
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

Trustworthy ICT

NETWORK OF EXCELLENCE

A European Network of Excellence in Managing Threats and
Vulnerabilities in the Future Internet: Europe for the World †

Deliverable D5.5: Final Report on Malware and Fraud
Abstract: This deliverable presents the final report on what we have

seen and worked on in regards to Malicious Software (Malware) and fraud-
ulent activity on the Internet. It also presents the findings and outcome of
discussions from four years of working group meetings. Together with the
SysSec consortium and selected experts from both academia and the indus-
try, it sheds a light on why so many computer systems are considered unsafe
today.

Contractual Date of Delivery September 2014
Actual Date of Delivery November 2014
Deliverable Dissemination Level Public
Editors Christian Platzer, Martina Lindorfer
Contributors All SysSec partners
Quality Assurance POLIMI, IICT-BAS

The SysSec consortium consists of:

FORTH-ICS Coordinator Greece
Politecnico Di Milano Principal Contractor Italy
Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Institut Eurécom Principal Contractor France
IICT-BAS Principal Contractor Bulgaria
Technical University of Vienna Principal Contractor Austria
Chalmers University Principal Contractor Sweden
TUBITAK-BILGEM Principal Contractor Turkey

† The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257007.

www.syssec-project.eu 2 November 12, 2014

Document Revisions & Quality Assurance

Internal Reviewers

1. Vladimir Dimitrov (IICT-BAS)
2. Michele Carminati (POLIMI)
3. Matthias Neugschwandtner (TUV)
4. Stefano Zanero (POLIMI)

Revisions
Ver. Date By Overview
1.0.0 2014-11-12 Editor Final review of deliverable consistency and elements.
0.3.1 2014-10-08 #3 Paper list included. Further proofread.
0.3.0 2014-09-23 #1 Quality check by IICT-BAS. Changes incorporated
0.2.0 2014-09-21 #4 Quality check by POLIMI. Changes incorporated
0.1.2 2014-09-20 #2 Remarks on opening and structure.
0.1.1 2014-08-20 Editor Chapters harmonized and correlated to each other.
0.1.0 2014-08-13 Editor Chapters added. Deliverable in first draft stage.
0.0.2 2014-06-06 Editor Completed chapter structure and approximate content.
0.0.1 2014-04-04 Editor Created document Stub.

www.syssec-project.eu 3 November 12, 2014

www.syssec-project.eu 4 November 12, 2014

Contents

1 Foreword 11
1.1 Malware and Fraud Related Works of the SysSec Consortium . 12

2 Malware infection 19
2.1 The Gene architecture . 21
2.2 Heuristics . 22

2.2.1 Resolving kernel32.dll 22
2.2.2 Process Memory Scanning 23
2.2.3 SEH-based GetPC Code 24

2.3 Evaluating Gene . 25
2.3.1 Detection Effectiveness 25
2.3.2 Runtime Performance 27

2.4 Discussion . 28

3 Malware Evasion 29
3.1 Evasion prevalence in malware 31

3.1.1 DISARM Architecture 33
3.2 Behavior Comparison . 33

3.2.1 Behavior Normalization 34
3.2.2 Distance Measure and Scoring 35

3.3 Evaluation . 36
3.3.1 Large Scale Test . 36
3.3.2 Qualitative Results . 37

3.4 Discussion . 39

4 Malware experiments 41
4.1 Designing experiments . 42
4.2 Correct Datasets . 43

5

4.2.1 Check if goodware samples should be removed from
datasets . 43

4.2.2 Balance datasets over malware families 43
4.2.3 Check whether training and evaluation datasets should

have distinct families 43
4.2.4 Perform analysis with higher privileges than the mal-

wares . 44
4.2.5 Discuss and if necessary mitigate analysis artifacts and

biases . 44
4.2.6 Use caution when blending malware activity traces

into benign background activity 44
4.3 Transparency . 44

4.3.1 State family names of employed malware samples . . 44
4.3.2 List which malware was analyzed when 45
4.3.3 Explain the malware sample selection 45
4.3.4 Mention the system used during execution 45
4.3.5 Describe the network connectivity of the analysis en-

vironment . 45
4.3.6 Analyze the reasons for false positives and false nega-

tives . 46
4.3.7 Analyze the nature/diversity of true positives 46

4.4 Realism . 46
4.4.1 Evaluate relevant malware families 46
4.4.2 Perform real-world evaluations 46
4.4.3 Exercise caution generalizing from a single OS ver-

sion, such as Windows XP 46
4.4.4 Choose appropriate malware stimuli 46
4.4.5 Consider allowing Internet access to malware 47

4.5 Safety . 47
4.5.1 Deploy and describe containment policies 47

4.6 Discussion . 47

5 URL Shortening Services 49
5.1 Security Threats and Countermeasures 49
5.2 Current Countermeasures . 50

5.2.1 Deferred Malicious URLs 52
5.3 Measurement Approach . 53

5.3.1 Measurement . 55
5.4 Results . 57

5.4.1 Malicious Short URLs 57
5.4.2 The Short URLs Ecosystem 62

5.5 Discussion . 68

www.syssec-project.eu 6 November 12, 2014

6 Spam Mitigation 69
6.1 Spam Bot Identification . 69

6.1.1 Data Collection and Pre-processing 70
6.1.2 Structural and Temporal Properties of Email Networks 71
6.1.3 Anomalies in Email Network Structure 76
6.1.4 Discussion . 77

6.2 Emails in the Gray Area . 78
6.2.1 Approach . 78
6.2.2 Attribute Analysis . 80
6.2.3 Email Campaigns . 83
6.2.4 User Behavior . 86
6.2.5 Discussion . 88

7 Conclusions 89

www.syssec-project.eu 7 November 12, 2014

www.syssec-project.eu 8 November 12, 2014

List of Figures

2.1 Overview of the shellcode detection architecture. 21
2.2 Number of shellcodes detected by Gene and the existing GetPC-

based heuristic [63, 95, 4] for different shellcode sets. From
a total of 83 different shellcode implementations, Gene de-
tected 78 samples (94%), compared to 34 (41%) for the GetPC
heuristic. 26

2.3 The raw processing throughput of Gene for different execu-
tion thresholds. 27

3.1 System Architecture of DISARM. 33

5.1 Overview of our collection approach. 54
5.2 Contributors’ geographical location. 54
5.3 Log entries per day between late March 2010 and April 2012. 55
5.4 Top 5 services by percentage of log entries of outbound short

