASIST: Architectural Support for Instruction Set Random-
ization. In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS). November 2013, Berlin, Germany.

• Tudor Valentin, Magnus Almgren, and Marina Papatriantafilou. Analysis of
the impact of data granularity on privacy for the smart grid. Proceedings
of the 12th ACM workshop on Workshop on privacy in the electronic society.
ACM, 2013.

• Stiliyan Georgiev, Zlatogor Minchev. An Evolutionary Prototyping for
Smart Home Inhabitants Wearable Biomonitoring. In Proceedings of
Conjoint Scientific Seminar Modelling & Control of Information Processes.
November 2013, Sofia, Bulgaria.

www.syssec-project.eu 20 October 30, 2014

1.5. SMART ENVIRONMENT RELATED WORKS OF THE SYSSEC
CONSORTIUM

• Mariano Graziano, Andrea Lanzi, Davide Balzarotti. Hypervisor Memory
Forensics. In Proceedings of the 16th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). October 2013, Saint Lucia.

• Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, Herbert Bos. Dows-
ing for overflows: A guided fuzzer to find buffer boundary violations.
In Proceedings of the 22nd USENIX Security Symposium (USENIX-SEC).
August 2013, Washington, DC, USA.

• Matthias Neugschwandtner, Martina Lindorfer, Christian Platzer. A view to
a kill: Webview exploitation. In Proceedings of the 6th USENIX Work-
shop on Large-Scale Exploits and Emergent Threats (LEET). August 2013,
Washington, DC, USA.

• Zlatogor Minchev, Luben Boyanov, Stiliyan Georgiev. Security of Future
Smart Homes. Cyber-Physical Threats Identification Perspectives. In
Proceedings of the National Conference with International Participation in
Realization of the EU project Development of Tools Needed to Coordinate
Intersectorial Power and Transport CIP Activities at a Situation of Multilat-
eral Terrorist Threat. Increase of the Capacity of Key CIP Objects in Bul-
garia. June 2013, Sofia, Bulgaria.

• Shlomi Dolev, Omri Liba, Elad M. Schiller. Self-Stabilizing Byzantine
Resilient Topology Discovery and Message Delivery. In Proceedings of
the 2013 International Conference on Networked Systems (NET- SYS). May
2013, Marrakech, Morocco.

• Zhang Fu, Marina Papatriantafilou. Off The Wall: Lightweight Distributed
Filtering to Mitigate Distributed Denial of Service Attacks. In Proceed-
ings of the31st IEEE International Symposium on Reliable Distributed Sys-
tems (SRDS). October 2012, Irvine, CA, USA.

• Andreas Larsson, Philippas Tsigas. Self-stabilizing (k,r)- Clustering in
Clock Rate-Limited Systems. In proceedings of the 19th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO).
July 2012, Reykjavk, Iceland.

• Asia Slowinska, Traian Stancescu, Herbert Bos. Body armor for binaries:
preventing buffer overflows without recompilation. In proceedings of
the 2012 USENIX Annual Technical Conference (ATC). June 2012, Boston,
MA, USA.

• Farnaz Moradi, Tomas Olovsson, Philippas Tsigas. An Evaluation of Com-
munity Detection Algorithms on Large-Scale Email Traffic. In proceed-
ings of the 11th International Symposium on Experimental Algorithms (SEA).
June 2011, Bordeaux, France.

• Zhang Fu, Marina Papatriantafilou, Philippas Tsigas. Mitigating distributed
denial of service attacks in multiparty applications in the presence of

www.syssec-project.eu 21 October 30, 2014

INTRODUCTION

clock drifts. In IEEE Transactions on Dependable and Secure Computing
(TSDC), Volume 9, Issue 3. May 2012.

• Farnaz Moradi, Tomas Olovsson, Philippas Tsigas. Towards Modeling Le-
gitimate and Unsolicited email Traffic Using Social Network Properties.
In proceedings of the 5th Workshop on Social Network Systems (SNS). April
2012, Bern, Switzerland.

• Mihai Costache, Valentin Tudor, Magnus Almgren, Marina Papatriantafilou,
Christopher Saunders. Remote control of smart meters: friend or foe? In
Proceedings of the 7th European Conference on Computer Network Defense
(EC2ND). September 2011, Gteborg, Sweden.

• Andreas Larsson, Philippas Tsigas. A Self-stabilizing (k,r)-clustering Al-
gorithm with Multiple Paths for Wireless Ad-hoc Networks. In proceed-
ings of the 31st International Conference on Distributed Computing Systems
(ICDCS 2011), June 2011, Minneapolis, Minnesota, USA.

• Pierre Kleberger, Tomas Olovsson, Erland Jonsson. Security Aspects of
the In-Vehicle Network in the Connected Car. In proceedings of the 2011
IEEE Intelligent Vehicles Symposium (VI 2011). June 2011, Baden-Baden,
Germany.

• Farnaz Moradi, Magnus Almgren, Wolfgang John, Tomas Olovsson, Philip-
pas Tsigas. On Collection of Large-Scale Multi-Purpose Datasets on In-
ternet Backbone Links. In proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BAD-
GERS). April 2011, Salzburg, Austria.

• Zhang Fu, Marina Papatriantafilou, Philippas Tsigas. CluB: A Cluster
Based Proactive Method for Mitigating Distributed Denial of Service
Attacks. In proceedings of the 26th ACM Symposium on Applied Comput-
ing (SAC). March 2011, TaiChung, Taiwan.

• Asia Slowinska, Traian Stancescu, Herbert Bos. Howard: a dynamic ex-
cavator for reverse engineering data structures. In proceedings of the
18th Annual Network and Distributed System Security Symposium (NDSS).
February 2011, San Diego, CA, USA.

• Andreas Larsson, Philippas Tsigas. Self-stabilizing (k,r)-Clustering in Wire-
less Ad-hoc Networks with Multiple Paths. Brief announcement in Pro-
ceedings of 14th International Conference On Principles Of Distributed Sys-
tems (OPODIS). December 2010, Tozeur, Tunisia.

• Phuong Nguyen, Wil Kling, Giorgos Georgiadis, Marina Papatriantafilou,
Anh Tuan Le, Lina Bertling. Distributed Routing Algorithms to Manage
Power Flow in Agent-Based Active Distribution Network. Proceedings
of 1st Conference on Innovative Smart Grid Technologies Europe. Gteborg,
Sweden, October 2010.

www.syssec-project.eu 22 October 30, 2014

2
Avatar: A Framework to Support Dynamic
Security Analysis of Embedded Systems’

Firmwares

Preamble: Relation to the Research Roadmap

The risk that cyber-criminals can tamper with the firmware of embedded devices is
mentioned many times in our research roadmaps. For instance, our first roadmap
(D4.1) presented a scenario (”The Peccadillo”) in which a consumer hacks her
own smart meter by installing a custom firmware to reduce her electricity cost.
Moreover, the chapters on current and emerging threats in malware and fraud often
listed hardware security, and in particular the fact that an attacker can completely
reprogram the internal firmware of a device, as one of the most worrying threat.

This trend culminated in the second research roadmap (D4.2), where we ex-
plicitly stress the importance of developing firmware analysis tools:

The availability of open source tools, specifications, and techniques
so that researchers can properly analyze the emerging technologies is
a key factor for the success of system security in this area.

The following paper presents the first technique to perform advanced dynamic
analysis of firmware code:

Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti “Avatar:
A Framework to Support Dynamic Security Analysis of Embedded Systems’ Firmwares”
Network and Distributed System Security (NDSS) Symposium , San Diego (USA) –
February 2014

23

AVATAR

Abstract

To address the growing concerns about the security of embedded systems, it is
important to perform accurate analysis of firmware binaries, even when the source
code or the hardware documentation are not available. However, research in this
field is hindered by the lack of dedicated tools. For example, dynamic analysis is
one of the main foundations of security analysis, e.g., through dynamic taint tracing
or symbolic execution. Unlike static analysis, dynamic analysis relies on the ability
to execute software in a controlled environment, often an instrumented emulator.
However, emulating firmwares of embedded devices requires accurate models of
all hardware components used by the system under analysis. Unfortunately, the
lack of documentation and the large variety of hardware on the market make this
approach infeasible in practice.

In this paper we present Avatar, a framework that enables complex dynamic
analysis of embedded devices by orchestrating the execution of an emulator to-
gether with the real hardware. We first introduce the basic mechanism to forward
I/O accesses from the emulator to the embedded device, and then describe several
techniques to improve the system’s performance by dynamically optimizing the
distribution of code and data between the two environments. Finally, we evaluate
our tool by applying it to three different security scenarios, including reverse en-
gineering, vulnerability discovery and hardcoded backdoor detection. To show the
flexibility of Avatar, we perform this analysis on three completely different devices:
a GSM feature phone, a hard disk bootloader, and a wireless sensor node.

2.1 Introduction

An embedded system consists of a number of interdependent hardware and soft-
ware components, often designed to interact with a specific environment (e.g., a
car, a peacemaker, a television, or an industrial control system). Those compo-
nents are often based on basic blocks, such as CPUs and bus controllers, which are
integrated into a complete custom system. When produced in large quantities, such
customization results in a considerable cost reduction. For large quantities, custom
built integrated circuits (ASIC) are preferred as they allow to tailor functionality
according to the specific needs, which results in cost reduction, better integration,
and a reduction of the total number of parts. Such chips, also called System on a
Chip (SoC), are often built from a standard CPU core to which both standard and
custom hardware blocks are added. Standard blocks, commonly called IP Cores,
are often in the form of a single component that can be integrated into a more com-
plex design (e.g., memory controllers or standard peripherals). On the other hand,
custom hardware blocks are often developed for a specific purpose, device, and
manufacturer. For example, a mobile phone modem may contain a custom voice
processing DSP, an accelerator for the GSM proprietary hardware cryptography
(A5 algorithms) and an off-the-shelf USB controller.

www.syssec-project.eu 24 October 30, 2014

2.1. INTRODUCTION

Over the years, such SoCs have significantly grown in complexity. Nowadays,
they often include Multiple Processors (MPSoC) and complex, custom, hardware
devices. As a consequence, virtually every embedded system relies on a different,
application specific, system configuration. As a witness of this phenomenon, the
website of ARM Ltd., which provides one of the most common CPU core used in
embedded systems, lists about 200 silicon partners1. Most of those partners are
producing several product families of SoCs relying on ARM cores. This leads to a
huge number of systems on the market, which are all different, but all rely on the
same CPU core family.

Unfortunately, the increasing pervasiveness and connectivity of embedded de-
vices significantly increased their exposure to attacks and misuses. Such systems
are often designed without security in mind. Moreover visible features, low time
to market, and reduction of costs are the common driving forces of their engineer-
ing teams. As a consequence, an increase in the number of reports of embedded
systems exploitation has been recently observed, often with very serious conse-
quences [44, 58, 64, 84, 95, 112, 195, 206, 244, 264]. To make things worse, such
systems frequently play an important role in security-relevant scenarios: they are
often part of safety critical systems, integrated in home networks, or they are re-
sponsible to handle personal user information. Therefore, it is very important to
develop the tools and techniques that would make easier to analyze the security of
embedded systems.

In the traditional IT world, dynamic analysis systems play a crucial role in
many security activities - ranging from malware analysis and reverse engineering,
to vulnerability discovery and incident handling. Unfortunately, there is not an
equivalent in the embedded system world. If an attacker compromises the firmware
of a device (e.g., a smart meter or a PLC in a Stuxnet-like attack scenario [112])
even vendors often do not have the required tools to dynamically analyze the be-
havior of the malicious code.

Dynamic analysis allows users to overcome many limitations of static analysis
(e.g., packed or obfuscated code) and to perform a wide range of more sophisti-
cated examinations [105] - including taint propagation [154, 249], symbolic and
concolic execution [53, 72, 92], unpacking [156], malware sandboxing [1, 13], and
whitebox fuzzing [122, 123].

Unfortunately, all these techniques and their benefits are still not available in
the world of embedded systems. The reason is that in the majority of the cases they
require an emulator to execute the code and possibly monitor or alter its execu-
tion. However, as we will explain in Section 2.2, the large number of custom and
proprietary hardware components make the task of building an accurate emulator
a daunting process. If we then consider that additional modules and hardware plu-
gins should be developed for each embedded system on the market, we can easily
understand the infeasibility of this approach.

1http://www.arm.com/community/partners/silicon.php

www.syssec-project.eu 25 October 30, 2014

http://www.arm.com/community/partners/silicon.php

AVATAR

In this paper, we present a technique to fill this gap and overcome the limitation
of pure firmware emulation. Our tool, named Avatar, acts as an orchestration en-
gine between the physical device and an external emulator. By injecting a special
software proxy in the embedded device, Avatar can execute the firmware instruc-
tions inside the emulator while channeling the I/O operations to the physical hard-
ware. Since it is infeasible to perfectly emulate an entire embedded system and it
is currently impossible to perform advanced dynamic analysis by running code on
the device itself, Avatar takes a hybrid approach. It leverages the real hardware to
handle I/O operations, but extracts the firmware code from the embedded device
and emulates it on an external machine.

To summarize, in this paper we make the following contributions:

• We present the design and implementation of Avatar, a novel dynamic anal-
ysis framework that allows a user to emulate the firmware of an embedded
device.

• We discuss several techniques that can be used to optimize the performance
of the system and to adapt Avatar to the user’s needs. We also show how
complex dynamic analysis applications (such as concolic execution) can be
implemented on top of Avatar.

• We evaluate Avatar by applying it to three different security scenarios, in-
cluding reverse engineering, vulnerability discovery, and backdoor detec-
tion. To show the flexibility of our system, each test was performed on a
completely different class of devices.

2.2 Dynamic Firmware Analysis

While the security analysis of firmwares of embedded devices is still a new and
emerging field, several techniques have been proposed in the past to support the
debugging and troubleshooting of embedded systems.

Hardware debugging features (mostly built around In-Circuit Emulators [69,
157, 183] and JTAG-based hardware debuggers [11]) are nowadays included in
many embedded devices to simplify the debugging procedure. However, the anal-
ysis remains extremely challenging and often requires dedicated hardware and a
profound knowledge of the system under test. Several debugging interfaces exist,
like the Background Debug Mode (BDM) [255] and the ARM CoreSight debug and
trace technology [255]. Architecture-independent standards for debugging embed-
ded devices also exist, such as the IEEE NEXUS standard [12]. Most of these
technologies allow the user to access, copy, and manipulate the state of the mem-
ory and of the CPU core, to insert breakpoints, to single step through the code, and
to collect instructions or data traces.

When available, hardware debugging interfaces can be used to perform certain
types of dynamic analysis. However, they are often limited in their functionalities

www.syssec-project.eu 26 October 30, 2014

2.2. DYNAMIC FIRMWARE ANALYSIS

and do not allow the user to perform complex operations, such as taint propagation
or symbolic execution. In fact, these advanced dynamic analysis techniques require
an instruction set simulator to interpret the firmware of the embedded target. But
for a proper emulation of the embedded system, not only the CPU, but all periph-
eral devices need to be emulated. Without such a support, the emulated firmware
would often hang, crash, or in the best case, show a different behavior than on the
real hardware. Such deviations can be due, for example, to incorrect memory map-
pings, active polling on a value that should be changed by the hardware, or the lack
of the proper hardware-generated interrupts or DMA operations.

To overcome these problems, researchers and engineers have resolved to three
classes of solutions, each with its own limitations and drawbacks:

• Complete Hardware Emulation
Chipounov [70] and Kuznetsov et al. [166] analyze device drivers by rely-
ing on an emulated PCI bus and network card that return symbolic values.
This approach has the main drawback that it requires to emulate the device
properly. While this is not much of a problem for well understood devices,
like a PCI network card supported by most PC emulation software, it can be
a real challenge in embedded systems and can be just impossible when the
hardware is not documented. Unfortunately, lack of documentation is the
rule in the embedded world, especially in complex proprietary SoCs.

In some cases, accurate system emulators are developed as part of the prod-
uct development to allow the firmware development team to develop soft-
ware while the final hardware is still not available. However, those emula-
tors are usually unavailable outside the development team and they are often
not designed for code instrumentation, making them unable to perform basic
security analysis like tainting or symbolic execution.

• Hardware Over-Approximation
Another approach consists in using a generic, approximated, model of the
hardware. For example, by assuming interrupts can happen at any time or
that reading an IO port can return any value. This approach is easy to imple-
ment because it does not require a deep knowledge of the real hardware, but
it can clearly lead to false positives, (e.g., values that will never be returned
by the real system) or misbehavior of the emulated code (when a particular
value is required). This approach is commonly used when analyzing small
systems and programs that are typically limited to a few hundreds lines of
code, as showed by Schlich [215] and Davidson et al. [92]. However, on
larger programs and on complex peripherals this approach will invariably
lead to a state explosion that will prevent any useful analysis.

www.syssec-project.eu 27 October 30, 2014

AVATAR

Open
OCD

Avatar

Analysis script

Target
backend

GDB
adapter

Telnet
adapter

BinProto
adapter

GDB/MI
adapter

Emulator
backend

Memory
forwarder

QMP/Lua
interface

GDB
interface

Config
writer

Emulator

 RemoteMem
plugin

S²E
QMP/Lua

Qemu
GDB

Qemu
config

Target device

In-memory
stub

Target state
● Registers
● CPU state
● Memory

VM state
● Registers
● CPU state
● Memory

Qemu
executer

Qemu
frontend

LLVM

Symbolic
states

KLEE

TCG

JTAG

UART

Analysis
Plugins

S²E
hooks

Fig. 2.1: Overview of Avatar.

• Firmware Adaptation
Another approach consists in adapting the firmware (or in extracting limited
parts of its code) in order to emulate it in a generic emulator. While this
is possible in some specific cases, for example with Linux-based embedded
devices, this technique does not allow for an holistic analysis and may still
be limited by the presence of custom peripherals. Moreover, this approach
is not possible for monolithic firmwares that cannot be easily split into in-
dependent parts - unfortunately a very common case in low-end embedded
systems [88].

In the next section we present our novel hybrid technique based on a combi-
nation of the actual hardware with a generic CPU emulator. Our approach allows
to perform advanced dynamic analysis of embedded systems, even when very little
information is available on their firmware and hardware, or when basic hardware
debugging support is not available. This opens the possibility to analyze a large
corpus of devices on which dynamic analysis was not possible before.

2.3 Avatar

Avatar2 is an event-based arbitration framework that orchestrates the communica-
tion between an emulator and a target physical device.

Avatar’s goal is to enable complex dynamic analysis of embedded firmware in
order to assist in a wide range of security-related activities including (but not lim-
ited to) reverse engineering, malware analysis, vulnerability discovery, vulnerabil-
ity assessment, backtrace acquisition and root-cause analysis of known test cases.

2.3.1 System Architecture

The architecture of the system is summarized in Figure 2.1: the firmware code
is executed inside a modified emulator, running on a traditional personal computer.
Any IO access is then intercepted and forwarded to the physical device, while
signals and interrupts are collected on the device and injected into the emulator.

2The Avatar framework is open-source and available at http://s3.eurecom.fr/tools/avatar.

www.syssec-project.eu 28 October 30, 2014

2.3. AVATAR

The internal architecture is completely event-based, allowing user-defined plu-
gins to tap into the data stream and even modify the data as it flows between the
emulator and the target.

In the simplest case Avatar requires only a backend to talk to the emulator
and one to talk to the target system, but more plugins can be added to automate,
customize, and enhance the firmware analysis. In our prototype, we developed a
single emulator backend. This controls S2E (or Selective Symbolic Execution en-
gine), which is an open-source platform for selective symbolic execution of binary
code [72]. It builds on the foundation of Qemu, a very popular open-source sys-
tem emulator [38]. Qemu supports many processor families such as i386, x86-64,
Arm, Mips and many others. Apart from being a processor emulator, Qemu can
also mimic the behavior of many hardware devices that are typically attached to
the central processor, such as serial ports, network cards, displays, etc.

S2E leverages the intermediate binary code representation of Qemu called Tiny
Code Generator (TCG), and dynamically translates from TCG bytecode to Low-
Level Virtual Machine (LLVM) bytecode whenever symbolic execution is active [168].
KLEE, the actual symbolic execution engine, is then taking care of exploring the
different execution paths and keeps track of the path constraints for each symbolic
value [53]. Evaluating possible states exhaustively, for some symbolic input, can
be assimilated to model checking and can lead to proving some property about a
piece of software [167].

Even though S2E uses the TCG representation of the binary code to generate
LLVM code, each processor architecture has its own intricacies that make it nec-
essary to write architecture specific extensions to make S2E work with a new pro-
cessor architecture. Since our focus was on embedded systems and all the systems
we analyzed are ARM systems, we updated and improved an existing incomplete
ARM port3 of S2E, to suit the needs of dynamic analysis of firmware binaries.

To control the execution of code in more detail, S2E provides a powerful plu-
gin interface that allows instrumentation of virtually every aspect of execution.
Any emulation event (e.g., translation of a basic block, instruction translation or
execution, memory accesses, processor exceptions) can be intercepted by a plugin,
which then can modify the execution state according to its needs. This modu-
lar architecture let us perform dynamic analysis of firmware behaviour, such as
recording and sandboxing memory accesses, performing live migration of subrou-
tines (see Section 2.3.3), symbolically executing specific portion of code as well as
detecting vulnerabilities (see Section 2.5).

S2E is connected through three different control interfaces with Avatar: the
first interface is a GDB debug connection using the GDB serial protocol. Avatar is
connecting to this interface using a GDB instance controlled via the GDB/MI pro-
tocol. This connection is used for fine-grained control over the execution, such
as putting breakpoints, single-stepping the execution, and inspecting register val-

3Our patches have been submitted to the official S2E project and are currently under review for
merging.

www.syssec-project.eu 29 October 30, 2014

AVATAR

ues. The second interface is Qemu’s Management Protocol (QMP) interface, a
JSON-based request-response protocol. Though detailed virtual machine control
is possible through this interface, it is currently only used to dynamically change
S2E’s configuration at run time. This is done by accessing S2E through its Lua
interface, which is called from Lua code embedded in the JSON requests. The
third interface is a plugin for S2E that is triggered whenever a memory access is
performed. This S2E plugin then forwards this request to Avatar, which in turn
handles the memory access (e.g., sends it to Avatar’s plugins), or forwards it to the
target.

Even though at the moment the only available emulator back-end is for Qemu/S2E,
the emulator interface is generic and allows other emulators to be added easily.

On the target side, we developed three back-ends:

• A back-end that uses the GDB serial protocol to communicate with GDB
servers (e.g., a debugger stub installed on the device or a JTAG GDB server).

• A back-end to support low-level access to the OpenOCD’s JTAG debugging
interface via a telnet-like protocol.

• A back-end that talks to a custom Avatar debugger proxy over an optimized
binary protocol (which is more efficient than the verbose protocol used by
GDB). This proxy can be installed in an embedded device that lacks de-
bugging hardware support (e.g., no hardware breakpoints) or on which such
support was permanently deactivated.

The proper target back-end has to be selected by the user based on the charac-
teristics and the debugging functionalities provided by the hardware of the embed-
ded device. For example, in our experiments we used the OpenOCD back-end to
connect to the JTAG debugger of the mobile phone and of the Econotag, while we
used the Avatar proxy to perform dynamic analysis of the hard drive firmware.

To analyze a firmware, an access to the firmware’s device is needed. This can
be either a debugging link (e.g., JTAG), a way to load software or a code injection
vulnerability. In cases where a debugging stub, for example the GDB stub, is used,
an additional communication channel, e.g., an UART, is also needed.

2.3.2 Full-Separation Mode

When Avatar is first started on a previously unknown firmware, it can be run
in what we call “full-separation mode”. In this configuration, the entire firmware
code is executed in the emulator and the entire (memory) state is kept in the physi-
cal device. In other words, for each instruction that is executed by the emulator, the
accessed memory addresses are fetched from and written to the real memory of the
embedded system. At the same time, interrupts are intercepted by the debugging
stub in the physical system and forwarded back to the emulator. Code and memory
are perfectly separated, and Avatar is responsible to link them together.

www.syssec-project.eu 30 October 30, 2014

2.3. AVATAR

Firmware
Embedded

device

Emulator Proxy

Avatar

Emulator
Backend

Target
Backend

Plugins

read/write memory

 interrupt

read/write memory

valuevalue

 interrupt

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
add r2, ip, r2
ldr r2, [r2, #0
cmp r2, r3
 . . .

Fig. 2.2: Avatar architecture and message exchange in full separation mode.

Even though this technique is in theory capable of performing dynamic anal-
ysis on unknown firmwares, it has several practical limitations. First of all, the
execution is very slow. Using a serial debug channel at 38400 Baud, the system
can perform around five memory accesses per second, reducing the overall emula-
tion speed to the order of tens instructions per second. Even worse, many physical
devices have time-critical sections that need to be executed in a short amount of
time or the execution would fail, making the system crash. For example, DRAM
initialization, timer accuracy and stability checks belong to this category.

Moreover, tight hardware-polling loops (e.g., UART read-with-timeout) be-
come painfully slow in full separation mode. Finally, regular interrupts (e.g., the
clock tick) quickly overload the limited bandwidth between the target system and
the emulator.

These limitations make the full separation approach viable only to analyze a
limited number of instructions or when the user wants to focus only on particu-
lar events in more complex firmwares. For this reason, Avatar supports arbitrary
context-switching between the emulator and the real device.

2.3.3 Context Switching

While it is possible to run the firmware code from beginning to end inside the
emulator, sometimes it is more efficient to let the firmware run natively on the
target device for a certain amount of time. This allows, for example, to execute
the code without any delay until a particular point of interest is reached, skipping
through initialization routines that may involve intensive I/O operations or network
protocol communications that may need to be performed in real-time. In such
cases, it is important to let the target device run the firmware, while still monitoring
the execution for regions of code relevant to the current analysis. The ability of
Avatar to perform arbitrary context switches gives the user the ability to quickly

www.syssec-project.eu 31 October 30, 2014

AVATAR

focus her analysis on a particular section of the code, without the drawbacks of
emulating the entire firmware execution.

Starting the analysis at specific points of interest

In this case the firmware starts the execution on the physical device and runs na-
tively until a certain pre-defined event occurs (e.g., a breakpoint is reached or an
exception is raised). At this point, the execution on the physical device is frozen
and the state (e.g., the content of the CPU registers) is transferred to the emula-
tor, where the execution is resumed. An example of this transition is described in
Section 2.6.3, in which the firmware of a mobile phone baseband chip is executed
until the phone receives an SMS, and then transferred by Avatar in the emulator to
perform further analysis.

Returning execution to the hardware

After the required analysis is performed on the emulator, the execution of the
firmware can be transferred back to continue on the real device. In this case, any
state kept on the virtual environment is copied back to the physical device. De-
pending on the user’s needs, it is possible to switch again to the emulator at a later
stage. This approach is used in Section 2.6.1, in which the firmware of a hard disk
is started inside the emulator and later transferred back to the disk.

2.3.4 Interrupts Handling

Software interrupts do not present a problem for our framework, since they are
issued by the firmware code and the emulator takes care of calling the correspond-
ing interrupt handler directly. However, as shown in Figure 2.2, hardware interrupts
need to be trapped in the real hardware and forwarded back to the emulator. In this
case, the stub in the embedded system receive the interrupt and forwards them to
Avatar’s target back-end. Finally, using the emulator back-end, Avatar suspends
the firmware execution and injects the interrupt in the emulator.

Based on the circumstances in which the interrupt is generated, we distinguish
three different cases:

• Hardware interrupts that indicate the completion of a task. These interrupts
are issued by a device to indicate that a particular task initiated by the code
has been completed. For example, the UART send interrupt indicates that
the send buffer has been successfully transmitted. This type of interrupts is
easy to handle because it just needs to be forwarded from the target to the
emulator.

• Periodical hardware interrupts, e.g., the timer notifications. These interrupts
can be forwarded to the emulator but their frequency needs to be scaled down
to the actual execution speed in the emulator. The equivalent number of
instructions between two interrupts should be executed in the emulator as it

www.syssec-project.eu 32 October 30, 2014

2.3. AVATAR

would on the target running in native mode. In our current implementation,
an Avatar plugin detects periodic interrupts and report their information to
the user, who can decide how to handle each class. For example, the user can
instruct Avatar to drop the clock interrupts on the device and just generate
them (at the right frequency) on the emulator, thus saving bandwidth and
increasing the analysis performance.

• Hardware interrupts that notify of an external event. For example the re-
ceive interrupt of an UART indicates that new data on the UART buffer is
available. The emulation strategy for those interrupts depends on the fre-
quency of the external event. For events that require previous activity (e.g.,
a request-response protocol where the response triggers an interrupt) a sim-
ple forwarding strategy can be used. For unrelated events that happen very
frequently (i.e., where the handler in the emulator cannot process the inter-
rupt in time before the next interrupt is generated) the user can choose if she
wants to suppress some of them or to handle the interrupt by migrating the
handler itself back to the embedded device (see Section 2.4)

While the straightforward interrupt forwarding does not present any problem
for Avatar, when the user needs to tune the framework to handle specific cases
(e.g., regular or very frequent interrupts) the stub needs to be able to distinguish
between them. Unfortunately, this task is often difficult.

Interrupts de-multiplexing

In a traditional, x86-based, personal computer there is a standard interrupt con-
troller that handles interrupt lines from each device and peripheral. However, on
ARM-based systems there are only two interrupt lines directly attached and visi-
ble to the processor: IRQ and FIQ. Because of this embedded devices often use an
interrupt multiplexer (or controller) peripheral that is normally included as an hard-
ware block (“IP core”) on the same chip. The disadvantage for a user is that at the
point where the interrupt vector routine is called, all interrupt signals are still mul-
tiplexed together. The driver for a particular interrupt multiplexer will then query
the underlying hardware multiplexer to identify which line was actually triggered
and then forward the event to the handler registered for this interrupt.

Now, suppose the user wants to instruct Avatar to suppress a particular interrupt
on the device (e.g., the timer), while still letting through the ones associated to
important hardware events that need to be forwarded to the emulator. In this case,
the proxy needs to take a decision based on the interrupt type which is unfortunately
not available when the interrupt is received.

In this case, the user needs to disassemble the interrupt vector handler, and
follow the code flow until the code of the interrupt controller driver branches into
different functions that handle each device’s interrupt. At this point, she can specify
these program points to Avatar that can terminate the interrupt vector’s execution
and signal to the proxy that an interrupt has been identified. The proxy then sends

www.syssec-project.eu 33 October 30, 2014

AVATAR

the interrupt event to Avatar. Now the target backend of Avatar can suppress a
particular interrupt by instructing the proxy to drop the corresponding event.

2.3.5 Replaying Hardware Interaction

It is quite common for a firmware to have several sections that require only a
limited interaction with dedicated peripherals. In this case, the I/O operations can
be recorded by Avatar and transparently replayed during the next execution of the
firmware.

This allows the user to test the firmware without the bottleneck of the interac-
tion with the physical device. In this mode of operation the firmware itself or parts
of it (e.g., applications) can be significantly changed, as long as the order of I/O
interactions is not modified. This is a major advantage over resuming a snapshot,
which requires the full code path until the snapshot point to be executed to ensure
that peripherals are in the state the snapshot expects them to be in.

2.4 Overcoming the limits of Full Separation

The techniques introduced in the previous section are enough to perform dynamic
analysis on small portions of a firmware code. However, sometimes the internals
and behavior of the system are completely unknown. In those cases, it can be very
useful to perform the analysis on larger portions of the binary, or, in the extreme
case, on the entire firmware.

In this case, the performance of Avatar running in full separation mode poses
a great limitation to the usability of our framework. To overcome this problem,
in this section we present two techniques designed to overcome the limits of full
separation by moving part of the code to the physical device and part of the memory
to the emulator. This results in a considerable reduction in the number of messages
forwarded by Avatar between the emulator and the target, and therefore a large
improvement in the overall performance of the analysis system.

2.4.1 Memory Optimization

Forwarding all memory accesses from the emulator to the target over a limited-
bandwidth channel like UART or JTAG incurs in a heavy performance penalty.
For example, in our experiments an average of five instructions per second were
executed using the GDB stub through a 38400 baud UART connection.

The reason why memory operations need to be forwarded in the first place is
that different embedded systems typically have different mappings of addresses to
memory regions. Some of these memory regions are used for code (in RAM, ROM
or Flash memories), stack and heap, but one or several regions will be used to ac-
cess registers of physical peripherals through Memory-Mapped I/O (MMIO). In
this case, any I/O operation on those areas is equivalent to sending and receiving
data from an external device. If these address ranges are known, the user can con-
figure Avatar to keep every read-only memory (such as the code segment) on the

www.syssec-project.eu 34 October 30, 2014

2.4. OVERCOMING THE LIMITS OF FULL SEPARATION

Access type Read Write Cumulative

Code 61,632 - 61,632
Stack & data 646 1,795 64,073

I/O 3,614 2,097 69,784

Table 2.1: Number of memory accesses grouped by memory regions for the HDD
bootloader.

emulator. Read-write memory regions can also be marked as local to the emulator,
but modifications to them need to be tracked by Avatar to be able to transfer those
changes to the target at a later context switch. In fact, when an emulator-to-target
context switch happens, all modified local memory (“dirty memory”) needs to be
copied to the target before the execution can resume on the embedded device.

However, in most of the cases the user does not know a priori which area of
memory is assigned to I/O. For this reason, Avatar includes an automated memory
optimization plugin that monitors the execution in the emulator and automatically
identifies the regions that do not require access to the hardware. This includes the
stack (easily identified by the execution of stack-related operations) and the code
segment (identified by the values of the program counter). For any other area,
Avatar starts by forwarding the read and write operations to the target device. It
then keeps track of the values that are returned and applies a simple heuristic: if the
target always returns the value that was previously written by the firmware code (or
if it always returns the same value and it is never written by the firmware) then it is
probably not assigned to a memory mapped device.

Table 2.1 shows an example of how many memory accesses could be saved by
keeping memory regions local to the emulator: transferring the code region to the
emulator would save 61,632 memory accesses (88%). Moving the stack and data
region in local memory as well would save 64,073 memory accesses (92%). Only
the I/O accesses cannot be moved to the emulator’s memory.

2.4.2 Selective Code Migration

So far, we assumed that the firmware is either running entirely inside the em-
ulator, or entirely on the embedded device. The user can instruct Avatar to switch
from one mode to the other when certain conditions are met, but such context
switches are time consuming.

In this section we present a fine-grained solution that allows the user to mi-
grate only parts of the firmware code back to the target. This technique allows to
overcome two limitations of the full-separation mode. Some code blocks need to
be executed atomically, for example when there are timing constraints on the code.
We will describe such a case in Section 2.6.1, where we encountered a function
that read the timer twice and waited for the difference to be below a certain limit.
Another example is when delays introduced by Avatar would lead the target in an

www.syssec-project.eu 35 October 30, 2014

AVATAR

invalid state. We encountered such a case during the DRAM initialization of the
HDD, as shown in Section 2.6.1).

The second limitation addressed by selective code migration is related to the
analysis performance. In fact, certain functions (e.g., polling loops and interrupt
handlers) can be executed significantly faster when run natively on the target.

In the current Avatar prototype, code migration is supported at a function level.
In this case, the code can be copied to its location in the target’s memory without
modification. Its exit points are then replaced by breakpoints, and the virtual ma-
chine register state is transferred from the emulator to the target. The execution is
resumed on the target until one of the exit breakpoints is triggered, and at that point
the state is transferred back to the emulator. This transition is much faster than a
complete context switch, since Avatar only needs to transfer few bytes and not the
entire content of the memory.

Even though this simple technique is enough to circumvent critical code re-
gions in several real world scenarios, it neglects some difficulties that may affect
code migration. First, the code may read or write arbitrary memory locations as-
sociated, for example, with global variables. Avatar keeps track of those loca-
tions, copy their content over to the target before the execution, and copy written
locations back after the execution. Second, the code may use instructions that
change the control flow in unforeseen ways, like software interrupts, processor
mode changes, and indirect jumps.

Our framework prototype addresses these issues by performing an on-the-fly
static analysis. When a function is selected for code migration, Avatar disassem-
bles its code using the llvm-mc disassembler. The result is then analyzed to
identify critical instructions. In this way, we can predict memory accesses outside
the function stack, compute the control flow of the code and verify that no instruc-
tions can escape from this computed control flow. As we describe in Section 2.6,
this technique is sufficient to migrate small, atomic functions. However, we plan to
extend the capabilities of the code migration system to apply transformations to the
code. On the one hand, those transformations will allow to ensure that instructions
which are not statically verifiable (e.g., indirect jumps) will not escape the proxy’s
sandbox. On the other hand, it can be used to track memory accesses, so that only
the modified (“dirty”) part of the state needs to be copied back from the target to
the emulator when a context switch happens. Those critical instructions will be
replaced with instrumentation code that calls functions in proxy, which will handle
them in a safe way.

2.5 Extending Avatar

Avatar’s architecture is designed to be modular and its base framework can be
easily customized to fit different analysis scenarios. We chose S2E as default
Avatar emulator back-end because it offers many hooks and manipulation facili-

www.syssec-project.eu 36 October 30, 2014

2.5. EXTENDING AVATAR

ties on top of QEMU which facilitates the development of custom dynamic analysis
plugins.

In this section, we show an example of an Avatar extension: we built upon its
core capabilities to support selective symbolic execution. For this we add several
features and plugins to the ARM port of S2E. Moreover, we believe the symbolic
execution engine provides a super-set of the capabilities needed to implement taint
analysis, even though a targeted plugin could be needed to perform concrete data
tracking and taint analysis in a more lightweight way.

In the rest of this section we describe the technique Avatar employs to fully
exploit the symbolic engine of S2E and perform selective symbolic execution on
unmodified portions of firmware blobs. Moreover, we show how we use our ex-
tended version of S2E in Avatar to dynamically detect potential control flow cor-
ruption vulnerabilities by injecting and tracking symbolic inputs.

2.5.1 Injecting Symbolic Values Into the Firmware’s Execution Flow

In the field of program testing, symbolic execution is a technique employed to
improve code coverage by using symbols as input data (instead of concrete values)
and keeping track of constraints upon their manipulation or comparison (c.f. [218]).
The result of symbolic evaluation is an execution tree, where each path is a possible
execution state that can be reached by satisfying the constraints associated to each
symbolic value.

S2E further develops this concept by performing selective symbolic execution,
i.e., by restricting the area of symbolic execution to specific code portions and
treating only specific input data as symbolic [72]. This greatly helps to speedup the
analysis process (as symbolic execution of code results in significant slowdowns)
and to drive the exhaustive symbolic exploration into selected regions of code. This
process requires Avatar to control the introduction of symbolic values into S2E, in
place of existing real values.

The remote memory interface between S2E and Avatar, as introduced in Sec-
tion 2.3, ensures that only concrete values reach the real hardware through Avatar.
Symbolic values remain therefore confined to the emulation domain. If a symbolic
value is about to be written to the target hardware, the remote memory interface in
S2E performs a forced concretization before forwarding it. Such symbolic value
concretizations happen in two stages. First, all the constraints associated with the
value are retrieved and evaluated by the integrated SAT-solver. Second, a single ex-
ample value which satisfies all the constraints is forwarded to Avatar to be written
on the target.

On the one hand, making Avatar handle only concrete values leaves it as a
controller with a simpler external view of S2E and avoids having to keep track of
execution paths and paths conditions twice. On the other hand, this choice brings
the minor drawback that Avatar has no direct control on symbolic execution, which
is instead under the control of S2E/KLEE.

www.syssec-project.eu 37 October 30, 2014

AVATAR

We designed a simple plugin for detecting arbitrary execution conditions. It
relies on the following heuristics as signs of possibly exploitable conditions:

• a symbolic address being used as the target of a load or store instruction,

• a symbolic address being leaked into the program counter (e.g., as the target
of a branch),

• a symbolic address being moved into the stack pointer register.

In order to selectively mark some input data as symbolic, two different ap-
proaches can be taken: either modify the binary code (or the source code, if avail-
able) to inject custom instructions into the firmware, or dynamically instrument the
emulation environment to specify the scope of symbolic analysis at run-time. The
first approach requires some high-level knowledge of the firmware under analysis
(e.g., access to source code) and the guarantee that injecting custom instructions
into firmware code would not affect its behavior. Examples include the Android
Dalvik VM, whose source code can be modified and rebuilt to enable transparent
analysis of pristine Java bytecode with S2E [160].

Since we did not want to limit Avatar to this scenario, we decided to fol-
low the second approach, which requires to extend the symbolic engine and the
Avatar framework. Such extensions should know when symbolic execution has to
be triggered and where symbolic values should be injected.

This choice leads to two major advantages:

• Firmware Integrity
The binary code is emulated as-is, without injecting custom opcodes or per-
forming recompilation. This guarantees that the emulated code adheres to
the original firmware behavior (i.e., no side-effects or bugs are introduced
by the intermediate toolchain)

• Programmatic Annotation
The control and data flow of firmware emulation can be manipulated and
annotated with symbolic meta-data in an imperative way. A high-level lan-
guage (Lua) is used to dynamically script and interact with current emulation
environment, as well as introducing and tracing symbolic meta-data.

For this we first completed the port of S2E to the ARM architecture in order
to have complete symbolic execution capabilities, then we ported the Annotation
plugin to the ARM architecture. The Annotation plugin lets the user specify a trig-
ger event (e.g., a call/return to a specific subroutine or the execution of code at a
specific address), and a Lua function to be executed upon the event. A simple API
is then provided to allow for manipulation of the S2E emulation environment di-
rectly from the Lua code. Avatar provides direct channels to dynamically control
the emulation flow via QMP command messages. These channels can also be used
to inject Lua code at run-time, in order to dynamically generate annotations which

www.syssec-project.eu 38 October 30, 2014

2.5. EXTENDING AVATAR

depend on the current emulation flow and inject them back into S2E. Once sym-
bolic values are introduced in the execution flow, S2E tracks them and propagates
the constraints.

Symbolic analysis via Lua annotations is intended to be used as a tool for late
stage analysis, typically to ease the discovery of flaws in logic-handling code, with
hand-made Lua analysis code directly provided by the user. It can be employed
in both full separation mode and context switching, as soon as code execution
can be safely moved to the emulator (e.g., outside of raw I/O setup routines, sen-
sors polling). This normally happens after an initial analysis has been done with
Avatar to detect interesting code and memory mappings.

A similar non-intrusive approach has already been used in a x86-specific con-
text, to test and reverse-engineer the Windows driver of a network card [70]. To
the best of our knowledge, however, this technique has never been applied before
to embedded devices. In the context of firmware security testing, annotations can
be used in a broad range of scenarios. In Section 2.6, we present how we applied
this technique to different technologies and devices, to perform dynamic analysis
of widespread embedded systems such as hard drives, GSM phones, and wireless
sensors.

2.5.2 Symbolically Detecting Arbitrary Execution Conditions

When dealing with modern operating systems, an incorrect behavior in a user-
space program is often detected because an invalid operation is performed by the
program itself. Such operations can be, for example, an unauthorized access to a
memory page, or the access to a page that is not mapped in memory. In those cases,
the kernel would catch the wrong behavior and terminate the program, optionally
triggering some analysis tools to register the event and collect further informa-
tion that can later be used to identify and debug the problem. Moreover, thanks
to the wide range of exploit mitigation techniques in place today (DEP, canaries,
sandboxing and more), the system is often able to detect the most common invalid
operations performed by userspace processes.

When dealing with embedded systems, however, detecting misbehavior in firmware
code can be more difficult. The observable symptoms are not always directly pin-
pointed to some specific portion of code. For example, many firmware are designed
for devices without a Memory Management Unit (MMU) or Memory Protection
Unit (MPU) or are just not using them. In such a context, incorrect memory ac-
cesses often result in subtle data corruption which sometimes leads to erratic be-
haviors and rare software faults, such as random events triggering, UI glitches,
system lock or slowdown [82]. For this reason, it is common for embedded de-
vices to have a hardware watchdog in charge of resetting the device execution in
case of any erratic behavior, e.g., a missed reply to timed watchdog probes.

For these reasons, detecting incorrect execution inside the emulation is easier
when some OS support can be used for co-operation (e.g., a Blue Screen Of Death
interceptor for Windows kernel bugs is implemented in S2E). On the other hand,

www.syssec-project.eu 39 October 30, 2014

AVATAR

catching such conditions during the emulation of an embedded device firmware
is bound to many system-specific constraints, and require additional knowledge
about the internal details of the firmware under analysis.

However, Avatar does not rely on the knowledge of any specific operating
system or the fact that a MMU is used. Instead, it aims at detecting a larger
range of potentially critical situations which may result in control flow hijacking
of firmware code, by using a technique similar to the one employed by AEG [26].

All three conditions may lead to false positives, when the variable is symbolic
but strongly constrained. Therefore, once such a condition is detected the con-
straints imposed on the symbolic variables must be analyzed: the less constrained
is the result, the higher is the chance of control flow corruption. Intuitively, if
the constraints are very loose (e.g., a symbolic program counter without an upper
bound) then the attacker may obtain enough control on the code to easily exploit
the behavior. In addition to this, tight constraints are sometimes encountered in le-
gitimate cases (e.g., access to an array with a symbolic but constrained index such
as with a jump table), and are not relevant for the purpose of security analysis.

When an interesting execution path is detected by the above heuristic, the state
associated to the faulty operation is recorded and the emulation is terminated. At
this point a test-case with an example input to reach this state is generated, and the
constraints associated with each symbolic value are stored to be checked for false
positives (i.e., values too strictly bound).

Automatically telling normal constraints apart from those that are a sign of a
vulnerability is a complex task. In fact it would require knowledge of the pro-
gram semantics that were lost during compilation (e.g., array boundaries). Such
knowledge could be extracted from the source code if it is available, or might be
extrapolated from binary artifacts in the executable itself or the build environment.
In such cases, specific constraints could be fed into Avatar by writing appropriate
plugins to parse them, for example by scanning debug symbols in a non-stripped
firmware (e.g., a DWARF parser for ELF firmwares) or by reading other similar
symbols information.

Finally, Avatar could highly benefit from a tighter coupling with a dynamic
data excavator, helping to reverse engineer firmware data structures [81]. In par-
ticular, the heuristic proposed in Howard [227] for recovering data structures by
observing access patterns under several execution cycles could be easily imported
into the Avatar framework. Both tools perform binary instrumentation on top of
QEMU dynamic translation and make use of a symbolic engine to expand the ana-
lyzed code coverage area.

2.5.3 Limitations of state synchronization

Our current implementation of the synchronization between device state and
emulator state works well in general, but is difficult in some special cases.

First it is difficult to handle DMA memory accesses in our current model. For
example, the firmware can send a memory address to a peripheral and request data

www.syssec-project.eu 40 October 30, 2014

2.6. EVALUATION

to be written there. The peripheral will then notify the firmware of the request’s
completion using an interrupt. Since Avatar does not know about this protocol
between firmware and peripheral, it will not know which memory regions have
been changed. On newer ARM architectures with caches, data synchronization
barrier or cache invalidation instructions might be taken as hint that some memory
region has been changed by DMA.

Second, if code is executed on the device, Avatar is currently incapable of
detecting which regions have been modified. In consequence, whenever memory
accesses of the code run on the device are not predictable by static analysis, we
need to transfer the whole memory of the device back to the emulator on a device-
to-emulator state switch. We plan to address this issue by using checksumming to
detect memory region changes and minimize transferred data by identifying small-
est changed regions through binary search.

Third, when Avatar performs symbolic execution, symbolic values are confined
to the emulator. In case that a symbolic value needs to be concretized and sent to the
device, a strategy is needed to keep track of the different states and I/O interactions
that were required to put the device in that state. This can be performed reliably by
restarting the device and replaying I/O accesses. While this solution ensures full
consistency, it is rather slow.

2.6 Evaluation

In this section we present three case studies to demonstrate the capabilities of the
Avatar framework on three different real world embedded systems. These three
examples by no means cover all the possible scenarios in which Avatar can be
applied. Our goal was to realize a flexible framework that a user can use to perform
a wide range of dynamic analysis on known and unknown firmware images.

As many other security tools (such as a disassembler or an emulator), Avatar re-
quires to be configured and tuned for each situation. In this section, we try to
emphasize this process, in order to show all the steps a user would follow to suc-
cessfully perform the analysis and reach her goal. In particular, we will discuss
how different Avatar configurations and optimization techniques affected the per-
formance of the analysis and the success of the emulation.

Not all the devices we tested were equipped with a debug interface, and the
amount of available documentation varied considerably between them. In each
case, human intervention was required to determine appropriate points where to
hook execution and portions of code to be analyzed, incrementally building the
knowledge-base on each firmware in an iterative way. A summary of the main
characteristics of each device and of the goal of our analysis is shown in Table 2.2.

2.6.1 Analysis of the Mask ROM Bootloader of a Hard Disk Drive

Our first case study is the analysis of a masked ROM bootloader and the first
part of the secondary bootloader of a hard disk drive.

www.syssec-project.eu 41 October 30, 2014

AVATAR

Target
device

Manufacturer System-
on-Chip

CPU Debug
access

Analyzed
code

Scope of
analysis

Exp 2.6.1 Hard
disk

undisclosed unknown ARM966 Serial
port

Bootloader Backdoor
detection

Exp 2.6.2 ZigBee
sensor

Redwire
Econotag

MC13224 ARM7TDMI JTAG ZigBee
stack

Vulnerability
discovery

Exp 2.6.3 GSM
phone

Motorola
C118

TI
Calypso

ARM7TDMI JTAG SMS
decoding

Reverse en-
gineering

Table 2.2: Comparison of experiments described in Section 2.6.

The hard disk we used in our experiment is a commercial-off-the-shelf SATA
drive from a major hard disk manufacturer. It contains an ARM 966 processor (that
implements the ARMv5 instruction set), an on-chip ROM memory which contains
the masked ROM bootloader and some library functions, an external serial flash
that is connected over the SPI bus to the processor, a dynamic memory (SDRAM)
controller, a serial port accessible through the master/slave jumpers, and some other
custom hardware that is necessary for the drive’s operation. The drive is equipped
with a JTAG connection, but unfortunately the debugging features were disabled
in our device. The hard drive’s memory layout is summarized in Figure 2.4.

The stage-0 bootloader executed from mask ROM is normally used to load the
next bootloader stage from a SPI-attached flash memory. However, a debug mode
is known to be reachable over the serial port, with a handful of commands available
for flashing purposes. Our first goal was to inject the Avatar stub through this
channel to take over the booting process, and later use our framework for deeper
analysis of possible hidden features (e.g., backdoors reachable via the UART).

The first experiment we performed consisted of loading the Avatar stub on the
drive controller and run the bootloader’s firmware in full separation mode. This
mimics what a user with no previous knowledge of the system would do in the
beginning. In full separation mode, all memory accesses were forwarded through
the Avatar binary protocol over the serial port connection to the stub and executed
on the hard drive, while the code was interpreted by S2E. Because of the limited
capacity of the serial connection, and the very intensive I/O performed at the begin-
ning of the loader (to read the next stage from the flash chip), only few instructions
per second were emulated by the system. After 24 hours of execution without even
reaching the first bootloader menu, we aborted the experiment.

In the second experiment we kept the same setting, but we used the memory
optimization plugin to automatically detect the code and the stack memory regions
and mark them as local to the emulator. This change was enough to reach the boot-
loader menu after approximately eight hours of emulation. Though considerably
faster than in the first experiment, the overhead was still unacceptable for this kind
of analysis.

Since the bottleneck of the process was the multiple read operations performed
by the firmware to load the second stage, we configured Avatar to replay the hard-
ware interaction from disk, without forwarding the request to the real hardware.

www.syssec-project.eu 42 October 30, 2014

2.6. EVALUATION

Fig. 2.3: The disk drive used for experiments. The disk is connected to a SATA
(Data+Power) to USB interface (black box on the right) and its serial port is

connected to a TTL-serial to USB converter (not shown) via the 3 wires that can
be seen on the right.

In particular, we used the trace of the communication with the flash memory from
the second experiment to extract the content of the flash memory, and dump it
into a file. Once the read operations were performed locally in the emulator, the
bootloader menu was reached in less than four minutes.

At this point, we reached an acceptable working configuration. In the next
experiment, we show how Avatar can be used in conjunction with the symbolic
execution of S2E to automatically analyze the communication protocol of the hard
drive’s bootloader and detect any hidden backdoor in it.

We configured Avatar to execute the hard drive’s bootloader until the menu
was loaded, and then replace all data read from the serial port register by symbolic
values. As a result, S2E started exploring all possible code paths related to the
user input. This way, we were able to discover all possible input commands, either
legitimate or hidden (which may be considered backdoors), that could be used to
execute arbitrary code by using S2E to track when symbolic values were used as
address and value of a memory write, and when the program counter would become
symbolic. With similar methodologies, a user could use symbolic execution to

www.syssec-project.eu 43 October 30, 2014

AVATAR

DS Use a minimal version of the Motorola S-Record
binary data format to transmit data to the device

AP <addr> Set the value of the address pointer from the pa-
rameter passed as hexadecimal number. The ad-
dress pointer provides the address for the read,
write and execute commands.

WT <data> Write a byte value at the address pointer. The
address pointer is incremented by this operation.
The reply of this command depends on the cur-
rent terminal echo state.

RD Read a byte from the memory pointed to by the
address pointer. The address pointer is incre-
mented by this operation. The reply of this com-
mand depends on the current terminal echo state.

GO Execute the code pointed to by the address
pointer. The code is called as a function with no
parameters, to execute Thumb code one needs to
specify the code’s address + 1.

TE Switch the terminal echo state. The terminal echo
state controls the verbosity of the read and write
commands.

BR <divisor> Set the serial port baud rate. The parameter is the
value that will be written in the baud rate register,
for example ”A2” will set a baudrate of 38400.

BT Resume execution with the firmware loaded from
flash.

WW Erase a word (4 bytes) at the address pointer and
increment address pointer.

? Print the help menu showing these commands.

Table 2.3: Mask ROM bootloader commands of the hard drive. In the left column
you can see the output of the help menu that is printed by the bootloader. In the

right column a description obtained by reverse engineering with symbolic
execution is given.

www.syssec-project.eu 44 October 30, 2014

2.6. EVALUATION

Address Space
0x00000000
0x00000040

Interrupt vect.

0x00008000
Code SRAM

0x00100000

0x00120000
ROM

0x00200000

0x00400000
DRAM

0x04000000

0x04004000
Data SRAM

0x40000000

0x50000000

Memory Mapped IO

0xFFFFFFFF

Fig. 2.4: Hard drive memory layout.

automatically discover backdoors or undocumented commands in input parsers and
communication protocols.

In order to conduct a larger verification of the firmware input handler, we were
also able to recover all the accepted commands and verify their semantics. Since
the menu offered a simple online help to list all the available commands, we
could demonstrate that Avatar was indeed able to automatically detect each and all
of them (the complete list is reported in Table 2.3). In this particular device, we
verified that no hidden commands are interpreted by the firmware and that a subset
of the commands can be used to make arbitrary memory modifications or execute
code on the controller, as documented.

However, we found that the actual protocol (as extracted by symbolic analysis)
is much looser than what is specified in the helpmenu. For example the argument
of the ’AP’ command can be separated by any character from the command, not
only spaces. It is also possible to enter arbitrarily long numbers as arguments,
where only the last 8 digits are actually taken into account by the firmware code.

After the analysis of the first stage was completed, we tried to move to the
emulation of the second stage bootloader. At one point, in what turned out to be
the initialization of the DRAM, the execution got stuck: the proxy on the hard
drive would not respond any more, and the whole device seemed to have crashed.
Our guess was that the initialization writes the DRAM timings and needs to be
performed atomically. Since we already knew the exact line of the crash from the
execution trace, it was easy to locate the responsible code, isolate the corresponding

www.syssec-project.eu 45 October 30, 2014

AVATAR

Address Space

R
O

M
R

A
M

IO

0x00000000
0x00000020

ROM interrupt vect.

0x00400000
Libraries in ROM

0x00400020
User interrupt vect.

0x80000000

User program

0x80003000
Unused

0x80003000
Memory mapped IO

Unused
0xFFFFFFFF

Fig. 2.5: Econotag memory layout (respective scales not respected).

function, and instruct Avatar to push its code back to be executed natively on the
hard drive.

In a similar manner, we had to mark few other functions to be migrated to the
real hardware. One example is the timer routine, which was reading the timer value
twice and then checked that the difference was below a certain threshold (most
probably to ensure that the timer read had not been subject to jitter). Using this
technique, in few iterations we managed to arrive at the final Avatar configuration
that allowed us to emulate the first and second stages up to the point in which the
disk would start loading the actual operating system from the disk’s platters.

2.6.2 Finding Vulnerabilities Into a Commercial Zigbee Device

The Econotag, shown in Figure 2.6, is an all-in-one device for experimenting
with low power wireless protocols based on the IEEE 802.15.4 standard [142],
such as Zigbee or 6lowpan [193]. It is built around the MC13224v System on
a Chip from Freescale. The MC13224v [211] is built upon an ARM7TDMI mi-
crocontroller, includes several memories, peripherals and has an integrated IEEE
802.15.4 compatible radio transceiver. As it can be seen in Figure 2.5, the device
includes 96KB of RAM memory, 80 KB of ROM and a serial Flash for storing
data. The ROM memory contains drivers for several peripherals as well as one to
control the radio, known as MACA (MAC Accelerator), which allows to use the
dedicated hardware logic supporting radio communications (e.g., automated ACK
and CRC computation).

The goal of this experiment is to detect vulnerabilities in the code that pro-
cess incoming packets. For this purpose, we use two Econotag devices and a
program from the Freescale demonstration kit that simulates a wireless serial con-
nection (wireless UART [115]) using the Simple MAC (SMAC [116]) proprietary
MAC layer network stack. The program is essentially receiving characters from
its UART and transmitting them as radio packets as well as forwarding the charac-

www.syssec-project.eu 46 October 30, 2014

2.6. EVALUATION

Fig. 2.6: The Econotag device. From left to right: the USB connector, serial and
JTAG to USB converter (FTDI), Freescale MC13224v controller and the PCB 2.4

GHz antenna.

ters received on the radio side to its serial port. Two such devices communicating
together essentially simulate a wireless serial connection.

The data received from the radio is buffered before being sent to the serial port.
For demonstration purposes, we artificially modified this buffer management to
insert a vulnerability: a simple stack-based buffer overflow. We then compiled this
program for the Econotag and installed it on both devices.

Avatar was configured to let the firmware run natively until the communication
between the two devices started. At this point, Avatar was instructed to perform a
context switch to move the run-time state (registers and data memory) of one of the
devices to the emulator. At this point, the execution proceeded in full separation
mode inside the emulator using the code loaded in ROM memory (extracted from
a previous dump), and the code loaded in RAM memory (taken from the applica-
tion). Every I/O access was forwarded to the physical device through the JTAG
connection.

The emulator was also configured to perform symbolic execution. For this
purpose, we used annotations to mark the buffer that contains the received packet
data as symbolic. Then, we employed a state selection strategy to choose symbolic
states which maximize the code coverage, leading to a thorough analysis of the
function.

On the first instruction that uses symbolic values in the buffer, S2E would
switch from concrete to symbolic execution mode. Execution will fork states
when, for example, conditional branches that depend on such symbolic values are
evaluated. After exploring 564 states, and within less than a minute of symbolic
execution, our simple arbitrary execution detection module detected that an uncon-

www.syssec-project.eu 47 October 30, 2014

AVATAR

Fig. 2.7: The Motorola C118. The clip-on battery (on the right) has been wired to
the corresponding power pins, while the ribbon cable is connected to the JTAG

pads reachable on the back (not shown).

strained symbolic value was used as a return address. This confirmed the detection
of the vulnerability and also provided an example of payload that triggers the vul-
nerability.

We also used Avatar to exhaustively explore all possible states of this func-
tion on a program without the injected vulnerability, and confirmed the absence of
control flow corruption vulnerabilities that could be triggered by a network packet
(that our simple arbitrary execution detection module could detect).

2.6.3 Manipulating the GSM Network Stack of a Common Feature Phone

Our final test-case is centered on the analysis of the firmware of a common
GSM feature phone. In contrast with most recent and advanced mobile phones
and smartphones, feature phones are characterized by having one single embed-
ded processor for both the network stack (i.e., GSM baseband capabilities) and
the Human-to-Machine Interface (HMI: comprising the main Graphical User In-
terface, advanced phone services, and miscellaneous applications). As such, there
is no clear code separation between different firmware sections. On these phones,
typically a real-time kernel takes care of scheduling all the tasks for the processes

www.syssec-project.eu 48 October 30, 2014

2.6. EVALUATION

Address Space
0x00000000
0x00000020

Interrupt vect.

0x00002000

ROM (bootloader)

0x00002020
User interrupt vector

0x00400000
NOR flash

0x00800000
Unused

0x00c00000
Internal SRAM

0x01000000
Unused

0x01800000
External SRAM

0xFFFF0000
Unused

Memory mapped IO
0xFFFFFFFF

Fig. 2.8: Motorola C118 memory layout (respective scales not respected).

currently in execution. These are executed in the same context and have shared
access to the whole physical memory as well as memory-mapped I/O.

GSM baseband stacks have already been shown to have a large potentially
exploitable attack surface [252]. Those stacks are developed by few companies
worldwide and have many legacy parts which were not written with security in
mind, and in particular were not considering attacks coming from the GSM infras-
tructure [253].

For our experiment, we used a Motorola C118, which is a re-branded version
of the Compal E88 board also found in other Motorola feature phones. This board
makes use of the Texas Instruments “Calypso” digital baseband, which is com-
posed of a mask-ROM, a DSP for GSM signal decoding, and a single ARM7TDMI
processor. It also includes several peripherals such as an RTC clock, a PWM gen-
erator for controlling the lights and buzzer as well as a memory mapped UART as
shown in Figure 2.8. Some board models have JTAG and UART ports available,
which are from time to time left enabled by manufacturers to simplify servicing
devices. In our case, we gained access to the JTAG port and used an adapter to
bridge communication between Avatar and the hardware, as shown in Figure 2.7.

Some specification documents on the Calypso chipset have been leaked in the
past, leading to the creation of home-brew phone OS that could be run on such
boards. As part of the Osmocom-BB project, most of the platform has been re-
versed and documented, and it is now possible to run a free open-source software
GSM stack on it [8]. However, we conducted our experiments on the original
Motorola firmware, in order to assess the baseband code of an unmodified phone.

www.syssec-project.eu 49 October 30, 2014

AVATAR

Moreover, as the GSM network code is provided as a library by the baseband man-
ufacturer, there is an higher chance that flaws affecting the library code would also
be present in a broader range of phones using baseband chips from that same ven-
dor.

The phone has a first-stage bootloader executed on hardware reset, which can
be used to re-flash the firmware. After phone setup, execution continues to the main
firmware, which is mainly composed of the Nucleus RTOS, the TI network stack
library, and of third-party code to manage the user interface. The phone bootloader
can be analyzed using Avatar in a similar way as the one already described for
the hard disk in Section 2.6.1 to discover flashing commands, hidden menus and
possible backdoors. However, the bootloader revealed itself to be simpler than the
hard drive one, supporting only a UART command to trigger firmware flashing and
executing the flashed firmware, or continuing execution after a timeout expiration.

For this reason, we focused on the analysis of the GSM network stack, and in
particular on the routines dedicated to SMS decoding. It has already been shown
in the past how maliciously crafted SMS can cause misbehavior, ranging from UI
issues to phone crashes [195]. However, due to the lack of a dynamic analysis plat-
form to analyze embedded devices, previous studies relied on blind SMS fuzzing.
Our experiment aims at improving the effectiveness of SMS fuzzing to detect re-
motely exploitable execution paths.

In this scenario, Avatar was configured to start the execution of the firmware
on the real device, and switch to the emulator once the code reached the SMS
receiving state (e.g., by sending a legitimate SMS to it through the GSM network).
Avatar was then used to selectively emulate and symbolically explore the decoding
routines. As a result of this exploration, a user is able to detect faulty conditions,
to determine code coverage due to different inputs and to recover precise input
constraints to drive the firmware execution into interesting areas.

In this context, Avatar uses the JTAG connection to stop the execution on the
target and later perform all synchronization steps between the emulator and the
target. All memory and I/O accesses through JTAG are traced by Avatar to let the
user identify address mappings. When the phone reaches the SMS receiving state,
a target-to-emulator context switch happens and the phone’s state is transferred into
S2E. Using address mapping information previously recovered through Avatar, just
the relevant memory is moved into S2E (e.g., portions of code and the execution
stack), while remaining memory is kept on the target and forwarded on-the-fly by
Avatar (e.g., I/O regions). On this device, no selective code migration was required.

Using this Avatar configuration, the SMS payload can be intercepted in mem-
ory and marked as symbolic by employing the techniques shown in Section 2.5.
In particular, we wrote Annotation functions to be triggered before entering the
decoding routines and we then proceeded to selectively mark some bytes of their
input arguments as symbolic. The S2E plug-in for Arbitrary Execution Detection
has been employed to isolate interesting vulnerable cases, while other execution
paths were killed upon reaching the end of the decoding function.

www.syssec-project.eu 50 October 30, 2014

2.7. RELATED WORK

The symbolic execution experiments have been performed over several days,
with the ones with larger number of symbolic inputs taking up to 10 hours be-
fore filling up 60 GB of available memory. In such case, we observed more than
120,000 states being spawned according to different constraints solving. Unfortu-
nately, and contrary to the other experiments, the GSM network stack proved to be
way too complex to be symbolically analyzed without prior knowledge on the high-
level structure of the code. The analysis was clobbered by an explosion of possible
states due to many forks happening in pointer-manipulating loops. Avatar was
able to symbolically explore 42 subroutines executed during SMS decoding, with-
out detecting any exploitable conditions. However, it was able to highlight several
situations of user-controlled memory load, which were unfortunately too strictly
constrained to be exploited, as discussed in Section 2.5.2.

State explosion is a well-known limitation of symbolic execution. To mitigate
the problem, a user may need to define heuristics to avoid an excessive resource
consumption. This could be done, for example, by employing more aggressive
state selectors to enhance code coverage, and actively prune states by looking at
loops invariants [216]. However, this optimizations are outside the scope of our
paper. The objective of our experiments are, in fact, limited to prove that Avatar can
be used to perform dynamic analysis of complex firmware of embedded devices.

2.7 Related work

The importance of porting dynamic analysis techniques to different platforms has
been discussed by Li and Wang [172], who proposed a set of tools built on top of
IDA Pro and the REIL Intermediate Language to perform symbolic execution in a
portable way.

However, embedded systems have long been recognized to be a difficult tar-
get for debugging and dynamic analysis. SymDrive [212] presents a technique
based on symbolic execution to test Linux and FreeBSD device drivers without
their device present. However, by replacing every input with a symbolic value,
this approach is hard to scale and would suffer of state explosion on any real
world firmware. In [70], Chipounov and Candea present REVNIC, a tool based
on S2E [72] that helps to reverse engineer network device drivers. As a case study
the authors port a Windows device driver for a common network card to a differ-
ent Operating System. While the presented approach is interesting, it relies on the
presence (and extension) of the emulated device and PCI bus in QEMU. Instead,
Avatar is hardware agnostic, as it does not need to know how peripherals are con-
nected, mapped and accessed. Instead I/O can be simply forwarded to the real
target and I/O related code directly executed there.

Cui et al., adopted software symbiotes [88], an on-device binary instrumenta-
tion to automatically insert hooks in embedded firmwares. Their solution allows to
insert pieces of code that can be used to interact with the original firmware. How-

www.syssec-project.eu 51 October 30, 2014

AVATAR

ever, while this allows some analysis (like tracing), performing advanced dynamic
analysis often requires to be able to run the firmware code inside an emulator.

Dynamic analysis based on virtualization has already been proposed in the
past [166], also in embedded systems contexts [171, 133]. However, Avatar aims at
overcoming many of the limitations of pure-virtualization systems, by providing an
hybrid system where code execution can be transferred back and forth between the
device and an emulator, as well as a full framework to orchestrate all the analysis
steps.

The state migration technique employed by Avatar is highly influenced by ex-
isting solutions been used to improve the performance during hot-migration of
virtual machines. In particular, our approach is a simplified version of the one
proposed by Clark et al. [73], where Avatar is the arbiter of a managed migra-
tion, which can either happen in a single stop-and-copy phase (as in full-separation
mode) or in an event-driven pull-phase (during context switching).

The ”security by obscurity” approach is still relevant among embedded sys-
tems manufacturers and has lead in the past to the discovery of major weaknesses
in commonly deployed technologies [201]. We believe that Avatar represents a
flexible solution to provide a symbolic analysis environment which can greatly
speed-up such blackbox analysis cases, aiming at automatically reverse engineer
input formats [89, 52] and detect hidden data structures [229]. In the past, back-
doors and insecure firmware update facilities were found into embedded systems,
often disguised into other standard interfaces such as Printer Job Language updates
for HP printers [84]. In our experiments we showed how Avatar can be used to ac-
tively look for such backdoors, by symbolically executing input parsing routines.

Davidson et al. [92] present a tool to perform symbolic execution of embedded
firmware for MSP430-based devices. Like Avatar, this tool is based on the KLEE
symbolic execution engine. However, it relies on firmware’s source code as well
as on documented SoCs, peripherals mapping, or on a simple emulation layer for
them, all of those are rarely available for commercial devices.

Delugre [95] reports on the techniques that were used to reverse engineer the
firmware of a PCI network card, and to develop a backdoored firmware. For this
purpose, QEMU was adapted to emulate the firmware and to forward IO access to
the device. However, this was limited by bad performance. We have seen similar
performance blockers when using Avatar in full separation mode, but the ability
to perform memory optimization and push back code to the physical device allow
Avatar to overcome such limitations.

Dedicated hardware support can provide a very good solution to improve effi-
ciency of debugging, improving significantly the ability to replay events and sys-
tem status. In [258] Xu et al., presents an hardware architecture for recording
precise events and replay them during debugging sessions. For this purpose cus-
tom hardware logs memory and taps on several important internal features (e.g.,
cache lines). Simpler systems also exist, like In-Circuit Emulators [255], which
replace the CPU core by an emulated CPU which can then directly interact with

www.syssec-project.eu 52 October 30, 2014

2.8. CONCLUSION

hardware peripherals. While Avatar could make use of such features, it also aims
at enabling analysis on devices without such dedicated hardware support.

2.8 Conclusion

This paper introduced Avatar, a new framework for dynamic analysis of embedded
devices’ firmwares. Avatar enables the execution of firmware code in an analysis-
friendly emulator by forwarding memory access to the real device. This allows to
analyze firmwares that rely on completely unknown peripherals.

Avatar proved to be capable of acceptable performances and flexibility in three
real-word tests, performed on a variety of target devices and with different goals.
It was successfully used across these three scenarios, which included a common
reverse engineering task, a vulnerability discovery and a hardcoded backdoor de-
tection.

Future work will consist in integrating better analysis techniques with avatar
to improve its bug detection rate. For example, augmenting Avatar with tech-
niques like those used in Howard [227] would allow to recover memory structures
and therefore improve bug detection, while other techniques as used in AEG [26]
could be applicable as well. Another area where significant improvements can be
achieved is in providing improved state exploration heuristics, that lead to better
coverage or to the analysis of more error prone code [132].

Finally, Avatar has been tested on ARM embedded systems and could easily
support x86 targets, but could be ported with reasonable effort to a wider set of
architectures supported by QEMU such as MIPS and PowerPC, in order to analyze
many other devices.

www.syssec-project.eu 53 October 30, 2014

AVATAR

www.syssec-project.eu 54 October 30, 2014

3
A Large-Scale Analysis of the Security of

Embedded Firmwares

Preamble: Relation to the Research Roadmap

The security of embedded devices in general, and of the Internet of Things in par-
ticular, is an emerging topic that is attracting a lot of attention in the security com-
munity. The final Report on Threats on the Future Internet and Research Roadmap
(D4.4) lists both of them as important research directions.

The main problems that limited previous attempts to study this field are the lack
of a common dataset to perform the experiments, and the intrinsic diversity of the
devices architectures and data formats. The following paper presents the first large
scale study of the security of embedded devices, emphasizing both the advantages
and the problems that arise when performing this kind of experiments:

Andrei Costin, Jonas Zaddach, Aurlien Francillon, Davide Balzarotti “A Large
Scale Analysis of the Security of Embedded Firmwares” Proceedings of the 23rd
USENIX Security Symposium (USENIX Security) – August 2014

55

Large-Scale Analysis

Abstract

As embedded systems are more than ever present in our society, their security is
becoming an increasingly important issue. However, based on the results of many
recent analyses of individual firmware images, embedded systems acquired a repu-
tation of being insecure. Despite these facts, we still lack a global understanding of
embedded systems’ security as well as the tools and techniques needed to support
such general claims.

In this paper we present the first public, large-scale analysis of firmware im-
ages. In particular, we unpacked 32 thousand firmware images into 1.7 million
individual files, which we then statically analyzed. We leverage this large-scale
analysis to bring new insights on the security of embedded devices and to under-
line and detail several important challenges that need to be addressed in future
research. We also show the main benefits of looking at many different devices at
the same time and of linking our results with other large-scale datasets such as the
ZMap’s HTTPS survey.

In summary, without performing sophisticated static analysis, we discovered
a total of 38 previously unknown vulnerabilities in over 693 firmware images.
Moreover, by correlating similar files inside apparently unrelated firmware images,
we were able to extend some of those vulnerabilities to over 123 different products.
We also confirmed that some of these vulnerabilities altogether are affecting at
least 140K devices accessible over the Internet. It would not have been possible to
achieve these results without an analysis at such wide scale.

We believe that this project, which we plan to provide as a firmware unpacking
and analysis web service1, will help shed some light on the security of embedded
devices.

3.1 Introduction

Embedded systems are omnipresent in our everyday life. For example, they are the
core of various Common-Off-The-Shelf (COTS) devices such as printers, mobile
phones, home routers, and computer components and peripherals. They are also
present in many devices that are less consumer oriented such as video surveillance
systems, medical implants, car elements, SCADA and PLC devices, and basically
anything we normally call electronics. The emerging phenomenon of the Internet-
of-Things (IoT) will make them even more widespread and interconnected.

All these systems run special software, often called firmware, which is usually
distributed by vendors as firmware images or firmware updates. Several definitions
for firmware exist in the literature. The term was originally introduced to describe
the CPU microcode that existed “somewhere” between the hardware and the soft-
ware layers. However, the word quickly assumed a broader meaning, and the IEEE

1http://firmware.re

www.syssec-project.eu 56 October 30, 2014

http://firmware.re

3.1. INTRODUCTION

Std 610.12-1990 [10] extended the definition to cover the “combination of a hard-
ware device and computer instructions or computer data that reside as read-only
software on the hardware device”.

Nowadays, the term firmware is more generally used to describe the software
that is embedded in a hardware device. Like traditional software, embedded de-
vices’ firmware may have bugs or misconfigurations that can result in vulnerabil-
ities for the devices which run that particular code. Due to anecdotal evidence,
embedded systems acquired a bad security reputation, generally based on case by
case experiences of failures. For instance, a car model throttle control fails [140] or
can be maliciously taken over [64, 162]; a home wireless router is found to have a
backdoor [143, 15, 137], just to name a few recent examples. On the one hand, apart
from a few works that targeted specific devices or software versions [126, 85, 217],
to date there is still no large-scale security analysis of firmware images. On the
other hand, manual security analysis of firmware images yields very accurate re-
sults, but it is extremely slow and does not scale well for a large and heterogeneous
dataset of firmware images. As useful as such individual reports are for a partic-
ular device or firmware version, these alone do not allow to establish a general
judgment on the overall state of the security of firmware images. Even worse, the
same vulnerability may be present in different devices, which are left vulnerable
until those flaws are re-discovered independently by other researchers [143]. This
is often the case when several integration vendors rely on the same subcontractors,
tools, or SDKs provided by development vendors. Devices may also be branded
under different names but may actually run either the same or similar firmware.
Such devices will often be affected by exactly the same vulnerabilities, however,
without a detailed knowledge of the internal relationships between those vendors,
it is often impossible to identify such similarities. As a consequence, some devices
will often be left affected by known vulnerabilities even if an updated firmware is
available.

3.1.1 Methodology

Performing a large-scale study of the security of embedded devices by actually
running the physical devices (i.e., using a dynamic analysis approach) has several
major drawbacks. First of all, physically acquiring thousands of devices to study
would be prohibitively expensive. Moreover, some of them may be hard to operate
outside the system for which they are designed — e.g., a throttle control outside a
car. Another option is to analyze existing online devices as presented by Cui and
Stolfo [87]. However, some vulnerabilities are hard to find by just looking at the
running device, and it is ethically questionable to perform any nontrivial analysis
on an online system without authorization.

Unsurprisingly, static analysis scales better than dynamic analysis as it does
not require access to the physical devices. Hence, we decided to follow this ap-
proach in our study. Our methodology consists of collecting firmware images for
as many devices and vendors as possible. This task is complicated by the fact that

www.syssec-project.eu 57 October 30, 2014

Large-Scale Analysis

firmware images are diverse and it is often difficult to tell firmware images apart
from other files. In particular, distribution channels, packaging formats, installation
procedures, and availability of meta-data often depend on the vendor and on the de-
vice type. We then designed and implemented a distributed architecture to unpack
and run simple static analysis tasks on the collected firmware images. However,
the contribution of this paper is not in the static analysis techniques we use (for
example, we did not perform any static code analysis), but to show the advantages
of an horizontal, large-scale exploration. For this reason, we implemented a corre-
lation engine to compare and find similarities between all the objects in our dataset.
This allowed us to quickly “propagate” vulnerabilities from known vulnerable de-
vices to other systems that were previously not known to be affected by the same
vulnerability.

Most of the steps performed by our system are conceptually simple and could
be easily performed manually on a few devices. However, we identified five major
challenges that researchers need to address in order to perform large scale exper-
iments on thousands of different firmware images. These include the problem of
building a representative dataset (Challenge A in Section 3.2), of properly identify-
ing individual firmware images (Challenge B in Section 3.2), of unpacking custom
archive formats (Challenge C in Section 3.2), of limiting the required computation
resources (Challenge D in Section 3.2), and finally of finding an automated way
to confirm the results of the analysis (Challenge E in Section 3.2). While in this
paper we do not propose a complete solution for all these challenges, we discuss
the way and the extent to which we dealt with some of these challenges to perform
a systematic, automated, large-scale analysis of firmware images.

3.1.2 Results Overview

For our experiments we collected an initial set of 759,273 files (totaling
1.8TB of storage space) from publicly accessible firmware update sites. After
filtering out the obvious noise, we were left with 172,751 potential firmware
images. We then sampled a set of 32,356 firmware candidates that we analyzed
using a private cloud deployment of 90 worker nodes. The analysis and reports
resulted in a 10GB database.

The analysis of sampled files led us to automatically discover and report 38 new
vulnerabilities (fixes for some of these are still pending) and to confirm several that
were already known [137, 143]. Some of our findings include:

• We extracted private RSA keys and their self-signed certificates used in about
35,000 online devices (mainly associated with surveillance cameras).

• We extracted several dozens of hard-coded password hashes. Most of them
were weak, and therefore we were able to easily recover the original pass-
words.

• We identified a number of possible backdoors such as the authorized -
keys file (which lists the SSH keys that are allowed to remotely connect

www.syssec-project.eu 58 October 30, 2014

3.2. CHALLENGES

to the system), a number of hard-coded telnetd credentials affecting at
least 2K devices, hard-coded web-login admin credentials affecting at least
101K devices, and a number of backdoored daemons and web pages in the
web-interface of the devices.

• Whenever a new vulnerability was discovered (by other researchers or by
us) our analysis infrastructure allowed us to quickly find related devices or
firmware versions that were likely affected by the same vulnerability. For
example, our correlation techniques allowed us to correctly extend the list
of affected devices for variations of a telnetd hard-coded credentials vul-
nerability. In other cases, this led us to find a vulnerability’s root problem
spread across multiple vendors.

3.1.3 Contributions

In summary this paper makes the following contributions:

• We show the advantages of performing a large-scale analysis of firmware
images and describe the main challenges associated with this activity.

• We propose a framework to perform firmware collection, filtering, unpacking
and analysis at large scale.

• We implemented several efficient static techniques that we ran on 32, 356 firm-
ware candidates.

• We present a correlation technique which allows to propagate vulnerability
information to similar firmware images.

• We discovered 693 firmware images affected by at least one vulnerability
and reported 38 new CVEs.

3.2 Challenges

As mentioned in the previous section, there are clear advantages of performing a
wide-scale analysis of embedded firmware images. In fact, as is often the case in
system security, certain phenomena can only be observed by looking at the global
picture and not by studying a single device (or a single family of devices) at a time.

However, large-scale experiments require automated techniques to obtain firm-
ware images, unpack them, and analyze the extracted files. While these are easy
tasks for a human, they become challenging when they need to be fully automated.
In this section we summarize the five main challenges that we faced during the
design and implementation of our experiments.

www.syssec-project.eu 59 October 30, 2014

Large-Scale Analysis

Challenge A: Building a Representative Dataset

The embedded systems environment is heterogeneous, spanning a variety of de-
vices, vendors, architectures, instruction sets, operating systems, and custom com-
ponents. This makes the task of compiling a representative and balanced dataset
of firmware images a difficult problem to solve.

The real market distribution of a certain hardware architecture is often un-
known, and it is hard to compare different classes of devices (e.g., medical implants
vs. surveillance cameras). Which of them need to be taken into account to build a
representative firmware dataset? How easy is it to generalize a technique that has
only been tested on a certain brand of routers to other vendors? How easy is it to
apply the same technique to other classes of devices such as TVs, cameras, insulin
pumps, or power plant controllers?

From a practical point of view, the lack of centralized points of collection (such
as the ones provided by antivirus vendors or public sandboxes in the malware ana-
lysis field) makes it difficult for researchers to gather a large and well triaged data-
set. Firmware often needs to be downloaded from the vendor web pages, and it is
not always simple, even for a human, to tell whether or not two firmware images
are for the same physical device.

Challenge B: Firmware Identification

One challenge often encountered in firmware analysis and reverse engineering is
the difficulty of reliably extracting meta-data from a firmware image. For instance,
such meta-data includes the vendor, the device product code and purpose, the firm-
ware version, and the processor architecture, among many other details.

In practice, the diversity of firmware file formats makes it harder to even recog-
nize that a given file downloaded from a vendor website is a firmware at all. Often
firmware updates come in unexpected formats such as HP Printer Job Language
and PostScript documents for printers [78, 77, 85], DOS executables for BIOS, and
ISO images for hard disk drives [265].

In many cases, the only source of reliable information is the official vendor
documentation. While this is not a problem when looking manually at a few de-
vices, extending the analysis to hundreds of vendors and thousands of firmware
images automatically downloaded from the Internet is challenging. In fact, the in-
formation retrieval process is hard to automate and is error prone, in particular for
certain classes of meta-data. For instance, we often found it hard to infer the cor-
rect version number. This makes it difficult for a large-scale collection and analysis
system to tell which is the latest version available for a certain device, and even if
two firmware images corresponded to different versions for the same device. This
further complicates the task of building an unbiased dataset.

www.syssec-project.eu 60 October 30, 2014

3.2. CHALLENGES

Challenge C: Unpacking and Custom Formats

Assuming the analyst succeeded in collecting a representative and well labeled
dataset of firmware images, the next challenge consists in locating and extracting
important functional blocks (e.g., binary code, configuration files, scripts, web in-
terfaces) on which static analysis routines can be performed.

While this task would be easy to address for traditional software components,
where standardized formats for the distribution of machine code (e.g., PE and
ELF), resources (e.g., JPEG and GZIP) and groups of files (e.g., ZIP and TAR) ex-
ist, embedded software distribution lacks standards. Vendors have developed their
own file formats to describe flash and memory images. In some cases those for-
mats are compressed with non-standard compression algorithms. In other cases
those formats are obfuscated or encrypted to prevent analysis. Monolithic firm-
ware, in which the bootloader, the operating system kernel, the applications, and
other resources are combined together in a single memory image are especially
challenging to unpack.

Forensic strategies, like file carving, can help to extract known file formats
from a binary blob. Unfortunately those methods have drawbacks: On the one hand,
they are often too aggressive with the result of extracting data that matches a file
pattern only by chance. On the other hand, they are computationally expensive,
since each unpacker has to be tried for each file offset of the binary firmware blob.

Finally, if a binary file has been extracted that does not match any known file
pattern, it is impossible to say if this file is a data file, or just another container
format that is not recognized by the unpacker. In general, we tried to unpack at
least until reaching uncompressed files. In some cases, our extraction goes one
step further and tries to extract sections, resources and compressed streams (e.g.,
for the ELF file format).

Challenge D: Scalability and Computational Limits

One of the main advantages of performing a wide-scale analysis is the ability of
correlating information across multiple devices. For example, this allowed us to au-
tomatically identify the re-use of vulnerable components among different firmware
images, even from different vendors.

Capturing the global picture of the relationship between firmware images would
require the one-to-one comparison of each pair of unpacked files. Fuzzy hashes
(such as sdhash [214] and ssdeep [161]) are a common and effective solution for
this type of task and they have been successfully used in similar domains, e.g., to
correlate samples that belong to the same malware families [101, 36]. However,
as described in more detail in Section 3.3.4, computing the similarity between the
objects extracted from 26,275 firmware images requires 1012 comparisons. Using
the simpler fuzzy hash variant, we estimate that on a single dual-core computer this

www.syssec-project.eu 61 October 30, 2014

Large-Scale Analysis

task would take approximately 850 days2. This simple estimation highlights one of
the possible computational challenges associated with a large-scale firmware ana-
lysis. Even if we had a perfect database design and a highly optimized in-memory
database, it would still be hard to compute, store, and query the fuzzy hash scores
of all pairs of unpacked files. A distributed computational infrastructure can help
reduce the total time since the task itself is parallelizable [184]. However, since
the number of comparisons grows quadratically with the number of elements to
compare, this problem quickly becomes impracticable for large image datasets. If,
for example, one would like to build a fuzzy hash database for our whole dataset,
which is just five times the size of the current sampled dataset, this effort would
already take more than 150 CPU years instead of 850 CPU days. Our attempt to
use the GPU-assisted fuzzy hashing provided by sdhash [214] only resulted in
a limited speedup that was not sufficient to perform a full-scale comparison of all
files in our dataset.

Challenge E: Results Confirmation

The first four challenges were mostly related to the collection of the dataset and
the pre-processing of the firmware images. Once the code or the resources used by
the embedded device have been successfully extracted and identified, researchers
can focus their attention on the static analysis. Even though the details and goals
of this step are beyond the scope of this paper, in Section 3.3.3 we present some
examples of simple static analysis and we discuss the advantages of performing
these techniques on a large scale.

However, one important research challenge remains regarding the way the re-
sults of static analysis can be confirmed. For example, we can consider a scenario
where a researcher applies a new vulnerability detection technique to several thou-
sand firmware images. Those images were designed to run on specific embedded
devices, most of which are not available to the researcher and would be hard and
costly to acquire. Lacking the proper hardware platform, there is still no way to
manually or automatically test the affected code to confirm or deny the findings of
the static analysis.

For example, in our experiments we identified a firmware image that included
the PHP 5.2.12 banner string. This allowed us to easily identify several vul-
nerabilities associated with that version of the PHP interpreter. However, this is
insufficient to determine if the PHP interpreter is vulnerable, since the vendor may
have applied patches to correct known vulnerabilities without this being reflected
in the version string. In addition, the vendor might have used an architecture and/or
a set of compilation options which produced a non-vulnerable build of the compo-
nent. Unfortunately, even if a proof of concept attack exists for that vulnerability,
without the proper hardware it is impossible to test the firmware and confirm or
deny the presence of the problem.

2 This is mainly because comparing fuzzy hashes is not a simple bit string comparison but actually
involves a rather complex algorithm and high computational effort.

www.syssec-project.eu 62 October 30, 2014

3.3. SETUP

Internet Public Web Interface

Crawl Submit

Firmware
Datastore

Master

Workers

Distribute

Unpacking
Static Analysis
Fuzzy Hashing

Firmware
Analysis &
Reports DB

Firmware
Analysis
Cloud

Password
Hash Cracker

 Data Enrichment

Correlation
Engine

Fig. 3.1: Architecture of the entire system.

Confirming the results of the static analysis on firmware devices is a tedious
task requiring manual intervention from an expert. Scaling this effort to thousands
of firmware images is even harder. Therefore, we believe the development of new
techniques is required to accurately deal with this problem at a large scale.

3.3 Setup

In this section we first present the design of our distributed static analysis and
correlation system. Then we detail the techniques we used, and how we addressed
the challenges described in Section 3.2.

www.syssec-project.eu 63 October 30, 2014

Large-Scale Analysis

3.3.1 Architecture

Figure 3.1 presents an overview of our architecture. The first component of our
analysis platform is the firmware data store, which stores the unmodified firmware
files that have been retrieved either by the web crawler or that have been submitted
through the public web interface. When a new file is received by the firmware
data store, it is automatically scheduled to be processed by the analysis cloud.
The analysis cloud consists of a master node, and a number of worker and hash
cracking nodes. The master node distributes unpacking jobs to the worker nodes
(Figure 3.2), which unpack and analyze firmware images. Hash cracking nodes
process password hashes that have been found during the analysis, and try to find
the corresponding plaintext passwords. Apart from coordinating the worker nodes,
the master node also runs the correlation engine and the data enrichment system
modules. These modules improve the reports with results from the cross-firmware
analysis.

The analysis cloud is where the actual analysis of the firmware takes place.
Each firmware image is first submitted to the master node. Subsequently, worker
nodes are responsible for unpacking and analyzing the firmware and for returning
the results of the analysis back to the master node. At this point, the master node
will submit this information to the reports database. If there were any uncracked
password hashes in the analyzed firmware, it will additionally submit those hashes
to one of the hash cracking nodes which will try to recover the plaintext passwords.

It is important to note that only the results of the analysis and the meta-data
of the unpacked files are stored in the database. Even though we do not currently
use the extracted files after the analysis, we still archive them for future work, or in
case we want to review or enhance a specific set of analyzed firmware images.

The architecture contains two other components: the correlation engine and
the data enrichment system. Both of them fetch the results of the firmware ana-
lysis from the reports database and perform additional tasks. The correlation engine
identifies a number of “interesting” files and tries to correlate them with any other
file present in the database. The enrichment system is responsible for enhancing
the information about each firmware image by performing online scans and lookup
queries (e.g., detecting vendor name, device name/code and device category).

In the remainder of this section we describe each step of the firmware analysis
in more detail so that our experiments can be reproduced.

3.3.2 Firmware Acquisition and Storage

The first step of our experiments consisted in gathering a firmware collection
for analysis. We achieved this goal by using mainly two methods: a web crawler
that automatically downloads files from manufacturers’ websites and specialized
mirror sites, and a website with a submission interface where users can submit
firmware images for analysis.

We initialized the crawler with tens of support pages from well known manu-
facturers such as Xerox, Bosch, Philips, D-Link, Samsung, LG, Belkin, etc. Sec-

www.syssec-project.eu 64 October 30, 2014

3.3. SETUP

ond, we used public FTP indexing engines 3 to search for files with keywords
related to firmware images (e.g., firmware). The result of such searches yields
either directory URLs, which are added to the crawler list of URLs to index and
download, or file URLs, which are directly downloaded by the crawler. At the
same time, the script strips filenames out of the URLs to create additional direc-
tory URLs.

Finally, we used Google Custom Search Engines (GCSE) [6] to create cus-
tomized search engines. GCSE provides a flexible API to perform advanced search
queries and returns results in a structured way. It also allows to programmatically
create a very customized CSE on-the-fly using a combination of RESTful and XML
APIs. For example, a CSE is created using support.nikonusa.com as the
“Sites to Search” parameter. Then a firmware related query is used on the CSE
such as ‘‘firmware download’’. The CSE from the above example returns
2,210 results at the time of this publication. The result URLs along with associated
meta-data are retrieved via the JSON API. Each URL was then used by the crawler
or as part of other dynamic CSE, as previously described. This allowed us to mine
additional firmware images and firmware repositories.

We chose not to filter data at collection time, but to download files greedily,
deciding at a later stage if the collected files were firmware images or not. The
reason for this decision is two-fold. First, accompanying files such as manuals and
user guides can be useful for finding additional download locations or for extracting
contained information (e.g., model, default passwords, update URLs). Second, as
we mentioned previously, it is often difficult to distinguish firmware images from
other files. For this reason, filtering a large dataset is better than taking a chance to
miss firmware files during the downloading phase. In total, we crawled 284 sites
and stopped downloading once the collection of files reached 1.8TB of storage.
The actual storage required for this amount of data is at least 3-4 times larger, since
we used mirrored backup storage, as well as space for keeping the unpacked files
and files generated during the unpacking (e.g., logs and analysis results).

The public web submission interface provides a means for security researchers
to submit firmware files for analysis. After the analysis is completed, the platform
produces a report with information about the firmware contents as well as similar-
ities to other firmware in our database. We have already received tens of firmware
images through the submission interface. While this is currently a marginal source
of firmware files, we expect that more firmware will be submitted as we advertise
our service. This will also be a unique chance to have access to firmware images
that are not generally available and, for example, need to be manually extracted
from a device.

3FTP indexing engines such as: www.mmnt.ru, www.filemare.com, www.
filewatcher.com, www.filesearching.com, www.ftpsearch.net, www.
search-ftps.com

www.syssec-project.eu 65 October 30, 2014

www.mmnt.ru
www.filemare.com
www.filewatcher.com
www.filewatcher.com
www.filesearching.com
www.ftpsearch.net
www.search-ftps.com
www.search-ftps.com

Large-Scale Analysis

Files fetched by the web crawler and received from the web submission inter-
face are added to the firmware data store. Files are simply stored on a file system
and a database is used for meta-data (e.g., file checksum, size, download location).

3.3.3 Unpacking and Analysis

The next step towards the analysis of a firmware image is to unpack and ex-
tract the contained files or objects. The output of this phase largely depends on
the type of firmware. In some examples, executable code and resources (such as
graphics files or HTML code) can be linked into a binary blob that is designed to
be directly copied into memory by a bootloader and then executed. Some other
firmware images are distributed in a compressed and obfuscated file which con-
tains a block-by-block copy of a flash image. Such an image may consist of several
partitions containing a bootloader, a kernel and a file system.

Unpacking Frameworks

There are three main tools to unpack arbitrary firmware images: binwalk [3], FRAK [83]
and Binary Analysis Toolkit (BAT) [241].

Binwalk is a well known firmware unpacking tool developed by Craig Heffner [3].
It uses pattern matching to locate and carve files from a binary blob. Additionally,
it also extracts meta-data such as license strings.

FRAK is an unpacking toolkit first presented by Cui et al. [85]. Even though the
authors mention that the tool would be made publicly available, we were not able to
obtain a copy. We therefore had to evaluate its unpacking performance based on the
device vendors and models that FRAK supports, according to [85]. We estimated
that FRAK would have unpacked less than 1% of the files we analyzed, while our
platform was able to unpack more than 81% of them. This said, both would be
complementary as some of the file formats FRAK unpacks are unsupported by our
tool at present.

The Binary Analysis Toolkit (BAT), formerly known as GPLtool, was origi-
nally designed by Tjaldur software to detect GPL violations [138, 241]. To this
end, it recursively extracts files from a firmware blob and matches strings with
a database of known strings from GPL projects. Additionally, BAT supports file
carving similar to binwalk.

Table 3.1 shows a simple comparison of the unpacking performance of each
framework on a few samples of firmware images. We chose to use BAT because
it is the most complete tool available for our purposes. It also has a significantly
lower rate of false positive extractions compared to binwalk. In addition, binwalk
did not support recursive unpacking at the time when we decided on an unpack-
ing framework. Nevertheless, the interface between our framework and BAT has
been designed to be generic so that integrating other unpacking toolkits (such as
binwalk) is easy.

We developed a range of additional plugins for BAT. These include plugins
which extract interesting strings (e.g., software versions or password hashes), add

www.syssec-project.eu 66 October 30, 2014

3.3. SETUP

Table 3.1: Comparison of Binwalk, BAT, FRAK and our framework. The last
three columns show if the respective unpacker was able to extract the firmware.

Note that this is a non statistically significant sample which is given for
illustrating unpacking performance (manual analysis of each firmware is time

consuming). As FRAK was not available for testing, its unpacking performance
was estimated based on information from [83]. The additional performance of our
framework stems from the many customizations we have incrementally developed

over BAT (Figure 3.2).

Device Vendor OS Binwalk BAT FRAK
Our

framework
PC Intel BIOS 7 7 7 7

Camera STL Linux 7 3 7 3

Router Bintec - 7 7 7 7

ADSL
Gateway

Zyxel ZynOS 3 3 7 3

PLC Siemens - 3 3 7 3

DSLAM - - 3 3 7 3

PC Intel BIOS 3 3 7 3

ISDN
Server

Planet - 3 3 7 3

Voip Asotel Vxworks 3 3 7 3

Modem - - 7 7 7 3

Home
Automation

Belkin Linux 7 7 7 3

55% 64% 0% 82%

unpacking methods, gather statistics and collect interesting files such as private
key files or authorized keys files. In total we added 35 plugins to the existing
framework.

Password Hash Cracking

Password hashes found during the analysis phase are passed to a hash cracking
node. These nodes are dedicated physical hosts with a Nvidia Tesla GPU [173]
that run a CUDA-enabled [202] version of John The Ripper [203]. John The Rip-
per is capable of brute forcing most encoded password hashes and detecting the
type of hash and salt used. In addition to this, a dictionary can be provided to
seed the password cracking. For each brute force attempt, we provide a dictionary
built from common password lists and strings extracted from firmwares, manu-
als, readme files and other resources. This allows to find both passwords that are
directly present in those files as well as passwords that are weak and based on
keywords related to the product.

Parallelizing the Unpacking and Analysis

To accelerate the unpacking process, we distributed this task on several worker
nodes. Our distributed environment is based on the distributed-python-for-scripting
framework [237]. Data is synchronized between the repository and the nodes using
rsync (over ssh) [243].

Our loosely coupled architecture allows us to run worker nodes virtually any-
where. For instance, we instantiated worker virtual machines on a local VMware

www.syssec-project.eu 67 October 30, 2014

Large-Scale Analysis

 Standard BAT

OS/Arch Passwords/KeysUnpackers Others [...]

Our Patches and
Extensions to BAT

Distributed Platform Glue Code

O
ur

P

lu
gi

ns
O

ur

P
la

tf
or

m
Entropy

Fig. 3.2: Architecture of a single worker node.

server and several OpenStack servers, as well as on Amazon EC2 instances. At
the time of this publication we were using 90 such virtual machines to analyze
firmware files.

3.3.4 Correlation Engine

The unpacked firmware images and analysis results are stored into the analysis
& reports database. This allows us to perform queries, to generate reports and
statistics, and to easily integrate our results with other external components. The
correlation engine is designed to find similarities between different firmware im-
ages. In particular, the comparison is made along four different dimensions: shared
credentials, shared self-signed certificates, common keywords, and fuzzy hashes of
the firmwares and objects within the firmwares.

Shared Credentials and Self-Signed Certificates

Shared credentials (such as hard coded non-trivial passwords) and shared self-
signed certificates are effective in finding strong connections between different
firmware images of the same vendor, or even firmwares of different vendors. For
example, we were able to correlate two brands of CCTV systems based on a com-
mon non-trivial default password.