URLs of Alexa top 5 domains. 56
5.5 Comparison of the number of distinct short URLs per unique

landing page (a, c) and distinct container page per unique
short URL (b, d) after 1 year (a, b) and after 2 years (c, d). . . 59

5.6 Malicious short URLs: Categories of container page ranked
by the amount of short URLs they held. 59

5.7 Delta time between first and latest occurrence of malicious
versus benign short URLs. 61

5.8 Categories of container page ranked by the average number
of short URLs/page they held. 61

5.9 Frequency of change of category (median with 25- and 75-
percent quantiles) and number of categories covered (size of
black dot) of the top 50 services. 64

9

LIST OF FIGURES

5.10 Digraph showing the connections between container- and landing-
page categories. 66

6.1 Only the ham network is scale free as the other networks have
outliers in their degree distribution. 73

6.2 Temporal variation in the degree distribution of email networks. 74
6.3 Both networks are small-world networks (a,b,e,f), however,

ham has a higher average clustering coefficient. The ham
networks become more connected over time (c,g), and the
number of CCs increases faster for the spam networks (d,h). . 75

6.4 The distribution of size of CCs. The GCCs of the networks are
orders of magnitude larger than other CCs. 76

6.5 Attribute distributions in campaigns. 82
6.6 Newsletter subscription header distribution. 83

www.syssec-project.eu 10 November 12, 2014

1
Foreword

The document is the last deliverable for malware and fraud and therefore
concludes the SysSec project for work package five.
In the past four years, malware and malware research did not receive a lot
of dedicated attention. In the very first deliverable (D5.1), we gave a brief
overview on what happened in recent years in the malware sector. The fol-
lowing documents were more directed towards social networks and fraud,
which are undoubtedly an integral part of today’s security landscape. There
was the practical case study in D5.3, where actual malware contamination
within the Turkish network was measured. This case study shed a light on
the engineering effort necessary to even conduct such a study. Naturally,
the used technologies for the case study were less sophisticated than recent
efforts to find and analyze malware in the research community. The pre-
sented implementations usually require a good amount of engineering effort
to finally result in a usable system. Still, some of these recent approaches
will certainly reach maturity and finally see deployment in corporate envi-
ronments. If that is the case depends on different factors like scalability,
usability and general quality of an approach. This document was created
to give an overview on advances and the underlying research in malware
analysis, countermeasures and internet fraud. It covers the lifetime of the
SysSec project and is organized in a semi-chronological manner to give an
idea of how the topics generally evolved. As a conclusion of work package
five, it refocuses on the core topic of malware again. Furthermore, we also
address how malware acts as an enabler for further exploitation, fraud or
data gathering. Undoubtedly, the topic covers a much broader area than
can be discussed in the following pages. Therefore, we took care to select
each chapter such that it paints a holistic picture of current research and
approaches.

11

CHAPTER 1. FOREWORD

1.1 Malware and Fraud Related Works of the SysSec
Consortium

In addition to the content in this deliverable, the SysSec Consortium pub-
lished a number of papers in various Journals and Conference Proceedings.
The following list iterates the most important research output of the SysSec
Project in respect to Work Package 5.

• Farnaz Moradi, Tomas Olovsson, and Philippas Tsigas. A Local Seed
Selection Algorithm for Overlapping Community Detection. In
Proceedings of the 2014 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining (ASONAM14). August
2014, Beijing, China.

• Andrei Costin, Jonas Zaddach, Francillon Francillon, Aurlien, Davide
Balzarotti. A Large Scale Analysis of the Security of Embedded
Firmwares. In Proceedings of the 23rd USENIX Security Symposium
(USENIX Security). August 2014, San Diego, CA, USA.

• Stefano Schiavoni, Federico Maggi, Lorenzo Cavallaro, and Stefano
Zanero. Phoenix: DGA-Based Botnet Tracking and Intelligence. In
Proceedings of the 11th Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA). July 2014, Egham,
UK.

• Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias Neugschwandt-
ner, Elias Athanasopoulos, Federico Maggi, Christian Platzer, Stefano
Zanero, Sotiris Ioannidis. AndRadar: Fast Discovery of Android Ap-
plications in Alternative Markets. In Proceedings of the 11th Confer-
ence on Detection of Intrusions and Malware & Vulnerability Assess-
ment (DIMVA). July 2014. Egham, UK.

• Claudio Criscione, Fabio Bosatelli, Stefano Zanero, and Federico Maggi.
Zarathustra: Extracting WebInject Signatures from Banking Tro-
jans. In Proceedings of the 12th Annual International Conference on
Privacy, Security and Trust (PST). July 2014, Toronto, Canada.

• Rafael A Rodrguez Gmez, Gabriel Maci Fernndez, Pedro Garca Teodoro,
Moritz Steiner, and Davide Balzarotti. Resource monitoring for the
detection of parasite P2P botnets. Computer Networks, Elsevier
B.V., pages 302311, June 2014.

• Sebastian Neuner, Victor van der Veen, Martina Lindorfer, Markus Hu-
ber, Georg Merzdovnik, Martin Mulazzani, and Edgar Weippl. Enter
Sandbox: Android Sandbox Comparison. In Proceedings of the IEEE
Mobile Security Technologies Workshop (MoST). May 2014. San Jose,
CA, USA.

www.syssec-project.eu 12 November 12, 2014

1.1. MALWARE AND FRAUD RELATED WORKS OF THE SYSSEC
CONSORTIUM

• Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Poly-
chronakis, Sotiris Ioannidis. Rage Against the Virtual Machine: Hin-
dering Dynamic Analysis of Mobile Malware. In Proceedings of the
7th European Workshop on Systems Security (EuroSec). April 2014.
Amsterdam, The Nederlands.

• Nick Nikiforakis, Federico Maggi, Gianluca Stringhini, M Zubair Rafique,
Wouter Joosen, Christopher Kruegel, Frank Piessens, Giovanni Vigna,
Stefano Zanero. Stranger Danger: Exploring the Ecosystem of Ad-
based URL Shortening Services. In Proceedings of the 2014 Interna-
tional World Wide Web Conference (WWW). April 2014. Seoul, Korea.

• Zlatogor Minchev, Suzan Feimova. Modern Social Networks Emerg-
ing Cyber Threats Identification: A Practical Methodological Frame-
work with Examples. In Proceedings of the 6th AFCEA Sixth Young
Scientists Conference ’Future of ICT’, at NATO C4ISR Industry Confer-
ence & TechNet International. March, 2014. Bucharest, Romania.

• Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti.
Avatar: A Framework to Support Dynamic Security Analysis of
Embedded Systems’ Firmwares. In Proceedings of the Network and
Distributed System Security Symposium (NDSS). February 2014, San
Diego, USA.

• Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik Olivier Blass, Au-
relien Francillon, Travis Goodspeed, Moitrayee Gupta, Ioannis Kolt-
sidas. Implementation and Implications of a Stealth Hard-Drive
Backdoor. In Proceedings of the 2013 Annual Computer Security Ap-
plications Conference (ACSAC). December 2013, New Orleans, LA,
USA.

• Martina Lindorfer, Bernhard Miller, Matthias Neugschwandtner, Chris-
tian Platzer. Take a Bite - Finding the Worm in the Apple. In Pro-
ceedings of the 9th International Conference on Information, Com-
munications and Signal Processing (ICICS). December 2013,Tainan,
Taiwan.

• Martina Lindorfer, Matthias Neumayr, Juan Caballero, Christian Platzer.
POSTER: Cross-Platform Malware: Write Once, Infect Everywhere.
In Proceedings of the20th ACM Conference on Computer and Commu-
nications Security (CCS). November 2013, Berlin, Germany.

• Federico Maggi, Andrea Valdi, Stefano Zanero. AndroTotal: A Flex-
ible, Scalable Toolbox and Service for Testing Mobile Malware
Detectors. In Proceedings of the 3rd Annual ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM).
November 2013, Berlin, Germany.

www.syssec-project.eu 13 November 12, 2014

CHAPTER 1. FOREWORD

• Dennis Andriesse, Christian Rossow, Brett Stone-Gross, Daniel Plohmann,
Herbert Bos. Highly Resilient Peer-to-Peer Botnets Are Here: An
Analysis of Gameover Zeus. In Proceedings of the 8th IEEE In-
ternational Conference on Malicious and Unwanted Software (MAL-
WARE’13). October 2013, Fajardo, Puerto Rico, USA.

• Mariano Graziano, Andrea Lanzi, Davide Balzarotti. Hypervisor Mem-
ory Forensics. In Proceedings of the 16th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID). October 2013,
Saint Lucia.

• Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, Herbert Bos.
Dowsing for overflows: A guided fuzzer to find buffer boundary
violations. In Proceedings of the 22nd USENIX Security Symposium
(USENIX-SEC). August 2013, Washington, DC, USA.

• Matthias Neugschwandtner, Martina Lindorfer, Christian Platzer. A
view to a kill: Webview exploitation. In Proceedings of the 6th
USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET).
August 2013, Washington, DC, USA.

• Zlatogor Minchev. Security of Digital Society. Technological Per-
spectives & Challenges. In Proceedings of the Jubilee International
Scientific Conference ”Ten Years Security Education in New Bulgarian
University: Position and Perspectives for the Education in a Dynamic
and Hardly Predicted Environment”. June 2013, Sofia, Bulgaria.

• Luben Boyanov, Zlatogor Minchev and Kiril Boyanov. Some Cyber
Threats in Digital Society. In International Journal ”Automatics &
Informatics”. January 2013.

• Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, Christo-
pher Kruegel. DISCLOSURE: Detecting Botnet Command and Con-
trol Servers Through Large-Scale NetFlow Analysis. In Proceedings
of the 2012 Annual Computer Security Applications Conference (AC-
SAC). December 2012, Orlando, FL, USA.

• Mario Graziano, Corrado Leita, Davide Balzarotti. Towards Network
Containment in Malware Analysis Systems. In Proceedings of the
2012 Annual Computer Security Applications Conference (ACSAC).
December 2012, Orlando, FL, USA.

• Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Mi-
lani Comparetti, Stefano Zanero. Lines of Malicious Code: Insights
Into the Malicious Software Industry. In Proceedings of the 2012
Annual Computer Security Applications Conference (ACSAC). Decem-
ber 2012, Orlando, FL, USA.

www.syssec-project.eu 14 November 12, 2014

1.1. MALWARE AND FRAUD RELATED WORKS OF THE SYSSEC
CONSORTIUM

• Markus Kammerstetter, Christian Platzer, Gilbert Wondracek. Van-
ity, Cracks and Malware: Insights into the Anti-Copy Protection
Ecosystem. In Proceedings of the 19th ACM Conference on Com-
puter and Communications Security (CCS). October 2012, Raleigh,
NC, USA.

• Zlatogor Minchev. Social Networks Security Aspects: A Technologi-
cal and User Based Perspectives. In Proceedings of the 20th National
Jubilee Conference with International Participation (TELECOM2012).
October 2012, Sofia, Bulgaria.

• Andrei Bacs, Remco Vermeulen, Asia Slowinska, Herbert Bos. System-
level Support for Intrusion Recovery. In proceedings of the 9th
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). July 2012, Heraklion, Greece.

• Christian Rossow, Christian Dietrich, Herbert Bos. Large-Scale Anal-
ysis of Malware Downloaders. In proceedings of the 9th Conference
on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA). July 2012, Heraklion, Greece.

• Davide Canali, Andrea Lanzi, Davide Balzarotti, Mihai Christoderescu,
Christopher Kruegel, Engin Kirda. A Quantitative Study of Accuracy
in System Call-Based Malware Detection. In proceedings of the In-
ternational Symposium on Software Testing and Analysis (ISSTA). July
2012, Minneapolis, MN, USA.

• Farnaz Moradi, Tomas Olovsson, Philippas Tsigas. An Evaluation of
Community Detection Algorithms on Large-Scale Email Traffic. In
proceedings of the 11th International Symposium on Experimental Al-
gorithms (SEA). June 2011, Bordeaux, France.

• Zlatogor Minchev, Plamen Gatev. Psychophysiological Evaluation of
Emotions due to the Communication in Social Networks. In Scripta
Scientifica Medica, Volume 44, Issue 1, Supplement 1. April 2012.

• Federico Maggi, Andrea Bellini, Guido Salvaneschi, Stefano Zanero.
Finding Non-trivial Malware Naming Inconsistencies. In proceed-
ings of the 7th International Conference on Information Systems Se-
curity (ICISS). December 2011, Kolkata, India.