Therefore, finding a password of one vendor’s product can directly impact the
security of others. We also found a similar type of correlation for two other CCTV
vendors that we linked through the same self-signed certificate, as explained in
Section 3.5.2.

Keywords

Keywords correlation is based on specific strings extracted by our static analysis
plugins. In some cases, for example in Section 3.5.1, the keyword “backdoor”
revealed several other keywords. By using the extended set of keywords we clus-
tered several vendors prone to the same backdoor functionality, possibly affecting

www.syssec-project.eu 68 October 30, 2014

3.3. SETUP

500, 000 devices. In other cases, files inside firmware images contain compila-
tion and SDK paths. This turns out to be sufficient to cluster firmware images of
different devices.

Fuzzy hashes

Fuzzy hash triage (comparison, correlation and clustering) is the most generic cor-
relation technique used by our framework. The engine computes both the ssdeep
and the sdhash of every single object extracted from the firmware image during
the unpacking phase. This is a powerful technique that allows us to find files that
are “similar” but for which a traditional hash (such as MD5 or SHA1) would not
match. Unfortunately, as we already mentioned in Section 3.2, a complete one-to-
one comparison of fuzzy hashes is currently infeasible on a large scale. Therefore,
we compute the fuzzy hashes of each file that was successfully extracted from a
firmware image and store this result. When a file is found to be interesting we
perform the fuzzy hash comparison between this file’s hash and all stored hashes.

For example, a file (or all files unpacked from a firmware) may be flagged as
interesting because it is affected by a known vulnerability, or because we found it
to be vulnerable by static analysis. If another firmware contains a file that is similar
to a file from a vulnerable firmware, then there might be a chance that the first
firmware is also vulnerable. We present such an example in Section 3.5.3, where
this approach was successful and allowed us to propagate known vulnerabilities of
one device to other similar devices of different vendors.

Future work

In the literature, there are several approaches proposed to perform comparison,
clustering, and triage on a large scale. Jang et al. propose large-scale triage tech-
niques of PC malware in BitShred [147]. The authors concluded that at the rate
of 8,000 unique malware samples per day, which required 31M comparisons, it
is unfeasible on a single CPU to perform one-to-one comparisons to find mal-
ware families using hierarchical clustering. French and Casey [34] propose, before
fuzzy hash comparison, to perform a “bins” partitioning approach based on the
block and file sizes. This approach, for their particular dataset and bins partition-
ing strategy, allowed on average to reduce the search space for a given fuzzy hash
down to 16.9%. Chakradeo et al. [62] propose MAST, an effective and well per-
forming triage architecture for mobile market applications. It solves the manual
and resource-intensive automated analysis at market-scale using Multiple Corre-
spondence Analysis (MCA) statistical method.

As a future work, there are several possible improvements to our approach.
For instance, instead of performing all comparisons on a single machine, we could
adopt a distributed comparison and clustering infrastructure, such as the Hadoop
implementation of MapReduce [94] used by BitShred. Second, on each comparison

www.syssec-project.eu 69 October 30, 2014

Large-Scale Analysis

and clustering node we could use the “bins” partitioning approach from French and
Casey [34].

3.3.5 Data Enrichment

The data enrichment phase is responsible for extending the knowledge base
about firmware images, for example by performing automated queries and passive
scans over the Internet. In the current prototype, the data enrichment relies on two
simple techniques. First, it uses the <title> tag of web pages and authenti-
cation realms of web servers when these are detected inside a firmware. This
information is then used to build targeted search queries (such as “intitle:Router
ABC-123 Admin Page”) for both Shodan [9] and GCSE.

Second, we correlate SSL certificates extracted from firmware images to those
collected by the ZMap project. ZMap was used in [103] to scan the whole IPv4
address space on the 443 port, collecting SSL certificates in a large database.

Correlating these two large-scale databases (i.e., ZMap’s HTTPS survey and
our firmware database) provides new insights. For example, we are able to quickly
evaluate the severity of a particular vulnerability by identifying publicly reachable
devices that are running a given firmware image. This gives a good estimate for the
number of publicly accessible vulnerable devices.

For instance, our framework found 41 certificates having unprotected private
keys. Those keys were extracted from firmware images in the unpacking and ana-
lysis phase. The data enrichment engine subsequently found the same self-signed
certificate in over 35K devices reachable on the Internet. We detail this case study
in Section 3.5.2.

3.3.6 Setup Development Effort

Our framework relies on many existing tools. In addition to this, we have put
a considerable effort (over 20k lines of code according to sloccount [254]) to
extend BAT, develop new unpackers, create the results analysis platform and run
results interpretation.

3.4 Dataset and Results

In this section we describe our dataset and we present the results of the global
analysis, including the discussion of the new vulnerabilities and the common bad
practices we discovered in our experiments. In Section 3.5, we will then present
a few concrete case studies, illustrating how such a large dataset can provide new
insights into the security of embedded systems.

3.4.1 General Dataset Statistics

While we currently collect firmware images from multiple sources, most of
the images in our dataset have been downloaded by crawling the Internet. As a

www.syssec-project.eu 70 October 30, 2014

3.4. DATASET AND RESULTS

consequence, our dataset is biased towards devices for which firmware updates can
be found online, and towards known vendors that maintain well organized websites.

We also decided to exclude firmware images of smartphones from our study.
In fact, popular smartphone firmware images are complete operating system dis-
tributions, most of them iOS, Android or Windows based – making them closer to
general purpose systems than to embedded devices.

Our crawler collected 759,273 files, for a total of 1.8TB of data. After fil-
tering out the files that were clearly unrelated (e.g., manuals, user guides, web
pages, empty files) we obtained a dataset of 172,751 files. Our architecture is con-
stantly running to fetch more samples and analyze them in a distributed fashion. At
the time of this publication the system was able to process (unpack and analyze)
32,356 firmware images.

Firmware Identification The problem of properly identifying a firmware image
(Challenge 2) still requires a considerable amount of manual effort. Doing so ac-
curately and automatically at a large scale is a daunting task. Nevertheless, we are
interested in having an estimate of the number of actual firmware images in our
dataset.

For this purpose we manually analyzed a number of random samples from our
dataset of 172,751 potential firmware images and computed a confidence inter-
val [50] to estimate the global representativeness in the dataset. In particular, after
manually analyzing 130 random files from the total of 172,751, we were able to
mark only 44 as firmware images. This translates to a proportion of 34% (± 8%)
firmware images on our dataset – with a 95% confidence. The manual analysis pro-
cess took approximately one person-week because the inspection of the extracted
files for firmware code is quite tedious.

We can therefore expect our dataset to contain between 44,431 and 72,520
firmware images (by applying 34%−8%, and 34%+8% respectively, to the entire
candidates set of 172,751). While the range is still relatively large, this estimation
gives a 95% reliable measure of the useful data in our sample. We also devel-
oped a heuristic to automatically detect if a file is successfully unpacked or not.
This heuristic takes multiple parameters, such as the number, type and size of files
carved out from a firmware, into account. Such an empirical heuristic is not per-
fect, but it can guide our framework to mark a file as unpacked or not, and then
take actions accordingly.

Files Analysis As described in Section 3.3.3, unpacking unknown files is an
error-prone and time-consuming task. In fact, when the file format is not recog-
nized, unpacking relies on a slow and imprecise carving approach. File carving is
essentially an attempt to unpack at every offset of the file, iterating over several
known signatures (e.g., archive magic headers).

www.syssec-project.eu 71 October 30, 2014

Large-Scale Analysis

linux

vxworks

nucleus

windows ce

ecos

ambarella

rtems

fm11−os

2 and more

1 10 100 1000 10000

Detections (log)

O
S

Fig. 3.3: OS distribution among firmware images.

As a result, out of the 32,356 files we processed so far, 26,275 were success-
fully unpacked. The process is nevertheless continuous and more firmware images
are being unpacked over time.

3.4.2 Results Overview

In the rest of the section we present the results of the analysis performed by our
plugins right after each firmware image was unpacked.

Files Formats The majority of initial files being unpacked were identified as
compressed files or raw data. Once unpacked, most of those firmware images were
identified as targeting ARM (63%) devices, followed by MIPS (7%). As reported in
Figure 3.3, Linux is the most frequently encountered embedded operating system
in our dataset – being present in more than three quarters (86%) of all analyzed
firmware images. The remaining images contain proprietary operating systems like
VxWorks, Nucleus RTOS and Windows CE, which altogether represent around
7%. Among Linux based firmware images, we identified 112 distinct Linux kernel
versions.

Password Hashes Statistics Files like /etc/passwd and /etc/shadow store
hashed versions of account credentials. These are usual targets for attackers since
they can be used to retrieve passwords which often allow to login remotely to a
device at a later time. Hence, an analysis of these files can help understanding how
well an embedded device is protected.

Our plugin responsible for collecting entries from /etc/passwd and /etc/
shadow files retrieved 100 distinct password hashes, covering 681 distinct firm-

www.syssec-project.eu 72 October 30, 2014

3.4. DATASET AND RESULTS

ware images and belonging to 27 vendors. We were also able to recover the plain-
text passwords for 58 of those hashes, which occur in 538 distinct firmware im-
ages. The most popular passwords were <empty>, pass, logout, and helpme.
While these may look trivial, it is important to stress that they are actually used in
a large number of embedded devices.

Certificates and Private RSA Keys Statistics Many vendors include self-signed
certificates inside their firmware images [136, 135]. Due to bad practices in both
release management and software design, some vendors also include the private
keys (e.g., PEM, GPG), as confirmed by recent advisories [144, 146].

We developed two simple plugins for our system which collect SSL certificates
and private keys. These plugins also collect their fingerprints and check for empty
or trivial passphrases. So far, we have been able to extract 109 private RSA keys
from 428 firmware images and 56 self-signed SSL certificates out of 344 firmware
images. In total, we obtained 41 self-signed SSL certificates together with their
corresponding private RSA keys. By looking up those certificates in the public
ZMap datasets [102], we were able to automatically locate about 35,000 active
online devices.

For all these devices, if the certificate and private key are not regenerated on the
first boot after a firmware update, HTTPS encryption can be easily decrypted by an
attacker by simply downloading a copy of the firmware image. In addition, if both
a regenerated and a firmware-shipped self-signed certificate are used interchange-
ably, the user of the device may still be vulnerable to man-in-the-middle (MITM)
attacks.

Packaging Outdated and Vulnerable Software Another interesting finding re-
lates to bad release management by embedded firmware vendors. Firmware im-
ages often rely on many third-party software and libraries. Those keep updating
and have security fixes every now and then. OWASP Top Ten [205] lists “Using
Components with Known Vulnerabilities” at position nine and underlines that “up-
grading to these new versions is critical”.

In one particular case, we identified a relatively recently released firmware im-
age that contained a kernel (version 2.4.20) that was built and packaged ten years
after its initial release. In another case, we discovered that some recently released
firmware images contained nine years old BusyBox versions.

Building Images as root While prototyping, putting together a build environ-
ment as fast as possible is very important. Unfortunately, sometimes the easiest
solution is just to setup and run the entire toolchains as superuser.

Our analysis plugins extracted several compilation banners such as Linux
version 2.6.31.8-mv78100 (root@ubuntu) (gcc version 4.2.0
20070413 (prerelease)) Mon Nov 7 16:51:58 JST 2011 or
BusyBox v1.7.0 (2007-10-15 19:49:46 IST).

www.syssec-project.eu 73 October 30, 2014

Large-Scale Analysis

24% of the 450 unique banners we collected containing the user@host com-
binations were associated to the root user. In addition to this, among the 267
unique hostnames extracted from those banners, ten resolved to public IP ad-
dresses and one of these even accepted incoming SSH connections.

All these findings reveal a number of unsafe practices ranging from build man-
agement (e.g., build process done as root) to infrastructure management (e.g.,
build hosts reachable over public networks), to release management (e.g., user-
names and hostnames not removed from production release builds).

Web Servers Configuration We developed a number of plugins to analyze the
configuration files of web servers embedded in the firmware images such as
lighttpd.conf or boa.conf. We then parsed the extracted files to retrieve
specific configuration settings such as the running user, the documents root direc-
tory, and the file containing authentication secrets. We collected in total 847 dis-
tinct web server configuration files and the findings were discouraging. We found
that in more than 81% of the cases the web servers were configured to run as a
privileged user (i.e., having a setting such as user=root). This reveals unsafe
practices of insecure design and configuration. Running the web server of an em-
bedded device with unnecessarily high privileges can be extremely risky since the
security of the entire device can be compromised by finding a vulnerability in one
of the web components.

3.5 Case Studies

3.5.1 Backdoors in Plain Sight

Many backdoors in embedded systems have been reported recently, ranging
from very simple cases [137] to others that were more difficult to discover [145,
224]. In one famous case [137], the backdoor was found to be activated by the
string “xmlset roodkcableoj28840ybtide” (i.e., “edit by 04882 joel back-
door” in reverse). This fully functional backdoor was affecting three vendors. Inter-
estingly enough, this backdoor may have been detected earlier by a simple keyword
matching on the open source release from the vendor[5].

Inspired by this case, we performed a string search in our dataset with various
backdoor related keywords. Surprisingly, we found 1198 matches, in 326 firmware
candidates.

Among those search results, several matched the firmware of a home automa-
tion device from a major vendor. According to download statistics from Google
Play and Apple App Store, more than half a million users have downloaded an app
for this device [17, 16].

We manually analyzed the firmware of this Linux-based embedded system and
found that a daemon process listens on a network multicast address. This service
allows execution of remote commands with root privileges without any authen-

www.syssec-project.eu 74 October 30, 2014

3.5. CASE STUDIES

tication to anybody in the local network. An attacker can easily gain full control if
he can send multicast packets to the device.

We then used this example as a seed for our correlation engine. With this ap-
proach we found exactly the same backdoor in two other classes of devices from
two different vendors. One of them was affecting 109 firmware images of 44 cam-
era models of a major CCTV solutions vendor, Vendor C. The other case is af-
fecting three firmware images for home routers of a major networking equipment
vendor, Vendor D.

We investigated the issue and found that the affected devices were relying on
the same provider of a System on a Chip (SoC) for networking devices. It seems
that this backdoor is intended for system debugging, and is part of a development
kit. Unfortunately we were not able to locate the source of this binary. We plan to
acquire some of those devices to verify the exploitability of the backdoor.

3.5.2 Private SSL Keys

In addition to the backdoors left in firmware images from Vendor C, we also
found many firmware images containing public and private RSA key pairs. Those
unprotected keys are used to provide SSL access to the CCTV camera’s web inter-
face. Surprisingly, this private key is the same across many firmware images of the
same brand.

Our platform automatically extracts the fingerprint of the public keys, private
keys and SSL certificates. Those keys are then searched in ZMap’s HTTPS survey
database [102, 103]. Vendor C’s SSL certificate was found to be used by around
30K online IP addresses, most likely each corresponding to a single online device.
We then fetched the web pages available at those addresses (without trying to au-
thenticate). Surprisingly, we found CCTV cameras branded by another vendor –
Vendor B – which appears to be an integrator. Upon inspection, cameras of Ven-
dor B served exactly the same SSL certificate as cameras from Vendor C (including
the SSL Common Name, and SSL Organizational Unit as well as many other fields
of the SSL certificate). The only difference is that CCTV cameras of Vendor B re-
turned branded authentication realms, error messages and logos. The correlation
engine findings are summarized in Figure 3.4.

Unfortunately, the firmware images from Vendor B do not seem to be publicly
available. We are planning to obtain a device to extract its firmware and to confirm
our findings. We have reported these issues to the vendor. Nevertheless, it is very
likely that devices from Vendor B are also vulnerable to the multicast packet back-
door given the clear relationship with Vendor C that that our platform discovered.

3.5.3 XSS in WiFi Enabled SD Cards?

SD cards are often more complex than one would imagine. Most SD cards
actually contain a processor which runs firmware. This processor often manages
functions such as the flash memory translation layer and wear leveling. Security
issues have been previously shown on such SD cards [257].

www.syssec-project.eu 75 October 30, 2014

Large-Scale Analysis

Analysis & Reports
Database

Private RSA keys with
cracked passphrase

VendorC

HTTPS Ecosystem Scans

VendorB

SAME private RSA
SAME self-signed SSL certificate
DIFFERENT vendor

Device1

Device2

Check ZMap
IP addresses

Common
Vulnerable
Components

Fig. 3.4: Correlation engine and shared self-signed certificates clustering.

Some SD cards have an embedded WiFi interface with a full fledged web
server. This interface allows direct access to the files on the SD card without eject-
ing it from the device in which it is inserted. It also allows administration of the
SD card configuration (e.g., WiFi access points).

We manually found a Cross Site Scripting (XSS) vulnerability in one of these
web interfaces, which consists of a perl based web application. As this web ap-
plication does not have platform specific binary bindings, we were able to load the
files inside a similar Boa web server on a PC and confirm the vulnerability.

Once we found the exact perl files responsible for the XSS, we used our cor-
relation engine based on fuzzy hashes. With this we automatically found another
SD card firmware that is vulnerable to the same XSS. Even though the perl files
were slightly different, they were clearly identified as similar by the fuzzy hash.
This correlation would not have been detected by a normal checksum or by a reg-
ular hash function.

The process is visualized in Figure 3.5. The file (*) was found vulnerable. Sub-
sequently, we identified correlated files based on fuzzy hashing. Some of them were
related to the same firmware or a previous version of the firmware of the same ven-
dor (in red). Also, fuzzy hash correlation identified a similar file in a firmware from
a different vendor (in orange) that is vulnerable to the same weakness. It further
identified some non-vulnerable or non-related files from other vendors (in green).

www.syssec-project.eu 76 October 30, 2014

3.6. ETHICAL DISCUSSION

Same Vendor

*

Same Firmware

Fig. 3.5: Fuzzy hash clustering and vulnerability propagation. A vulnerability was
propagated from a seed file (*) to other two files from the same firmware and three

files from the same vendor (in red) as well as one file from another vendor (in
orange). Also four non-vulnerable files (in green) have a strong correlation with

vulnerable files. Edge thickness displays the strength of correlation between files.

Those findings are reported as CVE-2013-5637 and CVE-2013-5638. We
were also able to confirm this vulnerability and extend the list of affected versions
for one of these vendors.

Such manual vulnerability confirmation does not scale. Hence, in the future we
plan to integrate static analysis tools for web applications [91, 30, 150, 109, 2] in
our process.

3.6 Ethical Discussion

Large-scale scans to test for the presence of vulnerabilities often raise serious ethi-
cal concerns. Even simple Internet-wide network scans may trigger alerts from in-
trusion detection systems (IDS) and may be perceived as an attack by the scanned
networks.

In our study we were particularly careful to work within legal and ethical
boundaries. First, we obtain firmware images either through user submission or
through legitimate distribution mechanisms. In this case, our web crawler was de-
signed to obey the robots.txt directives. Second, when we found new vul-
nerabilities we worked together with vendors and CERTs to confirm the devices
vulnerabilities and to perform responsible disclosure. Finally, the license of some
firmware images may not allow redistribution. Therefore, the public web submis-
sion interface limits the ability to access firmware contents only to the users who
uploaded the corresponding firmware image. Other users can only access anony-
mized reports. We are currently investigating ways to make the full dataset avail-
able for research purposes to well identified research institutions.

www.syssec-project.eu 77 October 30, 2014

Large-Scale Analysis

3.7 Related Work

Several studies have been proposed to asses the security of embedded devices by
scanning the Internet. For instance, Cui et al. [86, 87] present a wide-scale In-
ternet scan to first recognize devices that are known to be shipped with default
password, and then to confirm that these devices are indeed still vulnerable by
attempting to login into them. Heninger et al. [139] performed the largest ever net-
work survey of TLS and SSH servers, showing that vulnerable keys are surprisingly
widespread and that the vast majority appear to belong to headless or embedded de-
vices. ZMap [103] is an efficient and fast network scanner, that allows to scan the
complete Internet IPv4 address space in less than one hour. While the scans are not
especially targeted to embedded devices, in our work we reuse the SSL certificates
scans performed by ZMap [102]. Similar scans were targeting specific vulnerabili-
ties often present in embedded devices [134, 7]. Such wide-scale scans are mainly
targeted at discovering online devices affected by already known vulnerabilities,
but in some cases they can help to discover new flaws. However, many categories
of flaws cannot be discovered by such scans. Some online services like Shodan [9]
provide a global updated view on publicly available devices and web services. This
easy-to-use research tool allows security researchers to identify systems worldwide
that are potentially exposed or exploitable.

Unpacking firmware images is a known problem, and several tools for this
purpose exist. Binwalk [3] is a firmware analysis toolbox that provides various
methods and tools for extraction, inspection and reverse engineering of firmware
images or other binary blobs. FRAK [83] is a framework to unpack, analyze, and
repack firmware images of embedded devices. FRAK was never publicly released
and reportedly supports only a few firmware formats (e.g., Cisco IP phones and
IOS, HP laser printers). The Binary Analysis Toolkit (BAT) [138, 241] was orig-
inally designed to detect GPL license violations, mainly by comparing strings in
a firmware image to strings present in open source software distributions. For this
purpose BAT has to unpack firmware images. Unfortunately, as we show in Sec-
tion 3.3, none of these tools are accurate and complete enough to be used as is in
our framework.

There are many examples of security analysis of embedded systems [263]. Sev-
eral network card firmware images have been analyzed and modified to insert a
backdoor [96, 100] or to extend their functionality [42]. Davidson et al. [93] pro-
pose FIE, built on top of the KLEE symbolic execution engine, to incorporate
new symbolic execution techniques. It can be used to verify security properties
of some simple firmware images often found in practice. Zaddach et al. [262] de-
scribe Avatar, a dynamic analysis platform for firmware security testing. In Avatar,
the instructions are executed in an emulator, while the IO accesses to the embedded
system’s peripherals are forwarded to the real device. This allows a security engi-
neer to apply a wide range of advanced dynamic analysis techniques like tracing,
tainting and symbolic execution.

www.syssec-project.eu 78 October 30, 2014

3.7. RELATED WORK

A large set of firmware images of Xerox devices were reverse-engineered by
Costin [78] leading to the discovery of hidden PostScript commands. Such com-
mands allow an attacker to e.g., dump a device’s memory, recover passwords, pas-
sively scan the network and more generically interact with devices’ OS layers. Such
attacks could be delivered to printers via web pages, applets, MS Word and other
standard printed documents [77].

Bojinov et al. [46] conducted an assessment of the security of current embed-
ded management interfaces. The study, conducted on real physical devices, found
vulnerabilities in 21 devices from 16 different brands, including network switches,
cameras, photo frames, and lights-out management modules. Along with these, a
new class of vulnerabilities was discovered, namely cross-channel scripting (XCS)
[45]. While XCS vulnerabilities are not particular to embedded devices, embedded
devices are probably the most affected population. In a similar study, the authors
manually analyzed ten Small Office/Home Office (SOHO) routers [143] and dis-
covered at least two vulnerabilities per device.

Looking at insecure (remote) firmware updates, researchers reported the possi-
bility to arbitrarily inject malware into the firmware of a printer [78, 85]. Chen [65]
and Miller [187] presented techniques and implications of exploiting Apple firm-
ware updates. In a similar direction, Basnight et al. [33] examined the vulnera-
bility of PLCs to intentional firmware modifications. A general firmware analysis
methodology is presented, and an experiment demonstrates how legitimate firm-
ware can be updated on an Allen-Bradley ControlLogix L61 PLC. Zaddach et
al. [265] explore the consequences of a backdoor injection into the firmware of
a hard disk drive and uses it to exfiltrate data.

French and Casey [34] present fuzzy hashing techniques in applied malware
analysis. Authors used ssdeep on CERT Artifact Catalog database containing
10.7M files. The study underlines the two fundamental challenges to operational
usage of fuzzy hashing at scale: timeliness of results, and usefulness of results. To
reduce the quadratic complexity of the comparisons, they propose assigning files
into “bins” based on the block and file sizes. This approach, for their particular
dataset and bins partitioning strategy, allowed for a given fuzzy hash to reduce the
search space on average by 83.1%.

Finally, Bailey et al. [29] and Bayer et al. [35] propose efficient clustering
approaches to identify and group malware samples at large scale. Authors perform
dynamic analysis to obtain the execution traces of malware programs or obtain a
description of malware behavior in terms of system state changes. These are then
generalized into behavioral profiles which serve as input to an efficient clustering
algorithm that allows authors to handle sample sets that are an order of magnitude
larger than previous approaches. Unfortunately, this approach cannot be applied
in our framework since dynamic analysis is unfeasible due to the heterogeneity of
architectures used in firmware images.

www.syssec-project.eu 79 October 30, 2014

Large-Scale Analysis

3.8 Conclusion

In this paper we conducted a large-scale static analysis of embedded firmwares.
We showed that a broader view on firmware is not only beneficial, but actually
necessary for discovering and analyzing vulnerabilities of embedded devices. Our
study helps researchers and security analysts to put the security of particular de-
vices in context, and allows them to see how known vulnerabilities that occur in
one firmware reappear in the firmware of other manufacturers.

We plan to continue collecting new data and extend our analysis to all the
firmware images we downloaded so far. Moreover, we want to extend our system
with more sophisticated static analysis techniques that allow a more in-depth study
of each firmware image. This approach shows a lot of potential and besides the few
previously mentioned case studies it can lead to new interesting results such as the
ones recently found by Costin et al. [79].

The summarized datasets are available at:
http://firmware.re/usenixsec14.

www.syssec-project.eu 80 October 30, 2014

http://firmware.re/usenixsec14

4
Dowsing for overflows: A guided fuzzer to find

buffer boundary violations

Preamble: Relation to the Research Roadmap

The Red Book, in Chapter 4, defines a vulnerability as a weakness or flaw in one
or more software components that can be exploited to compromise the integrity,
confidentiality, or availability of a system and its information resources. Besides
software, vulnerabilities may exist in other aspects of a system, including proto-
col design, hardware, system configuration, and operational procedures. Despite
significant advances in software protection and attack mitigation techniques, ex-
ploitable vulnerabilities are continuously being discovered even in the latest ver-
sions of widely used applications, programming libraries, operating systems, on-
line services, embedded software, and other programs.

Despite many years of security research and engineering, software vulnerabil-
ities remain one of the primary culprits that reduce a systems information assur-
ance. Conversely, finding vulnerabilities before the software is released increases
the system’s security.

One of the four main classes of vulnerability defined in the Red Book is known
as memory corruption, of which the buffer overflow is the most prominent example.
In this chapter, we will explore new techniques to find such vulnerabilities in an
automated fashion. Many of our legacy systems, even in critical infrastructures
(Chapter 6 and 9 in the Red Book) are written in unsafe programming languages
like C and C++, and thus vulnerable. Memory errors such as buffer overflows are
explicitly identified as ranking among the most dangerous software errors.

Istvan Haller and Asia Slowinska, Matthias Neugschwandtner, Herbert Bos,
“Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations”
22nd USENIX Security Symposium (USENIX Security 13), Washington, D.C., USA,
August 2013

81

Dowser

Abstract Dowser is a ‘guided’ fuzzer that combines taint tracking, program ana-
lysis and symbolic execution to find buffer overflow and underflow vulnerabilities
buried deep in a program’s logic. The key idea is that analysis of a program lets us
pinpoint the right areas in the program code to probe and the appropriate inputs to
do so.

Intuitively, for typical buffer overflows, we need consider only the code that ac-
cesses an array in a loop, rather than all possible instructions in the program. After
finding all such candidate sets of instructions, we rank them according to an esti-
mation of how likely they are to contain interesting vulnerabilities. We then subject
the most promising sets to further testing. Specifically, we first use taint analysis
to determine which input bytes influence the array index and then execute the pro-
gram symbolically, making only this set of inputs symbolic. By constantly steering
the symbolic execution along branch outcomes most likely to lead to overflows,
we were able to detect deep bugs in real programs (like the nginx webserver, the
inspircd IRC server, and the ffmpeg videoplayer). Two of the bugs we found
were previously undocumented buffer overflows in ffmpeg and the poppler PDF
rendering library.

4.1 Introduction

We discuss Dowser, a ‘guided’ fuzzer that combines taint tracking, program ana-
lysis and symbolic execution, to find buffer overflow bugs buried deep in the pro-
gram’s logic.

Buffer overflows are perennially in the top 3 most dangerous software er-
rors [90] and recent studies suggest this will not change any time soon [247, 230].
There are two ways to handle them. Either we harden the software with memory
protectors that terminate the program when an overflow occurs (at runtime), or
we track down the vulnerabilities before releasing the software (e.g., in the testing
phase).

Memory protectors include common solutions like shadow stacks and canaries [80],
and more elaborate compiler extensions like WIT [22]. They are effective in pre-
venting programs from being exploited, but they do not remove the overflow bugs
themselves. Although it is better to crash than to allow exploitation, crashes are
undesirable too!

Thus, vendors prefer to squash bugs beforehand and typically try to find as
many as they can by means of fuzz testing. Fuzzers feed programs invalid, unex-
pected, or random data to see if they crash or exhibit unexpected behavior1. As
an example, Microsoft made fuzzing mandatory for every untrusted interface for
every product, and their fuzzing solution has been running 24/7 since 2008 for a
total of over 400 machine years [124].

Unfortunately, the effectiveness of most fuzzers is poor and the results rarely
extend beyond shallow bugs. Most fuzzers take a ‘blackbox’ approach that focuses

1See http://www.fuzzing.org/ for a collection of available fuzzers

www.syssec-project.eu 82 October 30, 2014

http://www.fuzzing.org/

4.1. INTRODUCTION

on the input format and ignores the tested software target. Blackbox fuzzing is
popular and fast, but misses many relevant code paths and thus many bugs. Black-
box fuzzing is a bit like shooting in the dark: you have to be lucky to hit anything
interesting.

Whitebox fuzzing, as implemented in [124, 54, 71], is more principled. By
means of symbolic execution, it exercises all possible execution paths through the
program and thus uncovers all possible bugs – although it may take years to do.
Since full symbolic execution is slow and does not scale to large programs, it is
hard to use it to find complex bugs in large programs [54, 71]. In practice, the aim
is therefore to first cover as much unique code as possible. As a result, bugs that
require a program to execute the same code many times (like buffer overflows) are
hard to trigger except in very simple cases.

Eventual completeness, as provided by symbolic execution, is both a strength
and a weakness, and in this paper, we evaluate the exact opposite strategy. Rather
than testing all possible execution paths, we perform spot checks on a small number
of code areas that look likely candidates for buffer overflow bugs and test each in
turn.

The drawback of our approach is that we execute a symbolic run for each candi-
date code area—in an iterative fashion. Moreover, we can discover buffer overflows
only in the loops that we can exercise. On the other hand, by homing in on promis-
ing code areas directly, we speed up the search considerably, and manage to find
complicated bugs in real programs that would be hard to find with most existing
fuzzers.

Contributions The goal we set ourselves was to develop an efficient fuzzer that
actively searches for buffer overflows directly. The key insight is that careful ana-
lysis of a program lets us pinpoint the right places to probe and the appropriate
inputs to do so. The main contribution is that our fuzzer directly zooms in on these
buffer overflow candidates and explores a novel ‘spot-check’ approach in symbolic
execution.

To make the approach work, we need to address two main challenges. The
first challenge is where to steer the execution of a program to increase the chances
of finding a vulnerability. Whitebox fuzzers ‘blindly’ try to execute as much of
the program as possible, in the hope of hitting a bug eventually. Instead, Dowser
uses information about the target program to identify code that is most likely to be
vulnerable to a buffer overflow.

For instance, buffer overflows occur (mostly) in code that accesses an array in
a loop. Thus, we look for such code and ignore most of the remaining instructions
in the program. Furthermore, Dowser performs static analysis of the program to
rank such accesses. We will evaluate different ranking functions, but the best one
so far ranks the array accesses according to complexity. The intuition is that code
with convoluted pointer arithmetic and/or complex control flow is more prone to
memory errors than straightforward array accesses. Moreover, by focusing on such

www.syssec-project.eu 83 October 30, 2014

Dowser

code, Dowser prioritizes bugs that are complicated—typically, the kind of vulner-
abilities that static analysis or random fuzzing cannot find. The aim is to reduce
the time wasted on shallow bugs that could also have been found using existing
methods. Still, other rankings are possible also, and Dowser is entirely agnostic to
the ranking function used.

The second challenge we address is how to steer the execution of a program to
these “interesting” code areas. As a baseline, we use concolic execution [256]: a
combination of concrete and symbolic execution, where the concrete (fixed) input
starts off the symbolic execution. In Dowser, we enhance concolic execution with
two optimizations.

First, we propose a new path selection algorithm. As we saw earlier, traditional
symbolic execution aims at code coverage—maximizing the fraction of individual
branches executed [54, 124]. In contrast, we aim for pointer value coverage of se-
lected code fragments. When Dowser examines an interesting pointer dereference,
it steers the symbolic execution along branches that are likely to alter the value of
the pointer.

Second, we reduce the amount of symbolic input as much as we can. Specifi-
cally, Dowser uses dynamic taint analysis to determine which input bytes influence
the pointers used for array accesses. Later, it treats only these inputs as symbolic.
While taint analysis itself is not new, we introduce novel optimizations to arrive at
a set of symbolic inputs that is as accurate as possible (with neither too few, nor
too many symbolic bytes).

In summary, Dowser is a new fuzzer targeted at vendors who want to test their
code for buffer overflows and underflows. We implemented the analyses of Dowser
as LLVM [169] passes, while the symbolic execution step employs S2E [71]. Fi-
nally, Dowser is a practical solution. Rather than aiming for all possible security
bugs, it specifically targets the class of buffer overflows (one of the most, if not the
most, important class of attack vectors for code injection). So far, Dowser found
several real bugs in complex programs like nginx, ffmpeg, and inspircd. Most
of them are extremely difficult to find with existing symbolic execution tools.

Assumptions and outline Throughout this paper, we assume that we have a test
suite that allows us to reach the array accesses. Instructions that we cannot reach,
we cannot test. In the remainder, we start with a big picture and the running ex-
ample (Section 4.2). Then, we discuss the three main components of Dowser in
turn: the selection of interesting code fragments (Section 4.3), the use of dynamic
taint analysis to determine which inputs influence the candidate instructions (Sec-
tion 4.4), and our approach to nudge the program to trigger a bug during symbolic
execution (Section 4.5). We evaluate the system in Section 4.6, discuss the related
projects in Section 4.7. We conclude in Section 4.8.

www.syssec-project.eu 84 October 30, 2014

4.2. BIG PICTURE

4.2 Big picture

The main goal of Dowser is to manipulate the pointers that instructions use to
access an array in a loop, in the hope of forcing a buffer overrun or underrun.

4.2.1 Running example

Throughout the paper, we will use the function in Figure 4.1 to illustrate how
Dowser works. The example is a simplified version of a buffer underrun vulnera-
bility in the nginx-0.6.32 web server [14]. A specially crafted input tricks the
program into setting the u pointer to a location outside its buffer boundaries. When
this pointer is later used to access memory, it allows attackers to overwrite a func-
tion pointer, and execute arbitrary programs on the system.

Figure 4.1 presents only an excerpt from the original function, which in reality
spans approximately 400 lines of C code. It contains a number of additional op-
tions in the switch statement, and a few nested conditional if statements. This
complexity severely impedes detecting the bug by both static analysis tools and
symbolic execution engines. For instance, when we steered S2E [71] all the way
down to the vulnerable function, and made solely the seven byte long uri path of the
HTTP message symbolic, it took over 60 minutes to track down the problematic
scenario. A more scalable solution is necessary in practice. Without these hints,
S2E did not find the bug at all during an eight hour long execution.2 In contrast,
Dowser finds it in less than 5 minutes.

The primary reason for the high cost of the analysis in S2E is the large num-
ber of conditional branches which depend on (symbolic) input. For each of the
branches, symbolic execution first checks whether either the condition or its nega-
tion is satisfiable. When both branches are feasible, the default behavior is to ex-
amine both. This procedure results in an exponentially growing number of paths.

This real world example shows the need for (1) focusing the powerful yet ex-
pensive symbolic execution on the most interesting cases, (2) making informed
branch choices, and (3) minimizing the amount of symbolic data.

4.2.2 High-level overview

Figure 4.2 illustrates the overall Dowser architecture.
First, it performs a data flow analysis of the target program, and ranks all in-

structions that access buffers in loops 1©. While we can rank them in different
ways and Dowser is agnostic as to the ranking function we use, our experience so
far is that an estimation of complexity works best. Specifically, we rank calcula-
tions and conditions that are more complex higher than simple ones. In Figure 4.1,
u is involved in three different operations, i.e., u++, u--, and u-=4, in multiple
instructions inside a loop. As we shall see, these intricate computations place the
dereferences of u in the top 3% of the most complex pointer accesses across nginx.

2All measurements in the paper use the same environment as in Section 4.6.

www.syssec-project.eu 85 October 30, 2014

Dowser

In the second step 2©, Dowser repeatedly picks high-ranking accesses, and
selects test inputs which exercise them. Then, it uses dynamic taint analysis to de-
termine which input bytes influence pointers dereferenced in the candidate instruc-
tions. The idea is that, given the format of the input, Dowser fuzzes (i.e., treats
as symbolic), only those fields that affect the potentially vulnerable memory ac-
cesses, and keeps the remaining ones unchanged. In Figure 4.1, we learn that it is
sufficient to treat the uri path in the HTTP request as symbolic. Indeed, the compu-
tations inside the vulnerable function are independent of the remaining part of the
input message.

Next 3©, for each candidate instruction and the input bytes involved in cal-
culating the array pointer, Dowser uses symbolic execution to try to nudge the
program toward overflowing the buffer. Specifically, we execute symbolically the
loop that contains the candidate instructions (and thus should be tested for buffer
overflows)—treating only the relevant bytes as symbolic. As we shall see, a new
path selection algorithm helps to guide execution to a possible overflow quickly.

Finally, we detect any overflow that may occur. Just like in whitebox fuzzers,
we can use any technique to do so (e.g., Purify, Valgrind [198], or BinArmor [228]).
In our work, we use Google’s AddressSanitizer [220] 4©. It instruments the pro-
tected program to ensure that memory access instructions never read or write so
called, “poisoned” red zones. Red zones are small regions of memory inserted inbe-
tween any two stack, heap or global objects. Since they should never be addressed
by the program, an access to them indicates an illegal behavior. This policy detects
sequential buffer over- and underflows, and some of the more sophisticated pointer
corruption bugs. This technique is beneficial when searching for new bugs since
it will also trigger on silent failures, not just application crashes. In the case of
nginx, AddressSanitizer detects the underflow when the u pointer reads memory
outside its buffer boundaries (line 33).

We explain step 1© (static analysis) in Section 4.3, step 2© (taint analysis) in
Section 4.4, and step 3© (guided execution) in Section 4.5.

4.3 Dowsing for candidate instructions

Previous research has shown that software complexity metrics collected from soft-
ware artifacts are helpful in finding vulnerable code components [120, 266, 221,
200]. However, even though complexity metrics serve as useful indicators, they
also suffer from low precision or recall values. Moreover, most of the current ap-
proaches operate at the granularity of modules or files, which is too coarse for the
directed symbolic execution in Dowser.

As observed by Zimmermann et al. [266], we need metrics that exploit the
unique characteristics of vulnerabilities, e.g., buffer overflows or integer overruns.
In principle, Dowser can work with any metric capable of ranking groups of in-
structions that access buffers in a loop. So, the question is how to design a good
metric for complexity that satisfies this criterion? In the remainder of this section,

www.syssec-project.eu 86 October 30, 2014

4.3. DOWSING FOR CANDIDATE INSTRUCTIONS

we introduce one such metric: a heuristics-based approach that we specifically de-
signed for the detection of potential buffer overflow vulnerabilities.

We leverage a primary pragmatic reason behind complex buffer overflows: con-
voluted pointer computations are hard to follow by a programmer. Thus, we focus
on ‘complex’ array accesses realized inside loops. Further, we limit the analysis to
pointers which evolve together with loop induction variables, i.e., are repeatedly
updated to access (various) elements of an array.

Using this metric, Dowser ranks buffer accesses by evaluating the complexity
of data- and control-flows involved with the array index (pointer) calculations. For
each loop in the program, it first statically determines (1) the set of all instructions
involved in modifying an array pointer (we will call this a pointer’s analysis group),
and (2) the conditions that guard this analysis group, e.g., the condition of an if

or while statement containing the array index calculations. Next, it labels all such
sets with scores reflecting their complexity. We explain these steps in detail in
Sections 4.3.1, 4.3.2, and 4.3.3.

4.3.1 Building analysis groups

Suppose a pointer p is involved in an “interesting” array access instruction
accp in a loop. The analysis group associated with accp, AG(accp), collects all
instructions that influence the value of the dereferenced pointer during the execu-
tion of the loop.

To determine AG(accp), we compute an intraprocedural data flow graph rep-
resenting operations in the loop that compute the value of p dereferenced in accp.
Then, we check if the graph contains cycles. A cycle indicates that the value of p
in a previous loop iteration affects its value in the current one, so p depends on the
loop induction variable.

As mentioned before, this part of our work is built on top of the LLVM [169]
compiler infrastructure. The static single assignment (SSA) form provided by LLVM
translates directly to data flow graphs. Figure 4.3 shows an example. Observe that,
since all dereferences of pointer u share their data flow graph, they also form a
single analysis group. Thus, when Dowser later tries to find an illegal array access
within this analysis group, it tests all the dereferences at the same time—there is
no need to consider them separately.

4.3.2 Conditions guarding analysis groups

It may happen that the data flow associated with an array pointer is simple, but
the value of the pointer is hard to follow due to some complex control changes.
For this reason, Dowser ranks also control flows: the conditions that influence an
analysis group.

Say that an instruction manipulating the array pointer p is guarded by a con-
dition on a variable var, e.g., if(var<10){*p++=0;}. If the value of var is
difficult to keep track of, so is the value of p. To assess the complexity of var,
Dowser analyzes its data flow, and determines the analysis group, AG(var) (as

www.syssec-project.eu 87 October 30, 2014

Dowser

discussed in Section 4.3.1). Moreover, we recursively analyze the analysis groups
of other variables influencing var and p inside the loop. Thus, we obtain a number
of analysis groups which we rank in the next step (Section 4.3.3).

4.3.3 Scoring array accesses

For each array access realized in a loop, Dowser assesses the complexity of the
analysis groups constructed in Sections 4.3.1 and 4.3.2. For each analysis group,
it considers all instructions, and assigns them points. The more points an AG cu-
mulatively scores, the more complex it is. The overall rank of the array access is
determined by the maximum of the scores. Intuitively, it reflects the most complex
component.

The scoring algorithm should provide roughly the same results for semantically
identical code. For this reason, we enforce the optimizations present in the LLVM
compiler (e.g., to eliminate common subexpressions). This way, we minimize the
differences in (the amount of) instructions arising from the compiler options. More-
over, we analyzed the LLVM code generation strategies, and defined a powerful set
of equivalence rules, which minimize the variation in the scores assigned to syn-
tactically different but semantically equivalent code. We highlight them below.

Table 4.1 introduces all types of instructions, and discusses their impact on the
final score. In principle, all common instructions involved in array index calcula-
tions are of the order of 10 points, except for the two instructions that we consider
risky: pointer casts and functions that return non-pointer values used in pointer
calculation.

www.syssec-project.eu 88 October 30, 2014

4.3. DOWSING FOR CANDIDATE INSTRUCTIONS

A buffer underrun vulnerability in nginx

int ngx_http_parse_complex_uri(ngx_http_request_t *r)
{
 state = sw_usual;
 u_char* p = r->uri_start; // user input
 u_char* u = r->uri.data; // store normalized uri here
 u_char ch = *p++; // the current character

 while (p <= r->uri_end) {
 switch (state) {
 case sw_usual:
 if (ch == '/')
 state = sw_slash; *u++ = ch;
 else if /* many more options here */
 ch = *p++; break;

 case sw_slash:
 if (ch == '/')
 *u++ = ch;
 else if (ch == '.')
 state = sw_dot; *u++ = ch;
 else if /* many more options here */
 ch = *p++; break;

 case sw_dot:
 if (ch == '.')
 state = sw_dot_dot; *u++ = ch;
 else if /* many more options here */
 ch = *p++; break;

 case sw_dot_dot:
 if (ch == '/')
 state = sw_slash; u -=4;
 while (*(u-1) != '/') u--;
 else if /* many more options here */
 ch = *p++; break;
 }
 }
}

 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

Nginx is a web server—in terms of market share across
the million busiest sites, it ranks third in the world. At the
time of writing, it hosts about 22 million domains world-
wide. Versions prior to 0.6.38 had a particularly nasty vul-
nerability [14].
When nginx receives an HTTP request, the parsing func-
tion nginx http parse complex uri, first normalizes
a uri path in p=r->uri start (line 4), storing the result
in a heap buffer pointed to by u=r->uri.data (line 5).
The while-switch implements a state machine that con-
sumes the input one character at a time, and transform it
into a canonical form in u.

The source of the vulnerability is in the sw dot dot

state. When provided with a carefully crafted path, nginx
wrongly sets the beginning of u to a location somewhere
below r->uri.data. Suppose the uri is "//../foo".
When p reaches "/foo", u points to (r->uri.data+4),
and state is sw dot dot (line 30). The routine now de-
creases u by 4 (line 32), so that it points to r->uri.data.
As long as the memory below r->uri.data does not
contain the character "/", u is further decreased (line 33),
even though it crosses buffer boundaries. Finally, the user
provided input ("foo") is copied to the location pointed
to by u.

In this case, the overwritten buffer contains a pointer
to a function, which will be eventually called by nginx.
Thus the vulnerability allows attackers to modify a func-
tion pointer, and execute an arbitrary program on the sys-
tem.

It is a complex bug that is hard to find with existing
solutions. The many conditional statements that depend
on symbolic input are problematic for symbolic execution,
while input-dependent indirect jumps are also a bad match
for static analysis.

Fig. 4.1: A simplified version of a buffer underrun vulnerability in nginx.

while() {

 arr[i++] = x;

 arri[2*i-4] = 0;

}

static analysis

finds interesting

array accesses

in loops;

Fig. 4.2: Dowser– high-level overview.

www.syssec-project.eu 89 October 30, 2014

Dowser

5:u1=r→uri.data;

8:u2=�(u1,u10)

12:u3=u2++; … 26:u6=u2++; 32:u7=u2-4;

33:u8=�(u7,u9)

33:u9=u8--;

37:u10=�(u3,..,u6,u9)

5

5

3*10+

2*5

different
constants

55

Fig. 4.3: Data flow graph and analysis group associated with the pointer u from
Figure 4.1. For the sake of clarity, the figure presents pointer arithmetic instructions in
pseudo code. The PHI nodes represent locations where data is merged from different

control-flows. The numbers in the boxes represent points assigned by Dowser.

www.syssec-project.eu 90 October 30, 2014

4.3.
D

O
W

SIN
G

FO
R

C
A

N
D

ID
A

T
E

IN
ST

R
U

C
T

IO
N

S

Instructions Rationale/Equivalence rules Points
Array index manipulations
Basic index arithmetic instr., GetElemPtr, that increases or decreases a pointer by an index, scores the same. 1 or 5
i.e., addition and subtraction Thus, operations on pointers are equivalent to operations on offsets. An instruction

scores 1 if it modifies a value which is not passed to the next loop iteration.
Other index arithmetic instr. These instructions involve more complex pointer calculations than the standard 10
e.g., division, shift, or xor add or sub. Thus, we penalize them more.
Different constant values Multiple constants used to modify a pointer make its value hard to follow. 10

It is easier to keep track of a pointer that always increases by the same value. per value
Constants used to access We assume that compilers handle accesses to structures correctly. We only consider 0
fields of structures constants used to compute the index of an array, and not the address of a field.
Numerical values Though in the context of the loop they are just constants, the compiler cannot 30
determined outside the loop predict their values. Thus they are difficult to reason about and more error prone.
Non-inlined functions Since decoupling the computation of a pointer from its use might easily lead to 500
returning non-pointer values mistakes, we heavily penalize this operation.
Data movement instructions Moving (scalar or pointer) data does not add to the complexity of computations. 0
Pointer manipulations
Load a pointer calculated It denotes retrieving the base pointer of an object, or using memory allocators. We 0
outside the loop treat all remote pointers in the same way - all score 0.
GetElemPtr An LLVM instruction that computes a pointer from a base and offset(s). (See add.) 1 or 5
Pointer cast operations Since the casting instructions often indicate operations that are not equivalent to 100

the standard pointer manipulations (listed above), they are worth a close inspection.

Table 4.1: Overview of the instructions involved in pointer arithmetic operations, and their penalty points.

w
w

w
.syssec-project.eu

91
O

ctober30,2014

Dowser

The absolute penalty for each type of instruction is not very important. How-
ever, we ensure that the points reflect the difference in complexity between various
code fragments, instead of giving all array accesses the same score. That is, in-
structions that complicate the array index contribute to the score, and instructions
that complicate the index a lot also score very high, relative to other instructions.
In Section 4.6, we compare our complexity ranking to alternatives.

4.4 Using tainting to find inputs that matter

Once Dowser has ranked array accesses in loops in order of complexity, we exam-
ine them in turn. Typically, only a small segment of the input affects the execution
of a particular analysis group, so we want to search for a bug by modifying solely
this part of the input, while keeping the rest constant (refer to Section 4.5). In the
current section, we explain how Dowser identifies the link between the components
of the program input and the different analysis groups. Observe that this result also
benefits other bug finding tools based on fuzzing, not just Dowser and concolic
execution.

We focus our discussion on an analysis group AG(accp) associated with an
array pointer dereference accp. We assume that we can obtain a test input I that
exercises the potentially vulnerable analysis group. While this may not always be
true, we believe it is a reasonable assumption. Most vendors have test suites to
test their software and they often contain at least one input which exercises each
complex loop.

4.4.1 Baseline: dynamic taint analysis

As a basic approach, Dowser performs dynamic taint analysis (DTA) [199]
on the input I (tainting each input byte with a unique color, and propagating the
colors on data movement and arithmetic operations). Then, it logs all colors and
input bytes involved in the instructions in AG(accp). Given the format of the input,
Dowser maps these bytes to individual fields. In Figure 4.1, Dowser finds out that
it is sufficient to treat uri as symbolic.

The problem with DTA, as sketched above, is that it misses implicit flows (also
called control dependencies) entirely [113, 155]. Such flows have no direct assign-
ment of a tainted value to a variable—which would be propagated by DTA. Instead,
the value of a variable is completely determined by the value of a tainted variable in
a condition. In Figure 4.1, even though the value of u in line 12 is dependent on the
tainted character ch in line 11, the taint does not flow directly to u, so DTA would
not report the dependency. Implicit flows are notoriously hard to track [226, 61],
but ignoring them completely reduces our accuracy. Dowser therefore employs a
solution that builds on the work by Bao et al. [32], but with a novel optimization to
increase the accuracy of the analysis (Section 4.4.2).

Like Bao et al. [32], Dowser implements strict control dependencies. Intu-
itively, we propagate colors only on the most informative (or, information preserv-

www.syssec-project.eu 92 October 30, 2014

4.4. USING TAINTING TO FIND INPUTS THAT MATTER

Input: Colors in handlers:

Fig. 4.4: The figure shows how Dowser shuffles an input to determine which fields really
influence an analysis group. Suppose a parser extracts fields of the input one by one, and

the analysis group depends on the fields B and D (with colors B and D, respectively).
Colors in handlers show on which fields the subsequent handlers are strictly

dependent [32], and the shaded rectangle indicates the colors propagated to the analysis
group. Excluded colors are left out of our analysis.

ing) dependencies. Specifically, we require a direct comparison between a tainted
variable and a compile time constant. For example, in Figure 4.1, we propagate the
color of ch in line 11 to the variables state and u in line 12. However, we would
keep state and u untainted if the condition in line 11 for instance had been either
"if(ch!=’/’)" or "if(ch<’/’)". As implicit flows are not the focus of this
paper we refer interested readers to [32] for details.

4.4.2 Field shifting to weed out false dependencies

Improving on the handling of strict control dependencies by Bao et al. [32],
described above, Dowser adds a novel technique to prevent overtainting due to
false dependencies. The problems arise when the order of fields in an input format
is not fixed, e.g., as in HTTP, SMTP (and the commandline for most programs).
The approach from [32] may falsely suggest that a field is dependent on all fields
that were extracted so far.

For instance, lighttpd reads new header fields in a loop and compares them
to various options, roughly as follows:

while () {
if(cmp(field, "Content") == 0)
...
else if(cmp(field, "Range") == 0)
...
else exit (-1);
field = extract_new_header_field();

}

As the parser tests for equivalence, the implicit flow will propagate from one field
to the next one, even if there is no real dependency at all! Eventually, the last field
appears to depend on the whole header.

Dowser determines which options really matter for the instructions in an ana-
lysis group by shifting the fields whose order is not fixed. Refer to Figure 4.4, and

www.syssec-project.eu 93 October 30, 2014

Dowser

suppose we have run the program with options A, B, C, D, and E, and our analysis
group really depends on B and D. Once the message gets processed, we see that
the AG does not depend on E, so E can be excluded from further analysis. Since
the last observed color, D, has a direct influence on the AG, it is a true dependence.
By performing a circular shift and re-trying with the order D, A, B, C, E, Dowser
finds only the colors corresponding to A, B, D. Thus, we can leave C out of our
analysis. After the next circular shift, Dowser reduces the colors to B and D only.

The optimization is based on two observations: (1) the last field propagated to
the AG has a direct influence on the AG, so it needs to be kept, (2) all fields beyond
this one are guaranteed to have no impact on the AG. By performing circular shifts,
and running DTA on the updated input, Dowser drops the undue dependencies.

Even though this optimization requires some minimal knowledge of the input,
we do not need full understanding of the input grammar, like the contents or effects
of fields. It is sufficient to identify the fields whose order is not fixed. Fortunately,
such information is available for many applications—especially when vendors test
their own code.

4.5 Exploring candidate instructions

Once we have learnt which part of the program input influences the analysis group
AG(accp), we fuzz this part, and we try to nudge the program toward using the
pointer p in an illegal way. More technically, we treat the interesting component of
the input as symbolic, the remaining part as fixed (concrete), and we execute the
loop associated with AG(accp) symbolically.

However, since in principle the cost of a complete loop traversal is exponential,
loops present one of the hardest problems for symbolic execution [125]. There-
fore, when analyzing a loop, we try to select those paths that are most promising in
our context. Specifically, Dowser prioritizes paths that show a potential for knotty
pointer arithmetic. As we show in Section 4.6, our technique significantly opti-
mizes the search for an overflow.

Dowser’s loop exploration procedure has two main phases: learning, and bug
finding. In the learning phase, Dowser assigns each branch in the loop a weight
approximating the probability that a path following this direction contains new
pointer dereferences. The weights are based on statistics on the variety of pointer
values observed during an execution of a short symbolic input.

Next, in the bug finding phase, Dowser uses the weights determined in the
first step to filter our uninteresting parts of the loop, and prioritize the important
paths. Whenever the weight associated with a certain branch is 0, Dowser does not
even try to explore it further. In the vulnerable nginx parsing loop from which
Figure 4.1 shows an excerpt, only 19 out of 60 branches scored a non-zero value,
so were considered for the execution. In this phase, the symbolic input represents
a real world scenario, so it is relatively long. Therefore, it would be prohibitively
expensive to be analyzed using a popular symbolic execution tool.

www.syssec-project.eu 94 October 30, 2014

4.5. EXPLORING CANDIDATE INSTRUCTIONS

In Section 4.5.1, we briefly review the general concept of concolic execution,
and then we discuss the two phases in Sections 4.5.2 and 4.5.3, respectively.

4.5.1 Baseline: concrete + symbolic execution

Like DART and SAGE [121, 124], Dowser generates new test inputs by com-
bining concrete and symbolic execution. This technique is known as concolic ex-
ecution [219]. It runs the program on a concrete input, while gathering symbolic
constraints from conditional statements encountered along the way. To test alterna-
tive paths, it systematically negates the collected constraints, and checks whether
the new set is satisfiable. If so, it yields a new input. To bootstrap the procedure,
Dowser takes a test input which exercises the analysis group AG(accp).

As mentioned already, a challenge in applying this approach is how to select
the paths to explore first. The classic solution is to use depth first exploration of the
paths by backtracking [159]. However, since doing so results in an exponentially
growing number of paths to be tested, the research community has proposed vari-
ous heuristics to steer the execution toward unexplored regions. We discuss these
techniques in Section 4.7.

4.5.2 Phase 1: learning

The aim of the learning phase is to rate the true and false directions of all
conditional branches that depend on the symbolic input in the loop L. For each
branch, we evaluate the likelihood that a particular outcome will lead to unique
pointer dereferences (i.e., dereferences that we do not expect to find in the alterna-
tive outcome). Thus, we answer the question of how much we expect to gain when
we follow this path, rather than the alternative. We encode this information into
weights.

Specifically, the weights represent the likelihood of unique access patterns. An
access pattern of the pointer p is the sequence of all values of p dereferenced during
the execution of the loop. In Figure 4.1, when we denote the initial value of u by
u0, then the input "//../" triggers the following access pattern of the pointer u:
(u0, u0+1, u0 + 2, u0-2,...).

To compute the weights, we learn about the effects of individual branches. In
principle, each of them may (a) directly affect the value of a pointer, (b) be a pre-
condition for another important branch, or (c) be irrelevant from the computation’s
standpoint. To distinguish between these cases, Dowser analyzes all possible ex-
ecutions of a short symbolic input. By comparing the sets of p’s access patterns
observed for both outcomes of a branch, it discovers which branches do not influ-
ence the diversity of pointer dereferences (i.e., are irrelevant).

Symbolic input In Section 4.4, we identified which part of the test input I we need
to make symbolic. We denote this by IS . In the learning phase, Dowser executes
the loop L exhaustively. For performance reasons, we therefore further limit the
amount of symbolic data and make only a short fragment of IS symbolic. For
instance, for Figure 4.1, the learning phase makes only the first 4 bytes of uri

www.syssec-project.eu 95 October 30, 2014

Dowser

symbolic (not enough to trigger the bug), while scaling up to 50 symbolic bytes in
the bug finding phase.

Algorithm Dowser exhaustively executes L on a short symbolic input, and records
how the decisions taken at conditional branch statements influence pointer derefer-
ence instructions. For each branch b along the execution path, we retain the access
pattern of p realized during this execution, AP(p). We informally interpret it as
“if you choose the true (respectively, false) direction of the branch b, expect
access pattern AP(p) (respectively, AP′(p))”. This procedure results in two sets
of access patterns for each branch statement, for the taken and non-taken branch,
respectively. The final weight of each direction is the fraction of the access pat-
terns that were unique for the direction in question, i.e., were not observed when
the opposite one was taken.

The above description explains the intuition behind the learning mechanism,
but the full algorithm is more complicated. The problem is that a conditional branch
b might be exercised multiple times in an execution path, and it is possible that all
the instances of b influence the access pattern observed.

Intuitively, to allow for it, we do not associate access patterns with just a sin-
gle decision taken on b (true or false). Rather, each time b is exercised, we
also retain which directions were previously chosen for b. Thus, we still collect
“expected” access patterns if the true (respectively, false) direction of b is fol-
lowed, but we augment them with a precondition. This way, when we compare
the true and false sets to determine the weights for b, we base the scores on a
deeper understanding of how an access pattern was reached.

Discussion It is important for our algorithm to avoid false negatives: we should not
incorrectly flag a branch as irrelevant—it would preclude it from being explored in
the bug finding phase. Say that instr is an instruction that dereferences the pointer
p. To learn that a branch directly influences instr, it suffices to execute it. Simi-
larly, since branches retain full access patterns of p, the information about instr
being executed is also “propagated” to all its preconditions. Thus, to completely
avoid false negatives, the algorithm would require full coverage of the instructions
in an analysis group. We stress that we need to exercise all instructions, and not all
paths in a loop. As observed by [54], exhaustive executions of even short symbolic
inputs provide excellent instruction coverage in practice.

While false positives are undesirable as well, they only cause Dowser to exe-
cute more paths in the second phase than absolutely necessary. Due to the limited
path coverage, there are corner cases, when false positives can happen. Even so, in
nginx, only 19 out of 60 branches scored a non-zero value, which let us execute
the complex loop with a 50-byte-long symbolic input.

4.5.3 Phase 2: hunting bugs

In this step, Dowser executes symbolically a real-world sized input in the hope
of finding a value that triggers a bug. Dowser uses the feedback from the learning
phase (Section 4.5.2) to steer its symbolic execution toward new and interesting

www.syssec-project.eu 96 October 30, 2014

4.6. EVALUATION

pointer dereferences. The goal of our heuristic is to avoid execution paths that do
not bring any new pointer manipulation instructions. Thus, Dowser shifts the target
of symbolic execution from traditional code coverage to pointer value coverage.

Dowser’s strategy is explicitly dictated by the weights. As a baseline, the ex-
ecution follows a depth-first exploration, and when Dowser is about to select the
direction of a branch b that depends on the symbolic input, it adheres to the fol-
lowing rules:

• If both the true and false directions of b have weight 0, we do not ex-
pect b to influence the variety of access patterns. Thus, Dowser chooses the
direction randomly, and does not intend to examine the other direction.

• If only one direction has a non-zero weight, we expect to observe unique
access patterns only when the execution paths follows this direction, and
Dowser favors it.

• If both of b’s directions have non-zero weights, both the true and false

options may bring unique access patterns. Dowser examines both directions,
and schedules them in order of their weights.

Intuitively, Dowser’s symbolic execution tries to select paths that are more
likely to lead to overflows.

Guided fuzzing This concludes our description of Dowser’s architecture. To sum-
marize, Dowser helps fuzzing by: (1) finding “interesting” array accesses, (2) iden-
tifying the inputs that influence the accesses, and (3) fuzzing intelligently to cover
the array. Moreover, the targeted selection procedure based on pointer value cov-
erage and the small number of symbolic input values allow Dowser to find bugs
quickly and scale to larger applications. In addition, the ranking of array accesses
permits us to zoom in on more complicated array accesses.

4.6 Evaluation

In this section, we first zoom in on the running example of nginx from Figure 4.1
to evaluate individual components of the system in detail (Section 4.6.1). In Sec-
tion 4.6.2, we consider seven real-world applications. Based on their vulnerabili-
ties, we evaluate our dowsing mechanism. Finally, we present an overview of the
attacks detected by Dowser.

Since Dowser uses a ‘spot-check’ rather than ‘code coverage’ approach to bug
detection, it must analyze each complex analysis group separately, starting with
the highest ranking one, followed by the second one, and so on. Each of them runs
until it finds a bug or gets terminated. The question is when we should terminate a
symbolic execution run. Since symbolic execution of a single loop is highly opti-
mized in Dowser, we found each bug in less than 11 minutes, so we execute each
symbolic run for a maximum of 15 minutes.

www.syssec-project.eu 97 October 30, 2014

Dowser

Our test platform is a Linux 3.1 system with an Intel(R) Core(TM) i7 CPU
clocked at 2.7GHz with 4096KB L2 cache. The system has 8GB of memory. For
our experiments we used an OpenSUSE 12.1 install. We ran each test multiple
times and present the median.

4.6.1 Case study: Nginx

In this section, we evaluate each of the main steps of our fuzzer by looking at
our case study of nginx in detail.

4.6.1.1 Dowsing for candidate instructions

We measure how well Dowser highlights potentially faulty code and filters out the
uninteresting fragments.

Our first question is whether we can filter out all the simple loops and focus on
the more interesting ones. This turns out to be simple. Given the complexity scoring
function from Section 4.3, we find that across all applications all analysis groups
with a score less than 26 use just a single constant and at most two instructions
modifying the offset of an array. Thus, in the remainder of our evaluation, we set
our cut-off threshold to 26 points.

As shown in Table 4.2, nginx has 517 outermost loops, and only 140 analysis
groups that access arrays. Thus, we throw out over 70% of the loops immediately3.
Figure 4.5 presents the sorted weights of all the analysis groups in nginx. The
distribution shows a quick drop after a few highly complex analysis groups. The
long tail represents the numerous simple loops omnipresent in any code. 55.7% of
the analysis groups score too low to be of interest. This means that Dowser needs
to examine only the remaining 44.3%, i.e., 62 out of 140 analysis groups, or at
most 12% of all loops. Out of these, the buffer overflow in Figure 4.1 ranks 4th.

4.6.1.2 Taint analysis in context of hunting for bugs

In Section 4.4 we mentioned that ‘traditional’ dynamic taint analysis misses im-
plicit flows, i.e., flows that have no direct assignment of a tainted value to a vari-
able. The problem turns out to be particularly serious for nginx. It receives input
in text format, and transforms it to extract numerical values or various flags. As
such code employs conditional statements, DTA misses the dependencies between
the input and analysis groups.

Next, we evaluate the usefulness of field shifting. First, we implement the taint
propagation exactly as proposed by Bao et al. [32], without any further restrictions.
In that case, an index variable in the nginx parser becomes tainted, and we mark all
HTTP fields succeeding the uri field as tainted as well. As a result, we introduce
more symbolic data than necessary. Next, we apply field shifting (Section 4.4.2)
which effectively limits taint propagation to just the uri field. In general, the field

3In principle, if a loop accesses multiple arrays, it also contains multiple access groups. Thus,
these 140 analysis groups are located in fewer than 140 loops.

www.syssec-project.eu 98 October 30, 2014

4.6. EVALUATION

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

Analysis groups

C
om

pl
ex

ity
 (

po
in

ts
 s

co
re

d)

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

threshold (26 points)

Fig. 4.5: Scores of the analysis groups in nginx.

shifting optimization improves the accuracy of taint propagation in all applications
that take multiple input fields whose order does not matter. On the other hand, it
will not help if the order is fixed.

4.6.1.3 Importance of guiding symbolic execution

We now use the nginx example to assess the importance of guiding symbolic ex-
ecution to a vulnerability condition. For nginx, the input message is a generic
HTTP request. Since it exercises the vulnerable loop for this analysis group, its
uri starts with ”//”. Taint analysis allows us to detect that only the uri field is im-
portant, so we mark only this field as symbolic. As we shall see, without guidance,
symbolic execution does not scale beyond very short uri fields (5-6 byte long). In
contrast, Dowser successfully executes 50-byte-long symbolic uris.

When S2E [71] executes a loop, it can follow one of the two search strategies:
depth-first search, or maximizing code coverage (as proposed in SAGE [124]). The
first one aims at complete path coverage, and the second at executing basic blocks
that were not seen before. However, none can be applied in practice to examine the
complex loop in nginx. The search is so costly that we measured the runtime for
only 5-6 byte long symbolic uri fields. The DFS strategy handled the 5-byte-long
input in 139 seconds, the 6-byte-long in 824 seconds. A 7-byte input requires more
than 1 hour to finish. Likewise, the code coverage strategy required 159, and 882
seconds, respectively. The code coverage heuristic does not speed up the search for
buffer overflows either, since besides executing specific instructions from the loop,
memory corruptions require a very particular execution context. Even if 100% code
coverage is reached, they may stay undetected.

As we explained in Section 4.5, the strategy employed by Dowser does not aim
at full coverage. Instead, it actively searches for paths which involve new pointer
dereferences. The learning phase uses a 4-byte-long symbolic input to observe ac-

www.syssec-project.eu 99 October 30, 2014

Dowser

cess patterns in the loop. It follows a simple depth first search strategy. As the bug
clearly cannot be triggered with this input size, the search continues in the second,
hunting bugs, phase. The result of the learning phase disables 66% of the condi-
tional branches significantly reducing the exponentially of the subsequent symbolic
execution. Because of this heuristic, Dowser easily scales up to 50 symbolic bytes
and finds the bug after just a few minutes. A 5-byte-long symbolic input is handled
in 20 seconds, 10 bytes in 42 seconds, 20 bytes in 63 seconds, 30 in 146 seconds,
40 in 174 seconds and 50 in 253 seconds. These numbers maintain an exponential
growth of 1.1 for each added character. Even though Dowser still exhibits the expo-
nential behavior, the growth rate is fairly low. Even in the presence of 50 symbolic
bytes, Dowser quickly finds the complex bug.

In practice, symbolic execution has problems dealing with real world applica-
tions and input sizes. The number of execution paths quickly overwhelms these
systems. Since triggering buffer overflows not only requires a vulnerable basic
block, but also a special context, traditional symbolic execution tools are ill suited.
Dowser, instead, requires the application to be executed symbolically for only a
very short input, and then it deals with real-world input sizes instead of being lim-
ited to a few input bytes. Combined with the ability to extract the relevant parts of
the original input, this enables searching for bugs in applications like web servers
where input sizes were considered until now to be well beyond the scalability of
symbolic execution tools.

4.6.2 Overview

In this section, we consider several applications. First, we evaluate the dowsing
mechanism, and we show that it successfully highlights vulnerable code fragments.
Then, we summarize the memory corruptions detected by Dowser. They come
from six real world applications of several tens of thousands LoC, including the
ffmpeg videoplayer of 300K LoC. The bug in ffmpeg, and one of the bugs in
poppler were not documented before.

www.syssec-project.eu 100 October 30, 2014

4.6.
E

VA
L

U
A

T
IO

N
Program Vulnerability Dowsing Symbolic input Symbolic execution

AG score Loops LoC V-S2E M-S2E Dowser
nginx 0.6.32 CVE-2009-2629 4th out of 62/140 517 66k URI field > 8 h > 8 h 253 sec

heap underflow 630 points 50 bytes
ffmpeg 0.5 UNKNOWN 3rd out of 727/1419 1286 300k Huffman table > 8 h > 8 h 48 sec

heap overread 2186 points 224 bytes
inspircd 1.1.22 CVE-2012-1836 1st out of 66/176 1750 45k DNS response 200 sec 200 sec 32 sec

heap overflow 625 points 301 bytes
poppler 0.15.0 UNKNOWN 39th out of 388/904 1737 120k JPEG image > 8 h > 8 h 14 sec

heap overread 1075 points 1024 bytes
poppler 0.15.0 CVE-2010-3704 59th out of 388/904 1737 120k Embedded font > 8 h > 8 h 762 sec

heap overflow 910 points 1024 bytes
libexif 0.6.20 CVE-2012-2841 8th out of 15/31 121 10k EXIF tag/length > 8 h 652 sec 652 sec

heap overflow 501 points 1024 + 4 bytes
libexif 0.6.20 CVE-2012-2840 15th out of 15/31 121 10k EXIF tag/length > 8 h 347 sec 347 sec

off-by-one error 40 points 1024 + 4 bytes
libexif 0.6.20 CVE-2012-2813 15th out of 15/31 121 10k EXIF tag/length > 8 h 277 sec 277 sec

heap overflow 40 points 1024 + 4 bytes
snort 2.4.0 CVE-2005-3252 24th out of 60/174 616 75k UDP packet > 8 h > 8 h 617 sec

stack overflow 246 points 1100 bytes

Table 4.2: Applications tested with Dowser. The Dowsing section presents the results of Dowser’s ranking scheme. AG score is the complexity of
the vulnerable analysis group - its position among other analysis groups; X/Y denotes all analysis groups that are ”complex enough” to be potentially
analyzed/all analysis groups which access arrays; and the number of points it scores. Loops counts outermost loops in the whole program, and LoC -

the lines of code according to sloccount. Symbolic input specifies how many and which parts of the input were determined to be marked as
symbolic by the first two components of Dowser. The last section shows symbolic execution times until revealing the bug. Almost all applications
proved to be too complex for the vanilla version of S2E (V-S2E). Magic S2E (M-S2E) is the time S2E takes to find the bug when we feed it with an
input with only a minimal symbolic part (as identified in Symbolic input). Finally, the last column is the execution time of fully-fledged Dowser.

w
w

w
.syssec-project.eu

101
O

ctober30,2014

Dowser

4.6.2.1 Dowsing for candidate instructions

We now examine several aspects of the dowsing mechanism. First, we show that
there is a correlation between Dowser’s scoring function and the existence of mem-
ory corruption vulnerabilities. Then, we discuss how our focus on complex loops
limits the search space, i.e., the amount of analysis groups to be tested. We start
with a description of our data set.

Data set To evaluate the effectiveness of Dowser, we chose six real world pro-
grams: nginx, ffmpeg, inspircd, libexif, poppler, and snort. Addition-
ally, we consider the vulnerabilities in sendmail tested by Zitser et al. [268]. For
these applications, we analyzed all buffer overflows reported in CVE [189] since
2009. For ffmpeg, rather than include all possible codecs, we just picked the ones
for which we had test cases. Out of 27 CVE reports, we took 17 for the evalua-
tion. The remaining ten vulnerabilities are out of the scope of this paper – nine
of them are related to an erroneous usage of a correct function, e.g., strcpy, and
one was not in a loop. In this section, we consider the analysis groups from all the
applications together, giving us over 3000 samples, 17 of which are known to be
vulnerable4.

When evaluating Dowser’s scoring mechanism, we also compare it to a straight-
forward scoring function that treats all instructions uniformly. For each array ac-
cess, it considers exactly the same AGs as Dowser. However, instead of the scoring
algorithm (Table 4.1), each instruction gets 10 points. We will refer to this metric
as count.

Correlation For both Dowser’s and the count scoring functions, we computed
the correlation between the number of points assigned to an analysis group and
the existence of a memory corruption vulnerability. We used the Spearman rank
correlation [21], since it is a reliable measure that is appropriate even when we
do not know the probability distribution of the variables, or when the association
between the variables is non-linear.

The positive correlation for Dowser is statistically significant at p < 0.0001,
for count — at p < 0.005. The correlation for Dowser is stronger.

Dowsing The Dowsing columns of Table 4.2 shows that our focus on complex
loops limits the search space from thousands of LoC to hundreds of loops, and
finally to a small number of “interesting” analysis groups. Observe that ffmpeg
has more analysis groups than loops. That is correct. If a loop accesses multiple
arrays, it contains multiple analysis groups.

By limiting the analysis to complex cases, we focus on a smaller fraction of
all AGs in the program, e.g., we consider 36.9% of all the analysis groups in
inspircd, and 34.5% in snort. ffmpeg, on the other hand, contains lots of
complex loops that decode videos, so we also observe many “complex” analysis
groups.

4Since the scoring functions are application agnostic, it is sound to compare their results across
applications.

www.syssec-project.eu 102 October 30, 2014

4.6. EVALUATION

0 20 40 60 80 100

% of analysis groups analyzed

%
 o

f b
ug

s
de

te
ct

ed

0

20

40

60

80

100

Dowser
Count
Random

Fig. 4.6: A comparison of random testing and two scoring functions: Dowser’s and
count. It illustrates how many bugs we detect if we test a particular fraction of the

analysis groups.

In practice, symbolic execution, guided or not is expensive, and we can hardly
afford a thorough analysis of more than just a small fraction of the target AGs of
an application, say 20%-30%. For this reason, Dowser uses a scoring function, and
tests the analysis groups in order of decreasing score. Specifically, Dowser looks at
complexity. However, alternative heuristics are also possible. For instance, one may
count the instructions that influence array accesses in an AG. To evaluate whether
Dowser’s heuristics are useful, we compare how many bugs we discover if we
examine increasing fractions of all AGs, in descending order of the score. So, we
determine how many of the bugs we find if we explore the top 10% of all AGs, how
many bugs we find when we explore the top 20%, and so on. In our evaluation, we
are comparing the following ranking functions: (1) Dowser’s complexity metric,
(2) counting instructions as described above, and (3) random.

Figure 4.6 illustrates the results. The random ranking serves as a baseline—
clearly both count and Dowser perform better. In order to detect all 17 bugs,
Dowser has to analyze 92.2% of all the analysis groups. However, even with just
15% of the targets, we find almost 80% (13/17) of all the bugs. At that same frac-
tion of targets, count finds a little over 40% of the bugs (7/17). Overall, Dowser
outperforms count beyond the 10% in the ranking. It also reaches the 100% bug
score earlier than the alternatives, although the difference is minimal.

The reason why Dowser still requires 92% of the AGs to find all bugs, is that
some of the bugs were very simple. The “simplest” cases include a trivial buffer
overflow in poppler (worth 16 points), and two vulnerabilities in sendmail from
1999 (worth 20 points each). Since Dowser is designed to prioritize complex array
accesses, these buffer overflows end up in the low scoring group. (The “simple”

www.syssec-project.eu 103 October 30, 2014

Dowser

analysis groups – with less than 26 points – start at 47.9%). Clearly, both heuristics
provide much better results than random sampling. Except for the tail, they find the
bugs significantly quicker, which proves their usefulness.

To summarize, we have shown that a testing strategy based on Dowser’s scor-
ing function is effective. It lets us find vulnerabilities quicker than random testing
or a scoring function based on the length of an analysis group.

4.6.2.2 Symbolic execution

Table 4.2 presents attacks detected by Dowser. The last section shows how long it
takes before symbolic execution detects the bug. Since the vanilla version of S2E
cannot handle these applications with the whole input marked as symbolic, we also
run the experiments with minimal symbolic inputs (“Magic S2E”). It represents
the best-case scenario when an all-knowing oracle tells the execution engine ex-
actly which bytes it should make symbolic. Finally, we present Dowser’s execution
times.

We run S2E for as short a time as possible, e.g., a single request/response
in nginx and transcoding a single frame in ffmpeg. Still, in most applications,
vanilla S2E fails to find bugs in a reasonable amount of time. inspircd is an ex-
ception, but in this case we explicitly tested the vulnerable DNS resolver only.
In the case of libexif, we can see no difference between “Magic S2E” and
Dowser, so Dowser’s guidance did not influence the results. The reason is that
our test suite here was simple, and the execution paths reached the vulnerability
condition quickly. In contrast, more complex applications process the inputs in-
tensively, moving symbolic execution away from the code of interest. In all these
cases, Dowser finds bugs significantly faster. Even if we take the 15 minute tests
of higher-ranking analysis groups into account, Dowser provides a considerable
improvement over existing systems.

4.7 Related work

Dowser is a ’guided’ fuzzer which draws on knowledge from multiple domains. In
this section, we place our system in the context of existing approaches. We start
with the scoring function and selection of code fragments. Next, we discuss tradi-
tional fuzzing. We then review previous work on dynamic taint analysis in fuzzing,
and finally, discuss existing work on whitebox fuzzing and symbolic execution.

Software complexity metrics Many studies have shown that software complex-
ity metrics are positively correlated with defect density or security vulnerabili-
ties [196, 221, 120, 266, 221, 200]. However, Nagappan et al. [196] argued that
no single set of metrics fits all projects, while Zimmermann et al. [266] emphasize
a need for metrics that exploit the unique characteristics of vulnerabilities, e.g.,
buffer overflows or integer overruns. All these approaches consider the broad class
of post-release defects or security vulnerabilities, and consider a very generic set of

www.syssec-project.eu 104 October 30, 2014

4.7. RELATED WORK

measurements, e.g., the number of basic blocks in a function’s control flow graph,
the number of global or local variables read or written, the maximum nesting level
of if or while statements and so on. Dowser is very different in this respect, and
to the best of our knowledge, the first of its kind. We focus on a narrow group of
security vulnerabilities, i.e., buffer overflows, so our scoring function is tailored to
reflect the complexity of pointer manipulation instructions.

Traditional fuzzing Software fuzzing started in earnest in the 90s when Miller et
al. [186] described how they fed random inputs to (UNIX) utilities, and managed to
crash 25-33% of the target programs. More advanced fuzzers along the same lines,
like Spike [231], and SNOOZE [31], deliberately generate malformed inputs, while
later fuzzers that aim for deeper bugs are often based on the input grammar (e.g.,
Kaksonen [151] and [239]). DeMott [97] offers a survey of fuzz testing tools. As
observed by Godefroid et al. [124], traditional fuzzers are useful, but typically find
only shallow bugs.

Application of DTA to fuzzing BuzzFuzz [119] uses DTA to locate regions of
seed input files that influence values used at library calls. They specifically select
library calls, as they are often developed by different people than the author of the
calling program and often lack a perfect description of the API. Buzzfuzz does not
use symbolic execution at all, but uses DTA only to ensure that they preserve the
right input format. Unlike Dowser, it ignores implicit flows completely, so it could
never find bugs such as the one in nginx (Figure 4.1). In addition, Dowser is more
selective in the application of DTA. It’s difficult to assess which library calls are
important and require a closer inspection, while Dowser explicitly selects complex
code fragments.

TaintScope [250] is similar in that it also uses DTA to select fields of the input
seed which influence security-sensitive points (e.g., system/library calls). In addi-
tion, TaintScope is capable of identifying and bypassing checksum checks. Like
Buzzfuzz, it differs from Dowser in that it ignores implicit flows and assumes only
that library calls are the interesting points. Unlike BuzzFuzz, TaintScope operates
at the binary level, rather than the source.

Symbolic-execution-based fuzzing Recently, there has been much interest in white-
box fuzzing, symbolic execution, concolic execution, and constraint solving. Ex-
amples include EXE [55], KLEE [54], CUTE [219], DART [121], SAGE [124],
and the work by Moser et al. [194]. Microsoft’s SAGE, for instance, starts with
a well-formed input and symbolically executes the program under test in attempt
to sweep through all feasible execution paths of the program. While doing so, it
checks security properties using AppVerifier. All of these systems substitute (some
of the) program inputs with symbolic values, gather input constraints on a program
trace, and generate new input that exercises different paths in the program. They
are very powerful, and can analyze programs in detail, but it is difficult to make
them scale (especially if you want to explore many loop-based array accesses).
The problem is that the number of paths grows very quickly.

www.syssec-project.eu 105 October 30, 2014

Dowser

Zesti [177] takes a different approach and executes existing regression tests
symbolically. Intuitively, it checks whether they can trigger a vulnerable condition
by slightly modifying the test input. This technique scales better and is useful for
finding bugs in paths in the neighborhood of existing test suites. It is not suitable
for bugs that are far from these paths. As an example, a generic input which ex-
ercises the vulnerable loop in Figure 4.1 has the uri of the form ”//{arbitrary
characters}”, and the shortest input triggering the bug is ”//../”. When fed with
”//abc”, [177] does not find the bug—because it was not designed for this sce-
nario. Instead, it requires an input which is much closer to the vulnerability condi-
tion, e.g., ”//..{an arbitrary character}”. For Dowser, the generic input is suffi-
cient.

SmartFuzz [192] focuses on integer bugs. It uses symbolic execution to con-
struct test cases that trigger arithmetic overflows, non-value-preserving width con-
versions, or dangerous signed/unsigned conversions. In contrast, Dowser targets
the more common (and harder to find) case of buffer overflows. Finally, Babić et
al. [28] guide symbolic execution to potentially vulnerable program points detected
with static analysis. However, the interprocedural context- and flow-sensitive static
analysis proposed does not scale well to real world programs and the experimental
results contain only short traces.

4.8 Conclusion

Dowser is a guided fuzzer that combines static analysis, dynamic taint analysis,
and symbolic execution to find buffer overflow vulnerabilities deep in a program’s
logic. It starts by determining ‘interesting’ array accesses, i.e., accesses that are
most likely to harbor buffer overflows. It ranks these accesses in order of complexity—
allowing security experts to focus on complex bugs, if so desired. Next, it uses taint
analysis to determine which inputs influence these array accesses and fuzzes only
these bytes. Specifically, it makes (only) these bytes symbolic in the subsequent
symbolic execution. Where possible Dowser’s symbolic execution engine selects
paths that are most likely to lead to overflows. Each three of the steps contain novel
contributions in and of themselves (e.g., the ranking of array accesses, the implicit
flow handling in taint analysis, and the symbolic execution based on pointer value
coverage), but the overall contribution is a new, practical and complete fuzzing
approach that scales to real applications and complex bugs that would be hard or
impossible to find with existing techniques. Moreover, Dowser proposes a novel
‘spot-check’ approach to finding buffer overflows in real software.

www.syssec-project.eu 106 October 30, 2014

5
Body armor for binaries: preventing buffer

overflows without recompilation

Preamble: Relation to the Research Roadmap

While the previous chapter discussed buffer overflow vulnerabilities and how to
find them, this chapter is concerned with detecting such attacks as they occur. As a
result, it is related to the same themes in the Red Book. Specifically, it has a link to
Chapters 4 and 9 (“Software Vulnerabilities” and “Legacy Systems”) as BinArmor
tries to detect buffer overflows attacks immediately (as soon as they occur) and
operates on the binary. Moreover, it is, to our knowledge, unique in that it can stop
extremely advanced buffer overflow attacks—namely those that do not divert the
program’s control flow, but rather change its data.

Like the previous chapter, the current chapter also relates to Chapter 6 of the
Red Book (“Critical Infrastructures”), as many of these systems contain legacy
code. The source code for such systems may not be available, so that hardening
such legacy code at the binary level is the only option. Again, the notorious Stuxnet
attack on the uranium enrichment facility in Iran in 2010, made use of a fairly
classic memory corruption attack (among several others).

Asia Slowinska, Traian Stancescu, Herbert Bos, “Body Armor for Binaries:
Preventing Buffer Overflows Without Recompilation” 2012 USENIX Annual Tech-
nical Conference (USENIX ATC 12), Boston, USA – August 2012.

107

BinArmor

Abstract

BinArmor is a novel technique to protect existing C binaries from memory
corruption attacks on both control data and non-control data. Without access to
source code, non-control data attacks cannot be detected with current techniques.
Our approach hardens binaries against both kinds of overflow, without requiring
the programs’ source or symbol tables. We show that BinArmor is able to stop real
attacks—including the recent non-control data attack on Exim. Moreover, we did
not incur a single false positive in practice. On the downside, the current overhead
of BinArmor is high—although no worse than competing technologies like taint
analysis that do not catch attacks on non-control data. Specifically, we measured an
overhead of 70% for gzip, 16%-180% for lighttpd, and 190% for the nbench
suite.

5.1 Introduction

Despite modern security mechanisms like stack protection [80], ASLR [41], and
PaX/DEP/W⊕X [240], buffer overflows rank third in the CWE SANS top 25 most
dangerous software errors [90]. The reason is that attackers adapt their techniques
to circumvent our defenses.

Non-control data attacks, such as the well-known attacks on exim mail servers
(Section 5.2), are perhaps most worrying [67, 230]. Attacks on non-control data
are hard to stop, because they do not divert the control flow, do not execute code
injected by the attacker, and often exhibit program behaviors (e.g., in terms of
system call patterns) that may well be legitimate. Worse, for binaries, we do not
have the means to detect them at all.

Current defenses against non-control data attacks all require access to the source
code [149, 22, 23]. In contrast, security measures at the binary level can stop vari-
ous control-flow diversions [75, 20, 108], but offer no protection against corruption
of non-control data.

Even for more traditional control-flow diverting attacks, current binary instru-
mentation systems detect only the manifestations of attacks, rather than the attacks
themselves. For instance, they detect a control flow diversion that eventually re-
sults from the buffer overflow, but not the actual overflow itself, which may have
occurred thousands of cycles before. The lag between time-of-attack and time-of-
manifestation makes it harder to analyze the attack and find the root cause [225].

In this paper, we describe BinArmor, a tool to bolt a layer of protection on C
binaries that stops state-of-the-art buffer overflows immediately (as soon as they
occur).

High level overview Rather than patching systems after a vulnerability is found,
BinArmor is proactive and stops buffer (array) overflows in binary software, be-
fore we even know it is vulnerable. Whenever it detects an attack, it will raise
an alarm and abort the execution. Thus, like most protection schemes, we assume

www.syssec-project.eu 108 October 30, 2014

5.1. INTRODUCTION

 if a pointer that
 first pointed
 into an array...

...later accesses
 an area outside
 the array...

crash()
Find arrays
in binaries.

Find accesses
to arrays.

Rewrite the binary:
- assign colours to arrays
- check colors on
 every array access

owned

(i) (ii) (iii)

Fig. 5.1: BinArmor overview.

that the system can tolerate rare crashes. Finally, BinArmor operates in one of two
modes. In BA-fields mode, we protect individual fields inside structures. In BA-
objects mode, we protect at the coarser granularity of full objects.

BinArmor relies on limited information about the program’s data structures—
specifically the buffers that it should protect from overflowing. If the program’s
symbol tables are available, BinArmor is able to protect the binary against buffer
overflows with great precision. Moreover, in BA-objects mode no false positives
are possible in this case. While we cannot guarantee this in BA-fields mode, we
did not encounter any false positives in practice, and as we will discuss later, they
are unlikely.

However, while researchers in security projects frequently assume the avail-
ability of symbol tables [108], in practice, software vendors often strip their code
of all debug symbols. In that case, we show that we can use automated reverse
engineering techniques to extract symbols from stripped binaries, and that this is
enough to protect real-world applications against real world-attacks. To our knowl-
edge, we are the first to use data structure recovery to prevent memory corruption.
We believe the approach is promising and may also benefit other systems, like
XFI [108] and memory debuggers [198].

BinArmor hardens C binaries in three steps (Fig. 5.1):

(i) Data structure discovery: dynamically extract the data structures (buffers)
that need protection.

(ii) Array access discovery: dynamically find potentially unsafe pointer accesses
to these buffers.

(iii) Rewrite: statically rewrite the binary to ensure that a pointer accessing a
buffer stays within its bounds.

Data structure discovery is easy when symbol tables are available, but very hard
when they are not. In the absence of symbol tables, BinArmor uses recent research

www.syssec-project.eu 109 October 30, 2014

BinArmor

results [227] to reverse engineer the data structures (and especially the buffers)
from the binary itself by analyzing memory access patterns (Fig. 5.1, step i). Some-
thing is a struct, if it is accessed like a struct, and an array, if it is accessed like an
array. And so on. Next, given the symbols, BinArmor dynamically detects buffer
accesses (step ii). Finally, in the rewrite stage (step iii), it takes the data structures
and the accesses to the buffers, and assigns to each buffer a unique color. Every
pointer used to access the buffer for the first time obtains the color of this buffer.
BinArmor raises an alert whenever, say, a blue pointer accesses a red byte.

Contributions BinArmor proactively protects existing C binaries, before we even
know whether the code is vulnerable, against attacks on control data and non-
control data, and it can do so either at object or sub-field granularity. Compared to
source-level protection like WIT, BinArmor has the advantage that it requires no
access to source code or the original symbol tables. In addition, in BA-fields mode,
by protecting individual fields inside a structure rather than aggregates, BinArmor
is finer-grained than WIT and similar solutions. Also, it prevents overflows on both
writes and reads, while WIT protects only writes and permits information leakage.
Further, we show in Section 5.9 that points-to analysis (a technique relied on by
WIT), is frequently imprecise.

Compared to techniques like taint analysis that also target binaries, BinArmor
detects both control flow and non-control flow attacks, whereas taint analysis de-
tects only the former. Also, it detects attacks immediately when they occur, rather
than sometime later, when a function pointer is used.

The main drawback of BinArmor is the very significant slowdown (up to 2.8x
for the lighttpd webserver and 1.7x for gzip). While better than most tainting sys-
tems (which typically incur 3x-20x), it is much slower than WIT (1.04x for gzip).
Realistically, such slowdowns make BinArmor in its current form unsuitable for
any system that requires high performance. On the other hand, it may be used in
application domains where security rather than performance is of prime impor-
tance. In addition, because BinArmor detects buffer overflows themselves rather
than their manifestations, we expect it to be immediately useful for security ex-
perts analyzing attacks. Finally, we will show later that we have not explored all
opportunities for performance optimization.

Our work builds on dynamic analysis, and thus suffers from the limitations of
all dynamic approaches: we can only protect what we execute during the analysis.
This work is not about code coverage. We rely on existing tools and test suites
to cover as much of the binary as possible. Since coverage is never perfect, we
may miss buffer accesses and thus incur false negatives. Despite this, BinArmor
detected all 12 real-world buffer overflow attacks in real-world applications we
study (Section 5.8).

BinArmor takes a conservative approach to prevent false positives (unnecessary
program crashes). For instance, no false positives are possible when the protection
is limited to structures (BA-objects mode). In BA-fields mode, we can devise sce-

www.syssec-project.eu 110 October 30, 2014

5.2. SOME BUFFER OVERFLOWS ARE HARD TO STOP: THE EXIM
ATTACK ON NON-CONTROL DATA

narios that lead to false positives due to the limited code coverage. However, we
did not encounter any in practice, and we will show that they are very unlikely.

Since our dynamic analysis builds on Qemu [37] process emulation which is
only available for Linux, we target x86 Linux binaries, generated by gcc (albeit
of various versions and with different levels of optimization). However, there is
nothing fundamental about this and the techniques should apply to other systems
also.

5.2 Some buffer overflows are hard to stop: the Exim at-
tack on non-control data

In December 2010, Sergey Kononenko posted a message on the exim developers
mailing list about an attack on the exim mail server. The news was slashdotted
shortly after. The remote root vulnerability in question concerns a heap overflow
that causes adjacent heap variables to be overwritten, for instance an access con-
trol list (ACL) for the sender of an e-mail message. A compromised ACL is bad
enough, but in exim the situation is even worse. Its powerful ACL language can
invoke arbitrary Unix processes, giving attackers full control over the machine.

The attack is a typical heap overflow, but what makes it hard to detect is that
it does not divert the program’s control flow at all. It only overwrites non-control
data. ASLR, W⊕X, canaries, system call analysis—all fail to stop or even detect
the attack.

Both ‘classic’ buffer overflows [106], and attacks on non-control data [67]
are now mainstream. While attackers still actively use the former (circumvent-
ing existing measures), there is simply no practical defense against the latter in
binaries. Thus, researchers single out non-control data attacks as a serious future
threat [230]. BinArmor protects against both types of overflows.

5.3 What to Protect: Buffer Accesses

BinArmor protects binaries by instrumenting buffer accesses to make sure they are
safe from overflows. Throughout the paper, a buffer is an array that can potentially
overflow. Fig. 5.1 illustrates the general idea, which is intuitively simple: once the
program has assigned an array to a pointer, it should not use the same pointer
to access elements beyond the array bounds. For this purpose, BinArmor assigns
colors to arrays and pointers and verifies that the colors of memory and pointer
match on each access. After statically rewriting the binary, the resulting code runs
natively and incurs overhead only for the instructions that access arrays. In this
section, we explain how we obtain buffers and accesses to them when symbols
are not available, while Sections 5.5–5.7 discuss how we use this information to
implement fine-grained protection against buffer overflows.

www.syssec-project.eu 111 October 30, 2014

BinArmor

5.3.1 Extracting Buffers and Data Structures

Ideally, BinArmor obtains information about buffers from the symbol tables.
Many projects assume the availability of symbol tables [108, 198]. Indeed, if the
binary does come with symbols, BinArmor offers very accurate protection. How-
ever, as symbols are frequently stripped off in real software, it uses automated
reverse engineering techniques to extract them from the binary. BinArmor uses a
dynamic approach, as static approaches are weak at recovering arrays, but, in prin-
ciple, they work also [213].

Specifically, we recover arrays using Howard [227], which follows the simple
intuition that memory access patterns reveal much about the layout of data struc-
tures. In this paper, we sketch only the general idea and refer to the original Howard
paper for details [227]. Using binary code coverage techniques [71, 54], Howard
executes as many of the execution paths through the binary as possible and ob-
serves the memory accesses. To detect arrays, it first detects loops and then treats a
memory area as an array if (1) the program accesses the area in a loop (either con-
secutively, or via arbitrary offsets from the array base), and (2) all accesses ‘look
like’ array accesses (e.g., fixed-size elements). Moreover, it takes into account ar-
ray accesses outside the loop (including ‘first’ and ‘last’ elements), and handles a
variety of complications and optimizations (like loop unrolling).

Since arrays are detected dynamically, we should not underestimate the size of
arrays, lest we incur false positives. If the array is classified as too small, we might
detect an overflow when there is none. In Howard, the data structure extraction is
deliberately conservative, so that in practice the size of arrays is either classified
exactly right, or overestimated (which never leads to false positives). The reason
is that it conservatively extends arrays towards the next variable below or above.
Howard is very unlikely to underestimate the array size for compiler-generated
code and we never encountered it in any of our tests, although there is no hard
guarantee that we never will. Size underestimation is possible, but can happen only
if the program accesses the array with multiple base pointers, and behaves consis-
tently and radically different in all analysis runs from the production run.

Over a range of applications, Howard never underestimated an array’s size and
classified well over 80% of all arrays on the executed paths ‘exactly right’—down
to the last byte. These arrays represent over 90% of all array bytes. All remaining
arrays are either not classified at all or overestimated and thus safe with respect to
false positives.

We stressed earlier that Howard aims to err on the safe side, by overestimating
the size of arrays to prevent false positives. The question is what the costs are of
doing so. Specifically, one may expect an increase in false negatives. While true in
theory, this is hardly an issue in practice. The reason is that BinArmor only misses
buffer overflows that (1) overwrite values immediately following the real array (no
byte beyond the (over-)estimation of the array is vulnerable), and (2) that over-
write a value that the program did not use separately during the dynamic analysis
of the program (otherwise, we would not have classified it as part of the array).

www.syssec-project.eu 112 October 30, 2014

5.4. CODE COVERAGE AND MODES OF OPERATION

Exploitable overflows that satisfy both conditions are rare. For instance, an over-
flow of a return value would never qualify, as the program always uses the return
address separately. Overall, not a single vulnerability in Linux programs for which
we could find an exploit qualified.

One final remark about array extraction and false positives; as mentioned ear-
lier, BinArmor does not care which method is used to extract arrays and static
extractors may be used just as well. However, this is not entirely true. Not under-
estimating array sizes is crucial. We consider the problem of finding correct buffer
sizes orthogonal to the binary protection mechanism offered by BinArmor. When-
ever we discuss false positives in BinArmor, we always assume that the sizes of
buffers are not underestimated.

5.3.2 Instructions to be Instrumented

When BinArmor detects buffers to be protected, it dynamically determines the
instructions (array accesses), that need instrumenting. The process is straightfor-
ward: for each buffer, it dumps all instructions that access it.

Besides accesses, BinArmor also dumps all instructions that initialize or ma-
nipulate pointers that access arrays.

5.4 Code Coverage and Modes of Operation

Since BinArmor is based on dynamic analysis, it suffers from coverage issues—
we can only analyze what we execute. Even the most advanced code coverage
tools [54, 71] cover just a limited part of real programs. Lack of coverage causes
BinArmor to miss arrays and array accesses and thus incur false negatives. Even
so, BinArmor proved powerful enough to detect all attacks we tried (Section 5.8).
What we really want to avoid are false positives: crashes on benign input.

In BinArmor, we instrument only those instructions that we encountered during
the analysis phase. However, a program path executed at runtime, pR, may differ
from all paths we have seen during analysis A, {pa}a∈A, and yet pR might share
parts with (some of) them. Thus, an arbitrary subset of array accesses and pointer
manipulations on pR is instrumented, and as we instrument exactly those instruc-
tions that belong to paths in {pa}a∈A, it may well happen that we miss a pointer
copy, a pointer initialization, or a pointer dereference instruction.

With that in mind, we should limit the color checks performed by BinArmor
to program paths which use array pointers in ways also seen during analysis. Intu-
itively, the more scrupulous and fine-grained the color checking policy, the more
tightly we need to constrain protected program paths to the ones seen before. To
address this tradeoff, we offer two modes of BinArmor which impose different re-
quirements for the selection of program paths to be instrumented, and offer protec-
tion at different granularities: coarse-grained BA-objects mode (Section 5.5), and
fine-grained BA-fields mode (Section 5.6).

www.syssec-project.eu 113 October 30, 2014

BinArmor

typedef struct pair {
 int x; int y;
} pair_t;

struct s {
 int age;
 pair_t buf[3];
 int privileged;
} mystruct;

/* initialize the buffer */
int *p;
int len = 3; // buf length

for(p = (int*)mystruct.buf;
 p < mystruct.buf+len; p++)
 *p = 0;

(b) Init code. (d) Color tags.