• Matthias Neugschwandtner, Paolo Milani Comparetti, and Christian
Platzer. Detecting Malwares Failover C&C Strategies with SQUEEZE.
In Proceedings of the2011 Annual Computer Security Applications
Conference (ACSAC). December 2011, Orlando, FL, USA.

www.syssec-project.eu 15 November 12, 2014

CHAPTER 1. FOREWORD

• Matthias Neugschwandtner, Paolo Milani Comparetti, Gregoire Jacob,
Christopher Kruegel. FORECAST Skimming off the Malware Cream.
In Proceedings of the2011 Annual Computer Security Applications
Conference (ACSAC). December 2011, Orlando, FL, USA.

• Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos,
Maarten van Steen, Norbert Pohlmann. On Botnets that use DNS for
Command and Control. In Proceedings of the 7th European Con-
ference on Computer Network Defense (EC2ND). September 2011,
Gteborg, Sweden.

• Danesh Irani, Marco Balduzzi, Davide Balzarotti, Engin Kirda, Carlton
Pu. Reverse Social Engineering Attacks in Online Social Networks.
In Proceedings of the8th Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA). July 2011, Amster-
dam, The Netherlands.

• Magnus Almgren, Zhang Fu, Erland Jonsson, Pierre Kleberger, An-
dreas Larsson, Farnaz Moradi, Tomas Olovsson, Marina Papatriantafilou,
Laleh Pirzadeh, Philippas Tsigas. Mapping Systems Security Re-
search at Chalmers. In proceedings of the 1st SysSec Workshop on
Systems Security. July 2011, Amsterdam, The Netherlands.

• Farnaz Moradi, Magnus Almgren, Wolfgang John, Tomas Olovsson,
Philippas Tsigas. On Collection of Large-Scale Multi-Purpose Datasets
on Internet Backbone Links. In proceedings of the First Work- shop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS). April 2011, Salzburg, Austria.

• Leyla Bilge, Andrea Lanzi, Davide Balzarotti. Thwarting Real-Time
Dynamic Unpacking. In proceedings of the 2011 European Workshop
on System Security(EuroSec). April 2011, Salzburg, Austria.

• Zhang Fu, Marina Papatriantafilou, Philippas Tsigas. CluB: A Cluster
Based Proactive Method for Mitigating Distributed Denial of Ser-
vice Attacks. In proceedings of the 26th ACM Symposium on Applied
Computing (SAC). March 2011, TaiChung, Taiwan.

• Leyla Bilge, Engin Kirda, Christopher Kruegel, Marco Balduzzi. EXPO-
SURE: Finding Malicious Domains Using Passive DNS Analysis. In
proceedings of the 18th Annual Network & Distributed System Secu-
rity Symposium (NDSS). February 2011, San Diego, CA, USA.

• Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, Engin
Kirda. G-Free: Defeating Return-Oriented Programming through
Gadget-less Binaries. In Proceedings of the 26th Annual Computer

www.syssec-project.eu 16 November 12, 2014

1.1. MALWARE AND FRAUD RELATED WORKS OF THE SYSSEC
CONSORTIUM

Security Applications Conference (ACSAC). December 2010, Austin,
TX, USA.

• Zlatogor Minchev, Maria Petkova. Information Processes and Threats
in Social Networks: A Case Study. In Conjoint Scientific Semi-
nar ”Modelling and Control of Information Processes”. Organized by
College of Telecommunications, Institute of ICT - Bulgarian Academy
of Sciences and Institute of Mathematics and Informatics - Bulgarian
Academy of Sciences. November 2010, Sofia, Bulgaria.

• Phuong Nguyen, Wil Kling, Giorgos Georgiadis, Marina Papatriantafilou,
Anh Tuan Le, Lina Bertling. Distributed Routing Algorithms to Man-
age Power Flow in Agent-Based Active Distribution Network. Pro-
ceedings of 1st Conference on Innovative Smart Grid Technologies Eu-
rope. Gteborg, Sweden, October 2010.

www.syssec-project.eu 17 November 12, 2014

CHAPTER 1. FOREWORD

www.syssec-project.eu 18 November 12, 2014

2
Malware infection

Before diving into general details of malware, their different families and
types, we would like to tackle the very basic problem of how malware
reaches a target system in the first place. There still exist a good number of
click-based infection strategies, where individuals are tricked into clicking
a binary and install the malware themselves. These methods, however, are
trivial from a technological perspective. Injection attacks, in contrast, are
methods where vulnerabilities in a computer system are exploited without
any user interaction. The research presented in this chapter is described in
detail in [62]. This work mainly deals with code injection attacks which
have become one of the primary methods of malware spreading. In a typi-
cal code injection attack, the attacker sends a malicious input that exploits a
memory corruption vulnerability in a program running on the victim’s com-
puter. The injected code, known as shellcode, carries out the first stage of
the attack, which usually involves the download and execution of a malware
binary on the compromised host.

Once sophisticated tricks of the most skilled virus authors, advanced eva-
sion techniques like code obfuscation and polymorphism are now the norm
in most instances of malicious code [45]. The wide availability of ready-to-
use shellcode construction and obfuscation toolkits and the discovery rate of
new vulnerabilities have rendered exploit or vulnerability specific detection
techniques ineffective [78]. A promising approach for the generic detection
of code injection attacks is to focus on the identification of the shellcode
that is indispensably part of the attack vector, a technique initially known as
abstract payload execution [85]. Identifying the presence of the shellcode
itself allows for the detection of previously unknown attacks without car-
ing about the particular exploitation method used or the vulnerability being
exploited.

Initial implementations of this approach attempt to identify the pres-
ence of shellcode in network inputs using static code analysis [85, 88, 87].

19

CHAPTER 2. MALWARE INFECTION

However, methods based on static analysis cannot effectively handle mali-
cious code that employs advanced obfuscation tricks such as indirect jumps
and self-modifications. Dynamic code analysis using emulation is not hin-
dered by such obfuscations and can detect even extensively obfuscated shell-
code. This kind of “actual” payload execution has proved quite effective in
practice [61] and is being used in network-level and host-level systems for
the zero-day detection of both server-side and client-side code injection at-
tacks [63, 95, 18, 4, 22].

A limitation of the above techniques is that they are confined to the
detection of a particular class of polymorphic shellcode that exhibits self-
decrypting behavior. Although shellcode “packing” and encryption are com-
monly used for evading signature-based detectors, attackers can achieve the
same or even higher level of evasiveness without the use of self-decrypting
code, rendering above systems ineffective. Besides code encryption, poly-
morphism can instead be achieved by mutating the actual instructions of
the shellcode before launching the attack—a technique known as metamor-
phism [82]. Metamorphism has been widely used by virus authors and thus
can trivially be applied for shellcode mutation. Surprisingly, even plain shell-
code, i.e., shellcode that does not change across different instances, is also
not detected by existing payload execution methods. Technically, a plain
shellcode is no different than any instance of metamorphic shellcode, since
both do not carry a decryption routine nor exhibit any self-modifications or
dynamic code generation. Consequently, an attack that uses a previously un-
known static analysis-resistant plain shellcode will manage to evade existing
detection systems.