C0 C1 C2 C3

(e) The masks shield all
shades except the first two.

with
 m

ask
s,

all
th

ese

co
lo

rs

m
atc

h!

but t
his

acc
ess

will
fa

il

(c) Color tags.

C

Fig. 5.2: BinArmor colors in BA-objects mode (c) and BA-fields modes (d,e) for sample
data structures (a) and code (b).

5.5 BA-objects mode: Object-level Protection

Just like other popular approaches, e.g., WIT [22] and BBC [23], BA-objects mode
provides protection at the level of objects used by a program. To do so, BinArmor
assigns a color to each buffer1 on stack, heap, or in global memory. Then it makes
sure that a pointer to an object of color X never accesses memory of color Y. This
way we detect all buffer overflows that aim to overwrite another object in memory.

5.5.1 What is Permissible? What is not?

Figs. (5.2.a-5.2.b) show a function with some local variables, and Fig. (5.2.c)
shows their memory layout and colors. In BA-objects mode, we permit memory
accesses within objects, such as the two tick-marked accesses in Fig. (5.2.c). In the
first case, the program perhaps iterates over the elements in the array (at offsets 4,
12, and 20 in the object), and dereferences a pointer to the second element (off-
set 12) by adding sizeof(pair t) to the array’s base pointer at offset 4. In the
second case, it accesses the privileged field of mystruct via a pointer to the
last element of the array (offset 24). Although the program accesses a field beyond
the array, it remains within the local variable mystruct, and (like WIT and other
projects), we allow such operations in this mode. Such access patterns commonly
occur, e.g., when a memset()-like function initializes the entire object.

However, BinArmor stops the program from accessing the len and p fields
through a pointer into the structure. len, p and mystruct are separate variables
on the stack, and one cannot be accessed through a pointer to the other. Thus,
BinArmor in BA-objects mode stops inter-object buffer overflow attacks, but not
intra-object ones.

www.syssec-project.eu 114 October 30, 2014

5.5. BA-OBJECTS MODE: OBJECT-LEVEL PROTECTION

5.5.2 Protection by Color Matching

BinArmor uses colors to enforce protection. It assigns colors to each word of a
buffer1, when the program allocates memory for it in global, heap, or stack mem-
ory. Each complete object gets one unique color. All memory which we do not
protect gets a unique background color.

When the program assigns a buffer of color X to a pointer, BinArmor associates
the same color with the register containing the pointer. The color does not change
when the pointer value is manipulated (e.g., when the program adds an offset to
the pointer), but it is copied when the pointer is copied to a new register. When the
pointer is stored to memory, we also store its color to a memory map, to load it
later when the pointer is restored.

From now on, BinArmor vets each dereference of the pointer to see if it is still
in bounds. Vetting pointer dereferences is a matter of checking whether the color
of the pointer matches that of the memory to which it points.

Stale Colors and Measures to Rule out False Positives Due to lack of coverage,
a program path at runtime may lack instrumentation on some pointer manipulation
instructions. This may lead to the use of a stale color.

Consider a function like memcpy(src,dst). Suppose that BinArmor misses
the dst buffer during analysis (it was never used), so that it (erroneously) does not
instrument the instructions manipulating the dst pointer prior to calling memcpy()—
say, the instruction that pushes dst on the stack. Also suppose that memcpy() it-
self is instrumented, so the load of the dst pointer into a register obtains the color
of that pointer. However, since the original push was not instrumented, BinArmor
never set that color! If we are lucky, we simply find no color, and everything works
fine. If we are unlucky, we pick up a stale color of whatever was previously on the
stack at that position2. As soon as memcpy() dereferences the pointer, the color
check fails and the program crashes.

BinArmor removes all false positives of this nature by adding an additional tag
to the colors to indicate to which memory address the color corresponds. The tag
functions not unlike a tag in a hardware cache entry: to check whether the value
we find really corresponds to the address we look for. For instance, if eax points
to dst, the tag contains the address dst. If the program copies eax to ebx, it
also copies the color and the tag. When the program manipulates the register (e.g.,
eax++), the tag incurs the same manipulation (e.g., tageax++). Finally, when the
program dereferences the pointer, we check whether the color corresponds to the
memory to which the pointer refers. Specifically, BinArmor checks the colors on
a dereference of eax, iff (tageax==eax). Thus, it ignores stale colors and prevents
the false positives.

1Or a struct containing the array as this mode operates on objects
2There may be stale colors for the stack value, because it is not practical to clean up all colors

whenever memory is no longer in use.

www.syssec-project.eu 115 October 30, 2014

BinArmor

Pointer Subtraction: What if Code is Color Blind? The colors assigned by
BinArmor prevent a binary from accessing object X though a pointer to object
Y. Even though programs in C are not expected to do so, some functions exhibit
“color blindness”, and directly use a pointer to one object to access another object.
The strcat() and strcpy chk() functions in current libc implementations on
Linux are the best known examples: to copy a source to a destination string, they
access both by the same pointer—adding the distance between them to access the
remote string.

Our current solution is straightforward. When BinArmor detects a pointer sub-
traction, and later spots when the resultant distance is added to the subtrahend to
access the buffer associated with the minuend pointer, it resets the color to reflect
the remote buffer, and we protect dereferences in the usual way.

If more complex implementations of this phenomenon appear, we can prevent
the associated dereferences from being checked at all. To reach the remote buffer,
such scenarios have an operation which involves adding a value derived from the
distance between two pointers. BinArmor would not include it in the set of instruc-
tions to be instrumented, so that the tag of the resultant pointer will not match its
value, and the color check will not be performed. False positives are ruled out.

Other projects, like WIT [22] and the pointer analysis-based protection in [27],
explicitly assume that a pointer to an object can only be derived from a pointer to
the same object. In this sense, our approach is more generic.

5.5.3 Expect the Unexpected Paths

To justify that BinArmor effectively rules out false positives, we have to show
that all program paths executed at runtime do not exhibit any false alerts. As we
discussed in Section 5.4, a program path at runtime, pR, may differ from all paths
seen during analysis, while sharing parts with (some of) them. Thus, pR may ac-
cess an array, while some of the instructions associated with these accesses are not
instrumented. The question is whether pR may cause false positives.

Suppose pR accesses an array. If arr is a pointer to this array, 3 generic types
of instruction might be missed, and thus not instrumented by BinArmor: (1) an
arr initialization instruction, (2) an arr update/manipulation instruction, and (3)
an arr dereference instruction.

The crucial feature of BinArmor which prevents false positives in cases (1) and
(2) are the tags introduced in Section 5.5.2. They check whether the color associ-
ated with a pointer corresponds to the right value. In the case of a pointer initializa-
tion or a pointer update instruction missing, the pointer tag does not match its value
anymore, its color is considered invalid, and it is not checked on dereferences. Fi-
nally, if an arr dereference instruction is not instrumented, it only means that the
color check is not performed. Again, it can only result in false negatives, but never
false positives.

www.syssec-project.eu 116 October 30, 2014

5.6. BA-FIELDS MODE: A COLORFUL ARMOR

5.6 BA-fields mode: a Colorful Armor

BA-objects mode and BA-fields mode differ significantly in the granularity of pro-
tection. Where BA-objects mode protects memory at the level of objects, BA-fields
mode offers finer-grained protection—at the level of fields in structures. Thus, Bin-
Armor in BA-fields mode stops not only inter-object buffer overflow attacks, but
also intra-object ones. We shall see, the extra protection increases the chances of
false positives which should be curbed.

5.6.1 What is Permissible? What is not?

Consider the structure in Fig. (5.2.a) with a memory layout as shown in Fig. (5.2.d).
Just like in BA-objects mode, BinArmor now also permits legitimate memory ac-
cesses such as the two tick-marked accesses in Fig. (5.2.d).

But unlike in BA-objects mode, BinArmor in BA-fields mode stops the pro-
gram from accessing the privileged field via a pointer into the array. Similarly,
it prevents accessing the x field in one array element from the y field in another.
Such accesses that do not normally occur in programs are often symptomatic of
attacks3.

5.6.2 Shaded Colors

BinArmor uses a shaded color scheme to enforce fine-grained protection. Com-
pared to BA-objects mode, the color scheme used here is much richer. In Sec-
tion 5.5, the whole object was given a single color, but in BA-fields mode, we add
shades of colors to distinguish between individual fields in a structure. First, we
sketch how we assign the colors. Next, we explain how they are used.

Since BinArmor knows the structure of an object to be protected, it can assign
separate colors to each variable and to each field. The colors are hierarchical, much
like real colors: lime green is a shade of green, and dark lime green and light
lime green, are gradations of lime green, etc. Thus, we identify a byte’s color as
a sequence of shades: C0 : C1 : .. : CN , where we interpret Ci+1 as a shade of
color Ci. Each shade corresponds to a nesting level in the data structure. This is
illustrated in Fig. (5.2.d).

The base color, C0, corresponds to the complete object, and is just like the
color used by BinArmor in BA-objects mode. It distinguishes between individually
allocated objects. At level 1, the object in Fig. (5.2.d) has three fields, each of which
gets a unique shade C1. The two integer fields do not have any further nesting,
but the array field has two more levels: array elements and fields within the array
elements. Again, we assign a unique shade to each array element and, within each
array element, to each field. The only exceptions are the base of the array and the
base of the structs—they remain blank for reasons we explain shortly. Finally, each

3Note: if they do occur, either Howard classifies the data structures differently, or BinArmor
detects these accesses in the analysis phase, and applies masks (Section 5.6.2), so they do not cause
problems.

www.syssec-project.eu 117 October 30, 2014

BinArmor

colorCi has a type flag indicating whether it is an array element shown in the figure
as a dot (a small circle on the right).

We continue the coloring process, until we reach the maximum nesting level
(in the figure, this happens at C3), or exhaust the maximum color depth N . In the
latter case, the object has more levels of nesting than BinArmor can accommo-
date in shades, so that some of the levels will collapse into one, ‘flattening’ the
substructure. Collapsed structures reduce BinArmor’s granularity, but do not cause
problems otherwise. In fact, most existing solutions (like WIT [22] and BBC [23])
operate only at the granularity of the full object.

Protection by Color Matching The main difference between the color schemes
implemented in BA-objects mode and BA-fields mode is that colors are more com-
plex now and include multiple shades. We need a new procedure to compare them,
and decide what is legal.

The description of the procedure starts in exactly the same way as in BA-
objects mode. When a buffer of color X is assigned to a pointer, BinArmor as-
sociates the same color with the register containing the pointer. The color does not
change when the pointer value is manipulated (e.g., when the program adds an off-
set to the pointer), but it is copied when the pointer is copied to a new register.
When the program stores a pointer to memory, we also store its color to a memory
map, to load it later when the pointer is restored to a register.

The difference from the BA-objects mode is in the color update rule: when
the program dereferences a register, we update its color so that it now corresponds
to the memory location associated with the register. The intuition is that we do
not update colors on intermediate pointer arithmetic operations, but that the colors
represent pointers used by the program to access memory.

From now on, BinArmor vets each dereference of the pointer to see if it is still
in bounds. Vetting pointer dereferences is a matter of checking whether the color of
the pointer matches that of the memory it points to—in all the shades, from left to
right. Blank shades serve as wild cards and match any color. Thus, leaving bases of
structures and arrays blank guarantees that a pointer to them can access all internal
fields of the object.

Finally, we handle the common case where a pointer to an array element derives
from a pointer to another element of the array. Since array elements in Fig. (5.2c)
differ in C2, such accesses would normally not be allowed, but the dots distinguish
array elements from structure fields. Thus we are able to grant these accesses. We
now illustrate these mechanisms for our earlier examples.

Suppose the program has already accessed the first array element by means of a
pointer to the base of the array at offset 4 in the object. In that case, the pointer’s ini-
tial color is set to C1 of the array’s base. Next, the program adds sizeof(pair -

t) to the array’s base pointer and dereferences the result to access the second ar-
ray element. At that point, BinArmor checks whether the colors match. C0 clearly
matches, and since the pointer has only the C1 color of the first array element, its

www.syssec-project.eu 118 October 30, 2014

5.6. BA-FIELDS MODE: A COLORFUL ARMOR

color and that of the second array element match. Our second example, accessing
the y field from the base of the array, matches for the same reason.

However, an attacker cannot use this base pointer to access the privileged
field, because the C1 colors do not match. Similarly, going from the y field in the
second array element to the x field in the third element will fail, because the C2

shades differ.

The Use of Masks: What if Code is Color Blind? Programs do not always
access data structures in a way that reflects the structure. They frequently use func-
tions similar to memset to initialize (or copy) an entire object, with all subfields
and arrays in it. Unfortunately, these functions do not heed the structure at all.
Rather, they trample over the entire data structure in, say, word-size strides. Here is
an example. Suppose p is a pointer to an integer and we have a custom memset-like
function:

for (p=objptr, p<sizeof(*objptr); p++) *p = 0;

The code is clearly ‘color blind’, but while it violates the color protection, Bin-
Armor should not raise an alert as the accesses are all legitimate. But it should not
ignore color blindness either. For instance, the initialization of one object should
not trample over other objects. Or inside the structure of Fig. (5.2.b): an initializa-
tion of the array should not overwrite the privileged field.

One (bad) way to handle such color blindness is to white-list the code. For
instance, we could ignore all accesses from white-listed functions. While this helps
against some false alerts, it is not a good solution for two reasons. First, it does not
scale; it helps only against a few well-known functions (e.g., libc functions), but
not against applications that use custom functions to achieve the same. Second, as
it ignores these functions altogether, it would miss attacks that use this code. For
instance, the initialization of (just) the buffer could overflow into the privilege field.

Instead, BinArmor exploits the shaded colors of Section 5.6.2 to implement
masks. Masks shield code that is color blind from some of the structure’s subtler
shades. For instance, when the initialization code in Fig. (5.2.b) is applied to the
array, we filter out all shades beyond C1: the code is then free to write over all the
records in the array, but cannot write beyond the array. Similarly, if an initialization
routine writes over the entire object, we filter all shades except C0, limiting all
writes to this object.

Fig. (5.2.e) illustrates the usage of masks. The code on the left initializes the
array in the structure of Fig. 5.2. By masking all colors beyond C0 and C1, all
normal initialization code is permitted. If attackers can somehow manipulate the
len variable, they could try to overflow the buffer and change the privileged

value. However, in that case the C1 colors do not match, and BinArmor will abort
the program.

To determine whether a memory access needs masks (and if so, what sort),
BinArmor’s dynamic analysis first marks all instructions that trample over multiple

www.syssec-project.eu 119 October 30, 2014

BinArmor

data structures as ‘color blind’ and determines the appropriate mask. For instance,
if an instruction accesses the base of the object, BinArmor sets the masks to block
out all colors except C0. If an instruction accesses a field at the kth level in the
structure, BinArmor sets the masks to block out all colors except C0...Ck. And so
on.

Finding the right masks to apply and the right places to do so, requires fairly
subtle analysis. BinArmor needs to decide at runtime which part of the shaded
color to mask. In the above example, if the program initializes the whole structure,
BinArmor sets the masks to block out all colors except C0. If the same function
is called to initialize the array, however, only C2 and C3 are shielded. To do so,
BinArmor’s dynamic analysis tracks the source of the pointer used in the ‘color
blind’ instruction, i.e., the base of the structure or array. The instrumentation then
allows for accesses to all fields included in the structure (or substructure) rooted at
this source. Observe that not all such instructions need masks. For instance, code
that zeros all words in the object by adding increasing offsets to the base of the
object, has no need for masks. After all, because of the blank shades the base of
the object permits access to the entire object even without masks.

BinArmor enforces the masks when rewriting the binary. Rather than checking
all shades, it checks only the instructions’ visible colors for these instructions.

Pointer Subtraction As discussed in Section 5.5.2, some functions exhibit color
blindness, and use a pointer to one object to access another. Both the problem and
its solution are exactly the same as for BA-fields mode.

5.6.3 Why We do Not See False Positives

Given an accurate or conservative estimate of array sizes, the only potential
cause of false positives is lack of coverage. As explained in Section 5.5, we do not
address the array size underestimation here–we simply require either symbol tables
or a conservative data structure extractor (Section 5.3). But other coverage issues
occur regardless of symbol table availability and must be curbed.

Stale Colors and Tags In Section 5.5.2, we showed that lack of coverage could
lead to the use of stale colors in BA-objects mode. Again, the problem and its
solution are the same as for BA-fields mode.

Missed Masks and Context Checks Limited code coverage may also cause Bin-
Armor to miss the need for masks and, unless prevented, lead to false positives.
Consider again the example custom memset function of Section 5.6.2. The code
is color blind, unaware of the underlying data structure, and accesses the memory
according to its own pattern. To prevent false positives, we introduced masks that
filter out some shades to allow for benign memory accesses.

Suppose that during analysis the custom memset function is invoked only once,
to initialize an array of 4-byte fields. No masks are necessary. Later, in a produc-

www.syssec-project.eu 120 October 30, 2014

5.6. BA-FIELDS MODE: A COLORFUL ARMOR

[1] void
[2] foo(int *buf, int flag){
[3] if (flag != 2408)
[4] return;
[5]
[6] // custom memset
[7] while (cond){
[8] *buf = 0;
[9] buf++;
[10] }
[11] }

1. Analysis phase:
 (a) call foo((int*)array_of_structs, 1408);
 - the call stack gets accepted
 (b) call foo(int*, 2408);
 - the instruction in [8] is instrumented,
 yet without the need for a mask

2. Production run:
 call foo((int*)array_of_structs, 2408);
 - the call stack is accepted, so BA runs
 the instrumented version of the function
 - crash in [8] because we don't expect
 the need for a mask

Fig. 5.3: BA-fields mode: a scenario leading to false positives.

tion run, the program takes a previously unknown code path, and uses the same
function to access an array of 16-byte structures. Since it did not assign masks to
this function originally, BinArmor now raises a (false) alarm.

To prevent the false alarm, we keep two versions of each function in a program:
a vanilla one, and an instrumented one which performs color checking. When the
program calls a function, BinArmor checks whether the function call also occurred
at the same point during the analysis by examining the call stack. (In practice,
we take the top 3 function calls.) Then, it decides whether or not to execute the
instrumented version of the function. It performs color checking only for layouts
of data structures we have seen before, so we do not encounter code that accesses
memory in an unexpected way.

5.6.4 Are False Positives Still Possible?

While the extra mechanism to prevent false positives based on context checks
is effective in practice, it does not give any strong guarantees. The problem is that
a call stack does not identify the execution context with absolute precision. Fig. 5.3
shows a possible problematic scenario. In this case, it should not be the call stack,
but a node in the program control flow graph which identifies the context. Only
if we saw the loop in lines [6-9] initializing the array of structs, should we
allow for an instrumented version of it at runtime. Observe that the scenario is
fairly improbable. First, the offensive function must exhibit the need for masks,
that is, it must access subsequent memory locations through a pointer to a previous
field. Second, it needs to be called twice with very particular sets of arguments
before it can lead to the awkward situation.

As we did not encounter false positives in any of our experiments, and BA-
fields mode offers powerful, fine-grained protection, we think that the risk may be
acceptable in application domains that can handle rare crashes.

www.syssec-project.eu 121 October 30, 2014

BinArmor

5.7 Efficient Implementation

Protection by color matching combined with masks for color blindness allows Bin-
Armor to protect data structures at a finer granularity than previous approaches.
Even so, the mechanisms are sufficiently simple to allow for efficient implemen-
tations. BinArmor is designed to instrument 32-bit ELF binaries for the Linux/x86
platforms. Like Pebil [170], it performs static instrumentation, i.e., it inserts addi-
tional code and data into an executable, and generates a new binary with permanent
modifications. We first describe how BinArmor modifies the layout of a binary,
and next present some details of the instrumentation. (For a full explanation refer
to [233].)

5.7.1 Updated Layout of ELF Binary

To accommodate new code and data required by the instrumentation, BinArmor
modifies the layout of an ELF binary. The original data segment stays unaltered,
while we modify the text segment only in a minor way—just to allow for the se-
lection of the appropriate version of a function (Section 5.6.3), and to assure that
the resulting code works correctly—mainly by adjusting jump targets to reflect
addresses in the updated code (refer to Section 5.7.2). To provide protection, Bin-
Armor inserts a few additional segments in the binary: BA Initialized Data, BA -
Uninitialized Data, BA Procedures, and BA Code.

Both data segments–BA (Un)Initialized Data– store data structures that are in-
ternally used by BinArmor, e.g., data structures color maps, or arrays mapping
addresses in the new version of a binary to the original ones. The BA Procedures
code segment contains various chunks of machine code used by instrumentation
snippets (e.g., a procedure that compares the color of a pointer with the color of
a memory location). Finally, the BA Code segment is the pivot of the BinArmor
protection mechanism—it contains the original program’s functions instrumented
to perform color checking.

5.7.2 Instrumentation Code

To harden the binary, we rewrite it to add instrumentation to those instructions
that dereference the array pointers. In BA-fields mode, we use multi-shade colors
only if the data structures are nested. When we can tell that a variable is a string,
or some other non-nested array, we switch to a simpler, single-level color check.

To provide protection, BinArmor reorganizes code at the instruction level. We
do not need to know function boundaries, as we instrument instructions which
were classified as array accesses, along with pointer move or pointer initializa-
tion instructions, during the dynamic analysis phase. We briefly describe the main
steps taken by BinArmor: (1) inserting trampolines and method selector, (2) code
relocation, (3) inserting instrumentation.

www.syssec-project.eu 122 October 30, 2014

5.8. EVALUATION

Inserting trampolines and method selector. The role of a method selector is
to decide whether a vanilla or an instrumented function should be executed (see
Section 5.6.3), and then jump to it. In BinArmor, we place a trampoline at the
beginning of each (dynamically detected) function in the original text segment,
which jumps to the method selector. The selector picks the right code to continue
execution, as discussed previously.

Code relocation. BinArmor’s instrumentation framework must be able to add an
arbitrary amount of extra code between any two instructions. In turn, targets of all
jump and call instructions in a binary need to be adjusted to reflect new values
of the corresponding addresses. As far as direct/relative jumps are concerned, we
simply calculate new target addresses, and modify the instructions. Our solution
to indirect jumps is similar to [232]: they are resolved at runtime, by using arrays
maintaining a mapping between old and new addresses.

Inserting instrumentation. Snippets come in many shapes. For instance, snip-
pets to handle pointer dereferences, to handle pointer move instructions, or to color
memory returned by malloc. Some instructions require that a snippet performs
more than one action. For example, an instruction which stores a pointer into an
array, needs to both store the color of the pointer in a color map, and make sure that
the store operation is legal. For an efficient instrumentation, we have developed a
large number of carefully tailored snippets.

Colors map naturally on a sequence of small numbers. For instance, each byte
in a 32-bit or 64-bit word may represent a shade, for a maximum nesting level
of 4 or 8, respectively. Doing so naively, incurs a substantial overhead in memory
space, but, just like in paging, we need only allocate memory for color tags when
needed. The same memory optimization is often used in dynamic taint analysis. In
the implementation evaluated in Section 5.8, we use 32 bit colors with four shades
and 16 bit tags.

Fig. 5.4 shows an example of an array dereference in the binary hardened by
BinArmor. The code is simplified for brevity, but otherwise correct. We see that
each array dereference incurs some extra instructions. If the colors do not match,
the system crashes. Otherwise, the dereference executes as intended. We stress
that the real implementation is more efficient. For instance, adding two call in-
structions would be extremely expensive. In reality, BinArmor uses code snippets
tailored to performance

5.8 Evaluation

We evaluate BinArmor on performance and on effectiveness in stopping attacks. As
the analysis engine is based on the Qemu processor emulation, which is currently
only available on Linux, all examples are Linux-based. However, the approach is
not specific to any operating system.

www.syssec-project.eu 123 October 30, 2014

BinArmor

check whether tag value matches the pointer

cmp %edx, register_tag_edx

jne _dereference_check_end

[save %eax and %ebx used in instrumentation]

lea (%edx, %eax, 4), %ebx

call get_color_of_ebx ; loaded to %bx

mov register_color_edx, %ax

call color_match ; compare colors in %ax and %bx

cmpl $0, %eax ; check result

je _dereference_ok

["crash"]

[restore %eax and %ebx used in instrumentation]

movl $0x1234, (%edx, %eax, 4); execute original instr

_dereference_check_start:

_dereference_bad:

_dereference_ok:

_dereference_check_end:

Fig. 5.4: Instrumentation for an array pointer dereference (with 16b colors and tags). The
original instruction is mov 0x1234,(%edx,%eax,4). We replace it by code similar

to that presented in the figure (but more efficient).

www.syssec-project.eu 124 October 30, 2014

5.8. EVALUATION

We have performed our analysis for binaries compiled with two compiler ver-
sions, gcc-3.4 and gcc-4.4, and with different optimization levels. All results
presented in this section are for binaries compiled with gcc-4.4 -O2 and without
symbols, i.e., completely stripped. We reconstruct the symbols using Howard [227].

Performance To evaluate the performance of BinArmor operating in BA-fields
mode4, we compare the speed of instrumented (armored) binaries with that of un-
modified implementations. Our test platform is a Linux 2.6 system with an Intel(R)
Core(TM)2 Duo CPU clocked at 2.4GHz with 3072KB L2 cache. The system has
4GB of memory. For our experiments we used an Ubuntu 10.10 install. We ran
each test multiple times and present the median. Across all experiments, the 90th
percentiles were typically within 10% and never more than 20% off the mean.

We evaluate the performance of BinArmor with a variety of applications—all
of the well-known nbench integer benchmarks [4]—and a range of real-world pro-
grams. We picked the nbench benchmark suite, because it is compute-intensive and
several of the tests should represent close to worst-case scenarios for BinArmor.

For the real-world applications, we chose a variety of very different programs:
a network server (lighttpd), several network clients (wget, htget), and a more
compute-intensive task (gzip). Lighttpd is a high-performance web server used
by such popular sites as YouTube, SourceForge, Wikimedia, Meebo, and ThePi-
rateBay. Wget and htget are well-known command-line web clients. Gzip imple-
ments the DEFLATE algorithm which includes many array and integer operations.

Fig. 5.5 shows that for real I/O-intensive client-side applications like wget

and htget the slowdown is negligible, while gzip incurs a slow-down of ap-
proximately 1.7x. As gzip is a very expensive test for BinArmor, the slow-down
was less than we expected. The overhead for a production-grade web server like
lighttpd is also low: less than 2.8x for all object sizes, and as little as 16% for
large objects. In networking applications I/O dominates the performance and the
overhead of BinArmor is less important.

Fig. 5.6 shows the results for the very compute-intensive nbench test suite. The
overall slowdown for nbench is 2.9x. Since this benchmark suite was chosen as
worst-case scenario and we have not yet fully optimized BinArmor, these results
are quite good. Some of the tests incurred a fairly minimal slow-down. Presumably,
these benchmarks are dominated by operations other than array accesses. String
sort and integer sort, on the other hand, manipulate strings and arrays constantly
and thus incur much higher slowdowns. They really represent the worst cases for
BinArmor.

Effectiveness Table 5.1 shows the effectiveness of BinArmor in detecting attacks
on a range of real-life software vulnerabilities. Specifically, these attacks represent

4The reason is that BA-fields mode is the most fine-grained, although in practice, the performance
of BA-objects mode is very similar.

www.syssec-project.eu 125 October 30, 2014

BinArmor

 0

 1

 2

 3

1K 10K 100K 1M 10M gzip
(1.6M)

gzip
(6.8M)

gzip
(67M)

htget wget

sl
ow

do
w

n

lighttpd (any size)

Native BinArmor

Fig. 5.5: Performance overhead for real world applications: lighttpd – for 5 object sizes
(in connections/s as measured by httperf), gzip – for 3 object sizes, htget and wget.

 0

 1

 2

 3

 4

 5

 6

lu
decomp

neural
net

huffman idea assign fourier bitfield string
sort

integer
sort

sl
ow

do
w

n

Native BinArmor

Fig. 5.6: Performance overhead for the compute-intensive nbench benchmark suite.

www.syssec-project.eu 126 October 30, 2014

5.9. RELATED WORK

all vulnerabilities on Linux programs for which we found working exploits. Bin-
Armor operating in either mode detected all attacks we tried and did not generate
any false positives during any of our experiments. The attacks detected vary in na-
ture and include overflows on both heap and stack, local and remote, and of both
control and non-control data.

The detection of attacks on non-control data is especially encouraging. While
control flow diversions would trigger alerts also on taint analysis systems like Ar-
gos [208] and Minemu [49], to the best of our knowledge, no other security mea-
sure for stripped binaries would be able to detect such attacks. As mentioned ear-
lier, security experts expect non-control data attacks to become even more impor-
tant attack vectors in the near future [67, 230].

Application Vulnerability type Security advisory

Aeon 0.2a Stack overflow CVE-2005-1019
Aspell 0.50.5 Stack overflow CVE-2004-0548
Htget 0.93 (1) Stack overflow CVE-2004-0852
Htget 0.93 (2) Stack overflow
Iwconfig v.26 Stack overflow CVE-2003-0947
Ncompress 4.2.4 Stack overflow CVE-2001-1413
Proftpd 1.3.3a Stack overflow CVE-2010-4221
bc-1.06 (1) Heap overflow Bugbench [176]
bc-1.06 (2) Heap overflow Bugbench [176]
Exim 4.41 Heap overflow∗ CVE-2010-4344
Nullhttpd-0.5.1 Heap overflow† CVE-2002-1496
Squid-2.3 Heap overflow† Bugbench [176]

∗ A non-control-diverting attack. † A reproduced attack.

Table 5.1: Tested vulnerabilities: all attacks were stopped by
BinArmor, including the attack on non-control data.

5.9 Related Work

The easiest way to prevent memory corruptions is to do so at the source level,
using a safe language or compiler extension. However, as access to source code or
recompilation is often not an option, many binaries are left unprotected. Our work
is about protecting binaries. Since it was inspired by the WIT compiler extension,
we briefly look at compile time solutions also.

Protection at compile time Managed languages like Java and C# are safe from
buffer overflows by design. Cyclone [149] and CCured [74] show that similar pro-
tection also fits dialects of C—although the overhead is not always negligible. Bet-
ter still, data flow integrity (DFI) [60], write integrity testing (WIT) [22], and baggy

www.syssec-project.eu 127 October 30, 2014

BinArmor

bounds checking (BBC) [23] are powerful protection approaches against memory
corruptions for unmodified C.

BinArmor was inspired by the WIT compiler extension—a defense framework
that marries immediate (fail-stop) detection of memory corruption to excellent per-
formance. WIT assigns a color to each object in memory and to each write instruc-
tion in the program, so that the color of memory always matches the color of an
instruction writing it. Thus all buffers which can be potentially accessed by the
same instruction share the same color. WIT employs points-to analysis to find the
set of objects written by each instruction. If several objects share the same color,
WIT might fail to detect attacks that use a pointer to one object to write to the other.
To get a grasp of the precision, we implemented points-to analysis ourselves, and
applied it to global arrays in gzip-1.4. Out of 270 buffers, 124 have a unique
color, and there are two big sets of objects that need to share it: containing 64
and 68 elements. (We assume that we provide templates for the libc functions.
Otherwise, the precision is worse.) To deal with these problems, WIT additionally
inserts small guards between objects, which cannot be written by any instruction.
They provide an extra protection against sequential buffer overflows. BinArmor
tracks colors of objects dynamically, so each array is assigned a unique color.

Also, WIT and BBC protect at the granularity of memory allocations. If a pro-
gram allocates a structure that contains an array as well as other fields, overflows
within the structure go unnoticed. As a result, the attack surface for memory at-
tacks is still huge. SoftBound is one of the first tools to protect subfields in C
structures [197]. Again, SoftBound requires access to source code.

BinArmor’s protection resembles that of WIT, but without requiring source
code, debugging information, or even symbol tables. Unlike WIT, it protects at the
granularity of subfields in C structs. It prevents not just out-of-bounds writes,
as WIT does, but also reads. As a drawback, BinArmor may be less accurate, since
dynamic analysis may not cover the entire program.

Protection of binaries Arguably some of the most popular measures to protect
against memory corruption are memory debuggers like Purify and Valgrind [198].
These powerful testing tools are capable of finding many memory errors without
source code. However, they incur overheads of an order of magnitude or more.
Moreover, their accuracy depends largely on the presence of debug information
and symbol tables. In contrast, BinArmor is much faster and requires neither.

One of the most advanced approaches to binary protection is XFI [108]. Like
memory debuggers, XFI requires symbol tables. Unlike memory debuggers, DTA,
or BinArmor, XFI’s main purpose is to protect host software that loads modules
(drivers in the kernel, OS processes, or browser modules) and it requires explicit
support from the hosting software–to grant the modules access to a slice of the
address space. It offers protection by a combination of control flow integrity, stack
splitting, and memory access guards. Memory protection is at the granularity of

www.syssec-project.eu 128 October 30, 2014

5.10. DISCUSSION

the module, and for some instructions, the function frame. The memory guards
will miss most overflows that modify non-control data.

An important class of approaches to detect the effects of memory corruption
attacks is based on dynamic taint analysis (DTA) [75]. DTA does not detect the
memory corruption itself, but may detect malicious control flow transfers. Unfor-
tunately, the control flow transfer occurs at a (often much) later stage. With typical
slowdowns of an order of magnitude, DTA in software is also simply too expensive
for production systems.

Non-control data attacks are much harder to stop [67]. [66] pioneered an in-
teresting form of DTA to detect some of these attacks: pointers become tainted if
their values are influenced by user input, and an alert is raised if a tainted value is
dereferenced. However, pointer taintedness for detecting non-control data attacks
is shown to be impractical for complex architectures like the x86 and popular op-
erating systems [226]. The problems range from handling table lookups to implicit
flows and result in false positives and negatives. Moreover, by definition, pointer
taintedness cannot detect attacks that do not dereference a tainted pointer, such as
an attack that would overwrite the privileged field in Fig. (5.2a).

5.10 Discussion

Obviously, BinArmor is not flawless. In this section, we discuss some generic lim-
itations.

With a dynamic approach, BinArmor protects only arrays detected by Howard.
If the attackers overflow other arrays, we will miss the attacks. Also, if particular
array accesses are not exercised in the analysis phase, the corresponding instruc-
tions are not instrumented either. Combined with the tags (Section 5.5.2), this lack
of accuracy can only cause false negatives, but never false positives. In practice, as
we have seen in Section 5.8, BinArmor was able to protect all vulnerable programs
we tried.

Howard itself is designed to err on the safe side. In case of doubt, it overes-
timates the size of an array. Again, this can lead to false negatives, but not false
positives. However, if the code is strongly obfuscated or deliberately designed to
confuse Howard, we do not guarantee that it will never misclassify a data structure
in such a way that it will cause a false positive. Still, it is unlikely, because to do so,
the behavior during analysis should also be significantly different from that during
the production run. In our view, the risk is acceptable for software deployments
that can tolerate rare crashes.

We have implemented two versions of BinArmor: BA-objects mode, and BA-
fields mode. While the latter protects memory at a fine-grained granularity, there
exist theoretical situations that can lead to false alerts. However, in practice we
did not encounter any problems. Since the protection offered is very attractive —
BinArmor protects individual fields within structures — we again think that the
risk is acceptable.

www.syssec-project.eu 129 October 30, 2014

BinArmor

Code coverage is a limitation of all dynamic analysis techniques and we do
not claim any contribution to this field. Interestingly, code coverage can also be
‘too good’. For instance, if we were to trigger a buffer overflow during the analysis
run, BinArmor would interpret it as normal code behavior and not prevent similar
overruns during production. Since coverage techniques to handle complex applica-
tions are currently still fledgling, this is mostly an academic problem. At any rate,
if binary code coverage techniques are so good as to find such real problems in the
testing phase, this can only be beneficial for the quality of software.

5.11 Future work

BinArmor’s two main problems are accuracy (in terms of false negatives and false
positives) and performance (in terms of the slowdown of the rewritten binary). In
this section, we discuss ways to address these problems.

First, the root cause of BinArmor’s false negative and false positive problems is
the lack of code coverage. Our next target, therefore, is to extend the paths covered
dynamically by means of static analysis. For instance, we can statically analyze the
full control flow graphs of all functions called at runtime. Static analysis in general
is quite hard, due to indirect calls and jumps, but within a single function indirect
jumps are often tractable (they are typically the result of switch statements that
are relatively easy to handle).

Second, the cause of BinArmor’s slowdown is the instrumentation that adds
overhead to every access to an array that BinArmor discovered. We can decrease
the overhead using techniques that are similar to those applied in WIT. For instance,
there is no need to perform checks on instructions which calculate the address to be
dereferenced in a deterministic way, say at offset 0x10 from a base pointer. Thus,
our next step is to analyze the instructions that are candidates for instrumentation
and determine whether the instrumentation is strictly needed.

5.12 Conclusions

We described a novel approach to harden binary software proactively against buffer
overflows, without access to source or symbol tables. Besides attacks that divert the
control flow, we also detect attacks against non-control data. Further, we demon-
strated that our approach stops a variety of real exploits. Finally, as long as we are
conservative in classifying data structures in the binaries, our method will not have
false positives. On the downside, the overhead of our approach in its current form
is quite high—making it unsuitable for many application domains today. However,
we also showed that significant performance optimizations may still be possible.
It is our view that protection at the binary level is important for dealing with real
threats to real and deployed information systems.

www.syssec-project.eu 130 October 30, 2014

6
Online and Scalable Data Validation in Advanced

Metering Infrastructures

Preamble: Relation to the Research Roadmap

As introduced by the Peccadillo scenario (roadmap deliverable D4.1) and further
discussed in Chapter 2, detecting the possible tampering of embedded devices’
firmware which could result in fraudulent energy consumption reports is of funda-
mental importance.

In a broader sense, the detection of all fraudulent and incorrect data, caused
either by malicious users or by the faulty and lossy nature of embedded devices, is
key for the proper functioning of the applications that leverage such data.

In this chapter, we discuss how data can be validated in an on-line and scalable
fashion meeting the high-throughput and low-latency requirements of Advanced
Metering Infrastructures. At the same time, we show how user-defined validation
rules can be easily composed in order to tune the analysis to the hardware (e.g., the
embedded devices) producing the data.

Vincenzo Gulisano, Magnus Almgren, Marina Papatriantafilou; “Online and
Scalable Data Validation in Advanced Metering Infrastructures” IEEE PES Inno-
vative Smart Grid Technologies (ISGT) European Conference - October 2014

131

Validation in AMI

Abstract

The shift from traditional to cyber-physical grids involves the deployment of Ad-
vanced Metering Infrastructures, networks of communication-enabled devices re-
motely controlled by utilities. Live information collected by these devices enables
for applications such as demand/response, real-time pricing or intrusion detection,
among others. In these scenarios, data validation is necessary in order to preprocess
the noisy and lossy data produced by the devices and make it available to utilities’
or third parties’ applications. Challenges proper of data validation in this domain
include the possibility of expressing validation rules specific to an Advanced Me-
tering Infrastructure installation and analysis techniques that cope with the large
and fluctuating volume of data produced by the devices.

In this paper, we discuss and provide evidence of the online, scalable and ex-
pressive validation analysis enabled by the data streaming processing paradigm.
Based on a prototype implementation on top of the Storm processing engine and
using data from a real-world Advanced Metering Infrastructure, we show that
streaming-based validation rules enable for the analysis of thousands of meters
per second and only incur in small latency penalties in the order of milliseconds.

6.1 Introduction

The transition from traditional to cyber-physical electric grids involves the deploy-
ment of Advanced Metering Infrastructures (AMIs). An AMI is composed by net-
works of communication-enabled devices that share information (e.g., energy con-
sumption readings, energy quality measurements or power outage logs) with the
utility’s head-end. A considerable number of research directions surrounds AMIs:
real-time pricing [24], demand-response [130], users’ privacy [245], smart meters
vulnerabilities [76], Intrusion Detection Systems (IDSs) [39], users’ awareness and
social media [185] or load forecast [118]. All these research fields depend on the
data produced by AMIs’ devices. Unfortunately, such data is known to be noisy,
lossy and to be possibly delivered out of order and with duplicates (especially for
AMIs relying on wireless communication [158]). Because of this, data validation
analysis is adopted to preprocess and clean the data collected from the devices
before the utility or third parties access it. Such validation analysis usually re-
lies on a set of validation rules. It should be noted that noisy and missing data
does not depend uniquely on AMIs’ devices themselves, but can also be caused
by their (possibly malicious) users. Causes of noisy and lossy data include faulty
or badly calibrated devices, lossy or overloaded (or possibly jammed) communica-
tion channels or incorrect energy consumption readings manipulated by malicious
users, among others.

Challenges Millions of messages are generated on a daily basis by AMIs’ de-
vices. Some of them are generated with a certain periodicity chosen by the utility

www.syssec-project.eu 132 October 30, 2014

6.1. INTRODUCTION

(e.g., energy consumption readings) while others can appear in bursts over time
(e.g., power outage logs). To this end, a scalable validation analysis is required in
order to cope with the large and fluctuating volume of data produced by the de-
vices. At the same time, an online (i.e., in a real-time fashion) validation analysis
is required for live information to be leveraged in scenarios such as real-time pric-
ing or defense frameworks. Since AMIs are composed by heterogeneous types and
brands of devices (e.g., electricity meters, meter concentrator units, heating meters,
and so on) that usually rely on proprietary data formats, it is desirable for utilities
to rely on validation tools with which system experts can easily compose validation
rules rather than rely on a set of predefined ones.

Contributions In this paper, we propose and provide evidence about the on-
line, scalable and expressive validation analysis enabled by the data streaming
processing paradigm. The latter has been proposed as an alternative to the tra-
ditional “store-then-process” (database) paradigm by applications demanding for
high processing capacity with low processing latency guarantees (e.g., financial
markets analysis [235], publicity pricing [25], fraud detection [129] or defense
frameworks [56]). In data streaming, continuous queries are defined as Directed
Acyclic Graphs (DAGs) of operators and run in a distributed and parallel fash-
ion by Stream Processing Engines (SPEs) such as Storm [236], Yahoo S4 [259]
or StreamBase [238]. As we will discuss, streaming-based validation rules can be
composed by means of the standard data streaming operators provided by these
SPEs. We provide the following contributions:

1. An analysis of the expressive and scalable validation enabled by the data
streaming processing paradigm, including examples of real-world validation
rules.

2. An implementation of a set of streaming-based validation rules on top of
Storm [236], a state of the art SPE used in companies such as Twitter.

3. An evaluation of the performance and scalability of such streaming-based
validation rules based on data extracted from a real-world AMI.

The rest of the paper is organized as follows. We introduce some preliminary
concepts in Section 6.2. We present how data streaming operators can be used to
compose streaming-based validation rules in Section 6.3. We provide an evaluation
of the performance (in terms of throughput and latency) of a set of validation rules
in Section 6.4. Section 6.5 discussed the related work while Section 6.6 concludes
the paper.

www.syssec-project.eu 133 October 30, 2014

Validation in AMI

6.2 System Model

6.2.1 Validation Analysis in Advanced Metering Infrastructures

AMIs networks are composed by heterogeneous devices such as smart meters
(in charge of forwarding readings about electricity, gas or water consumption) and
meter concentrators units (in charge of collecting consumption readings to forward
them to the utility head-end). These devices are usually resource-constrained and
organized in different network topologies (e.g., point-to-point, hierarchical or mesh
ones). For these reasons, it is more desirable for a utility to be able to compose
validation rules rather than rely on a predefined set of validation rules that might
not fit local constraints (or rely on ad hoc solutions that will be hard to maintain). To
this end, data streaming operators constitute excellent building blocks to compose
streaming-based validation rules, as we discuss in Section 6.3.

The large and fluctuating volume of data produced by AMIs’ devices demand
for a scalable and online validation analysis in order for the data to be leveraged
by applications such as real-time pricing or defense frameworks. Validation rules
could be deployed in different ways within an AMI. On one hand, they could be
deployed at the utility head-end system. This centralized approach is the common
choice in existing AMIs (e.g., for IDSs, as discussed in [127]). Data collected from
the devices is preprocessed as it enters the utility’s head-end and subsequently
stored in order to be available to other applications. On the other hand, the de-
ployment could push the validation analysis to the meters themselves (e.g., dis-
carding wrong consumption readings at the meters rather than at the head-end). As
discussed in the context of COUGAR [47], one of the pioneer SPEs, the perfor-
mance of a given traffic analysis technique can be improved by keeping the data
moved across devices to its minimum (i.e., transferring only useful information).
Intermediate solutions could rely both on the devices themselves and the utility’s
head-end to perform the validation analysis. To our advantage, SPEs would allow
for streaming-based validation rules to be executed at arbitrary numbers of hetero-
geneous nodes, thus leveraging any of these possible deployment strategies, as we
discuss later in Section 6.3.3.

6.2.2 Meter Data Management systems and Validation, Estimation and Edit-
ing (VEE) Rules

The systems in charge of collecting and storing AMIs’ data are referred to as
Meter Data Management systems [128, 204]. Such systems rely on a set of Valida-
tion, Estimation and Editing (VEE) rules that are used to preprocess the informa-
tion before the latter is stored in the utility’s databases.

In the context of VEE rules, Validation refers to the purging of noisy or possi-
bly corrupted information. As discussed in Section 6.1, possible causes of such in-
formation degradation include faulty devices or overloaded communication chan-
nels, among others. Possible examples of validation include removal of negative

www.syssec-project.eu 134 October 30, 2014

6.2. SYSTEM MODEL

consumption values or consumption values that exceed the capacity of the fuse
installed in a smart meter.

Estimation refers to the ability of producing missing information. Such infor-
mation could be produced by relying on interpolation methods or by methods that
take into account meters’ historical data. As an example, a period of missing con-
sumption values for a given smart meter could be estimated based on its consump-
tion as observed during the previous six months.

Editing refers to the ability of modifying historical information. The rationale is
that, in scenarios such as real-time pricing, live information (e.g., energy consump-
tion readings) is needed within specified time intervals. To comply with such time
constraints, it might be preferable for the utility to rely on estimated data rather
than postponing any computation until all data is available. Nevertheless, real in-
formation that arrives at the utility after having been estimated (e.g., because of out
of order delivery of messages) is still more appropriate to store than the calculated
estimate.

6.2.3 Data Streaming

In data streaming, incoming data is processed by means of continuous queries
(or simply queries), DAGs where vertices represent operators and edges spec-
ify how tuples flow between them [19]. Differently from their database counter-
part, such queries are not issued at a point in time but rather stand continuously
to process information on the fly, updating their computation and producing re-
sults accordingly. Data streaming queries consume streams, each defined as an
unbounded sequence of tuples sharing the same schema, composed by attributes
〈ts, A1, A2, . . . , An〉. Given a tuple t, attribute t.ts represents its creation times-
tamp at the data source while 〈A1, A2, . . . , An〉 are application related attributes.
Figure 6.1 presents a sample schema for tuples referring to energy consumption
readings that could be produced by the smart meters deployed in an AMI. In the
example, tuples are composed by attributes ts, the creation timestamp, sm the smart
meter id, and cons, the consumption in kWh observed during the last hour.

Attribute ts sm cons

Description Creation timestamp Meter ID Hourly consumption (kWh)

Fig. 6.1: Sample schema of tuples carrying energy information readings.
Data streaming operators are distinguished into stateless and stateful. Stateless

operators (e.g., Filter, Map, Union) process each tuple individually. On the other
hand, stateful operators (e.g., Aggregate, Join) perform computations based on se-
quences of tuples. Due to the unbounded nature of streams, stateful computations
are performed over sliding windows (or simply windows). Windows can be time-
based (e.g., the tuples received in the last 10 minutes) or tuple-based (e.g., the last
20 received tuples), and are defined by parameters Size and Advance, specifying the

www.syssec-project.eu 135 October 30, 2014

Validation in AMI

<1:00,sm0,1.3> <11:00,sm0,1.8>
<5:00,sm0,1.2> <20:00,sm0,1.8>

W0 [0:00-12:00)

W1 [3:00-15:00)

W2 [6:00-18:00)

W3 [9:00-21:00)

time

Fig. 6.2: Sample sequence of tuples carrying energy information readings and
evolution of a time-based window of Size and Advance of 12 and 3 hours,

respectively.

extent of a window and the amount of information discarded each time the latter
slides.

Figure 6.2 present a sample sequence of tuples composed by the attributes
shown in Figure 6.1 and the evolution of a time-based window of size and advance
of 12 and 3 hours, respectively.

6.3 Streaming-based validation analysis

This section discusses how data streaming can be used to run data validation ana-
lysis in AMIs. We first provide definitions and examples of a basic set of data
streaming operators and continue discussing how such operators can be used to
compose streaming-based validation rules. We conclude discussing how such rules
are executed by SPEs at an arbitrary number of nodes, thus leveraging the possible
deployment options discussed in Section 6.2.1.

6.3.1 Basic data streaming operators

As discussed in Section 6.2.1, it is desirable for a utility to compose validation
rules specific to their AMI installation rather than using a predefined set of vali-
dation rules. By relying on the data streaming paradigm, this would be done by
composing queries using the set of operators made available by a given SPE. Sev-
eral relational data streaming operators are usually provided by SPEs (including
Filter, Map, Union, Aggregate, Join and Sort [18]). To give evidence of the expres-
siveness of data streaming queries, we discuss in the following how four of these
operators, usually defined by all SPEs, allow to compose validation rules: Filter,
Map, Aggregate and Join. For each of these operators, we provide its definition
and describe its semantic together with an example (all the examples refer to the
sample schema shown in Figure 6.1). Each operator is defined as:

OP{P1, . . . , Pm}(I1, . . . , In, O1, . . . , Op)

where OP represents the operator name, P1, . . . , Pm represent a set of parameters
that specify the operator semantics (e.g., functions used to transform input tuples,

www.syssec-project.eu 136 October 30, 2014

6.3. STREAMING-BASED VALIDATION ANALYSIS

predicates used to decide which information to discard or parameters related to the
windowing model), I1, . . . , In a set of input streams andO1, . . . , Op a set of output
streams. Optional parameters are defined using square brackets.

Filter

This stateless operator is a generalized selection operator that can be used to discard
tuples. The operator is defined as:

F{C}(I,O)

where I is the input stream, O is the output stream and C is the filtering condi-
tion. Each incoming tuple is forwarded to O if the filtering condition C holds. The
operator does not modify the schema of its input tuples.

The following example considers a Filter operator forwarding only input tuples
referring to a consumption reading lower than or equal to 10 kWh.

F{cons ≤ 10kWh}(I,O)

Map

This stateless operator is a generalized projection operator that can be used to trans-
form one input tuple into one or multiple output tuples with a different schema. The
operator is defined as:

M{A′1 ← f1(tin), . . . , A
′
n ← fn(tin)}(I,O)

where I and O represent the input and output streams, respectively. tin is a generic
input tuple and the attributes 〈A′1, . . . , A′n〉 form the output tuples’ schema.

The following example considers a Map operator converting the attribute cons
of each input tuple from kWh to Wh.

M{ts← ts, sm← sm, cons← cons/1000}(I,O)

Aggregate

This stateful operator is used to compute aggregation functions suchmean, count,
min, max, first or last over windows of tuples. The operator is defined as:

A{WType,Size,Advance, A′1 ← f1(W), . . . , A′n ← fn(W)

[,Group-by=(Ai1 , . . . , Aim)]}(I,O)

WType specifies the window type: time for time-based windows or tuples for
tuple-based ones. Parameters Size and Advance specify the amount of tuples to
be maintained and discarded each time the window slides. An output tuple carry-
ing the result of functions f1(W), . . . , fn(W) is produced each time the window

www.syssec-project.eu 137 October 30, 2014

Validation in AMI

slides if the latter contains at least one tuple. If parameter Group-by is set, a sepa-
rate window will be maintained for each distinct value of attributes Ai1 , . . . , Aim .
Output tuples’ schema is composed by attributes ts (the timestamp of the window),
Group-by (if defined) and attributes A′1, . . . , A

′
n.

The following example considers an Aggregate operator used to compute the
highest consumption reading of each smart meter over a window of 24 hours, pro-
ducing a result every hour.

A{time, 24h, 1h,max← max(cons),Group-by=(sm)}(I,O)

In the example, WType = time. Window Size and Advance parameters are set
to 24 hours and 1 hour, respectively. That is, an output tuple will be produced
every hour, and will contain the highest consumption reading observed during the
last 24 hours for each meter separately. By dropping the Group-by attribute, we
would instead get the highest consumption reading among all meters. The schema
associated to the output stream is composed by attributes 〈ts, sm,max〉.

Join

This stateful operator is used to match tuples from two distinct input streams, re-
ferred to as left (l) and right (r). An output tuple whose schema is the combination
of the l and the r schema is produced each time a predicate P holds for a pair
of tuples from the l and r streams. Similarly to the Aggregate operator, the Join
uses windows to maintain input tuples. A separate window (time or tuple based) is
maintained for the l and r streams. The operator is defined as:

J{P,WType, Size}(Sl, Sr, O)

The following example considers a Join operator that matches two tuples if
they refer to the same energy consumption values and are observed during the last
hour.

J{l.cons = r.cons, time, 1h}(Sl, Sr, O)

Since the operator combines the schema of each pair of l and r tuples that match the
predicate, the output tuples will be composed by attributes 〈l.ts, l.sm, l.cons, r.ts, r.sm, r.cons〉

6.3.2 Composing streaming-based validation queries

As discussed in Section 6.2.2, data validation rules are used both for removing
incoming data that should not be persisted and to estimate missing one. We present
here sample queries that can be used to perform these two tasks.

When composing a validation rule that prevents incorrect data from being
stored, a Filter operator can be used to take decisions about which input tuples
to discard. Such a decision can be taken in different ways. On one hand, the de-
cision could be taken based only on the tuple itself. As presented in the sample
Query 6.1 (validation rule V1) this can be done with a single Filter operator (F).

www.syssec-project.eu 138 October 30, 2014

6.3. STREAMING-BASED VALIDATION ANALYSIS

Table 6.1: Validation rule V1. Discard energy
consumption readings referring to negative
consumption values or consumption values

exceeding a given threshold, here set to 10 kWh.

<ts,sm,cons>

F
I O

<ts,sm,cons>

F{cons > 0 ∧ cons ≤ 10kWh}(I,O)

Table 6.2: Validation rule V2. Discard a meter’s
energy consumption readings if they exceed two

times the mean consumption observed for the same
meter during a given period, here set to the previous

three hours.

<ts,sm,cons>

A
I OA

<ts,sm,mean>

J
OJ

F
OF

M
O

<l.ts,l.sm,l.cons,r.ts,r.sm,r.mean>

<ts,sm,cons>

A{time,3h,1h,mean=mean(cons),Group-by=sm}(I,OA)
J{time,3h,l.sm=r.sm ∧ l.ts=r.ts+3h}(I,OA, OJ)
F{l.cons ≤ r.mean× 2}(OJ , OF)
M{ts← l.ts, sm← l.sm, cons← l.cons}(OF , O)

On the other hand, the decision about which tuples to discard could be based on
historical information. In general, an Aggregate, a Join and a Filter operator can
be used to filter tuples based on historical information. The Aggregate operator
can be used to compute the reference information used to decide which tuples to
discard. Subsequently, the Join operator can be used to match each incoming tuple
with its reference information. Finally, the Filter operator can be used to compare
the incoming tuple and the reference information. Query 6.2 (validation rule V2)
presents a sample query that discards a tuple if its energy consumption exceeds
more than two times the average observed for the same meter during the last three
hours. Since the schema of the input tuples is modified by the Aggregate (A) and
the Join (J) operators, a final Map operator (M) is used to convert the schema of
the Filter’s output tuples back to the same as the input ones.

When composing a validation rule that estimates missing information, the first
task is to spot that one or multiple consumption readings are missing. This can
be done by relying on an Aggregate and a Filter operator. The Aggregate operator

www.syssec-project.eu 139 October 30, 2014

Validation in AMI

Table 6.3: Validation rule V3. Interpolate missing
consumption values if the time distance between two

consecutive tuples from the same meter exceeds a
given threshold, here set to one hour.

<ts,sm,cons>

I
A

OA
F

OF
M

O

<sm,ts1,ts2,cons1,cons2>

<ts,sm,cons>

A{tuples, 2, 1, ts1=first(ts), ts2=last(ts), cons1= . . .
. . . first(cons),cons2=last(cons), Group-by=sm}(I,OA)
F{ts2-ts1 > 1h}(OA, OF)
M{(ts← interp(ts1,ts2, sm← sm, . . .

. . . cons← interp(cons1,cons2)}(OF , O)

can match any pair of consecutive tuples referring to the same smart meter. Sub-
sequently, the Filter can by used to check if their distance in time exceeds a given
threshold.

Query 6.3 presents a validation rule (V3) that interpolates missing consump-
tion values if the time distance between two consecutive tuples from the same
meter exceeds one hour. The query is composed by three operators. The Aggregate
operator (A) defines a tuple-based window of size and advance of 2 tuples and 1
tuple, respectively. A tuple containing both the first and last timestamps (ts1 and
ts2) and consumption values (cons1 and cons2) is created for each smart meter
(Group-by=sm). Subsequently, the Filter operator (F) is used to forward only such
tuples whose distance between ts1 and ts2 exceeds one hour. Finally, the Map
operator (M) is used to interpolate missing values applying the function interp
(which would be defined by the system expert), which will create an output tuple
composed by attributes 〈ts, sm, cons〉 for each missing hour. An Aggregate opera-
tor could maintain historical information (similarly to Query 6.2) to be used when
estimating missing values (not shown here).

6.3.3 Scalable execution of streaming-based validation queries

A major advantage from the utility perspective is that SPEs can leverage the
resources devoted to the validation analysis (e.g., nodes in a cluster or cores in
a parallel architecture) independently of their deployment, as discussed in Sec-
tion 6.2.1. In this section, we further discuss how SPEs allow for such scalable
execution of streaming-based validation rules.

Scalable execution is achieved by means of distributed and parallel operator ex-
ecution. Distributed execution (achieved by means of inter-operator parallelism)
allows for operators belonging to the same query to be run at different nodes. At the
same time, parallel execution (achieved by means of intra-operator parallelism)
allows for individual operators to be run in parallel at arbitrary numbers of nodes.

www.syssec-project.eu 140 October 30, 2014

6.4. EVALUATION

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

Input Rate (tuples/second)

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

0

5

10

15

20

25

M
ill

io
ns

 o
f s

m
ar

t m
et

er
s

(H
ou

rly
 r

ea
di

ng
s)

B=100
B=200
B=300
B=400

Fig. 6.3: Throughput (tuples/second) of validation rules V1, V2 and V3 for
different batch sizes.

Each operator is parallelized by deploying multiple instances of it and by parti-
tioning its input stream(s) to such instances. The way in which the input tuples
are routed to the different instances depends on whether the parallel operator is
stateless or stateful. Since stateless operators (e.g., Filter and Map) process each
tuple individually, tuples can be routed to the different instances by any routing
technique (e.g., round-robin). Nevertheless, the routing of tuples feeding a stateful
operator must be aware of its semantics. As an example, when deploying multiple
instances of the Aggregate and Join operators of Query 6.2, all the tuples referring
to the same smart meter must be routed to the same operator instance in order for
the latter to produce the correct output tuple. We refer the reader to [129] for a
exhaustive discussion about the parallelization of data streaming operators.

6.4 Evaluation

In this section, we evaluate the applicability of the data streaming paradigm in the
context of AMIs’ data validation. We first provide details about the data we use
and the evaluation setup. Subsequently, we evaluate the performance in terms of
throughput and latency of the streaming-based validation rules discussed in Sec-
tion 6.3.

Evaluation setup

The real-world AMI used in our evaluation is composed of 300,000 smart me-
ters that cover a metropolitan area of 450 km2 with roughly 600,000 inhabitants.
The utility extracted 13 months (From May 2012 to June 2013) of hourly consump-
tion readings from a subset of 50 meters and made this dataset available for us. The

www.syssec-project.eu 141 October 30, 2014

Validation in AMI

validation rules are implemented on top of Storm, version 0.9.1. The evaluation has
been conducted with an Intel-based workstation with two sockets of 8-core Xeon
E5-2650 processors and 64 GB DDR3 memory. All experiments start (resp. end)
with a warm-up (resp. cool-down) phase. Presented results are measured in be-
tween of these phases and are averaged over 10 separate runs. In all experiments,
we process the data extracted from the AMI, modifying only the rate at which
tuples are injected.

Performance evaluation

In order to make energy consumption readings available in a real-time fashion,
it is important to reduce the time that goes from the measurement at the meter itself
to the delivery at the utilities’ or third parties’ applications. Such delay depends on
two main factors: the period with which energy consumption readings are pulled
from or pushed by meters (plus the network latency) and the latency introduced by
the data validation analysis. A trade-off exists between these two factors. On one
hand, it is desirable to retrieve energy consumption readings frequently (if possi-
ble, as soon as the measurement is taken). On the other hand, it is common to batch
tuples together in order for high-throughput systems to achieve better performance.
In this experiment, we study the throughput and latency achieved for different batch
sizes B. As it would be done in a real deployment consuming live information, all
the three validation rules are executed at the same time. The throughput is mea-
sured as the rate (tuple/second) that each validation rule can sustain while latency
is measured for each validation rule individually.

Figure 6.3 presents the processing throughput for different batch sizes of 100,
200, 300 and 400 tuples. For each batch size, the throughput initially grows lin-
early with the increasing input rate while it flattens down when reaching the max-
imum processing capacity. As expected, increasing the batch size results in higher
processing throughput. For a batch size of 100 tuples, the server is able to pro-
cess approximately 2, 000 messages per second. For a batch size of 400 tuples, the
throughput grows to approximately 7, 000 messages per second. As shown in the
figure (secondary Y axis), if meters measure energy consumption readings every
hour, this processing capacity would enable us to validate almost 25 million meters.

Figure 6.4 presents the latency (in milliseconds), for each batch size B and
validation rule (bars are plotted in logarithmic scale to better emphasize the dif-
ferences). It can be noticed that different latencies are imposed by each validation
rule. At the same time, an increasing latency is also observed when increasing the
batch sizeB. The highest processing latency is imposed by validation rule V2, since
it contains both an Aggregate and a Join operator (stateful operators’ computations
are more expensive and thus incur higher latencies than stateless ones). However,
the latency introduced by the analysis is negligible with the one introduced by
transferring the data from the meters to the utility (in our AMI, this action takes a
time in the order of seconds).

www.syssec-project.eu 142 October 30, 2014

6.5. RELATED WORK

1 2 3
10

−1

10
0

10
1

10
2

Validation Rule

La
te

nc
y

(m
ill

is
ec

on
ds

)

0.2
0.3 0.3 0.3

20
33

47 56

1.7
2.4

3.1
4.3

V1 V2 V3

B=100
B=200
B=300
B=400

Fig. 6.4: Latency (milliseconds, logarithmic scale) of validation rules V1, V2 and
V3 for different batch sizes.

6.5 Related Work

The data streaming research field emerged around the year 2000 to overcome the
limitations of traditional database approaches for data intensive applications such
as fraud detection, IDS or financial market analysis. Sensor networks sharing re-
quirements similar to AMIs’ ones played a key role in the development of pioneer
SPEs such as TelegraphCQ [63], Cougar [47] or Aurora [59]. During these years,
data streaming research has focused on aspects such as processing of imprecise
and missing information, graceful degradation and load shedding techniques under
peaks of load, and Quality-of-Service (QoS) metrics.

To the best of our knowledge, this is the first work that focuses on the ex-
pressiveness and performance of data streaming queries in the context of AMIs’
data validation. Nevertheless, the data streaming processing paradigm has been
taken into account in other AMI-related scenarios, including electricity load fore-
cast [118], IDSs [110] and cloud-infrastructures [175, 223]. These works provide
evidence that the data streaming processing paradigm is an appropriate candidate
to address the data analysis requirements proper of AMIs.

6.6 Conclusions

A considerable number of applications surrounding AMIs (e.g., demand-response,
real time pricing and IDSs, among others) depend on the data produced by AMIs’
devices. Its noisy and lossy nature demands for validation analysis in order to pre-
process the data that is later accessed by utilities’ or third parties’ applications.
In this paper, we have discussed how the data streaming processing paradigm can
be leveraged to provide online and scalable validation analysis, composing valida-

www.syssec-project.eu 143 October 30, 2014

Validation in AMI

tion rules by means of data streaming operators. Based on an implementation on
top of the Storm SPE and conducted with data from a real-world AMI, we have
shown that streaming-based validation rules allow for the analysis of thousands
of energy consumption readings per second (with latencies in the realm of mil-
liseconds) while relying on commodity hardware. Thanks to the distributed and
parallel execution enabled by SPEs, streaming-based validation rules could also be
run closer to the sources (e.g., achieving better scalability by filtering values at the
sources and saving bandwidth).

www.syssec-project.eu 144 October 30, 2014

7
METIS: a Two-Tier Intrusion Detection System for

Advanced Metering Infrastructures

Preamble: Relation to the Research Roadmap

In our roadmap, we discuss “vital societal functions, health, safety, security, eco-
nomic or social well-being of people” as one of the key aspects of cyber-physical
systems (CPSs). Unfortunately, a wide spectrum of attacks can be launched in order
to compromise them. A challenge in this context is the detection of malicious ac-
tivities meant to go unnoticed (e.g., as the ones motivating the Peccadillo scenario,
described in D4.1, and targeting domestic smart meters). It should be noticed that
the absence of documented attacks and known signatures constitutes one of the
challenges of such detection.

In this chapter, we propose a framework for the detection of such malicious ac-
tivities. As discussed, the framework does not only ease the modeling of possible
adversary goals but also addresses the high-throughput and low-latency require-
ments needed to process CPSs’ data in an on-line fashion and detect threats timely.

Vincenzo Gulisano, Magnus Almgren, Marina Papatriantafilou; “METIS: a
Two-Tier Intrusion Detection System for Advanced Metering Infrastructure” 10th
International Conference on Security and Privacy in Communication Networks
(SecureComm) - September 2014

145

METIS

Abstract

In the shift from traditional to cyber-physical electric grids, motivated by the needs
for improved energy efficiency, Advanced Metering Infrastructures have a key role.
However, together with the enabled possibilities, they imply an increased threat
surface on the systems. Challenging aspects such as scalable traffic analysis, timely
detection of malicious activity and intuitive ways of specifying detection mecha-
nisms for possible adversary goals are among the core problems in this domain.

Aiming at addressing the above, we present METIS, a two-tier streaming-based
intrusion detection framework. METIS relies on probabilistic models for detection
and is designed to detect challenging attacks in which adversaries aim at being
unnoticed. Thanks to its two-tier architecture, it eases the modeling of possible ad-
versary goals and allows for a fully distributed and parallel traffic analysis through
the data streaming processing paradigm. At the same time, it allows for comple-
mentary intrusion detection systems to be integrated in the framework.

We demonstrate METIS’ use and functionality through an energy exfiltration
use-case, in which an adversary aims at stealing energy information from AMI
users. Based on a prototype implementation using the Storm Stream Processing
Engine and a very large dataset from a real-world AMI, we show that METIS is not
only able to detect such attacks, but that it can also handle large volumes of data
even when run on commodity hardware.

7.1 Introduction

The shift from traditional to cyber-physical grids relies on the deployment of Ad-
vanced Metering Infrastructures (AMIs) in which communication-enabled meters
share data with the utility’s head-end and are remotely controlled. In this context,
the strict coupling between threats’ cyber and physical dimensions (that can possi-
bly result in human losses or physical damage [76]) demands for appropriate de-
fense mechanisms. As Stuxnet[111] taught us, malicious activity designed to hide
its malicious behavior can be carried out during years before being detected.

Despite the limited number of real attacks documented so far, a considerable
number of possible attack vectors has been uncovered [182]. Specification-based
Intrusion Detection Systems (IDSs) [39, 188], the main defense mechanism pro-
posed so far for this domain, detect malicious activity by means of deviations from
defined behavior. Such IDSs usually require a considerable amount of manual la-
bor by a security expert in order to tune them to specific installations [39]. At the
same time, they do not provide a comprehensive protection against all possible ad-
versary goals. As an example, they might distinguish messages that comply with a
given protocol from messages that do not, but might fail in distinguishing whether
a message that does not violate the protocol is sent by an intact or a compromised
device.

www.syssec-project.eu 146 October 30, 2014

7.1. INTRODUCTION

Challenges Kush et al. [165] claim traditional IDSs cannot be used effectively in
these environments without major modifications and they mention nine challenges,
four of which are taken into account in this paper: scalability, adaptiveness, net-
work topology and resource-constrained end devices. As discussed in [39], AMIs
consist of several independent networks whose overall traffic cannot be observed
by a centralized IDS. Hence, the IDS should process data in a distributed fash-
ion in order to embrace the different networks composing the AMI. Furthermore,
the processing capacity of a centralized IDS would be rapidly exhausted by the
big, fluctuating volume of data generated by AMIs’ devices. To this end, the IDS
should also process data in a parallel fashion in order to cope with the volumes of
data and detect malicious activity timely. It should be noted that existing privacy
regulations play an important role when it comes to the information accessed to
spot malicious activity. As discussed in [191], fine-grain consumption readings re-
veal detailed information about household activities and could be used to blackmail
public figures [114]. For this reason, while being interested in detecting malicious
activity, the utility maintaining the AMI might not have access to underlying infor-
mation owned by energy suppliers. Hence, the IDS should be able to detect mali-
cious activity while relying on partial evidence (i.e., while accessing a limited set
of traffic features). Finally, the IDS should avoid expensive per-site customization
by providing an efficient way to specify how to detect malicious activities.

Contributions We present METIS1, an Intrusion Detection framework that ad-
dresses these challenges by employing a two-tier architecture and the data stream-
ing processing paradigm [235]. METIS has been designed giving particular atten-
tion to the detection of malicious activity carried out by adversaries that want to
go unnoticed. The challenge in the detection of such malicious activity lies in that
suspicious traffic proper of a given adversary goal can be caused by both legitimate
and malicious factors. We provide the following contributions:

1. A two-tier architecture that provides a scalable traffic analysis that can be ef-
fective while (possibly) relying on a limited set of traffic features. Its two-tier
architecture eases the system expert interaction (who can model the traffic
features affected by an adversary goal by means of Bayesian Networks) and
allows for complementary detection mechanisms such as specification-based
and signature-based ones to be integrated in the framework.

2. A prototype implementation programmed using Storm [236], a state of the
art Stream Processing Enginge used mainstream applications (such as twit-
ter).

3. One of the first evaluations based on data extracted from a real-world AMI
and focusing on energy exfiltration attacks in which the adversary aims at

1Named after the mythology figure standing for good counsel, advice, planning, cunning, crafti-
ness, and wisdom.

www.syssec-project.eu 147 October 30, 2014

METIS

stealing energy consumption information from AMI users. The evaluation
studies both the detection capabilities of the framework and its applicabil-
ity while relying on commodity hardware. To the best of our knowledge,
detection of such attacks has not been addressed before.

The paper is structured as follows. We introduce some preliminary concepts
in Section 7.2. In Section 7.3 we overview the METIS’ architecture while we dis-
cuss its implementation in Section 7.4. An example showing how the framework is
applied to the energy exfiltration use-case is presented in Section 7.5. We present
our evaluation in Section 7.6, survey related work in Section 7.7 and conclude in
Section 7.8.

7.2 Preliminaries

7.2.1 Advanced Metering Infrastructure model

We consider a common AMI model, composed of two types of devices: Smart
Meters (SMs), in charge of measuring energy consumption and exchanging event
messages such power outage alarms or firmware updates, and Meter Concentrator
Units (MCUs), in charge of collecting such information and forwarding it to the
utility head-end. Different network topologies exist in real-world AMIs (e.g., point-
to-point, hierarchical or mesh ones). In order to encompass all possible networks
and represent AMIs that can evolve over time, we consider a generic network, in
which SMs are not statically assigned to specific MCUs.

Among the messages that are exchanged by the AMI’s devices, two are of par-
ticular interest with respect to the use-case that will be introduced in the following:
Energy Consumption Request (ECReq) messages, sent by MCUs, and Energy Con-
sumption Response (ECResp) messages, sent by SMs. Such messages are used to
retrieve energy consumption and can be exchanged several times per day.

7.2.2 Intrusion Detection in Advanced Metering Infrastructures

AMIs are characterized by their slow evolution and limited heterogeneity. That
is, they are composed by a limited set of device types and their evolution is dic-
tated by small (and often planned) steps (e.g., deployment of a new meter, replace-
ment of a broken meter, and so on). Given a time frame that ranges from days to
months, such evolution is “slow” and thus enables for detection techniques, such
as anomaly-based ones, building on machine learning mechanisms. Nevertheless,
the same evolving nature demands for a continuous learning that evolves together
with the AMI (thus addressing the adaptiveness and network topology challenges
discussed in [165]).

As introduced in Section 7.1, distributed and parallel network traffic analysis
should be employed in order to embrace the different networks that compose AMIs
while coping with the large and fluctuating volume of data produced by their de-
vices. The distinct deployment options for an IDS in this domain can be character-

www.syssec-project.eu 148 October 30, 2014

7.2. PRELIMINARIES

ized in a spectrum. At one extreme, the analysis could be performed by the utility
head-end system. In this case, the devices should be instructed to report their com-
munication exchanges to the head-end (at least, the ones that are required to detect
a given attack). On the other extreme, the computation could be performed by the
AMI’s devices themselves, as investigated recently in [209]. This option would
also be limited by the computational resources of the devices. Intermediate solu-
tions could rely on a dedicated sensing infrastructure that runs the analysis together
with the utility head-end system, as discussed in [127]. To our advantage, relying
on the data streaming processing paradigm simplifies the deployment of an AMI
defense framework to the requirement of providing a set of nodes (sensing devices
or servers) that embraces the possible existing networks of the AMI. We refer the
reader to [129] for a detailed discussion about how data streaming applications can
be deployed at arbitrary number of nodes (thus addressing the scalability challenge
discussed in [165]).

7.2.3 Adversary model

Several types of attacks can be launched against AMIs. On one hand, attacks
such as Denial of Service (DoS) or Distributed Denial of Service (DDoS) are meant
to be noticed (i.e., they impose a challenge in their mitigation rather than detection).
On the other hand, more subtle attacks can be carried out by adversaries that want to
go unnoticed. This second type of attacks (imposing a challenge in their detection)
are the main target of METIS. Such adversaries could be interested in installing
a malicious firmware that, while leaving the device’s communication unaffected,
would allow them to use the AMI as a communication medium [127]. At the same
time, a malicious firmware could also be installed to lower bills by reducing the
consumption readings reported by the meters (causing an energy theft attack [181]).

Energy Exfiltration use-case In this scenario, the adversary aims at stealing en-
ergy consumption information from AMI users. As discussed in [191], fine-grained
consumption readings collected over a sufficiently large period reveal detailed in-
formation about household activities and could be used to blackmail public figures
[114]. Given our AMI model, such malicious activity can be carried out after suc-
cessfully logging into an MCU or by deploying a (malicious) MCU replica and
collecting energy consumption readings over a certain number of days. The subtle
nature of this attack lies in that suspicious exchanges of ECReq and ECResp mes-
sages can be caused not only by the adversary, but also by legitimate factors (e.g.,
noisy communication between devices, unreachable devices, and so on).

7.2.4 Data Streaming

A stream is defined as an unbounded sequence of tuples t0, t1, . . . sharing the
same schema composed by attributes 〈A1, . . . , An〉. Data streaming continuous
queries are defined as graphs of operators. Nodes represent operators that con-
sume and produce tuples, while edges specify how tuples flow among operators.

www.syssec-project.eu 149 October 30, 2014

METIS

<ts,src,dst,msg>
<20:00,MCU0,SM0,ECReq>
<20:09,SM0,MCU0,ECResp>
<20:15,MCU1,SM1,ECReq>
<20:16,MCU1,SM1,ECReq>
<20:35,SM1,MCU1,ECResp>
<20:50,MCU2,SM2,ECReq>
<21:00,SM2,MCU2,ECResp>

...

Aggregate
Count
Group by: src
Win. size: 1 hour
Win. adv: 1 hour

Filter
Condition: src=MCU

<ts,src,dst,msg>
<20:00,MCU0,SM0,ECReq>
<20:15,MCU1,SM1,ECReq>
<20:16,MCU1,SM1,ECReq>
<20:50,MCU2,SM2,ECReq>

...

<ts,src,#msg>
<20:00,MCU0,1>
<20:00,MCU1,2>
<20:00,MCU2,1>

...

Fig. 7.1: Sample query that computes the number of messages forwarded by each
MCU during the last hour. The figure includes the abstract schema and a set of

sample tuples for each stream.

Sample Bayesian Network composed by three variables: MCU, SM and
MSG. This Bayesian Network specifies that the probability of observing a
given message MSG depends both on the MCU and the SM exchanging it.

MSG

MCU SM

Fig. 7.2: Sample Bayesian Network.

Operators are distinguished into stateless (e.g., Filter, Map) or stateful (e.g., Ag-
gregate, EquiJoin, Join), depending on whether they keep any evolving state while
processing tuples. Due to the unbounded nature of streams, stateful operations are
computed over sliding windows (simply windows in the remainder), defined by pa-
rameters size and advance. In this context, we focus on time-based windows. As an
example, a window with size and advance equal to 20 and 5 time units, respectively,
will cover periods [0, 20), [5, 25), [10, 30) and so on.

The generic schema of the streams generated by the AMI’s devices is composed
by attributes 〈ts, src, dst,msg〉, specifying the timestamp ts at which message
msg is forwarded by source src to destination dst. In the remainder, we use the
terms tuple and message interchangeably when referring to the devices’ communi-
cation. Figure 7.1 presents a sample query that computes the number of messages
forwarded by each MCU during the last hour for a given set of input tuples (also
shown in the figure).

7.2.5 Bayesian Networks

Bayesian Networks (BNs) provide a probabilistic graphical model in which a
set of random variables (and their dependencies) are represented by means of a Di-
rected Acyclic Graph. Given two random variables A and B, a directed edge from
A to B specifies that the latter is conditioned by the former [117]. The conditional
probability P (B = bj |A = ai) represents the probability of observing bj given
that ai has already been observed. Figure 7.2 presents a sample Bayesian Network
in relation with our AMI model.

www.syssec-project.eu 150 October 30, 2014

7.3. METIS - OVERVIEW

Advanced
Metering
Infrastructure

MCU

SM

SM SM

SM

MCU

SM

Interaction Modeler: detect suspicious messages
exchanged by the devices

Pattern Matcher: detect suspicious messages
representative of given adversary goals

Suspicious message

Alarm

Fig. 7.3: Overview of METIS two-tier architecture.

7.3 METIS - Overview

This section overviews METIS’ architecture and presents how adversary goals can
be specified by the system expert. Multiple adversary goals can be specified at the
same time. For the ease of the exposition, we provide examples that focus on our
energy exfiltration use-case.

7.3.1 Architecture overview

Millions of messages are generated on a daily basis by the AMI’s devices. Such
messages carry heterogeneous information related to energy consumption, energy
quality and power outages, among others. If we put ourselves in the role of the
system expert, it might be hard to specify how evidence of a given adversary goal
could be detected while processing such traffic as a whole. The work required by
the system expert can be simplified by splitting it into two narrower tasks: (i) spec-
ify how an adversary goal could affect the interaction of certain types of devices
(possibly belonging to different networks) and (ii) specify the pattern of suspicious
interactions that could be observed over a certain period of time. This decompo-
sition would also ease the deployment of a scalable distributed and parallel traffic
analysis. The interaction of the devices could be studied close to the devices them-
selves (i.e., embracing the different networks of an AMI and monitoring the poten-
tially huge amounts of traffic in parallel). Based on these observations, we designed
METIS to analyze the AMI traffic by means of two tiers: the Interaction Modeler
and the Pattern Matcher (as presented in Figure 7.3). Among its benefits, this two-
tier architecture allows for other IDS to be plugged into the framework (e.g., by
replacing the provided Interaction Modeler with a specification-based IDS such as
[39]).

Interaction Modeler This tier analyzes the messages received and sent by each
device and relies on anomaly-based detection to distinguish the ones that are ex-
pected from the suspicious ones.

The anomaly-based technique employed by the Interaction Modeler distin-
guishes between expected and suspicious messages based on the probability of
observing them. It should be noticed that such probability evolves over time and
is potentially influenced by several factors. As an example, the probability of ob-
serving an ECReq message could depend on the MCU forwarding it, on the SM

www.syssec-project.eu 151 October 30, 2014

METIS

a) Interaction Modeler b) Pattern Matcher

Bayesian Network:
HourMCU SM

Reqs Resps

IMWS: 4 weeks
IMWA: 1 week

T: 4
GB: MCU,SM,Hour
PMWS: 7 days
PMWA: 1 day

Fig. 7.4: Input provided by the system expert for METIS’ Interaction Modeler and
Pattern Matcher

receiving it, on the quality of the communication between these two devices, and
so on.

If we tackle this aspect from the system expert point of view, it is desirable
to have an intuitive way of specifying with traffic features should be taken into
account for a given adversary goal. To our advantage, Bayesian Networks (BNs)
provide an effective and graphical way of representing such features and their inter-
dependencies. At the same time, BNs can also be automatically translated into data
streaming queries, as we discuss in Section 7.4.2.

Since METIS relies on the data streaming processing paradigm, probabilities
are maintained over a window of size IMWS and advance IMWA (specified by the
system expert), thus coping with the evolving nature of AMIs. IMWS represents
the period of time during which traffic should be observed in order to have rep-
resentative probabilities. IMWA specifies the amount of information that should be
discarded each time the window slides. As an example, if parameters IMWS and
IMWA are set to 12 months and 1 months, respectively, probabilities based on the
traffic observed during the last year would be produced every month.

Pattern Matcher The anomaly-based detection mechanism employed by the In-
teraction Modeler, based on the probability with which messages are expected, can
result in legitimate messages being considered as suspicious. As an example, this
could happen when lossy communication between a pair of devices leads to a low
expectation associated to a certain legitimate message. For this reason, the Pattern
Matcher consumes the suspicious messages forwarded by the Interaction Modeler
in order to distinguish the ones that are isolated from the ones representative of a
given adversary goal, raising an alarm in the second case.

The system expert is required to specify how suspicious messages should be
processed by means of four parameters. An alarm is raised if a threshold T of sus-
picious messages sharing the same values for the set of attributes GB are observed
given a window of size PMWS and advance PMWA.

7.3.2 Energy exfiltration use-case

Interaction Modeler Given our adversary model for the energy exfiltration use-
case, the malicious traffic would result in an unusual exchange of ECReq and
ECResp messages between a pair of MCUs and SMs. Hence, the system expert
could define a BN composed by two variables: Reqs (the number of ECReq mes-

www.syssec-project.eu 152 October 30, 2014

7.4. DETECTING ANOMALIES BY MEANS OF CONTINUOUS QUERIES

Data Preparer BN Learner
Probabilistic

Filter
Pattern
Matcher

Interaction Modeler

Fig. 7.5: Overview of the query created by METIS.

sages observed in the window) and Resps (the number of ECResp messages ob-
served in the window), with Reqs being a conditional variable for Resps. In our
model, SMs are not statically connected to MCUs. Moreover, energy consump-
tion readings can be retrieved multiple times at different hours during each day
(the hour actually depends on the MCU). For this reason, more variables could be
added to the BN, as shown in Figure 7.4.a. Since SMs do not change the MCU
to which they connect on a daily basis, a window of four weeks (IMWS=4 weeks)
updated every week (IMWA=1 week) could be long enough to detect unexpected
exchanges of ECReq and ECResp messages.

Pattern Matcher As discussed in Section 7.2.3, the adversary is willing to col-
lect energy consumption readings over a certain number of days in order to infer
detailed information about the victim’s household activities. In this example (Fig-
ure 7.4.b), the system expert specifies that an alarm should be raised if at least
four suspicious messages (T=4) are observed for the same MCU, SM and hour
(GB=MCU,SM,Hour) given a window of size seven days (PMWS=7 days) and ad-
vance one day (PMWA=1 day).

7.4 Detecting anomalies by means of continuous queries

As discussed in Section 7.3.1, one of the motivations of METIS is to ease the sys-
tem expert’s interaction with the framework. For this reason, METIS decouples the
semantics of the analysis from its actual implementation and deployment. That is,
it requires the expert to specify how to detect a given adversary goal by means of a
BN and a set of parameters, while it is responsible for compiling such information
into a data streaming query. In the following sections we overview the processing
carried out by the query, also discussing how the BN is learnt by means of data
streaming operators.

7.4.1 Continuous query - overview

Both the traffic analysis of the Interaction Modeler and the Pattern Matcher are
carried out by a single data streaming query compiled by METIS. For the ease of
the exposition, we present this query by means of four modules: the Data Preparer,
the BN Learner, the Probabilistic Filter and the Pattern Matcher (as presented in
Figure 7.5). The first three modules perform the analysis of the Interaction Modeler
while the last module is responsible for the analysis of the Pattern Matcher.

www.syssec-project.eu 153 October 30, 2014

METIS

The Data Preparer pre-processes the information required to learn the given
BN. It relies on a Filter operator to discard messages that are not relevant for the
BN and on an Aggregate operator to aggregate the information based on the BN’s
variables. The tuples forwarded by the Data Preparer are consumed by the BN
Learner, in charge of maintaining the probabilities over the window of size IMWS
and advance IMWA. The exact number of operators that compose the BN Learner
depends on the number of variables specified by the BN, as we discuss in the fol-
lowing section. The tuples produced by the BN Learner associate the messages
observed during the given window to a certain probability. This information is
processed, together with the information produced by the Data Preparer, by the
Probabilistic Filter. As discussed in Section 7.2.2, the evolving nature of AMIs
demands for continuous learning. For this reason, the Probabilistic Filter com-
pares each tuple produced by the Data Preparer with its associated probability
learned over the latest completed window. As an example, if parameters IMWS and
IMWA are set to 10 and 5 time units, respectively, the window will cover periods
P1 = [0, 10), P2 = [5, 15), P3 = [10, 20), and so on. Messages observed in period
[10, 15) would be matched with the probabilities learned during period P1, mes-
sages observed in period [15, 20) would be matched with the probabilities learned
during period P2, and so on. A tuple produced by the Data Preparer is forwarded
by the Probabilistic Filter based on a probabilistic trial. As an example, if the prob-
ability learned for a certain message is 0.9, such a message will be forwarded with
a probability equal to 0.1. Tuples forwarded by the Probabilistic Filter represent
the tuples considered as suspicious by the Interaction Modeler. As discussed in
Section 7.3.1, an alarm is raised if at least T suspicious messages sharing the same
values for the set of attributes GB are observed given a window of size PMWS and
advance PMWA. The Pattern Matcher relies on an Aggregate operator to count how
many suspicious messages sharing the same values for the set of attributes GB are
received given a window of size PMWS and advance PMWA. A Filter operator is
used to filter only the tuples produced by the Aggregate operator whose counter is
greater than or equal to T. We provide an example of the continuous query associ-
ated to the energy exfiltration use-case in Section 7.5.

7.4.2 Learning BNs by means of data streaming operators

The number of operators composing the BN Learner depends on the variables
defined for the BN. As we discuss in the following, the ability to automatically
convert a BN to a query boils down to the ability of computing the probabilities of
its variables by means of data streaming operators.

Given two discrete variables X such that supp(X) ∈ {x0, x1, . . . , xm} and Y
such that supp(Y) ∈ {y0, y1, . . . , yn} and a sequence S of observations o1, o2, . . .
such that os = 〈xi, yj〉 and all observations belong to the same window, the condi-
tional probability can be computed as

P (Y = yj |X = xi) =
|{os ∈ S|os = 〈xi, yj〉}|
|{os ∈ S|os = 〈xi, .〉}|

www.syssec-project.eu 154 October 30, 2014

7.5. ENERGY EXFILTRATION USE-CASE - SAMPLE EXECUTION

Aggregate A1
Count
Group by: X,Y
Win. size: 10
Win. adv: 10

EquiJoin E1
Equality: X
Win. size: 10
Win. adv: 10

Map M1
Out fields:
X,Y,Z,C1/C2

Aggregate A2
Sum(C)
Group by: X
Win. size: 10
Win. adv: 10

<ts,X,Y>
0,x0,y0

1,x0,y0

4,x0,y1

5,x1,y0

7,x1,y0

8,x1,y1

9,x0,y0

11,x0,y0

...

<ts,X,Y,C>
0,x0,y0,3
0,x0,y1,1
0,x1,y0,2
0,x1,y1,1

<ts,X,C>
0,x0,4
0,x1,3

<ts,X,Y,C1,C2>
0,x0,y0,3,4
0,x0,y1,1,4
0,x1,y0,2,3
0,x1,y1,1,3

<ts,X,Y,P>
0,x0,y0,0.75
0,x0,y1,0.25
0,x1,y0,0.67
0,x1,y1,0.33

Fig. 7.6: Continuous query used to compute P (Y |X). The figure includes the
abstract schema and a set of sample tuples for each stream.

In order to compute such a value, we need to count the number of occurrences
of each pair 〈xi, yj〉 and each value xi. In terms of data streaming operators, these
numbers can be maintained by two Aggregate operators. The first Aggregate opera-
tor would count the occurrences of each pair 〈xi, yj〉. Similarly, the second Aggre-
gate operator would count the occurrences of each value xi. Subsequently, values
referring to the same xi value could be matched by an EquiJoin operator and the
resulting division computed by a Map operator.

Figure 7.6 presents a sample execution of the operators for a given sequence
of tuples. In the example, variable X assumes values {x0, x1} while variable Y
assume values {y0, y1}. In the example, the windows’ size and advance parameters
are both set to 10 time units.

7.5 Energy exfiltration use-case - Sample Execution

In this section, we provide a sample execution of the continuous query compiled
by METIS, given the BN and the parameters presented in Section 7.3.2. The query
is presented in Figure 7.7. For the ease of the exposition, we focus on the messages
exchanged between a single pair of MCUs and SMs, 〈mcu0, sm0〉.

The Data Preparer module relies on its Filter operator to forward only ECReq
and ECResp messages. These messages are then consumed by the Aggregate oper-
ator, in charge of counting how many ECReq and ECResp messages are exchanged
between each MCU and SM and for each hour. In the example, malicious messages
(injected by the adversary) are marked in red. As shown in the figure, an exchange
of a single ECReq and a single ECResp message is observed twice while an ex-
change of two ECReq and two ECResp messages is observed only once during the
month of September. Similarly, exchanges of one ECReq and one ECResp mes-
sages, two ECReq and two ECResp messages, and three ECReq and two ECResp
messages are observed once during the month of October. The last two tuples pro-
duced by the Aggregate operator are marked in red since they are influenced by the
malicious input messages.

The probability of observing each combination is computed by the BN Learner
module. The probability of observing an exchange of one ECReq and one ECResp
messages is 67% while the probability of observing an exchange of two ECReq

www.syssec-project.eu 155 October 30, 2014

METIS

<ts,src,dst,msg>
2012/09/01-20:01,mcu0,sm0,ECReq
2012/09/01-20:02,sm0,mcu0,ECResp
2012/09/20-20:00,mcu0,sm0,ECReq
2012/09/20-20:02,sm0,mcu0,ECResp
2012/09/28-20:00,mcu0,sm0,ECReq
2012/09/28-20:01,mcu0,sm0,ECReq
2012/09/28-20:02,sm0,mcu0,ECResp
2012/09/28-20:02,sm0,mcu0,ECResp

2012/10/01-20:01,mcu0,sm0,ECReq
2012/10/01-20:02,sm0,mcu0,ECResp
2012/10/02-20:00,mcu0,sm0,ECReq
2012/10/02-20:01,sm0,mcu0,ECResp
2012/10/02-20:01,mcu0,sm0,ECReq
2012/10/02-20:02,sm0,mcu0,ECResp
2012/10/03-20:00,mcu0,sm0,ECReq
2012/10/03-20:01,mcu0,sm0,ECReq
2012/10/03-20:01,sm0,mcu0,ECResp
2012/10/03-20:02,mcu0,sm0,ECReq
2012/10/03-20:03,sm0,mcu0,ECResp

...

Interaction Modeler parameters
WSDM: 4 weeks
WSDM: 1 week
Pattern Matcher parameters
T: 2
GB: MCU,SM,Hour
PMWS: 7 days
PMWS: 1 day

<ts,mcu,sm,hour,#Reqs,#Resps>
2012/09/01,mcu0,sm0,20,1,1
2012/09/20,mcu0,sm0,20,1,1
2012/09/28,mcu0,sm0,20,2,2

2012/10/01,mcu0,sm0,20,1,1
2012/10/02,mcu0,sm0,20,2,2
2012/10/03,mcu0,sm0,20,3,2

<ts,mcu,sm,hour,#Reqs,#Resps,Prob>
2012/09/01,mcu0,sm0,20,1,1,0.67
2012/09/28,mcu0,sm0,20,2,2,0.33

<ts,mcu,sm,hour,#Reqs,#Resps>
2012/10/02,mcu0,sm0,20,2,2
2012/10/03,mcu0,sm0,20,3,2

<ts,mcu,sm,hour>
2012/10/01,mcu0,sm0,20

Pattern Matcher

Create alarm if 2 or more
suspicious messages are
observed for the same MCU,
SM and Hour over one week

Probabilistic Filter

Malicious input tuples and
subsequent tuples affected
by them are marked in red.

Forward ECReq and ECResp
messages, count them for each
MCU, SM and Hour

Data Preparer

Compute
P(Reqs,Resps|MCU,SM,Hour)

BN Learner

Fig. 7.7: Sample execution of the query compiled for the energy exfiltration
use-case. The figure includes the abstract schema and a set of sample tuples for

each stream.

www.syssec-project.eu 156 October 30, 2014

7.6. ENERGY EXFILTRATION USE-CASE - EVALUATION

and two ECResp messages is 33%. The probabilities computed by the BN Learner
and the tuples produced by the Data Preparer are matched by the Probabilistic
Filter. As discussed in Section 7.4.1, each tuple produced by the Data Preparer is
matched with its associated probability observed in the latest completed window.
In the example, tuples produced during the month of October will be matched with
the probabilities observed for the month of September. Tuples
〈2012/09/01,mcu0, sm0, 20, 1, 1〉, 〈2012/09/02,mcu0, sm0, 20, 2, 2〉 and
〈2012/09/03,mcu0, sm0, 20, 3, 2〉 have a probability of 0.33, 0.67 and 1, respec-
tively, of being considered as suspicious. In the example, tuples
〈2012/09/02,mcu0, sm0, 20, 2, 2〉 and 〈2012/09/02,mcu0, Sm0, 20, 3, 2〉 are con-
sidered as suspicious and forwarded. Since the threshold T is set to two, an alarm
is raised by the Pattern Matcher.

7.6 Energy Exfiltration use-case - Evaluation

In this section we evaluate METIS with respect to our energy exfiltration use-case
and show that (i) it is able to detect malicious activity and that (ii) it can be lever-
aged by relying on commodity hardware. We first present the evaluation setup,
discussing the real world AMI from which data is extracted and the attack injec-
tion methodology for the energy exfiltration attacks. We continue by presenting
the detection accuracy for a given configuration of the Interaction Modeler and the
Pattern Matcher, also discussing how different configurations affect their detection
capabilities. Subsequently, we evaluate the processing capacity of METIS (in terms
of throughput and latency) when executed by a server that could be deployed at the
utility head-end.

7.6.1 Testbed and dataset description

METIS has been implemented on top of Storm, version 0.9.1. The continuous
query (topology in Storm’s terminology) is composed by fourteen operators. The
real-world AMI used in our evaluation is composed by 300,000 SMs that com-
municate with 7,600 MCUs via IEEE 802.15.4 and ZigBee. The network covers
a metropolitan area of 450 km2 with roughly 600,000 inhabitants. The utility ex-
tracted data for a subset of 100 MCUs that communicate with approximately 6,500
SMs and made it available for us. The input data covers a period of six months
ranging from September 2012 to February 2013. To the best of our knowledge,
this dataset is free from energy exfiltration attacks. SMs are not statically linked to
MCUs. At the same time, SMs appear and disappear (e.g., because of new installa-
tions or decommissioning). MCUs are in charge of collecting energy consumption
readings at different hours, usually two or three times per day (the hours at which
the collection happens is specific for each MCU). Due to the wireless communi-
cation, it is common for MCUs and SMs to lose messages that are thus forwarded
multiple times. Each MCU has a maximum of three attempts per hour to retrieve
the energy consumption of a given SM. The information kept by the utility does

www.syssec-project.eu 157 October 30, 2014

METIS

not contain the exact number of messages exchanged for a given MCU, SM and
day. Nevertheless, we are able to compute the probabilities with which a message
is lost (and hence sent again) based on the logs stored by the MCUs. The ECReq
and ECResp messages for each MCU, SM and day are simulated based on such
probabilities.

In order to inject adversary traffic, we randomly pick a MCU-SM pair and,
during a period that goes from seven to ten days, we inject ECReq and ECResp
messages. In total, we inject 50 energy exfiltration attacks, resulting in 995 mali-
cious messages. Note that these messages are subject to the same probability of
being lost as any legitimate message. Furthermore, in order to simulate the behav-
ior of a subtle adversary, malicious messages are exchanged at the same hour at
which the MCU is actually retrieving energy consumption readings (as it would be
trivial to detect an energy exfiltration attack if messages are exchanged when the
MCU is not supposed to communicate).

7.6.2 Detection Accuracy

In this experiment, the BN is the one presented in Section 7.3.2. The Interac-
tion Modeler’s parameters IMWS and IMWA are set to four weeks and one week,
respectively. The Pattern Matcher’s window parameters PMWS and PMWA are set
to seven days and one day, respectively. The Pattern Matcher is instructed to raise
an alarm if at least a threshold T of five suspicious messages sharing the same
values for the set of attributes MCU,SM and Hour is observed. A summary of the
results is presented in Table 7.1.

AMI data

Number of attacks 50
Number of malicious messages 995
Overall number of messages 4, 146, 327
Messages per day (average) 23, 743
Suspicious messages per day (average) 450

Interaction Modeler
Malicious messages considered as suspicious 857
Malicious messages not considered as suspi-
cious

138

Pattern Matcher

Number of alarms 488
Alarms, True Positive 245
Alarms, False Positive 243
Detected Attacks 45

Table 7.1: Summary of the Interaction Modeler’s and the Pattern Matcher’s
detection results.

During the six months covered by the data, more than 4.2 million messages are
exchanged between the 100 MCUs and the 6, 500 SMs taken into account (more
than 23, 000 messages on average on a daily basis). Nevertheless, a small num-
ber of approximately 450 messages are considered suspicious on average by the

www.syssec-project.eu 158 October 30, 2014

7.6. ENERGY EXFILTRATION USE-CASE - EVALUATION

0 20 40 60 80 100
0

20

40

60

80

100

False positives

T
ru

e
po

si
tiv

es

T=7
T=6
T=5
T=4
T=3
T=2
T=1

Fig. 7.8: True Positive and False Positive rates for varying thresholds T.

Interaction Modeler on a daily basis. 857 out of the 995 malicious messages are
considered as suspicious. In total, 488 alarms are raised by the Pattern Matcher,
245 of which are related to real attacks (45 attacks are actually detected).