In this chapter, we discuss a comprehensive shellcode detection tech-
nique based on payload execution. In contrast to previous approaches that
use a single detection algorithm for a particular class of shellcode, this
method relies on several runtime heuristics tailored to the identification of
different shellcode types. This strategy also enables the detection of spe-
cialized polymorphic shellcode, which usually goes undetected by existing
polymorphic shellcode detectors.

An implementation of the above technique was named Gene, a network-
level detector that scans all client-initiated streams for code injection attacks
against network services [62]. Gene is based on passive network monitor-
ing, which offers the benefits of easy large-scale deployment and protection
of multiple hosts using a single sensor, while it allows us to test the effective-
ness of this technique in real-world environments. As the core engine can
analyze arbitrary data, it allows the approach to be readily embedded in
existing systems that employ emulation-based detection in other domains,
e.g., for the detection of malicious websites [22] or in browser add-ons for
the detection of drive-by download attacks [18].

www.syssec-project.eu 20 November 12, 2014

2.1. THE GENE ARCHITECTURE

Figure 2.1: Overview of the shellcode detection architecture.

2.1 The Gene architecture

The Gene detection system is built around a CPU emulator that executes
valid instruction sequences found in any inspected input. An overview of
the approach is illustrated in Fig. 2.1. Each input is mapped to an arbitrary
location in the virtual address space of a supposed process, and a new exe-
cution begins from each and every byte of the input, since the position of the
first instruction of the shellcode is unknown and can be easily obfuscated.
The detection engine is based on multiple heuristics that match runtime pat-
terns inherent in different types of shellcode. During execution, the system
checks several conditions that should all be satisfied in order for a heuristic
to match some shellcode. Moreover, new heuristics can easily be added due
to the extensible nature of the system.

Existing polymorphic shellcode detection methods focus on the identi-
fication of self-decrypting behavior, which can be simulated without any
host-level information [63]. For example, accesses to addresses other than
the memory area of the shellcode itself are ignored. However, shellcode
is meant to be injected into a running process and it usually accesses cer-
tain parts of the process’ address space, e.g., for retrieving and calling API
functions. In contrast to previous approaches, the emulator used here is
equipped with a fully blown virtual memory subsystem that handles all user-
level memory accesses and enables the initialization of memory pages with
arbitrary content. This allows to populate the virtual address space of the
supposed process with an image of the mapped pages of a process taken
from a real system.

The purpose of this functionality is twofold: First, it enables the con-
struction of heuristics that check for memory accesses to process-specific

www.syssec-project.eu 21 November 12, 2014

CHAPTER 2. MALWARE INFECTION

Abbreviation Matching Shellcode Behavior

PEB kernel32.dll base address resolution

BACKWD kernel32.dll base address resolution

SEH Memory scanning / SEH-based GetPC code

SYSCALL Memory scanning

Table 2.1: Overview of the shellcode detection heuristics used in Gene.

data structures. Although the heuristics presented here target Windows
shellcode, and thus the address space image used in conjunction with these
heuristics is taken from a Windows process, some other heuristic can use a
different memory image, e.g., taken from a Linux process. Second, this al-
lows to some extent the correct execution of non-self-contained shellcode
that may perform accesses to known memory locations for evasion pur-
poses [7].

2.2 Heuristics

Each heuristic used in Gene is composed of a sequence of conditions that
should all be satisfied in order during the execution of malicious code. Ta-
ble 2.1 gives an overview of the four used heuristics. They focus on the
identification of the first actions of different shellcode types, according to
their functionality, regardless of any self-decrypting behavior.

2.2.1 Resolving kernel32.dll

The typical final goal of the shellcode is to give the attacker full control of
the victim system. This usually involves just a few simple operations, such
as downloading and executing a malware binary on the compromised host.
These operations require interaction with the OS through the system call
interface, or in case of Microsoft Windows, through the user-level Windows
API.

A common fundamental operation is that the shellcode has to first lo-
cate the base address of kernel32.dll. Since this is an inherent operation
that must be performed by any Windows shellcode that needs to call a Win-
dows API function, it is a perfect candidate for the development of a generic
shellcode detection heuristic. The following possibilities are feasible:

• Process Environment Block: Probably the most reliable and widely
used technique for determining the base address of kernel32.dll

takes advantage of the Process Environment Block (PEB), a user-level
structure that holds extensive process-specific information and can be
accurately identified.

www.syssec-project.eu 22 November 12, 2014

2.2. HEURISTICS

• Backwards Searching: An alternative technique for locating
kernel32.dll is to find a pointer that points somewhere into the
memory area where the kernel32.dll has been loaded, and then
search backwards until the beginning of the DLL is located [75]. A reli-
able way to obtain a pointer into the address space of kernel32.dll is
to take advantage of the Structured Exception Handling (SEH) mech-
anism of Windows [59], which provides a unified way of handling
hardware and software exceptions.

2.2.2 Process Memory Scanning

Some memory corruption vulnerabilities allow only a limited space for the
injected code—usually not enough for a fully functional shellcode. In these
exploits though, the attacker can inject a second, much larger payload which
will land at a random, non-deterministic location, e.g., in a buffer allocated
in the heap. The first-stage shellcode can then sweep the address space
of the process and search for the second-stage shellcode (also known as
the “egg”), which can be identified by a long-enough characteristic byte
sequence. This type of first-stage payload is known as “egg-hunt” shell-
code [76]. The following two scanning techniques and the corresponding
detection heuristics can identify the execution of egg-hunt shellcode.

2.2.2.1 SEH

The first memory scanning technique takes advantage of the structured ex-
ception handling mechanism and relies on installing a custom exception
handler that is invoked in case of a memory access violation.