We say an alarm raised by the Pattern Matcher is a true positive (resp., false
positive), if the period of time covered by its window of size PMWS and advance
PMWA actually includes days in which malicious activity has been injected for the
given MCU, SM and Hour. It should be noticed that since the window slides every
day (PMWA is set to one day), multiple alarms can be raised during consecutive
days for one or more suspicious messages referring to a given MCU, SM and Hour.
The number of false positives (243) raised during the six months period results in
one or two false positives per day, on average. This number of false positives is
reasonable for the system expert to use the framework (a reasonable threshold is
set to no more than ten false positives per day in [174]). We further analyzed the
cause of these alarms and interestingly, most of these false positive alarms are
due to new smart meters that appear in the traffic. As this evaluation is based on
a real deployment, we can draw the conclusion that the number of devices in this
environment is not stable (meaning any assumption of the former would cause false
alarms).

7.6.3 Parameters sensitivity

For a given configuration of the Pattern Matcher’s parameters PMWS, PMWA
and GB, the number of attacks detected by the former depends on the threshold T
(i.e., it depends on the number of days during which suspicious messages should
be observed in order to raise an alarm). In this section, we present how the true
positive and false positive detection rates are affected by varying the values of the
threshold T. Since the Pattern Matcher’s Aggregate window size (PMWS) is set to
seven days, the experiments are run for T = 1, . . . , 7. As presented in Figure 7.8,
the minimum true positive rate is achieved when parameter T is equal to seven.
In this case, no false positive alarms are raised by the Pattern Matcher. It can be
noticed that the true positive rate increases to more than 80% when T ≤ 6, while
it grows to more than 90% when T ≤ 4.

www.syssec-project.eu 159 October 30, 2014

METIS

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Input Rate (tuples/second)

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
on

d)

0

1

2

3

M
ill

io
ns

 o
f s

m
ar

t m
et

er
s

(H
ou

rly
 r

ea
di

ng
s)

5 tuples
10 tuples
20 tuples
50 tuples
75 tuples
100 tuples

(a) Throughput (tuples/second).

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

Input Rate (tuples/second)

La
te

nc
y

(m
se

cs
)

 5 tuples
10 tuples
20 tuples
50 tuples
75 tuples
100 tuples

(b) Latency (milliseconds).

Fig. 7.9: Throughput and latency for increasing input rates and batch sizes.

7.6.4 Processing capacity

As shown above, METIS is able to detect the majority of the energy exfiltration
attacks we injected. In this section, we show it can also cope with the large volume
of events produced in a typical AMI. For that reason, we evaluate the processing
capacity of METIS when running on a server that could be deployed at the utility’s
head-end, an Intel-based workstation with two sockets of 8-core Xeon E5-2650
processors and 64 GB DDR3 memory.

Among the different parameters that could influence the processing capacity
of the query, the batch size plays a fundamental role in this context. While pro-
cessing messages, a trade-off exists between the rate at which such messages can
be processed and the latency imposed by the processing itself. In high-throughput
systems, it is common to group tuples together in batches (of thousands or tens
of thousands of tuples) in order to achieve higher throughput. Nevertheless, this is
not an option in our scenario. Each pair of devices exchanges a small number of
messages per hour (in the order of tens). If the analysis relies on big batches (e.g.,
thousands of messages), devices might not be able to log incoming and outgoing
messages for the resulting large periods of time and possible attacks would thus
not be detected.

Figure 7.9a presents the processing throughput for different batch sizes, from
5 to 100 tuples. As expected, increasing the batch size results in higher processing
throughput. For a batch size of 100 tuples, the server is able to process approxi-
mately 2, 000 messages per second. Based on our data, each pair of MCU and SM
exchanges one ECReq and one ECResp message each time energy consumption
is retrieved. If the 2, 000 messages processed every second refer to the exchange
of 1, 000 pairs of MCUs and SMs, the processing capacity of our prototype would
enable the monitoring of more than three millions pairs of MCU and SM every
hour. Figure 7.9b presents the corresponding latency (in milliseconds) for the dif-
ferent batch sizes. While a common pattern is observed for all batch sizes (the
latency starts increasing when the throughput gets closer to its maximum), it can
be noticed that the highest measured latency is of approximately 0.7 seconds. This
means that the latency in the detection of an attack would depend on the frequency

www.syssec-project.eu 160 October 30, 2014

7.7. RELATED WORK

with which energy consumption readings are retrieved rather than the (negligible)
processing time introduced by METIS’ analysis.

7.7 Related Work

Despite their recent deployment, a considerable number of potential attacks against
AMIs has already been discussed in literature where some have even been seen
in the wild [163]. The attacks range from energy theft [181], stealing of users’
information [40], up to physical damage of the infrastructure [76].

As outlined in [165], traditional IDSs cannot be used effectively in these envi-
ronments without major modifications. However, even though there exists a large
literature on intrusion detection in general, very few systems have been developed
specifically for AMIs. Several papers motivate the need for security in smart grids
(where [107] is such an example); others go one step further and discuss detec-
tion mechanisms but often concentrating on other parts of the smart grid (such as
attack detection in SCADA networks [68], or for process control [131]). Berthier
et al. [40] discuss requirements with an outline of a possible intrusion detection
architecture suitable for AMIs. To the best of our knowledge, specification-based
IDSs are the main defense mechanism proposed so far for AMIs [39, 188].

One advantage with our approach is that several detection mechanisms can
be used as a sensor in the first tier (the Interaction Modeler), meaning that the
previously suggested specification-based approaches for AMIs could also be inte-
grated into our framework. However, in this paper we instead suggested Bayesian
inference in the first tier. Using Bayesian networks to model attacks merges the
best properties of the signature-based approach with the learning characteristics of
anomaly detection [246]. A specification-based IDS would require manual labor to
tune the system to a specific installation, where a Bayesian attack model would be
(relatively) easy to create for the system expert with the added benefit that we au-
tomatically can parallelize it in METIS by relying on the data streaming paradigm.
Specification-based systems work best in very stable environments; in AMIs it is
expected that the traffic will be more dynamic and less deterministic in the future
with demand-side networks, as described in [165].

Using several tiers of sensors and analysis engines to improve the detection
has been used in traditional IDSs such as [242, 210]. Our motivation for having
different tiers is that they allow for the implementation of the Interaction Modeler
to be isolated from the overall event processing. As mentioned above, this approach
makes the design and implementation of the attack models easier. The second tier
manages the scalability of the approach to allow for the analysis of the underlying
traffic in real time.

As discussed in [40, 127], the coexistence of distinct networks within the same
AMI demands for distributed traffic analysis, either by relying on the devices them-
selves (as recently investigated in [209]) or by relying on dedicated sensing infras-
tructures. To this end, the data streaming processing paradigm [235] is an optimal

www.syssec-project.eu 161 October 30, 2014

METIS

candidate for AMIs traffic analysis, as explored in [223, 267, 110]. The latter is
the closer to our approach, but their evaluation is not based on data from realistic
AMIs.2

7.8 Conclusions

This work proposed METIS, a two-tier defense framework that eases the modeling
of possible adversary goals and allows for a scalable traffic analysis by employing
the data streaming processing paradigm. The proposed architecture allows for mod-
ular functionality and configurable deployment, allowing also for complementary
intrusion detection systems to be integrated in the framework (e.g., by replacing the
first tier). In the paper, besides describing and analyzing its design and implemen-
tation, we showed how it is possible for a system expert to model the detection of
energy exfiltration attacks, a challenging adversarial goal. Moreover, through the
evaluation of the use-case based on big volumes of data extracted from a real world
AMI, we showed that METIS’ analysis can achieve high detection rates, with low
false alarm numbers, even when relying on commodity hardware.

It is worth pointing out that the possibility for distributed deployment of METIS
enables for the detection of a variety of scenarios, including those whose detection
is only possible through distributed evidence. The latter opens a path for new re-
search in detecting and mitigating adversarial actions in AMIs, where for scalabil-
ity and privacy purposes it can be imperative to detect unwanted situations close to
the data sources, without the need to store the original data.

2They use the KDD Cup 99 dataset, with known problems (http://www.kdnuggets.com/
news/2007/n18/4i.html) as well as lacking realistic AMI attacks.

www.syssec-project.eu 162 October 30, 2014

http://www.kdnuggets.com/news/2007/n18/4i.html
http://www.kdnuggets.com/news/2007/n18/4i.html

8
Analysis of the Impact of Data Granularity on

Privacy for the Smart Grid

Preamble: Relation to the Research Roadmap

One of the major threats identified in the Red Book is the loss of anonymity in
online activities. Actions are recorded and stored, creating very large datasets. By
analysing such datasets one can deduct very private information about individuals.
This is a concern for all cyber activities, but the trend in smart environments to have
sensors recording more data close to the individual emphasizes the threat. Such
datasets include the health monitors that are becoming popular, the high granularity
of the measurements of energy consumption readings, etc.

In this chapter, we investigate datasets of energy consumptions and possible
risks of de-anonymization. In particular, the main question studied is whether data
can be collected in such a way as to keep an adequate privacy level and still be
useful for billing and grid operational purposes.

Tudor Valentin, Magnus Almgren, and Marina Papatriantafilou. “Analysis of
the impact of data granularity on privacy for the smart grid.” Proceedings of the
12th ACM workshop on Workshop on privacy in the electronic society. ACM, 2013.

163

Privacy in the AMI

Abstract

The upgrade of the electricity network to the “smart grid” has been intensified in
the last years. The new automated devices being deployed gather large quantities
of data that offer promises of a more resilient grid but also raise privacy concerns
among customers and energy distributors.

In this paper, we focus on the energy consumption traces that smart meters
generate and especially on the risk of being able to identify individual customers
given a large anonymized dataset of these traces. This is a question raised in the
related literature and an important privacy research topic. We present an overview
of the current research regarding privacy in the Advanced Metering Infrastructure.
We make a formalization of the problem of de-anonymization by matching low-
frequency and high-frequency smart metering datasets and we also build a threat
model related to this problem. Finally, we investigate the characteristics of these
datasets in order to make them more resilient to the de-anonymization process.

Our methodology can be used by electricity companies to better understand
the properties of their smart metering datasets and the conditions under which such
datasets can be released to third parties.

8.1 Introduction

In any new domain where significantly more data starts being produced, the pri-
vacy of the customer who produces these data may be at risk. This is also the case
in the new smart grid which is the name used for the modern electrical grid. One
of the main differences between the traditional electrical grid and the new smart
grid is the large number of computing and communication devices being installed
in different parts of the grid and that are connected through an overlay communi-
cation network; their main purpose is to make the grid monitoring and operational
processes more accurate and more efficient.

These computing and communication devices are deployed in all of the three
main sections of the electrical network: the generation section, the transmission
section and the distribution section. Specifically, in the distribution section, the tra-
ditional electro-mechanical meters that used to monitor the electrical energy con-
sumed by the end customers are replaced by the new so-called smart meters. The
smart meters, together with other devices that monitor, gather and send their data
to the energy distributor’s central location form the Advanced Metering Infrastruc-
ture (AMI). The AMI offers two-way communication between the central control
system and the smart meters, resulting in better remote functionality of the smart
meters, such as remote shut-off commands and control of demand-side electricity
load and generation. Figure 8.1 presents an overview of the AMI, together with an
exemplification of the different types of communication media (radio, wired, fiber-
optics) and protocols used (Ethernet, Power Line Communication, ZigBee, GPRS)
in suggested deployments.

www.syssec-project.eu 164 October 30, 2014

8.1. INTRODUCTION

Data
Concentrator

Utility Center

Data
Concentrator

Ethernet

PLC

Smart Meter

Fig. 8.1: The Advanced Metering Infrastructure (AMI)

As a consequence of the upgrade to the smart grid, significantly more data is
collected and analyzed, for example in the AMI where more parameters than just
the electrical energy consumed by customers are recorded, at a higher frequency
than before. It is estimated that the size of the smart grid will be larger than the size
of the Internet1 and the quantity of data produced will be considerable. These data
are expected to play a key role in the development of the smart grid and will im-
prove the balance between energy production and energy consumption by making a
significant contribution in improving electrical grid stability and energy efficiency.

However, there are concerns that these benefits may come at the cost of pri-
vacy: the large quantity of data produced and the granularity with which individual
items are collected raise privacy concerns regarding the information that can be in-
ferred about the lifestyle of the customers. In some countries, the debate regarding
customer’s privacy has even slowed down the deployment of smart meters [141].

Therefore, the main question is whether data can be collected in such a way as
to keep an adequate privacy level and still be useful for billing and grid operational
purposes. Using the terminology from [207], any solution should offer anonymity
(the state of being not identifiable in a set of subjects) and also temporary un-
linkability (the relation of two items based on the adversary’s observations) of the

1http://news.cnet.com/8301-11128_3-10241102-54.html

www.syssec-project.eu 165 October 30, 2014

http://news.cnet.com/8301-11128_3-10241102-54.html

Privacy in the AMI

customer with the quantity of electrical energy used in that specific unit of time.
However, in the smart grid full unlinkability is almost impossible to be attained
because the customer needs to be billed at some point for the resources used. The
same goes for the unobservability (usage of a resource without someone to be able
to observe that the resource is being used); the aggregated consumption is known at
all times as the energy used for a group of customers is monitored at the substation
level.

In this paper we first provide an overview of the current research regarding
privacy in the AMI where we present some of the current privacy problems and
privacy enhancing technologies proposed in the literature, motivating also the con-
tributions presented subsequently in the paper. We construct a formalization of the
de-anonynimization problem present in the AMI. The problem is caused by match-
ing two types of datasets collected in the AMI, the low-frequency dataset (mainly
used for billing of customers) and the high-frequency dataset (mainly used for
grid operation). We build a theoretical model that describes this problem and also
a threat model presenting a possible de-anonymization scenario performed by an
adversary. We perform an investigation of the characteristics of these datasets in
order to make them more resilient to the de-anonymization process. In our inves-
tigation, we concentrate on the data collected in the distribution network from the
AMI where we focus mainly on the data granularity and timespan.

The rest of the paper is structured as follows: in Section 8.2 we present the gen-
eral considerations of data privacy in the AMI as well as the different data types
that can be collected. We give an overview of the current literature, present the
main questions regarding the privacy concerns raised by AMI data and describe
the characteristics of the two types of datasets mentioned earlier. Section 8.3 for-
mally describes the de-anonymization problem, followed by the development of
the theoretical framework and the threat model. Section 8.4 describes the inves-
tigation conducted and a discussion of the results obtained. This paper concludes
with Section 8.5 which summarizes our results and their implications.

8.2 Data Privacy in the Advanced Metering Infrastruc-
ture

As mentioned in the previous section, the main improvement introduced by the
smart grid in the distribution section is the replacement of the traditional electrome-
chanical meters with the new smart electrical meters which are the main producers
of data from the AMI. Before the smart meters, energy consumption readings were
usually made every month or even less frequently, usually by a human operator
visiting each customer individually, so the quantity of data gathered was not even
comparable with the one today.

www.syssec-project.eu 166 October 30, 2014

8.2. DATA PRIVACY IN THE ADVANCED METERING INFRASTRUCTURE

8.2.1 Data from the Advanced Metering Infrastructure

Data from the Advanced Metering Infrastructure are primarily used for billing
purposes and consist of the index of energy consumption in kWh. The modern
smart meters offer the possibility to extract much more information about the well-
being of the electrical distribution network. For billing of residential customers,
only the quantity of the so-called active energy consumed is required. For high
industrial consumers the quantity of reactive energy used may also be billed; grid
operation may require information about instantaneous values of voltage, current,
active/reactive power, power outage logs, errors in the metering equipment, and
much more. Table 8.1 shows a short list of useful data types that can be gathered
from the AMI.

Billing data Operational Data
Active energy Power (active, reactive, power factor)

Reactive energy Voltage (value, phase angle)
Current (value, phase angle)
Power outage logs, Alarms

Table 8.1: Data from the AMI

Efthymiou et al. [104] use the term high-frequency data for data used for grid
operational purposes and low-frequency data for data used for billing purposes.
We will keep the same definitions throughout this paper. Low-frequency data need
to be collected seldomly (every month or every few months) but the law dictates
that such data need to be identifiable to a specific customer for correct billing and
to prevent fraud, both from the customer side and from the utility provider side.
High-frequency data, used for grid operations, need to be collected very often (ev-
ery few minutes) in order to give an accurate overview of the electrical distribu-
tion network. Previous research [43, 191] shows that fine-grained data can infer
information about the lifestyle of the inhabitants such as electrical device usage
patterns and presence or absence from the premises. Although the utility of these
data for grid operation is evident, the privacy concerns that may be raised cannot
be ignored. In an ideal case, these data should not be identifiable with a specific
customer [104], but with a group of customers served by the same electrical trans-
former or distribution station.

8.2.2 Data usage in the Advanced Metering Infrastructure

As mentioned in the previous section, there are several different types of data
that can be collected in large quantities from the Advanced Metering Infrastruc-
ture. The main consumer of these data is the Distributor System Operator (DSO),
followed by other third parties, each of them having different purposes. Data can
be used by the DSO for billing, processed for fraud detection, operational purposes

www.syssec-project.eu 167 October 30, 2014

Privacy in the AMI

(grid stability and security) or marketing. Third parties (researchers, other compa-
nies, malicious entities) may also be interested in these data for benign activities
(research, marketing) or for malign ones (fraud, invasion of privacy or even attacks
against the critical infrastructures).

The privacy preserving techniques (PPTs) are usually implemented at a large
scale by the DSO, or a legal trusted third party and at a small scale by the cus-
tomers. When thinking about a specific privacy preserving technique it is important
to remember the complexity of the parties that may have access and use the data
produced. For example, we should be able to answer the following (not exhaustive)
list of questions:

• does the PPT offer privacy protection against DSOs?

• does it offer privacy protection against third parties?

• does it provide availability of billing data?

If interested in providing privacy for its customers, the DSO may prefer to
employ a solution that offers privacy protection against third parties but which first
provides availability of the billing data.

The customer may prefer a solution that offers privacy protection against both
the DSO and other third parties, while availability of billing data might come in a
later position in the customer’s priority list. Thus, the DSO’s and the customer’s
visions of privacy might be different and even conflicting. In an ideal case, the
customer’s data privacy should be protected against both the DSO and other third
parties.

8.2.3 Overview of smart grid privacy mech-
anisms in the literature

As a concept, Warren and Brandeis [251] give in 1890 the definition of “pri-
vacy” as the “right to be let alone”. More recently, Pfitzmann and Hansen [207]
define the terminology to be used when talking about privacy by data minimiza-
tion.2 From a legal point of view, to the best of our knowledge, there is no specific
European Directive which covers smart metering data privacy. Thus, only the gen-
eral European Directive, EU Data Protection Directive 95/46/EC [99], would cover
these types of data. However, the German Federal Office for Information Security
developed the Protection Profile for the Gateway of a Smart Metering System;
closely related to this, Stegelmann and Kesdogan [234] propose an architecture
called GridPriv that includes a non-trusted k-anonymity service for pseudonymised
meter data.

2The terminology includes: anonymity, unlinkability, linkability, undetectability, unobservability,
pseudonymity, identifiability, identity, partial identity, digital identity and identity management.

www.syssec-project.eu 168 October 30, 2014

8.2. DATA PRIVACY IN THE ADVANCED METERING INFRASTRUCTURE

Siddiqui et al. [222] make an overview of some of the proposed solutions to-
wards preserving privacy in the smart grid and divide these into the following cat-
egories: anonymous credentials, third party escrow mechanisms, load signature
moderation, smart energy gateway and privacy-preserving authentication.

Anonymous credentials are based on blind signatures (similar to the ones used
in the e-cash payment systems) and have the advantage to offer privacy protection
against both DSO and third parties. The disadvantage of this solution is that it does
not provide availability of billing data and it can only be used for pre-paid energy.

Third party escrow mechanisms [43, 104, 248] require the presence of a trusted
third party entity whose role is to anonymize the data collected from the cus-
tomers and then present it to the DSO or to aggregate the data and present it in an
anonymized form. As mentioned in Section 8.2.1, Efthymiou and Kalogridis [104]
present a solution based on separation of data into attributable low-frequency data,
collected seldom and mainly used for billing, and anonymized high-frequency data,
collected very often and used for grid operation. Each of these will be reported us-
ing a different pseudonym (one public and one private) and only the trusted third
party is supposed to know the connection between the anonymous pseudonym and
the public one. Their solution offers privacy protection against other third parties
and also provides availability for billing data. The open question that remains is if
the DSO can later recreate low-frequency data from the high-frequency and match
it with the already available low-frequency data and so breaking the privacy. We
will return to this question in Section 8.3.

Load signature moderation [152, 153] is a good privacy preserving method that
can be used by customers. It requires the presence of an energy storage facility at
the customer premises, such as an old battery from an electrical vehicle. The cus-
tomer can then even out her external load signature by drawing energy from the
battery in the high-load periods or by charging it during the low consumption pe-
riods or when energy is cheaper. This method offers protection both against DSOs
and other third parties and also provides availability of billing data, because the
Smart Meter will register only the energy used from the electricity network. How-
ever, the method has the disadvantage of requiring extra hardware.

The last two categories proposed by Siddiqui et al. [222] are smart energy
gateway and privacy-preserving authentication. In the same way as load signature
moderation, these also require the presence at the customer premises of a dedicated
system. In the first case the system is responsible to manage data released from
the smart meter on some internal rules based on the data requester, while in the
second case its role is to create trusted pseudo-identities that are used in requesting
different energy amounts. In the first case privacy protection and availability of
billing data can be enforced by setting up proper rules; the second one can only be
used in a pre-paid energy scenario.

Hiding in the crowd is another method used to preserve privacy. Borges et
al. [48] present a solution based on anonymity networks in which a customer uses
two different identities to send his billing data and grid-operational data. While the
billing data is directly attributable to him, the grid-operational data is forwarded

www.syssec-project.eu 169 October 30, 2014

Privacy in the AMI

to the DSO through an anonymity network, so the customer cannot be directly
identified in a group of customers from the same network.

Data aggregation can also be used as a privacy-preserving solution. Before data
is aggregated, one initial step in order to prevent unlawful disclosure of information
is to perform mutual authentication [260, 261] between the entities involved in the
process. Following this, privacy against the DSO and third parties can be obtained
by using homomorphic cryptography [48, 164, 179, 261], or by adding random
noise from a known distribution of zero mean [164, 179], but unfortunately aggre-
gating methods do not provide availability of billing data and techniques based on
homomorphic cryptography can be expensive on devices with reduced processing
power and low resources such as the currently deployed smart meters.

Privacy enhancing techniques should also be resistant to attacks. Jawurek et
al. [148] present the problem of breaking smart meter privacy by using de-pseudo-
nymization. They propose a framework based on machine learning with support
vector machines for the analysis of consumption traces and tracking consumption
traces across different pseudonyms by using two linking procedures. Linking by
Behaviour Anomaly (LA) tries to link a real ID to a consumption trace or two con-
sumption traces together by correlating anomalies that happen in the same time,
for example consumption spikes or blackouts. Linking by Behaviour Pattern (LB)
tries to link different pseudonyms for one consumer and their method can be ap-
plied even if the consumption profiles do not overlap in time. In this paper we show
that even simpler functions may also work quite well in identifying customers.

Buchmann et al. [51] show that identification of individual houses based on
their energy-consumption records is possible even by using simple statistical tools
such as means and standard deviations on a reduced number of data features. They
show that 68% of the records coming from a set of 180 houses can be re-identified
by using these simple methods.

So far we presented an overview of the current literature regarding privacy
in the smart grid context. Next we will present the research papers that are close
connected to our work.

Related work especially relevant to this paper:

Out of the presented papers above, the ones that are most closely related to ours
are [51, 57, 104, 148]. Efthymiou and Kalogridis [104] set up the terminology on
which we build our framework. Their solution is based on a trusted third party that
takes care of the private IDs used in the process of high-frequency data anonymiza-
tion and also of the connections between the high-frequency ID and the low-
frequency one. Jawurek et al. [148] present a de-pseudonymization framework
based on machine learning and are focusing mainly on anomalies in data consump-
tion that happen in the same time. For their solution, fine-grained data is required,
because such anomalies can be missed if aggregated daily or monthly values are
used. Compared with their solution, we are focusing mainly on aggregated con-
sumption where we try to identify uniqueness. Buchmann et al. [51] use simple

www.syssec-project.eu 170 October 30, 2014

8.2. DATA PRIVACY IN THE ADVANCED METERING INFRASTRUCTURE

statistical tools on a reduced number of consumption features and also on exter-
nal information sources such as physical observation of people habits. Focusing on
demand-response schemes, Cárdenas et al. [57] present the problem of appropriate
sampling intervals in AMI as a trade-off between keeping a good level of customer
privacy and gains in the demand-response scheme properties. They focus on the
economics behind this problem as a parameter into the proper sampling scheme.

8.2.4 Advanced Metering Infrastructure data
characteristics and problem formulation

Summarising regarding the AMI data characteristics on the two types of active
energy consumption data reported by the smart meters in AMI, high-frequency
(HF) data and low-frequency (LF) data, the question that arises is how these data
should be reported and gathered in order to keep an adequate level of privacy
against both the DSO and third parties? The level of privacy is measured as a
reduced number of uniquely identifiable customers based on these two types of
reported data.

There are a number of questions to which the research community tries to find
the answers:

• Can customers be identified based on their energy consumption reported by
the smart meters?

• How similar are customers with each other based on their energy consump-
tion trace?

There are three characteristics of these data that were identified in the literature
that determine the privacy level: number of pseudonyms for the same customer used
in reporting/storing data, the timespan of data stored by the utility provider and
the granularity of reported/stored data. The investigation presented in Section 8.4
focuses on the last two of these characteristics and on their role in making the
datasets more resilient to the de-anonymization process.

Reporting high-frequency data under different pseudonyms and making sure
that connections between pseudonyms are extremely hard to find and/or known
by only a trusted third party [48, 104, 164] have been proposed earlier in the re-
search literature. Using one pseudonym can be useful, if the connection between
this pseudonym and the real customer ID is secret, but reporting or storing data
from the same smart meter under different pseudonyms for shorter timespans can
be very efficient [48]. Although useful, generating multiple pseudonyms can be ex-
pensive for the smart meter device, because they need to create them through the
use of a cryptographic algorithm, or they need to be provided when shipped from
the factory.

The timespan of data stored is also very important, because longer periods of
stored data for a smart meter (under the same pseudonym) can infer much more
information about the energy consumption that took place. The question here is

www.syssec-project.eu 171 October 30, 2014

Privacy in the AMI

what the window for stored data that is useful for billing/grid operation is but which
is also, at the same time, privacy preserving?

The last characteristic taken into consideration is the granularity of reported
and stored data. Low-frequency data must be reported in fine-grained detail for ac-
curate billing and to prevent fraud. Customers want, naturally, only to be billed for
what they consumed, and the utility company wants to know exactly how much is
consumed in order to level production and to better operate the grid. Unfortunately,
loss occurs in the distribution grid due to transformers and old equipment, and are
taken into consideration [98]. The question is whether the reported high-frequency
data can be altered in a minor way such that the modification will not affect the grid
operation, but making it hard to identify each customer uniquely by, for example,
making the data from different customers more uniform? Figure 8.2 presents these
three characteristics in relation to the adequate privacy level that is desired.

Data
Granularity

Data
Timespan

Pseudonyms

Safe
Zone

Unsafe
Zone

Fig. 8.2: Characteristics of AMI data

8.3 Methodology

We will now formally describe the de-anonymization process by linking a low-
frequency dataset with a high-frequency dataset. We will also present a threat
scenario featuring an adversary which attempts to uniquely identify as many cus-
tomers as possible and learn as much as possible, for example about their habits
and living conditions, using the information from the high-frequency dataset.

Based on this scenario, in Section 8.4 we will conduct an investigation using
a large real dataset on which we will study the influence of data timespan and
granularity in the de-anonymization process. Our methodology can be used to bet-

www.syssec-project.eu 172 October 30, 2014

8.3. METHODOLOGY

ter understand the limits of what is safe and what is not with regard to releasing
datasets to third parties.

8.3.1 Formal framework

Assume that there exists a dataset, C = {(identifier, timestamp, value)},
collected from the smart meters in an advanced metering infrastructure. This data-
set contains identifiers (identifier) that can be used to identify individual cus-
tomers, as well as high-frequency data (value) of the form described in Section 8.2.1,
each marked with a specific timestamp. As mentioned, the high-frequency data
can be used to infer habits of households.

There are two functions, fH(·) and fL(·) such that we can derive two new
datasets by letting {

H = fH(C)
L = fL(C)

where H and L are related but have slightly different properties. In a scenario
within the smart grid, H would be a dataset with, for example, the originally col-
lected high-frequency data but where all customer identification would be replaced
with untraceable labels (one simple way to obtain untraceable labels is to use a
random label generator and check for possible collisions). This dataset could then
be used for grid operation and optimization as it would not be possible to use it to
identify individual customers. The set L, on the other hand, would retain the orig-
inal identifiers making it possible to identify customers but instead the data in this
dataset would be aggregated (under the original identifier) so as to be less privacy
invasive. This dataset could then be used for billing of monthly consumption, for
example. The complete dataset, C is then discarded.3

We further assume that finding f−1H and f−1L is intractable, as information is
deliberately discarded in each transform. Thus, if an adversary obtained either H
or L it would be difficult to recreate C and each dataset in isolation would not
be interesting. This is similar in vein to the indirect assumptions for the solution
presented by Efthymiou and Kalogridis [104].

However, as H and L originate from the same dataset, we assume that there
exists another function, g(·), such that H′L′ = g(H).4 The data in H′L′ would
retain the identifying labels fromH and be aggregated in a similar fashion to L. If
we could then link any entries between these two datasets, H′L′ ∼ L, we might
partially be able to recreate C by relabeling the entries inH. The problem, though,
is that many of the aggregated values in L may not be unique but would be the
same across a number of customers meaning that we cannot easily infer which
labels should be linked as there will be a set of possible matches. Intuitively, we
would expect customers with a very uncommon behavior to maybe be re-identified

3The complete dataset, C, might not ever exist if the transforms are run continuously in the smart
meters.

4The existance of g(·) would depend on how fH(·) and fL(·) were constructed. Based on our
survey of existing methods, we say that it is likely g(·) exists.

www.syssec-project.eu 173 October 30, 2014

Privacy in the AMI

but that a majority of customers would belong to clusters that behave in a similar
nature and thus not be uniquely identified.

Formally, the question we would like to answer is whether it is at all possible to
link these two datasets, given a large realistic scenario. If so, we want to measure
how well C can be recreated and provide boundaries on what an adversary can
achieve if she has access to bothH and L. Can we limit the information gained by
the adversary by changing the properties of either of these datasets, for example by
using more pseudonyms or storing less data as discussed in Section 8.2.4?

8.3.2 Adversarial strategy

A possible adversarial strategy algorithm, that is also implied by the previ-
ous literature, is presented in Algorithm 1, and it is used to derive the associated
adversary model. The adversary gets hold of two sets of data, one containing high-
frequency (H) data and one containing low-frequency data (L) with the properties
described in Section 8.3.1. The individual smart meters that produced these data
are labeled differently in these two datasets; to simplify the presentation, we as-
sume each smart meter has only one identifier in each of the sets, being equivalent
to using only one pseudonym. The algorithm can easily be extended with sets of
more pseudonyms.

As stated above, we assume the adversary wants to be able to recreate the
dataset C, where she can label the high-frequency data with the identity of the
individual customers from the low-frequency dataset. By analyzing the low-fre-
quency datasets, she tries to find as many “unusual” customers as possible, i.e.
customers that at some point in time have data values that differ from the norm so
that she can create a link between H′L′ and L. In the algorithm, this is performed
in the function findLink(). This analysis can range in its sophistication. In the
first version of the algorithm, we have chosen to implement a method that only
looks for unique values in a time period to show that even a relatively simple and
fast analysis can be surprisingly efficient. As we will show in Section 8.3.3, the
simplicity of the function also allows us to model it as a game of balls and bins so
that we can estimate the probabilities of the success of the scenario.

Note that our discussion so far has been of a general nature; the datasets can
contain a diverse set of data as described in Section 8.2.1. However, in the following
we are going to concentrate on consumption traces. These types of datasets are
often used in the literature (please see Table 8.2 for an overview).

8.3.3 Probabilistic framework and analysis

In this section, we model the adversarial strategy algorithm in a probabilis-
tic framework to be able to reason formally about the adversary’s capabilities and
possibilities of success in de-anonymizing customers. Given the properties of the
function findLink() shown in Algorithm 1 it is possible to model the al-
gorithm as a game of balls and bins [190]. In the following discussion, we assume
the datasets contain energy consumption data e.g. kWh consumption indexes.

www.syssec-project.eu 174 October 30, 2014

8.3. METHODOLOGY

Algorithm 1: Adversarial strategy algorithm
Requirement: adversary has obtainedH and L
Goal: recreate as much as possible of C
begin algorithm

createH′L′ = g(H);
while IDlink = findLink(H′L′,L) do

recreate one entry in C;
remove identified trace fromH′L′ and L

end
end
begin function findLink

/* Version 1: find *unique* consumption traces
in a time period in L */

foreach timeperiod j in L do
if any unique consumption traces exists then

extract identifying ID from L;
find corresponding entry inH′L′;
extract identifying ID’ fromH′L′;
return <ID, ID’>;

end
end
/* no more links can be made */
return false;

end

www.syssec-project.eu 175 October 30, 2014

Privacy in the AMI

The energy index data from mj smart meters (balls) in one time period, j ∈ T ,
can be sorted into a set of n different intervals (bins), where the width of the bins
corresponds to a range of energy consumption units (multiples of kWh). We let the
width of the bins be an integer,w, that can vary from 1 toW . The number of bins is
then n = M

w , whereM = max(mT) is the maximum index consumption value for
all the time periods considered. At each round, the number of balls in all the bins is
equal with the number of balls at the beginning of the round e.g.

∑n
i=1mwi = mj .

Any ball that falls alone in a bin is considered to be uniquely identified and it
is removed. This is then repeated; each round of the game uses data from a time
period where index data for the mj smart meters exist. The game ends when either
all the balls are removed or when there exists no more time periods with new data.
The percent of eliminated balls at the end of the game is then equivalent to the
percent of uniquely identifiable consumption indexes from that specific dataset.

In the analysis of the bins and balls game presented by Mitzenmacher and
Upfal [190] the probability that a bin receives a number of r balls whenm balls are
thrown independently and uniformly at random into n bins is given as a Poisson
distribution of mean m

n .

P [a bin has r balls] =
e−

m
n × (mn)

r

r!
(8.1)

Note that we assume a Poisson distribution of the balls into bins. This will be
further discussed in Section 8.4.2. In our specific case with r = 1 (only one ball
per bin so that we can identify the customer), the probability above becomes the
following.

P [a bin has 1 ball] = e−
m×w
M × m× w

M
(8.2)

For the Poisson case, the number of balls in each bin must be independent
random variables. In our case, the number of balls in the last bin is known as we
have m balls and we know the number of balls in the first n− 1 bins. Corollary 5.9
from [190] states the following.

Corollary 8.3.1 [190] Any event that takes place with probability p in the Poisson
case takes place with probability at most pe

√
m in the exact case.

Thus, any event that happens with a small probability in the Poisson case also
happens with a small probability in the exact case, where balls are thrown into
bins [190] and justifies the Poisson analysis for the bins and balls game. The ex-
pected number of bins with only 1 ball becomes the following.

E[binswith 1 ball] = e−
m×w
M × m (8.3)

Let the number of balls available at the beginning of the game be m0. If we
consider two consecutive rounds in the game, the expected number of balls mj at
the beginning of round j can be computed as:

mj = mj−1 − Ej−1[binswith 1 ball] (8.4)

www.syssec-project.eu 176 October 30, 2014

8.4. EVALUATION STUDY

where if we substitute the expression for the expected value:

mj = mj−1 × (1− exp (−mj−1 × w
M

)) (8.5)

The game ends when either all balls have been removed from the game (mj = 0)
or all the time periods with available data, T , have been used (j > T).

The adversary would win the game when the percentage of extracted balls is
above a specific threshold, λ, meaning that a large percentage of the smart meters
have been identified uniquely (

∑
1≤j≤T mj

m0
> λ). The utility company wins the

game when the percentage of uniquely identified smart meters is low (mT is very
close to m0). By investigating the parameters (m, λ, w), we can explore the limits
of the capabilities of the adversary to make sure that she cannot identify a large set
of customers.

8.4 Evaluation study

As mentioned in Section 8.2.4, the granularity and data timespan play an impor-
tant role in the data de-anonymization process. We investigate these two charac-
teristics by using a simulation based on the probabilistic framework presented in
Section 8.3.3 and an evaluation based on a dataset, described in Section 8.4.1. We
expect to identify the influence of the characteristics in the context of the adver-
sarial strategy algorithm presented in Section 8.3.2. The last part of this section
presents a discussion of the results obtained.

8.4.1 Description of the dataset

To see how well the adversarial strategy algorithm works in a real setting we
use a dataset consisting of smart meter readings from a large number of consumers
in a medium-sized city. The original data have hourly smart meter index readings
for a period of seven non-contiguous months. The data originates from a range of
smart meters serving very small consumers (summer cottages) to large consumers
(industrial customers). The data have gone through a two-step anonymization pro-
cess, once by the utility provider and once by us, to make sure it is not possi-
ble to physically identify any customers in the set. Each record has the ¡IDanon,
timestamp, value¿ format. The timestamp and the index value remain in clear.
The data from each smart meter in the set can be identified by a unique numerical
identifier (IDanon), that remains the same over the seven months. This is equiva-
lent of having a single pseudonym for each of the smart meters for the whole time
period.

As the data comes from a real AMI, where problems with missing values some-
times exist, we also sanitized the data by creating a smaller set where we removed
a number of collection artifacts. Mainly, we removed any smart meters that had
gaps in the hourly reporting (values lost), double conflicting records for the same
timestamp or decreasing index values for increasing timestamp values.

www.syssec-project.eu 177 October 30, 2014

Privacy in the AMI

Dataset Number of Number of
meters readings

Kalogridis et al. [104] N/A N/A
Jawurek et al. [148] 53 281, 112
Buchmann et al. [51] 180 60, 480
Daisuke and Cárdenas [180] 108 ?1, 890, 000
Tudor et al. (this paper) 19, 334 99, 355, 998

Table 8.2: Datasets from AMI
The ? value was estimated based on values in [180]

After the sanitization process, the dataset contained 19, 334 unique smart me-
ters with 99, 355, 998 hourly energy consumption readings. This set is considered
to be the high-frequency dataset (H). From this dataset, we then created the low-
frequency dataset (L), which is similar for each customer to the energy consump-
tion values printed in the electrical bill. This resulted in 4, 156, 810 daily values and
135, 338 monthly values. As can be seen from Table 8.2, our dataset is significantly
larger than the ones previously used in literature.

8.4.2 The Poisson distribution assumption

In the game of bins and balls presented in Section 8.3.3 we assume that the balls
are thrown independently and uniformly at random so that they can be modeled as
a Poisson distribution.

The balls signify specific smart meters. These smart meters belong to the same
households with the same number of people with habits that will probably not
change on a monthly basis. Regardless of what bin a ball lands in for a round,
the theoretical model assumes that it is equally likely that the ball falls into any
of the bins in the next round. However, in the real case it is likely that the energy
consumption pattern would be somewhat similar across months, so that it is more
likely that the ball falls into a bin close to the bin from the last month. We say that
the balls in the real case are somewhat sticky as they tend to favor, across months,
bins that are closely located.

This also implies that if two balls fell into the same bin one month, it is likely
that they will do so also the following month in the real case. For that reason, we
expect that the identification process, using function findLink() in Algo-
rithm 1, will be more difficult in the real case compared to the probabilistic model.

Furthermore, the customers may not be divided uniformly at random across
the consumption bins. A typical household in Europe hosts about 2.3 people5. Our
dataset reflects a large number of such domestic customers, agglomerated in the
low consumption zone, while the probabilistic model assumes a random spread in

5http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_
lvph01&lang=en

www.syssec-project.eu 178 October 30, 2014

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_lvph01&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_lvph01&lang=en

8.4. EVALUATION STUDY

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Bin width xkWh

F
ra

c
ti
o
n
 o

f
fo

u
n
d
 s

m
a
rt

 m
e
te

rs

Month 1

Month 1−2

Month 1−3

Month 1−4

Month 1−5

Month 1−6

Month 1−7

Fig. 8.3: Fraction of unique smart meters - seven months of data - estimation case

the bins. This also strengthens our expectations regarding the difficulty to identify
a majority of the customers in the real case.

Even with these assumptions, the formal framework let us reason about the
characteristics of the AMI datasets and their influence on the de-anonymization
process.

8.4.3 Results from the probabilistic framework

The estimation run of the adversarial strategy algorithm is based on the for-
mulas presented in Section 8.3.3 with the parameters adapted to match the dataset
of real consumption traces. The initial number of smart meters is selected to be
19,334 in order to exactly match the number present in the dataset, and the number
of rounds in the estimation is the same as the number of time periods in the dataset
– seven for the monthly case and 30 for the daily case. The granularity is varied
from 1 to 200 kWh. The value forM is selected to be the same as in the dataset and
is the highest index value for the time periods considered. The expected number of
identified smart meters (balls) at each round is computed by using Relation (8.3),
while Relation (8.4) is used to compute the number of remaining smart meters
(balls) at the beginning of each round.

Figure 8.3 presents the fraction of uniquely identified smart meters in the monthly
case (seven time periods) obtained in the estimation, while varying the granularity
with which energy consumption index is reported and the available time periods.

www.syssec-project.eu 179 October 30, 2014

Privacy in the AMI

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Bin width xkWh

F
ra

c
ti
o
n
 o

f
fo

u
n
d
 s

m
a
rt

 m
e
te

rs

Day 1

Day 1−2

Day 1−3

Day 1−4

Day 1−5

Day 1−10

Day 1−20

Day 1−30

Fig. 8.4: Fraction of unique smart meters - 30 days of data - estimation case

Similarly, Figure 8.4 presents the estimation results for the daily case, using 30
time periods (only periods 1-5, 10, 20 and 30 are presented in the figure).

8.4.4 Results of the adversarial strategy algorithm

An evaluation of the effectiveness of the adversarial strategy algorithm is per-
formed, for two characteristics presented in Section 8.2.4, data granularity and
timespan. The starting number of smart meters is 19,334 and the number of monthly
values is 135,338. There are seven time periods, equivalent to the seven months of
data and the maximum index value is computed from the dataset.

Figure 8.5 presents the fraction of the uniquely identified smart meters by us-
ing the dataset presented in Section 8.4.1 for the monthly case, while varying the
granularity of the reported energy consumption index from 1 to 200 kWh. The fig-
ure presents only the results from 1 to 50 kWh, after this point the values continue
on what seems to be a linear trend.

The simulation is repeated by using daily datasets, the equivalent of one month
of recordings (30 days - 593, 830 values), where the first month of data is used.
Similarly to the monthly case, the granularity is varied between 1 and 200 kWh.
Figure 8.6 shows the results based on the dataset for a granularity between 1 and
50 kWh.

www.syssec-project.eu 180 October 30, 2014

8.4. EVALUATION STUDY

1 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Bin width xkWh

F
ra

c
ti
o
n
 o

f
fo

u
n
d
 s

m
a
rt

 m
e
te

rs

Month 1

Month 1−2

Month 1−3

Month 1−4

Month 1−5

Month 1−6

Month 1−7

Fig. 8.5: Fraction of unique smart meters - seven months of data - dataset case

8.4.5 Dicussion of results

Table 8.3 presents the expected number of uniquely identified smart meters at
each round of the simulation and the evaluation of the adversarial strategy algo-
rithm in the monthly case for a granularity of 1 kWh. The difference between the
simulation and the evaluation is that in the case of the simulation more smart me-
ters are identified in the first round compared with the case of the evaluation based
on the dataset. This makes the identification in the next rounds easier because a
smaller number of smart meters needs to be divided into bins so the probability
of having more than one smart meter in a bin decreases. This result can be ex-
plained through the assumptions that are discussed in Section 8.4.2. For the 1 kWh
monthly case, the estimation ends after three rounds, when all the smart meters are
identified. In the evaluation case, the algorithm runs for all the seven rounds, and
125 smart meters remain unidentified at the end, but the percent of identified smart
meters is still above 99%.

Table 8.4 holds the results for the 10 kWh monthly case and we can observe
that in the simulation case the algorithm took one more round compared to the 1
kWh case, but the percent of identified smart meters at the end is still 100%. The
evaluation results for the 10 kWh monthly case show that the number of unidenti-
fied smart meters after all the rounds is 13,706 and the percent of identified smart
meters is 29.1%. This is a much better result than for the 1 kWh monthly case.

Figure 8.5 shows that varying the granularity under which data are reported can
drastically reduce the fraction of identified smart meters. For example, reporting

www.syssec-project.eu 181 October 30, 2014

Privacy in the AMI

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Bin width xkWh

F
ra

c
ti
o
n
 o

f
fo

u
n
d
 s

m
a
rt

 m
e
te

rs

Day 1

Day 1−2

Day 1−3

Day 1−4

Day 1−5

Day 1−10

Day 1−20

Day 1−30

Fig. 8.6: Fraction of unique smart meters - 30 days of data - dataset case

the index without the last digit, at a 10 kWh scale, can reduce in this case the
percent of identified smart meters at under 10% for one period and under 30%
for all periods. This result justifies a reporting scheme in which electrical energy
consumed is rounded to the next 10 kWh value, before it is reported and billed,
instead of being reported with 1 kWh accuracy. This will provide a good and cheap
anonymity solution for the other 70% of the customers, in the case that everyone
opts for such a reporting scheme. The same result can be observed in Figure 8.6
where for the daily reporting with 10 kWh granularity, the percent of identified
customers is brought down to almost 10% for one period and to almost 40% for all
periods. This simple reporting solution offers a better degree of privacy, but it may
still not be feasible in regions where the law requires that energy reporting should
be done with kWh accuracy.

We can see that high-frequency datasets contain so much information so that
the re-identification process is possible even with simple means. In our analysis we
have assumed that the adversary would have access to the complete high-frequency
dataset and the complete low-frequency dataset.

The evaluation results show that reporting energy consumption indexes with
kWh accuracy makes the datasets prone to re-identification, because a large per-
cent of the customers can be identified uniquely, solely based on their energy con-
sumption. The results closely tie together the granularity and the timespan of the
data and show their common effect in the re-identification process. They show that
reducing the granularity used for reporting consumption data can be a very simple

www.syssec-project.eu 182 October 30, 2014

8.5. CONCLUSION

Newly found Total found
smart meters smart meters %

Time Simu- Eval- Simu- Eval-
period lation uation lation uation
m1 18461 11698 95.4% 60.5%
m2 871 5655 99.9% 89.7%
m3 2 1669 100 % 98.3%
m4 0 155 100 % 99.1%
m5 0 11 100 % 99.2%
m6 0 11 100 % 99.3%
m7 0 10 100 % 99.3%

Total 19334 19209 100 % 99.3%

Table 8.3: Expected number of identified smart meters for a reporting granularity
of 1 kWh

and beneficial solution that increases the privacy level of the datasets. Results from
Tables 8.3 and 8.4 strengthen this assumption and show a significant decrease of the
percent of uniquely identified smart meters from 99.3% to 29.1%, for a decrease
of granularity from 1 kWh to 10 kWh. Also, Figures 8.5 and 8.6 show that fur-
ther reduction of the granularity may significantly reduce the percent of identified
customers, making the datasets more resilient to the de-anonymization process.

As a general consideration, data timespan and granularity should be taken into
consideration before releasing any AMI consumption data to third parties, as these
two characteristics greatly influence the anonymity of the datasets.

8.5 Conclusion

It is almost unquestionable that the smart grid will produce more and more data
regarding the electrical energy consumed and the well-being of the electrical grid.
Harnessing and processing these large quantities of data will make the electrical
grid more resilient to faults, provide a better balance between the production and
the consumption, but as we saw, these datasets also raise privacy concerns.

In this paper we presented an overview of research regarding smart grid data
privacy. We constructed a formalization of the problem of de-anonymizing AMI
data by matching two different types of smart metering datasets. We take into
account two main properties of smart metering data: the granularity of the data
reported and its timespan. We argue that these two, together with the number of
pseudonyms used in the reporting process play a significant role in a three-way bal-
ance towards obtaining better customer anonymity. We consider a class of adver-
sarial strategies that can be formulated as combinatorial and probabilistic problems
and used it to evaluate characteristics of these datasets (granularity and timespan)

www.syssec-project.eu 183 October 30, 2014

Privacy in the AMI

Newly found Total found
smart meters smart meters %

Time Simu- Eval- Simu- Eval-
period lation uation lation uation
m1 12182 1670 63.0% 8.6%
m2 6029 1027 94.1% 13.9%
m3 1093 671 99.8% 17.4%
m4 30 543 100 % 20.2%
m5 0 487 100 % 22.7%
m6 0 579 100 % 25.7%
m7 0 651 100 % 29.1%

Total 19334 5628 100 % 29.1%

Table 8.4: Expected number of identified smart meters for a reporting granularity
of 10 kWh

in an investigation process towards better resilience against the de-anonymization
process; our results show that this process should be taken into consideration be-
fore releasing AMI datasets. Future research directions include extending the the-
oretical framework and the adversarial strategy model and also to be able to limit
the theoretical maximum number of customers that can be identified. Related re-
search issues refer to billing models; it is interesting to investigate the possibilities
and limitations in managing trade-offs between customer incentives for improving
their usage of electricity and privacy issues regarding the data in the billing system,
as these two imply different needs in the granularity of the data.

www.syssec-project.eu 184 October 30, 2014

Conclusion

The objective of this deliverable is to dive deep into the research questions that are
pursued in the SysSec project in the context of smart environments. We present
a selection of the results obtained in the project during the last four years. This
will help established researchers but also new PhD students in system security
understand the special security challenges faced in smart environments.

We have selected the research results presented in the included chapters based
on their importance for smart environments, as well as their contributions to the
research areas defined by the Red Book [178]. We have shown contributions to
methodologies to analyze firmwares to find vulnerabilities, patching software, and
detecting attacks. We have also described risks with the large datasets that are being
collected.

This last deliverable thus highlights open research questions in the area of smart
environments and current problems being investigated by European researchers,
and SysSec partners in particular. In that way, the deliverable complements the oth-
ers in the series. In the first deliverable, we surveyed the state-of-the-art of security
in sensor networks. We went into details about cryptography, key management,
authentication, localization, clock synchronization, clustering, routing and aggre-
gation. We explained the importance of these services and gave an overview of the
state-of-the art of secure algorithms for the services. We also presented a view on
the role of self-stabilization in secure systems for wireless sensor networks.

In the second deliverable, we presented one example system demonstrating the
complexity of domains in the smart environment, namely that of the connected car.
The deliverable gave an overview of European research, standardization efforts as
well as how traditional mechanisms can be used in this environment. These include
internal separation of traffic, the use of message authentication codes (MAC) to
guarantee traffic integrity, firewalls both for external traffic and for internal traffic
implemented in gateway ECUs, use of intrusion detection systems, use of certifi-

185

CONCLUSION

cates for identification of various devices (vehicles, road-side objects, drivers and
ECUs) and the problems with distributing revocation lists (CRLs).

With the third deliverable, we presented a new complex smart environment,
namely that of the smart grid. The objective of the deliverable was to first give a
crash course for a computer scientist of security issues related to the smart grid
and then survey ongoing research related to these problems. Naturally, this deliv-
erable included sections on networking technologies and issues that they imply as
part of the infrastructure. As very large datasets, also including customer data, are
produced to control the smart grid, the report also included sections for privacy
concerns, as well as for scalable data processing in the smart grid with a focus on
security processing; besides, intrusion detection has a natural part in these contexts.

This final deliverable, together with the previous deliverables in this series,
will give the reader a broad survey of ongoing research as well as concrete results
and discussions of important open issues and research problems for continuation of
research in a few selected areas. It is our hope that these deliverables will strengthen
the future European research into system security and smart environments.

www.syssec-project.eu 186 October 30, 2014

Bibliography

[1] Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org/.
[2] Audit PHP Configuration Security Toolkit.
[3] Binwalk: Binary image signature checker. http://code.google.com/p/binwalk/.
[4] BYTE Magazine nbench benchmark. http://www.tux.org/˜mayer/linux/

bmark.html.
[5] Define of backdoor string in DLink DI-524 UP GPL source code. https://gist.

github.com/ccpz/6960941.
[6] Google Custom Search Engine API.
[7] Internet Census 2012 – Port scanning /0 using insecure embedded devices. http://

internetcensus2012.bitbucket.org.
[8] OsmocomBB. http://bb.osmocom.org/trac/.
[9] SHODAN – Computer Search Engine. http://www.shodanhq.com.

[10] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990, pages
1–84, 1990.

[11] IEEE Standard Test Access Port and Boundary-Scan Architecture, 1990. IEEE Standard.
1149.1-1990.

[12] IEEE-ISTO 5001 - 2003 the nexus 5001 forum standard for a global embedded processor
debug interface. IEEE - Industry Standards and Technology Organization, December 2003.

[13] CWSandbox, 2008. http://www.cwsandbox.org.
[14] CVE-2009-2629: Buffer underflow vulnerability in nginx. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2009-2629, 2009.
[15] Slashdot: Backdoor found in TP-Link routers, March 2013.
[16] Download statistics for the wemo android application, February 2014. http://xyo.net/

android-app/wemo-JJUZgf8/.
[17] Download statistics for the wemo iOS application, February 2014. http://xyo.net/

iphone-app/wemo-J1QNimE/.
[18] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lind-

ner, A. Maskey, A. Rasin, E. Ryvkina, et al. The Design of the Borealis Stream Processing
Engine. In CIDR, 2005.

[19] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream management.
The VLDB JournalThe International Journal on Very Large Data Bases, 2003.

[20] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow integrity. In Proc. of the
12th ACM conference on Computer and communications security, CCS’05, 2005.

187

http://code.google.com/p/binwalk/
http://www.tux.org/~mayer/linux/bmark.html
http://www.tux.org/~mayer/linux/bmark.html
https://gist.github.com/ccpz/6960941
https://gist.github.com/ccpz/6960941
http://internetcensus2012.bitbucket.org
http://internetcensus2012.bitbucket.org
http://bb.osmocom.org/trac/
http://www.shodanhq.com
http://xyo.net/android-app/wemo-JJUZgf8/
http://xyo.net/android-app/wemo-JJUZgf8/
http://xyo.net/iphone-app/wemo-J1QNimE/
http://xyo.net/iphone-app/wemo-J1QNimE/

BIBLIOGRAPHY

[21] A. D. Aczel and J. Sounderpandian. Complete Business Statistics. McGraw-Hill, sixth edition,
2006.

[22] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error exploits
with WIT. In Proc. of the IEEE Symposium on Security and Privacy, S&P’08.

[23] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds errors. In Proc. of the 18th Usenix Se-
curity Symposium, USENIX-SS’09, 2009.

[24] H. Allcott. Rethinking real-time electricity pricing. Resource and Energy Economics, 2011.
[25] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu, A. Reznichenko,

D. Ryabkov, M. Singh, and S. Venkataraman. Photon: Fault-tolerant and scalable joining
of continuous data streams. In Proceedings of the international conference on Management
of data, 2013.

[26] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG: Automatic exploit generation.
In Network and Distributed System Security Symposium, pages 283–300, Feb. 2011.

[27] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving software security with a C
pointer analysis. In Proc. of the 27th Intern. Conf. on Software Engineering (ICSE), 2005.

[28] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed dynamic automated
test generation. In Proceedings of the 2011 International Symposium on Software Testing and
Analysis, ISSTA’11, 2011.

[29] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. Automated
Classification and Analysis of Internet Malware. In Proceedings of the 10th International
Conference on Recent Advances in Intrusion Detection, RAID’07, pages 178–197, Berlin,
Heidelberg, 2007. Springer-Verlag.

[30] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applications.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP ’08, pages 387–401,
Washington, DC, USA, 2008. IEEE Computer Society.

[31] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and G. Vigna. SNOOZE:
toward a stateful network protocol fuzZEr. In Proceedings of the 9th international conference
on Information Security, ISC’06, 2006.

[32] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict control dependence and its effect on
dynamic information flow analyses. In Proceedings of the 19th International Symposium on
Software testing and analysis, ISSTA’10, 2010.

[33] Z. Basnight, J. Butts, J. L. Jr., and T. Dube. Firmware modification attacks on programmable
logic controllers. International Journal of Critical Infrastructure Protection, 6(2):76 – 84,
2013.

[34] L. Bass, N. Brown, G. M. Cahill, W. Casey, S. Chaki, C. Cohen, D. de Niz, D. French,
A. Gurfinkel, R. Kazman, et al. Results of CMU SEI Line-Funded Exploratory New Starts
Projects. 2012.

[35] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, Behavior-
Based Malware Clustering. In Proceedings of the 16th Symposium on Network and Dis-
tributed System Security, NDSS ’09. The Internet Society, 2009.

[36] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A View on Current Malware
Behaviors. In Proceedings of the 2nd USENIX Conference on Large-scale Exploits and Emer-
gent Threats: Botnets, Spyware, Worms, and More, LEET’09, pages 8–8, Berkeley, CA, USA,
2009. USENIX Association.

[37] F. Bellard. QEMU, a fast and portable dynamic translator. In Proc. of USENIX 2005 Annual
Technical Conference, ATEC ’05.

[38] F. Bellard. QEMU, a fast and portable dynamic translator. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages 41–41, Berkeley, CA,
USA, 2005. USENIX Association.

[39] R. Berthier and W. H. Sanders. Specification-based intrusion detection for advanced metering
infrastructures. In IEEE 17th Pacific Rim International Symposium on Dependable Computing
(PRDC), 2011.

www.syssec-project.eu 188 October 30, 2014

BIBLIOGRAPHY

[40] R. Berthier, W. H. Sanders, and H. Khurana. Intrusion detection for advanced metering infras-
tructures: Requirements and architectural directions. In Smart Grid Communications (Smart-
GridComm), First IEEE International Conference on, 2010.

[41] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an efficient approach to
combat a board range of memory error exploits. In Proc. of the 12th conference on USENIX
Security Symposium, SSYM’03, 2003.

[42] A. Blanco and M. Eissler. One firmware to monitor’em all. Ekoparty, 2012.
[43] J.-M. Bohli, C. Sorge, and O. Ugus. A privacy model for smart metering. In Communications

Workshops (ICC), 2010 IEEE International Conference on, pages 1 –5, may 2010.
[44] H. Bojinov, E. Bursztein, and D. Boneh. Embedded management interfaces: Emerging mas-

sive insecurity. In Blackhat 2009 Technical Briefing / whitepaper, 2009.
[45] H. Bojinov, E. Bursztein, and D. Boneh. Xcs: Cross channel scripting and its impact on web

applications. In Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 420–431, New York, NY, USA, 2009. ACM.

[46] H. Bojinov, E. Bursztein, E. Lovett, and D. Boneh. Embedded management interfaces: Emerg-
ing massive insecurity. BlackHat USA, 2009.

[47] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Mobile Data
Management, 2001.

[48] F. Borges, L. Martucci, and M. Mühlhäuser. Analysis of privacy-enhancing protocols based
on anonymity networks. 2012.

[49] E. Bosman, A. Slowinska, and H. Bos. Minemu: The Worlds Fastest Taint Tracker. In Proc. of
14th International Symposium on Recent Advances in Intrusion Detection, RAID 2011, 2011.

[50] J.-Y. L. Boudec. Performance Evaluation of Computer and Communication Systems. EFPL
Press, 2011.

[51] E. Buchmann, K. Böhm, T. Burghardt, and S. Kessler. Re-identification of smart meter data.
Personal and Ubiquitous Computing, 17(4):653–662, 2013.

[52] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: automatic extraction of protocol mes-
sage format using dynamic binary analysis. In Proceedings of the 14th ACM conference
on Computer and communications security, CCS ’07, pages 317–329, New York, NY, USA,
2007. ACM.

[53] C. Cadar, D. Dunbar, and D. Engler. KLEE unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI, 2008.

[54] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proc.s of the 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI’08, 2008.

[55] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically
generating inputs of death. In CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security, 2006.

[56] M. Callau-Zori, R. Jiménez-Peris, V. Gulisano, M. Papatriantafilou, Z. Fu, and M. Patiño-
Martı́nez. STONE: a stream-based DDoS defense framework. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, 2013.

[57] A. A. Cárdenas, S. Amin, and G. Schwartz. Privacy-aware sampling for residential demand
response programs. 2012.

[58] Carna Botnet. Internet census 2012, port scanning /0 using insecure embedded devices, 2012.
http://internetcensus2012.bitbucket.org/paper.html.

[59] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, and S. Zdonik. Monitoring streams: a new class of data management applications.
In Proceedings of the 28th international conference on Very Large Data Bases, 2002.

[60] M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow integrity. In
Proc. of the 7th USENIX Symp. on Operating Systems Design and Impl., OSDI’06, 2006.

[61] L. Cavallaro, P. Saxena, and R. Sekar. On the Limits of Information Flow Techniques for
Malware Analysis and Containment. In Proceedings of the Fifth Conference on Detection of
Intrusions and Malware & Vulnerability Assessment, DIMVA’08, 2008.

[62] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for Market-scale Mobile

www.syssec-project.eu 189 October 30, 2014

http://internetcensus2012.bitbucket.org/paper.html

BIBLIOGRAPHY

Malware Analysis. In Proceedings of the Sixth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’13, pages 13–24, New York, NY, USA, 2013. ACM.

[63] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. TelegraphCQ: continuous dataflow
processing. In Proceedings of the ACM SIGMOD international conference on Management
of data, 2003.

[64] S. Checkoway, D. McCoy, D. Anderson, B. Kantor, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, and T. Kohno. Comprehensive Experimental Analysis of Automototive Attack
Surfaces. In Proceedings of the USENIX Security Symposium, San Francisco, CA, August
2011.

[65] K. Chen. Reversing and exploiting an Apple firmware update. BlackHat USA, 2009.
[66] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Defeating memory corruption

attacks via pointer taintedness detection. In Proc. of the 2005 International Conference on
Dependable Systems and Networks, DSN ’05, 2005.

[67] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks are realistic
threats. In Proc. of 14th USENIX Security Symposium, SSYM’05, 2005.

[68] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes. Using model-based
intrusion detection for SCADA networks. In Proceedings of the SCADA security scientific
symposium, 2007.

[69] P. C. Ching, Y. Cheng, and M. H. Ko. An in-circuit emulator for TMS320C25. IEEE Trans-
actions on Education, 37(1):51–56, 1994.

[70] V. Chipounov and G. Candea. Reverse Engineering of Binary Device Drivers with RevNIC.
In Proceedings of the 5th ACM SIGOPS/EuroSys European Conference on Computer Systems
(EuroSys), Paris France, April 2010, Paris, France, 2010.

[71] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in vivo multi-path analysis
of software systems. In Proc. of 16th Intl. Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2011.

[72] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E Platform: Design, Implementation, and
Applications. ACM Trans. Comput. Syst., 30(1):2:1–2:49, Feb. 2012.

[73] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.
Live migration of virtual machines. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation - Volume 2, NSDI’05, pages 273–286, Berkeley,
CA, USA, 2005. USENIX Association.

[74] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. CCured in the real world. In
Proc of the 2003 Conf. on Programming languages design and implementation, POPL’03.

[75] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. Vigilante:
end-to-end containment of internet worms. In Proc. of the 20th ACM Symposium on Operating
Systems Principles, SOSP’05, 2005.

[76] M. Costache, V. Tudor, M. Almgren, M. Papatriantafilou, and C. Saunders. Remote control
of smart meters: friend or foe? In Computer Network Defense (EC2ND), Seventh European
Conference on, 2011.

[77] A. Costin. Hacking Printers for Fun and Profit.
[78] A. Costin. PostScript(um): You’ve Been Hacked.
[79] A. Costin and A. Francillon. Short Paper: A Dangerous ’Pyrotechnic Composition’: Fire-

works, Embedded Wireless and Insecurity-by-Design. In Proceedings of the ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec), WiSec ’14. ACM, 2014.

[80] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In Proc. of the 7th USENIX Security Symposium, SSYM’98, 1998.

[81] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for data structures. In Proceedings
of the 8th USENIX conference on Operating systems design and implementation, OSDI’08,
pages 255–266, Berkeley, CA, USA, 2008. USENIX Association.

[82] F. Cristian. Exception handling and software fault tolerance. IEEE Transactions on Comput-
ers, C-31(6):531–540, 1982.

www.syssec-project.eu 190 October 30, 2014

BIBLIOGRAPHY

[83] A. Cui. Embedded Device Firmware Vulnerability Hunting with FRAK. DefCon 20, 2012.
[84] A. Cui, M. Costello, and S. J. Stolfo. When firmware modifications attack: A case study of

embedded exploitation. In 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, February 24-27, 2013. The Internet Society, 2013.

[85] A. Cui, M. Costello, and S. J. Stolfo. When Firmware Modifications Attack: A Case Study of
Embedded Exploitation. In Proceedings of the 20th Symposium on Network and Distributed
System Security, NDSS ’13. The Internet Society, 2013.

[86] A. Cui, Y. Song, P. V. Prabhu, and S. J. Stolfo. Brave New World: Pervasive Insecurity
of Embedded Network Devices. In Proceedings of the 12th International Symposium on
Recent Advances in Intrusion Detection, RAID ’09, pages 378–380, Berlin, Heidelberg, 2009.
Springer-Verlag.

[87] A. Cui and S. J. Stolfo. A Quantitative Analysis of the Insecurity of Embedded Network
Devices: Results of a Wide-area Scan. In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 97–106, New York, NY, USA, 2010. ACM.

[88] A. Cui and S. J. Stolfo. Defending embedded systems with software symbiotes. In Pro-
ceedings of the 14th International Conference on Recent Advances in Intrusion Detection,
RAID’11, pages 358–377, Berlin, Heidelberg, 2011. Springer-Verlag.

[89] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz. Tupni: automatic reverse engi-
neering of input formats. In CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security, pages 391–402, New York, NY, USA, 2008. ACM.

[90] CWE/SANS. TOP 25 Most Dangerous Software Errors. www.sans.org/
top25-software-errors, 2011.

[91] J. Dahse and T. Holz. Simulation of Built-in PHP Features for Precise Static Code Analysis.
In Proceedings of the 21st Symposium on Network and Distributed System Security, NDSS
’14. The Internet Society, 2014.

[92] D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on firmware: Finding vulnerabilities
in embedded systems using symbolic execution. In Proceedings of the USENIX Security
Symposium, Washington, DC, August 2013.

[93] D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on Firmware: Finding Vulnerabili-
ties in Embedded Systems Using Symbolic Execution. In Proceedings of the 22nd USENIX
Conference on Security, SEC’13, pages 463–478, Berkeley, CA, USA, 2013. USENIX Asso-
ciation.

[94] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implemen-
tation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[95] G. Delugré. Closer to metal: Reverse engineering the broadcom netextreme’s firmware.
HACK.LU 2010.

[96] G. Delugré. Closer to metal: reverse-engineering the Broadcom NetExtreme’s firmware.
Hack.lu, 2010.

[97] J. DeMott. The evolving art of fuzzng. DEFCON 14, http://www.appliedsec.com/
files/The_Evolving_Art_of_Fuzzing.odp, 2005.

[98] J. Dickert, M. Hable, and P. Schegner. Energy loss estimation in distribution networks for
planning purposes. In PowerTech, 2009 IEEE Bucharest, pages 1–6, 2009.

[99] E. Directive. 95/46/ec of the european parliament and of the council of 24 october 1995 on
the protection of individuals with regard to the processing of personal data and on the free
movement of such data. Official Journal of the EC, 23:6, 1995.

[100] L. Duflot, Y.-A. Perez, and B. Morin. What if You Can’T Trust Your Network Card? In
Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection,
RAID’11, pages 378–397, Berlin, Heidelberg, 2011. Springer-Verlag.

[101] K. Dunham. A fuzzy future in malware research. The ISSA Journal, 11(8):17–18, 2013.
[102] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of the HTTPS Certificate

Ecosystem. In Proceedings of the 2013 Conference on Internet Measurement Conference,
IMC ’13, pages 291–304, New York, NY, USA, 2013. ACM.

[103] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-wide Scanning and Its

www.syssec-project.eu 191 October 30, 2014

www.sans.org/top25-software-errors
www.sans.org/top25-software-errors
http://www.appliedsec.com/ files/The_Evolving_Art_of_Fuzzing.odp
http://www.appliedsec.com/ files/The_Evolving_Art_of_Fuzzing.odp

BIBLIOGRAPHY

Security Applications. In Proceedings of the 22nd USENIX Conference on Security, SEC’13,
pages 605–620, Berkeley, CA, USA, 2013. USENIX Association.

[104] C. Efthymiou and G. Kalogridis. Smart grid privacy via anonymization of smart metering
data. In Smart Grid Communications (SmartGridComm), 2010 First IEEE International Con-
ference on, pages 238 –243, oct. 2010.

[105] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated dynamic malware-
analysis techniques and tools. ACM Comput. Surv., 44(2):6:1–6:42, Mar. 2008.

[106] Elias Levy (Aleph One). Smashing the stack for fun and profit. Phrack, 7(49), 1996.
[107] G. N. Ericsson. Cyber security and power system communicationessential parts of a smart

grid infrastructure. Power Delivery, IEEE Transactions on, 2010.
[108] U. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: software

guards for system address spaces. In Proc. of the 7th USENIX Symp. on Operating Systems
Design and Implementation, OSDI ’06, 2006.

[109] B. Eshete, A. Villafiorita, and K. Weldemariam. Early Detection of Security Misconfiguration
Vulnerabilities in Web Applications. In Proceedings of the 2011 Sixth International Confer-
ence on Availability, Reliability and Security, ARES ’11, pages 169–174, Washington, DC,
USA, 2011. IEEE Computer Society.

[110] M. A. Faisal, Z. Aung, J. R. Williams, and A. Sanchez. Securing advanced metering infras-
tructure using intrusion detection system with data stream mining. In Intelligence and Security
Informatics. Springer, 2012.

[111] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. Technical report, Symantec
Corporation, 2011.

[112] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier, 2011.
[113] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in

optimization. ACM Trans. Program. Lang. Syst., 9:319–349, 1997.
[114] FORWARD Consortium, White book: Emerging ICT threats. http://www.

ict-forward.eu/media/publications/forward-whitebook.pdf.
[115] Freescale Semiconductor, Inc. MC1322x Simple Media Access Controller Demonstration

Applications User’s Guide, 9 2011. Rev. 1.3.
[116] Freescale Semiconductor, Inc. MC1322x Simple Media Access Controller (SMAC) Reference

Manual, 09 2011. Rev. 1.7.
[117] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers. Machine Learn-

ing, 1997.
[118] J. Gama and P. P. Rodrigues. Stream-based electricity load forecast. In Knowledge Discovery

in Databases: PKDD. Springer, 2007.
[119] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox fuzzing. In Proceedings

of the 31st International Conference on Software Engineering, ICSE’09, 2009.
[120] M. Gegick, L. Williams, J. Osborne, and M. Vouk. Prioritizing software security fortification

through code-level metrics. In Proc. of the 4th ACM workshop on Quality of protection,
QoP’08. ACM Press, Oct. 2008.

[121] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN conference on Programming language design and im-
plementation, PLDI’05, 2005.

[122] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In Network
Distributed Security Symposium (NDSS). Internet Society, 2008.

[123] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: whitebox fuzzing for security testing.
Communications of The ACM, pages 40–44, 2012.

[124] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated Whitebox Fuzz Testing. In Pro-
ceedings of the 15th Annual Network and Distributed System Security Symposium, NDSS’08,
2008.

[125] P. Godefroid and D. Luchaup. Automatic partial loop summarization in dynamic test genera-
tion. In Proceedings of the 2011 International Symposium on Software Testing and Analysis,
ISSTA’11, 2011.

[126] B. Gourdin, C. Soman, H. Bojinov, and E. Bursztein. Toward Secure Embedded Web In-

www.syssec-project.eu 192 October 30, 2014

http://www.ict-forward.eu/media/publications/forward-whitebook.pdf
http://www.ict-forward.eu/media/publications/forward-whitebook.pdf

BIBLIOGRAPHY

terfaces. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages 2–2,
Berkeley, CA, USA, 2011. USENIX Association.

[127] D. Grochocki, J. H. Huh, R. Berthier, R. Bobba, W. H. Sanders, A. A. Cárdenas, and J. G.
Jetcheva. AMI threats, intrusion detection requirements and deployment recommendations.
In Smart Grid Communications (SmartGridComm), IEEE Third International Conference on,
2012.

[128] GTM RESEARCH. White paper, The Emergence of Meter Data Management (MDM): A
Smart Grid Information Strategy Report, 2010.

[129] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez. Stream-
cloud: An elastic and scalable data streaming system. Parallel and Distributed Systems, IEEE
Transactions on, 2012.

[130] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar. Decentralized Coordination of Energy Uti-
lization for Residential Households in the Smart Grid. IEEE Transactions on Smart Grid,
2012.

[131] D. Hadiosmanovic, D. Bolzoni, P. Hartel, and S. Etalle. MELISSA: Towards Automated De-
tection of Undesirable User Actions in Critical Infrastructures. In Computer Network Defense
(EC2ND), Seventh European Conference on, 2011.

[132] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for overflows: A guided
fuzzer to find buffer boundary violations. In Proceedings of USENIX Security’13, Washington,
DC, August 2013. USENIX.

[133] Y. Han, S. Liu, X. Su, and Z. Hu. A dynamic analysis system for Cisco IO based on virtualiza-
tion. In Multimedia Information Networking and Security (MINES), 2011 Third International
Conference on, pages 330–332, 2011.

[134] HDMoore. Security Flaws in Universal Plug and Play: Unplug, Don’t Play, 2013.
[135] C. Heffner. littleblackbox – Database of private SSL/SSH keys for embedded devices.
[136] C. Heffner. Breaking SSL on Embedded Devices, December 2010.
[137] C. Heffner. Reverse Engineering a D-Link Backdoor, October 2013.
[138] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding Software License Violations

Through Binary Code Clone Detection. In Proceedings of the 8th Working Conference on
Mining Software Repositories, MSR ’11, pages 63–72, New York, NY, USA, 2011. ACM.

[139] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining Your Ps and Qs:
Detection of Widespread Weak Keys in Network Devices. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages 35–35, Berkeley, CA, USA, 2012.
USENIX Association.

[140] J. Hirsch and K. Bensinger. Toyota settles acceleration lawsuit after $3-million verdict. Los
Angeles Times, October 25, 2013.

[141] R. Hoenkamp, G. B. Huitema, and A. J. de Moor-van Vugt. The neglected consumer: the
case of the smart meter rollout in the netherlands. Renewable Energy Law and Policy Review,
2011(4):269–282, 2011.

[142] IEEE Computer Society. IEEE 802.15.4, Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),
June 2006. ISBN 0-7381-4996-9.

[143] Independent Security Evaluators. SOHO Network Equipment (Technical Report), 2013.
[144] IOActive. Critical DASDEC Digital Alert Systems (DAS) Vulnerabilities, June 2013.
[145] IOActive. stringfighter – Identify Backdoors in Firmware By Using Automatic String Ana-

lysis, May 2013.
[146] IOActive. Critical Belkin WeMo Home Automation Vulnerabilities, February 2014.
[147] J. Jang, D. Brumley, and S. Venkataraman. BitShred: Feature Hashing Malware for Scalable

Triage and Semantic Analysis. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 309–320, New York, NY, USA, 2011. ACM.

[148] M. Jawurek, M. Johns, and K. Rieck. Smart metering de-pseudonymization. In Proceedings
of the 27th Annual Computer Security Applications Conference, pages 227–236. ACM, 2011.

[149] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe dialect
of C. In USENIX 2002 Annual Technical Conference, ATEC ’02.

www.syssec-project.eu 193 October 30, 2014

BIBLIOGRAPHY

[150] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detecting Web
Application Vulnerabilities (Short Paper). In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, SP ’06, pages 258–263, Washington, DC, USA, 2006. IEEE Computer
Society.

[151] R. Kaksonen. A functional method for assessing protocol implementation security. Technical
Report 448, VTT, 2001.

[152] G. Kalogridis, R. Cepeda, S. Denic, T. Lewis, and C. Efthymiou. Elecprivacy: Evaluating the
privacy protection of electricity management algorithms. Smart Grid, IEEE Transactions on,
2(4):750 –758, dec. 2011.

[153] G. Kalogridis, C. Efthymiou, S. Denic, T. Lewis, and R. Cepeda. Privacy for smart meters:
Towards undetectable appliance load signatures. In Smart Grid Communications (SmartGrid-
Comm), 2010 First IEEE International Conference on, pages 232 –237, oct. 2010.

[154] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic Taint Analysis
with Targeted Control-Flow Propagation. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium, San Diego, CA, Feb. 2011.

[155] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic taint analysis with
targeted control-flow propagation. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium, NDSS’11, 2011.

[156] M. G. Kang, P. Poosankam, and H. Yin. Renovo: a hidden code extractor for packed executa-
bles. In Proceedings of the 2007 ACM workshop on Recurring malcode, WORM ’07, pages
46–53, New York, NY, USA, 2007. ACM.

[157] C.-F. Kao, I.-J. Huang, and H.-M. Chen. Hardware-software approaches to in-circuit emula-
tion for embedded processors. Design Test of Computers, IEEE, 25(5):462–477, 2008.

[158] E. Kermany, H. Mazzawi, D. Baras, Y. Naveh, and H. Michaelis. Analysis of advanced meter
infrastructure data of water consumption in apartment buildings. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2013.

[159] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execution for model
checking and testing. In Proceedings of the 9th international conference on Tools and algo-
rithms for the construction and analysis of systems, TACAS’03, 2003.

[160] A. Kirchner. Data Leak Detection in Smartphone Applications. Master thesis, Vienna Uni-
versity of Technology.

[161] J. Kornblum. Identifying Almost Identical Files Using Context Triggered Piecewise Hashing.
Digit. Investig., 3:91–97, 2006.

[162] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage. Experimental Security Analysis of a Modern
Automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
pages 447–462, Washington, DC, USA, 2010. IEEE Computer Society.

[163] KrebsonSecurity. FBI: Smart Meter Hacks Likely to
Spread. http://krebsonsecurity.com/2012/04/
fbi-smart-meter-hacks-likely-to-spread/, April 2012.

[164] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the smart-grid.
In Privacy Enhancing Technologies, pages 175–191. Springer, 2011.

[165] N. Kush, E. Foo, E. Ahmed, I. Ahmed, and A. Clark. Gap analysis of intrusion detection in
smart grids. In Proceedings of the 2nd International Cyber Resilience Conference, 2011.

[166] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source binary device drivers
with DDT. In Proceedings of the 2010 USENIX conference on USENIX annual technical
conference, USENIXATC’10, pages 12–12, Berkeley, CA, USA, 2010. USENIX Association.

[167] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in symbolic exe-
cution. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 193–204, New York, NY, USA, 2012. ACM.

[168] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis &
transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75–86. IEEE, 2004.

[169] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis &

www.syssec-project.eu 194 October 30, 2014

http://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/
http://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/

BIBLIOGRAPHY

transformation. In CGO ’04: Proceedings of the international symposium on Code generation
and optimization, 2004.

[170] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. PEBIL: Efficient static binary
instrumentation for Linux. In Proc. of the IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS-2010.

[171] Y.-H. Lee, Y. W. Song, R. Girme, S. Zaveri, and Y. Chen. Replay debugging for multi-threaded
embedded software. In Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th
International Conference on, pages 15–22, 2010.

[172] L. Li and C. Wang. Dynamic analysis and debugging of binary code for security applica-
tions. In 4th International Conference on Runtime Verification (RV) 2013, Rennes, France,
September 24-27, 2013. Proceedings, volume 8174 of Lecture Notes in Computer Science,
pages 403–423. Springer, 2013.

[173] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified Graphics
and Computing Architecture. IEEE Micro, 2008.

[174] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 DARPA off-line
intrusion detection evaluation. Computer networks, 2000.

[175] B. Lohrmann and O. Kao. Processing smart meter data streams in the cloud. In Innova-
tive Smart Grid Technologies (ISGT Europe), 2nd IEEE PES International Conference and
Exhibition on, 2011.

[176] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks for evaluating bug
detection tools. In Workshop on the Evaluation of Software Defect Detection Tools, 2005.

[177] P. D. Marinescu and C. Cadar. make test-zesti: a symbolic execution solution for improving
regression testing. In Proc. of the 2012 International Conference on Software Engineering,
ICSE’12, pages 716–726, June 2012.

[178] E. Markatos and D. Balzarotti, editors. The Red Book: A Roadmap for Systems Security
Research. The SysSec Consortium, August 2013.

[179] F. Mármol, C. Sorge, O. Ugus, and G. Pérez. Do not snoop my habits: preserving privacy in
the smart grid. Communications Magazine, IEEE, 50(5):166 –172, May 2012.

[180] D. Mashima and A. A. Cárdenas. Evaluating electricity theft detectors in smart grid networks.
In Research in Attacks, Intrusions, and Defenses, pages 210–229. Springer, 2012.

[181] S. McLaughlin, D. Podkuiko, and P. McDaniel. Energy theft in the advanced metering infras-
tructure. In Critical Information Infrastructures Security. Springer, 2010.

[182] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka, A. Delozier, and P. McDaniel. Multi-vendor
penetration testing in the advanced metering infrastructure. In Proceedings of the 26th Annual
Computer Security Applications Conference, 2010.

[183] C. Melear. Emulation techniques for microcontrollers. In Wescon/97. Conference Proceed-
ings, pages 532–541, 1997.

[184] P. C. Messina, R. D. Williams, and G. C. Fox. Parallel computing works ! Parallel processing
scientific computing. Morgan Kaufmann, San Francisco, CA, 1994.

[185] T. Mikkola, E. Bunn, P. Hurri, G. Jacucci, M. Lehtonen, M. Fitta, and S. Biza. Near real
time energy monitoring for end users: Requirements and sample applications. In Smart Grid
Communications (SmartGridComm), IEEE International Conference on, 2011.

[186] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities.
Commun. ACM, 33:32–44, Dec 1990.

[187] C. Miller. Battery firmware hacking. BlackHat USA, 2011.
[188] R. Mitchell and I.-R. Chen. Behavior-Rule Based Intrusion Detection Systems for Safety

Critical Smart Grid Applications. Smart Grid, IEEE Transactions on, 2013.
[189] Mitre. Common Vulnerabilities and Exposures (CVE). http://cve.mitre.org/, 2011.
[190] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and

probabilistic analysis. Cambridge University Press, 2005.
[191] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin. Private memoirs of a smart

meter. In Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-
efficiency in building, pages 61–66. ACM, 2010.

[192] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to find integer bugs in x86

www.syssec-project.eu 195 October 30, 2014

http://cve.mitre.org/

BIBLIOGRAPHY

binary linux programs. In Proceedings of the 18th conference on USENIX security symposium,
SSYM’09, 2009.

[193] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6 packets over
IEEE 802.15.4 networks (RFC 4944). Technical report, IETF, September 2007. http:
//www.ietf.org/rfc/rfc4944.txt.

[194] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware analysis.
In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP’07. IEEE Computer
Society, 2007.

[195] C. Mulliner, N. Golde, and J.-P. Seifert. SMS of Death: From Analyzing to Attacking Mobile
Phones on a Large Scale. In Proceedings of the 20th USENIX Security Symposium, San
Francisco, CA, USA, August 2011.

[196] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In Pro-
ceedings of the 28th international conference on Software engineering, ICSE’06, 2006.

[197] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: highly compatible and
complete spatial memory safety for C. In Proc. of PLDI’09, 2009.

[198] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. In Proc. of the 3rd Intern. Conf. on Virtual Execution Environ., VEE, 2007.

[199] J. Newsome and D. Song. Dynamic taint analysis: Automatic detection, analysis, and signa-
ture generation of exploit attacks on commodity software. In Proceedings of the Network and
Distributed Systems Security Symposium, NDSS’05, 2005.

[200] V. H. Nguyen and L. M. S. Tran. Predicting vulnerable software components with dependency
graphs. In Proc. of the 6th International Workshop on Security Measurements and Metrics,
MetriSec’10. ACM Press, Sept. 2010.

[201] K. Nohl, D. Evans, S. Starbug, and H. Plötz. Reverse-engineering a cryptographic RFID tag.
In Proceedings of the 17th conference on Security symposium, pages 185–193, Berkeley, CA,
USA, 2008. USENIX Association.

[202] Nvidia. CUDA – Compute Unified Device Architecture Programming Guide. 2007.
[203] OpenwallProject. John the Ripper password cracker. http://www.openwall.com/

john/.
[204] Oracle Utilities Meter Data Management. http://www.oracle.com/us/

industries/utilities/046533.pdf.
[205] OWASP. Top 10 Vulnerabilities, 2013.
[206] Y.-A. Perez and L. Duflot. Can you still trust your network card? CanSecWest 2010.
[207] A. Pfitzmann and M. Hansen. A terminology for talking about privacy by data minimiza-

tion: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity
management. URL: http://dud. inf. tu-dresden. de/literatur/Anon Terminology v0, 34, 2010.

[208] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator for Fingerprinting Zero-
Day Attacks. In Proc. of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems, EuroSys ’06, 2006.

[209] M. Raciti and S. Nadjm-Tehrani. Embedded cyber-physical anomaly detection in smart me-
ters. In Critical Information Infrastructures Security. Springer, 2013.

[210] S. A. Razak, S. Furnell, N. Clarke, and P. Brooke. A Two-Tier Intrusion Detection System
for Mobile Ad Hoc Networks A Friend Approach. In Intelligence and Security Informatics,
Lecture Notes in Computer Science. Springer, 2006.

[211] Redwire LLC. Econotag: MC13224V development board w/ on-board debugging.
http://www.redwirellc.com/store/node/1.

[212] M. J. Renzelmann, A. Kadav, and M. M. Swift. SymDrive: testing drivers without devices. In
Proceedings of the 10th USENIX conference on Operating Systems Design and Implementa-
tion, OSDI’12, pages 279–292, Berkeley, CA, USA, 2012. USENIX Association.

[213] T. Reps and G. Balakrishnan. Improved memory-access analysis for x86 executables. In
CC’08/ETAPS’08: Proc. of the Joint European Conferences on Theory and Practice of Soft-
ware 17th international conference on Compiler construction, 2008.

[214] V. Roussev. Data Fingerprinting with Similarity Digests. In IFIP Int. Conf. Digital Forensics,
pages 207–226, 2010.

www.syssec-project.eu 196 October 30, 2014

http://www.ietf.org/rfc/rfc4944.txt
http://www.ietf.org/rfc/rfc4944.txt
http://www.openwall.com/john/
http://www.openwall.com/john/
http://www.oracle.com/us/industries/utilities/046533.pdf
http://www.oracle.com/us/industries/utilities/046533.pdf

BIBLIOGRAPHY

[215] B. Schlich. Model checking of software for microcontrollers. ACM Trans. Embed. Comput.
Syst., 9(4):36:1–36:27, Apr. 2010.

[216] P. H. Schmitt and B. Weiß. Inferring invariants by symbolic execution. In B. Beckert, editor,
Proceedings, 4th International Verification Workshop (VERIFY’07), volume 259 of CEUR
Workshop Proceedings, pages 195–210. CEUR-WS.org, 2007.

[217] F. Schuster and T. Holz. Towards reducing the attack surface of software backdoors. In
Proceedings of the 20th ACM Conference on Computer and Communications Security, CCS
’13, pages 851–862, New York, NY, USA, 2013. ACM.

[218] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask). In Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 317–331,
Washington, DC, USA, 2010. IEEE Computer Society.

[219] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In Proceedings
of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, ESEC/FSE-13, 2005.

[220] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A fast address
sanity checker. In Proceedings of USENIX Annual Technical Conference, 2012.

[221] Y. Shin and L. Williams. An initial study on the use of execution complexity metrics as
indicators of software vulnerabilities. In Proceedings of the 7th International Workshop on
Software Engineering for Secure Systems, SESS’11, 2011.

[222] F. Siddiqui, S. Zeadally, C. Alcaraz, and S. Galvao. Smart grid privacy: Issues and solutions.
In Computer Communications and Networks (ICCCN), 2012 21st International Conference
on, pages 1 –5, 30 2012-aug. 2 2012.

[223] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna. Adaptive rate stream processing
for smart grid applications on clouds. In Proceedings of the 2nd international workshop on
Scientific cloud computing, 2011.

[224] S. Skorobogatov and C. Woods. Breakthrough silicon scanning discovers backdoor in military
chip. In Proceedings of the 14th International Conference on Cryptographic Hardware and
Embedded Systems, CHES’12, pages 23–40, Berlin, Heidelberg, 2012. Springer-Verlag.

[225] A. Slowinska and H. Bos. The Age of Data: Pinpointing Guilty Bytes in Polymorphic Buffer
Overflows on Heap or Stack. In Proc. of the 23rd Annual Computer Security Applications
Conference, ACSAC’07, 2007.

[226] A. Slowinska and H. Bos. Pointless tainting?: evaluating the practicality of pointer tainting.
In EuroSys ’09: Proc. of the 4th ACM European conf. on Computer systems, 2009.

[227] A. Slowinska, T. Stancescu, and H. Bos. Howard: a dynamic excavator for reverse engineering
data structures. In Proceedings of NDSS, 2011.

[228] A. Slowinska, T. Stancescu, and H. Bos. Body Armor for Binaries: preventing buffer over-
flows without recompilation. In Proceedings of USENIX Annual Technical Conference, 2012.

[229] D. Song, D. Brumley, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. Bitblaze: A new approach to computer security via binary analysis. In In
Proceedings of the 4th International Conference on Information Systems Security, 2008.

[230] A. Sotirov. Modern exploitation and memory protection bypasses. USENIX Security in-
vited talk, www.usenix.org/events/sec09/tech/slides/sotirov.pdf, Au-
gust 2009.

[231] Spike. http://www.immunitysec.com/resources-freesoftware.shtml.
[232] S. Sridhar, J. S. Shapiro, and E. Northup. HDTrans: An open source, low-level dynamic

instrumentation system. In Proc. of the 2nd Intern. Conf. on Virtual Execution Environ.,
2006.

[233] T. Stancescu. BodyArmor: Adding Data Protection to Binary Executables. Master’s thesis,
VU Amsterdam, 2011.

[234] M. Stegelmann and D. Kesdogan. Gridpriv: A smart metering architecture offering k-
anonymity. In Trust, Security and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on, pages 419 –426, june 2012.

[235] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of real-time stream pro-

www.syssec-project.eu 197 October 30, 2014

www.usenix.org/events/sec09/tech/slides/sotirov.pdf
http://www.immunitysec.com/resources-freesoftware.shtml

BIBLIOGRAPHY

cessing. ACM SIGMOD Record, 2005.
[236] Storm project. http://storm.incubator.apache.org/. Accessed: 2014-03-10.
[237] J. V. Stough. distributed-python-for-scripting – DistributedPython for Easy Parallel Scripting.
[238] StreamBase. http://www.streambase.com.
[239] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability Discovery. Addison-

Wesley Professional, 2007.
[240] P. Team. Design and implementation of PAGEEXEC. http://pax.grsecurity.net/

docs/pageexec.old.txt, November 2000.
[241] Tjaldur Software Governance Solutions. Binary Analysis Tool (BAT).
[242] E. Tombini, H. Debar, L. Mé, and M. Ducassé. A serial combination of anomaly and misuse

IDSes applied to HTTP traffic. In Computer Security Applications Conference. 20th Annual,
2004.

[243] A. Tridgell. rsync – utility that provides fast incremental file transfer.
[244] A. Triulzi. A SSH server in your NIC. PacSec 2008.
[245] Tudor, Valentin and Almgren, Magnus and Papatriantafilou, Marina. Analysis of the impact

of data granularity on privacy for the smart grid. In Proceedings of the 12th ACM Workshop
on Workshop on Privacy in the Electronic Society, 2013.

[246] A. Valdes and K. Skinner. Adaptive, Model-Based Monitoring for Cyber Attack Detection. In
Recent Advances in Intrusion Detection, Lecture Notes in Computer Science. Springer, 2000.

[247] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos. Memory Errors: The Past, the
Present, and the Future. In Proceedings of The 15th International Symposium on Research in
Attacks, Intrusions and Defenses, RAID’12, 2012.

[248] S. Wang, L. Cui, J. Que, D.-H. Choi, X. Jiang, S. Cheng, and L. Xie. A randomized response
model for privacy preserving smart metering. Smart Grid, IEEE Transactions on, 3(3):1317
–1324, sept. 2012.

[249] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed Fuzzing
Tool for Automatic Software Vulnerability Detection. In IEEE Symposium on Security and
Privacy, pages 497–512, 2010.

[250] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed Fuzzing Tool
for Automatic Software Vulnerability Detection. In Proceedings of the 31st IEEE Symposium
on Security and Privacy, SP 10, 2010.

[251] S. D. Warren and L. D. Brandeis. The right to privacy. Harvard law review, 4(5):193–220,
1890.

[252] R.-P. Weinmann. Baseband attacks: remote exploitation of memory corruptions in cellular
protocol stacks. In Proceedings of the 6th USENIX conference on Offensive Technologies,
WOOT’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[253] H. Welte. Anatomy of Contemporary GSM Cellphone Hardware.
[254] D. A. Wheeler. SLOCCount – a set of tools for counting physical Source Lines of Code

(SLOC). http://www.dwheeler.com/sloccount/.
[255] M. Williams. ARMV8 debug and trace architectures. In System, Software, SoC and Silicon

Debug Conference (S4D), 2012, pages 1–6, 2012.
[256] N. Williams, B. Marre, and P. Mouy. On-the-Fly Generation of K-Path Tests for C Functions.

In Proceedings of the 19th IEEE international conference on Automated software engineering,
ASE’04, 2004.

[257] xobs and bunnie. The Exploration and Exploitation of an SD Memory Card. CCC – 30C3,
2013.

[258] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder” for enabling full-system multipro-
cessor deterministic replay. In Proceedings of the 30th annual international symposium on
Computer architecture, ISCA ’03, pages 122–135, New York, NY, USA, 2003. ACM.

[259] Yahoo S4. http://incubator.apache.org/s4/.
[260] Y. Yan, Y. Qian, and H. Sharif. A secure and reliable in-network collaborative communication

scheme for advanced metering infrastructure in smart grid. In Wireless Communications and
Networking Conference (WCNC), 2011 IEEE, pages 909 –914, march 2011.

[261] Y. Yan, Y. Qian, and H. Sharif. A secure data aggregation and dispatch scheme for home

www.syssec-project.eu 198 October 30, 2014

http://storm.incubator.apache.org/
http://www.streambase.com
http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt
http://www.dwheeler.com/sloccount/
http://incubator.apache.org/s4/

BIBLIOGRAPHY

area networks in smart grid. In Global Telecommunications Conference (GLOBECOM 2011),
2011 IEEE, pages 1 –6, dec. 2011.

[262] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A Framework to Support
Dynamic Security Analysis of Embedded Systems’ Firmwares. In Proceedings of the 21st
Symposium on Network and Distributed System Security, NDSS ’14. The Internet Society,
2014.

[263] J. Zaddach and A. Costin. Embedded Devices Security and Firmware Reverse Engineering.
BlackHat USA, 2013.

[264] J. Zaddach, A. Kurmus, D. Balzarotti, E. O. Blass, A. Francillon, T. Goodspeed, M. Gupta,
and I. Koltsidas. Implementation and implications of a stealth hard-drive backdoor. In ACSAC
2013, 29th Annual Computer Security Applications Conference, December 9-13, 2013, New
Orleans, Louisiana, USA, New orleans, UNITED STATES, 12 2013.

[265] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass, A. Francillon, T. Goodspeed, M. Gupta,
and I. Koltsidas. Implementation and Implications of a Stealth Hard-drive Backdoor. In
Proceedings of the 29th Annual Computer Security Applications Conference, ACSAC ’13,
pages 279–288, New York, NY, USA, 2013. ACM.

[266] T. Zimmermann, N. Nagappan, and L. Williams. Searching for a Needle in a Haystack:
Predicting Security Vulnerabilities for Windows Vista. In Proc. of the 3rd International Con-
ference on Software Testing, Verification and Validation, ICST’10, Apr. 2010.

[267] D. Zinn, Q. Hart, T. McPhillips, B. Ludascher, Y. Simmhan, M. Giakkoupis, and V. K.
Prasanna. Towards reliable, performant workflows for streaming-applications on cloud plat-
forms. In Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2011.

[268] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools using exploitable buffer
overflows from open source code. In Proc. of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering, SIGSOFT ’04/FSE-12, Nov. 2004.

www.syssec-project.eu 199 October 30, 2014

	Foreword
	1 Introduction
	1.1 Background
	1.2 Focus of the workpackage
	1.3 The workpackage deliverables
	1.4 Outline of the volume
	1.5 Smart Environment Related Works of the SysSec Consortium

	2 Avatar: A Framework to Support Dynamic Security Analysis of Embedded Systems' Firmwares
	2.1 Introduction
	2.2 Dynamic Firmware Analysis
	2.3 Avatar
	2.4 Overcoming the limits of Full Separation
	2.5 Extending Avatar
	2.6 Evaluation
	2.7 Related work
	2.8 Conclusion

	3 A Large-Scale Analysis of the Security of Embedded Firmwares
	3.1 Introduction
	3.2 Challenges
	3.3 Setup
	3.4 Dataset and Results
	3.5 Case Studies
	3.6 Ethical Discussion
	3.7 Related Work
	3.8 Conclusion

	4 Dowsing for overflows: A guided fuzzer to find buffer boundary violations
	4.1 Introduction
	4.2 Big picture
	4.3 Dowsing for candidate instructions
	4.4 Using tainting to find inputs that matter
	4.5 Exploring candidate instructions
	4.6 Evaluation
	4.7 Related work
	4.8 Conclusion

	5 Body armor for binaries: preventing buffer overflows without recompilation
	5.1 Introduction
	5.2 Some buffer overflows are hard to stop: the Exim attack on non-control data
	5.3 What to Protect: Buffer Accesses
	5.4 Code Coverage and Modes of Operation
	5.5 BA-objects mode: Object-level Protection
	5.6 BA-fields mode: a Colorful Armor
	5.7 Efficient Implementation
	5.8 Evaluation
	5.9 Related Work
	5.10 Discussion
	5.11 Future work
	5.12 Conclusions

	6 Online and Scalable Data Validation in Advanced Metering Infrastructures
	6.1 Introduction
	6.2 System Model
	6.3 Streaming-based validation analysis
	6.4 Evaluation
	6.5 Related Work
	6.6 Conclusions

	7 METIS: a Two-Tier Intrusion Detection System for Advanced Metering Infrastructures
	7.1 Introduction
	7.2 Preliminaries
	7.3 METIS - Overview
	7.4 Detecting anomalies by means of continuous queries
	7.5 Energy exfiltration use-case - Sample Execution
	7.6 Energy Exfiltration use-case - Evaluation
	7.7 Related Work
	7.8 Conclusions

	8 Analysis of the Impact of Data Granularity on Privacy for the Smart Grid
	8.1 Introduction
	8.2 Data Privacy in the Advanced Metering Infrastructure
	8.3 Methodology
	8.4 Evaluation study
	8.5 Conclusion

	Conclusion