Condition S1. The list of SEH frames is stored on the stack, and the current
SEH frame is always accessible through FS:[0]. The first-stage shellcode
can register a custom exception handler that has priority over all previous
handlers in two ways: create a new SEH frame and adjust the current SEH
frame pointer of the TIB to point to it [76], or directly modify the Handler

pointer of the current SEH frame to point to the attacker’s handler routine.
In the first case, the shellcode must update the SEH list head pointer at
FS:[0], while in the second case, it has to access the current SEH frame
in order to modify its Handler field, which is only possible by reading the
pointer at FS:[0]. Thus, the first condition of the SEH-based memory scan-
ning detection heuristic (SEH) is (S1): (i) the linear address of FS:[0] is
read or written, and (ii) the current or any previous instruction involved the
FS register.

Condition S2. Another mandatory operation that will be encountered dur-
ing execution is that the Handler field of the custom SEH frame (irrespec-
tively if its a new frame or an existing one) should be modified to point to

www.syssec-project.eu 23 November 12, 2014

CHAPTER 2. MALWARE INFECTION

the custom exception handler routine. This operation is reflected by the sec-
ond condition (S2): the linear address of the Handler field in the custom SEH
frame is or has been written. Note that in case of a newly created SEH frame,
the Handler pointer can be written before or after FS:[0] is modified.

Condition S3. Although the above conditions are quite constraining, a third
condition can be applied by exploiting the fact that upon the registration of
the custom SEH handler, the linked list of SEH frames should be valid. With
the risk of stack corruption, the exception dispatcher routine performs thor-
ough checks on the integrity of the SEH chain, e.g., ensuring that each SEH
frame is dword-aligned within the stack and is located higher than the pre-
vious SEH frame [59]. Thus, the third condition requires that (S3): starting
from FS:[0], all SEH frames should reside on the stack, and the Handler field
of the last frame should be set to 0xFFFFFFFF. In essence, the above condition
validates that the custom handler registration has been performed correctly.

2.2.2.2 System Call

The extensive abuse of the SEH mechanism in various memory corruption
vulnerabilities led to the introduction of SafeSEH, a linker option that pro-
duces a table with all the legitimate exception handlers of the image. In
case the exploitation of some SafeSEH-protected vulnerable application re-
quires the use of egg-hunt shellcode, an alternative but less reliable method
for safely scanning the process address space is to check whether a page
is mapped—before actually accessing it—using a system call [76, 75]. As
already discussed, although the use of system calls in Windows shellcode
is not common, since they are prone to changes between OS versions and
do not provide crucial functionality such as network access, they can prove
useful for determining if a memory address is accessible.

2.2.3 SEH-based GetPC Code

Before decrypting itself, polymorphic shellcode needs to first find the ab-
solute address at which it resides in the address space of the vulnerable
process. The most widely used types of GetPC code for this purpose rely on
some instruction from the call or fstenv instruction groups [63]. These in-
structions push on the stack the address of the following instruction, which
can then be used to calculate the absolute address of the encrypted code.
However, this type of GetPC code cannot be used in purely alphanumeric
shellcode [45], because the opcodes of the required instructions fall outside
the range of allowed ASCII bytes. In such cases, the attacker can follow
a different approach and take advantage of the SEH mechanism to get a
handle to the absolute memory address of the injected shellcode [77].

When an exception occurs, the system generates an exception record
that contains the necessary information for handling the exception, includ-

www.syssec-project.eu 24 November 12, 2014

2.3. EVALUATING GENE

ing a snapshot of the execution state of the thread, which contains the value
of the program counter at the time the exception was triggered. This infor-
mation is stored on the stack, so the shellcode can register a custom excep-
tion handler, trigger an exception, and then extract the absolute memory
address of the faulting instruction. By writing the handler routine on the
heap, this technique can work even in Windows XP SP3, bypassing any SEH
protection mechanisms [77].

In essence, the SEH-based memory scanning detection heuristic described
in Sec. 2.2.2.1 does not identify the scanning behavior per se, but the proper
registration of a custom exception handler. Although this is an inherent op-
eration of any SEH-based egg-hunt shellcode, any shellcode that installs a
custom exception handler can be detected, including polymorphic shellcode
that uses SEH-based GetPC code.

2.3 Evaluating Gene

An implementation of the heuristics above produced the results presented
in the following section.

2.3.1 Detection Effectiveness

The first shellcodes under evaluation were those contained in the Metas-
ploit Framework [48]. For Windows targets, Metasploit includes six basic
payloads for downloading and executing a file, spawning a shell, adding a
user account, and so on, as well as nine “stagers.” In contrast to an egg-
hunt shellcode, which searches for a second payload that has already been
injected into the vulnerable process along with the egg-hunt shellcode, a
stager establishes a channel between the attacking and the victim host for
uploading other second-stage payloads. As shown in Fig. 2.2, both Gene
and the GetPC-based heuristic detected the polymorphic versions of the
shellcodes. However, the original (plain) versions do not exhibit any self-
decrypting behavior and are thus detected only by Gene. For both plain and
polymorphic versions, Gene identified the shellcode using the PEB heuristic.
The use of the PEB-based method for locating kernel32.dll is probably
preferred in Metasploit due to its reliability.

The evaluation was continued with 22 samples downloaded from the
shellcode repository of the Nepenthes Project [53]. Two of the samples had
a broken decryptor and could not be executed properly. By manually un-
packing the two payloads and scanning them with Gene, in both cases the
shellcode was identified by the PEB heuristic. From the rest 20 shellcodes,
16 were identified by the PEB heuristic, and one, named “Saalfeld,” by the
SEH heuristic. The Saalfeld shellcode is of particular interest due to the use
of a custom SEH handler although it is not an egg-hunt shellcode.

www.syssec-project.eu 25 November 12, 2014

CHAPTER 2. MALWARE INFECTION

Metasploit
(Polymorphic)

Metasploit (Plain)

Nepenthes

Individual Samples

15 samples

15 samples

20 samples

33 samples

Detected shellcodes (%)

0 20 40 60 80 100

15/15

15/15

17/20

31/33

15/15

0/15

15/20

4/33

Gene GetPC

Figure 2.2: Number of shellcodes detected by Gene and the existing GetPC-
based heuristic [63, 95, 4] for different shellcode sets. From a total of 83 dif-
ferent shellcode implementations, Gene detected 78 samples (94%), com-
pared to 34 (41%) for the GetPC heuristic.

The SEH handler is registered for safely searching the address space of the
vulnerable process starting from address 0x77E00000, with the aim to reli-
ably detect the base address of kernel32.dll. The SEH heuristic identifies
the proper registration of a custom SEH handler, so the shellcode was suc-
cessfully identified.

Besides a few proof-of-concept implementations [75, 49] which are iden-
tified correctly by Gene, it was not possible to find any other shellcode sam-
ples that locate kernel32.dll using backwards searching, probably due to
the simplicity of the alternative PEB-based technique. In addition to the
Saalfeld shellcode, the SEH heuristic detected a proof-of-concept SEH-based
egg-hunt implementation [76], as well as the “omelet” shellcode [90], an
egg-hunt variation that locates and recombines multiple smaller eggs into
the whole original payload. The SEH heuristic was also effective in de-
tecting polymorphic shellcode that uses SEH-based GetPC code [77], which
is currently missed by existing payload execution systems. The SYSCALL
heuristic was tested with three different egg-hunt shellcode implementa-
tions [75, 76, 91], which were identified correctly. As shown in Fig. 2.2, the
GetPC-based heuristic detected only four of the shellcodes that use simple
XOR encryption, while Gene detected all but two of the samples, again due
to the use of hard-coded addresses.

www.syssec-project.eu 26 November 12, 2014

2.3. EVALUATING GENE

Execution threshold (log scale)

4K 8K 16K 32K 64K 128K

T
h

ro
u

g
h

p
u

t
(M

b
it
/s

)

0

10

20

30

40

50

60

RPC

all traffic

port 80

Figure 2.3: The raw processing throughput of Gene for different execution
thresholds.

2.3.2 Runtime Performance

The processing throughput of Gene was evaluated using real network traf-
fic traces. Gene was running on a system with a Xeon 1.86GHz processor
and 2GB of RAM. Figure 2.3 shows the raw processing throughput of Gene
for different execution thresholds. The throughput is mainly affected by
the number of CPU cycles spent on each input. As the execution thresh-
old increases, the achieved throughput decreases because more emulated
instructions are executed per stream. A threshold in the order of 8–16K in-
structions is sufficient for the detection of plain as well as the most advanced
polymorphic shellcodes [64]. For port 80 traffic, the random code due to
ASCII data tends to form long instruction sequences that result to degraded
performance compared to binary data.

The overall runtime throughput is slightly lower compared to existing
emulation-based detectors [63, 64] due to the overhead added by the virtual
memory subsystem, as well as because Gene does not use the zero-delimited
chunk optimization used in these systems [63]. Previous approaches skip
the execution of zero-byte delimited regions smaller than 50 bytes, with the
rationale that most memory corruption vulnerabilities cannot be exploited
if the attack vector contains null bytes. However, the detection heuristics
of Gene can identify shellcode in other attack vectors that may contain null
bytes, such as document files. Furthermore, this approach can be applied in
other domains [22, 18], for example for the detection of client-side attacks,
in which the shellcode is usually encrypted at a higher level using some

www.syssec-project.eu 27 November 12, 2014

CHAPTER 2. MALWARE INFECTION

script language, and thus can be fully functional even if it contains null
bytes.

In practice, Gene can monitor high speed links when scanning for server-
side attacks because client-initiated traffic (requests) is usually a fraction of
the server-initiated traffic (responses). In a preliminary deployments in pro-
duction networks, Gene can scan traffic of up to 100 Mbit/s without drop-
ping packets. Furthermore, Gene currently scans the whole input blindly,
without any knowledge about the actual network protocol used. Augment-
ing the inspection engine with protocol parsing would significantly improve
the scanning throughput by inspecting each protocol field separately.

2.4 Discussion

The increasing professionalism of cyber criminals and the vast number of
malware variants and malicious websites make the need for effective code
injection attack detection a critical challenge. To this end, shellcode detec-
tion using payload execution offers important advantages, including generic
detection without exploit or vulnerability-specific signatures, practically zero
false positives, while it is effective against targeted attacks.

Gene represents a comprehensive shellcode detection method based on
code emulation. The approach expands the range of malicious code types
that can be detected by enabling the parallel evaluation of multiple runtime
heuristics that match inherent low-level operations during the execution of
different shellcode types.

An experimental evaluation shows that the proposed approach can ef-
fectively detect a broad range of diverse shellcode types and implementa-
tions, increasing significantly the detection coverage compared to existing
emulation-based detectors, while extensive testing with a large set of benign
data did not produce any false positives. Gene detected 116,513 attacks
against production systems in a period of almost five months without false
positives.

Although Gene currently operates at the network level, the proposed
detection heuristics can be readily implemented in emulation-based systems
in other domains, including host-level or application-specific detectors.

www.syssec-project.eu 28 November 12, 2014

3
Malware Evasion

The last chapter discussed how malware infections are achieved using shell-
code exploits and how it is possible to counter these attacks. However, there
is one case when a malware infection is actually wanted. Honeypots try to
gather as many samples as possible to further analyze them in a protected
environment.

Dynamic analysis of malicious code has increasingly become an essential
component of defense against Internet threats. By executing malware sam-
ples in a controlled environment, security practitioners and researchers are
able to observe its malicious behavior, obtain its unpacked code [32, 44],
detect botnet command and control (C&C) servers [81] and generate signa-
tures for C&C traffic [58] as well as remediation procedures for malware in-
fections [54]. Large-scale dynamic malware analysis systems (DMAS) based
on tools such as Anubis [9] and CWSandbox [92] are operated by security
researchers1 and companies23. These services are freely available to the
public and are widely used by security practitioners around the world. In
addition to these public-facing services, private malware analysis sandboxes
are operated by a variety of security companies such as Anti-Virus vendors.
Like most successful security technologies, malware analysis sandboxes have
therefore attracted some attention from miscreants.

One way for malware to defeat dynamic analysis is to detect that it is
running in an analysis sandbox rather than on a real user’s system and refuse
to perform its malicious function. For instance, code packers that include de-
tection of virtual machines, such as Themida, will produce executables that
exit immediately when run inside a virtual machine such as VMWare [38].
There are many characteristics of a sandbox environment that may be used
to fingerprint it. In addition to using “red pills” that aim to detect widely de-

1Anubis: Analyzing Unknown Binaries (http://anubis.iseclab.org/)
2SunbeltLabs (http://www.sunbeltsecurity.com/sandbox/)
3ThreatExpert (http://www.threatexpert.com/)

29

http://anubis.iseclab.org/
http://www.sunbeltsecurity.com/sandbox/
http://www.threatexpert.com/

CHAPTER 3. MALWARE EVASION

ployed emulation or virtualization technology [74, 66, 55, 20, 21], malware
authors can detect specific sandboxes by taking advantage of identifiers such
as volume serial numbers or IP addresses. As we will discuss later, sandbox
detection is not a theoretical problem; Table 3.1 holds a number of con-
crete examples of how malware samples have evaded analysis in the Anubis
sandbox in the past.

One approach to defeating sandbox evasion is to try to build a transpar-
ent sandbox. That is, to construct an analysis environment that is indistin-
guishable from a real, commonly used production environment. This is the
goal of systems such as Ether [16]. However, Garfinkel et al. [23] argue
that it is fundamentally unfeasible to build a fully transparent virtual ma-
chine monitor, particularly if code running in the sandbox has access to the
Internet and can therefore query a remote time source. In fact, Ether does
not defend against timing attacks that use a remote time source, while Pek
et al. [57] have introduced a tool called nEther that is able to detect Ether
using local attacks. Even if transparent sandbox technology were available,
a specific sandbox installation could be detectable based on the particular
configuration of software that happens to be installed on the system, or
based on identifiers such as the product IDs of installed software [8] or the
universal identifiers of disk partitions.

Another approach relies on running a sample in multiple analysis sand-
boxes to detect deviations in behavior that may indicate evasion [14, 33, 6,
30]. This is the approach which is also used in [41]. For this, a malware
sample is started in several sandboxes, obtaining a number of behavioral
profiles that describe its behavior in each environment.

The implementation of this approach is a system called DISARM: Detect-
Ing Sandbox-AwaRe Malware.

DISARM detects differences in behavior regardless of their cause, and is
therefore completely agnostic to the way that malware may perform sand-
box detection. Furthermore, it is also largely agnostic to the monitoring
technologies used in the analysis sandboxes, since it does not require heavy-
weight, instruction-level instrumentation. Any monitoring technology that
can detect persistent changes to system state at the operating system level
can take advantage of these techniques.

Previous work on detecting and remediating analysis evasion has re-
quired fine-grained, instruction-level instrumentation [33, 30]. However, in
a DMAS that processes tens of thousands of samples each day, large-scale
deployment of instruction-level instrumentation is problematic. This is be-
cause it leads to an extremely slow emulated environment, to the point that
some malware fail to perform network communication because of server-
side timeouts. Furthermore, the produced log files are unmanageably large
(up to half a Gigabyte for a single execution according to Kang et al. [33]).
DISARM does not suffer from this limitation. This allows to apply the tech-

www.syssec-project.eu 30 November 12, 2014

3.1. EVASION PREVALENCE IN MALWARE

niques to a significant number of malware samples, revealing a variety of
anti-analysis techniques.

Chen et al. [14] also performed a large-scale study of analysis-resistant
malware. However, their work assumes that an executable is evading anal-
ysis whenever its executions differ by even a single persistent change. This
assumption does not seem to hold on a dataset of modern malware: about
one in four malware samples produces different persistent changes between
multiple executions in the same sandbox. DISARM executes malware samples
multiple times in each sandbox to establish a baseline for a sample’s vari-
ation in behavior. Furthermore, it introduces behavior normalization and
comparison techniques that allow to eliminate spurious differences that do
not correspond to semantically different behavior.

DISARM does not, however, automatically identify the root cause of a
divergence in behavior. Detect samples could therefore be further processed
using previously proposed approaches to automatically determine how they
evade analysis. For instance, the techniques proposed by Balzarotti et al. [6]
can be used to automatically diagnose evasion techniques that are based on
CPU emulation bugs. Differential slicing [30] is a more general technique
that can likewise identify the root cause of a divergence, but it requires a
human analyst to select a specific difference in behavior to be used as a
starting point for analysis.

3.1 Evasion prevalence in malware

Dynamic malware analysis system (DMAS) like Anubis are mostly based on
an instrumented Qemu [11] emulator. The main output of the analysis is
a human-readable report that describes the operating system level behavior
of the analyzed executable. Anubis has has been offering malware analysis
as a free service since February 2007. This service has over 2,000 registered
users, has received submissions from 200,000 distinct IP addresses, and has
already analyzed over 50,000,000 malware samples.

Public-facing analysis sandboxes such as Anubis are particularly vulner-
able to detection, because attackers can probe the sandbox by submitting
malware samples specifically designed to perform reconnaissance. Such
samples can read out characteristics of the analysis sandbox and then use
the analysis report produced by the sandbox to leak the results to the at-
tacker. These characteristics can later be tested by malware that wishes to
evade analysis. However, because of sharing of malware samples between
sandbox operators, private sandboxes may also be vulnerable to reconnais-
sance [94], so long as they allow executed samples to contact the Internet
and leak out the detected characteristics.

Chen et al. [14] have proposed a taxonomy of approaches that can be
used by malware for the detection of analysis sandboxes. These are not lim-

www.syssec-project.eu 31 November 12, 2014

CHAPTER 3. MALWARE EVASION

Table 3.1: Anubis evasion techniques according to taxonomy [14] (ex-
tended).

Abstraction Artifact Test
Hardware unique id disk serial number [8]

Environment execution
MOD R/M emulation bug [55]
AAM instruction emulation bug

Application

installation
C:\exec\exec.exe present
username is “USER” [8]
executable name is “sample.exe” [8]

execution popupkiller.exe process running

unique id

windows product ID [8]
computer name [8]
volume serial number of system drive
hardware GUID

Network
connectivity

get current time from Yahoo home page
check Google SMTP server response string

unique id server-side IP address check [94, 35, 31]

ited to techniques that aim to detect virtualized [74] or emulated [66, 55]
environments, but also include application-level detection of characteristic
features of a sandbox, such as the presence of specific processes or executa-
bles in the system.

Table 3.1 shows a number of Anubis evasion techniques that surfaced
over the years, classified according to an extended version of this taxon-
omy. The unique identifier class is required because many of the detection
techniques that have been used against Anubis are not targeted at detecting
the monitoring technology used by Anubis, but a specific instance of that
technology: The publicly accessible Anubis service. The connectivity class
is required because the network configuration of a DMAS faces a trade-off
between transparency and risk. It is typically necessary to allow malware
samples some amount of network access to be able to observe interesting
behavior. On the other hand, we need to prevent the samples from causing
harm to the rest of the Internet. A malware sample, however, may detect
that it is being provided only limited access to the Internet, and refuse to
function. For instance, a DMAS needs to stop malware from sending SPAM.
Rather than blocking the SMTP port altogether, it can redirect SMTP traffic
to its own mail server. Some variants of the Cutwail SPAM engine detect
this behavior by connecting to Gmail’s SMTP servers and verifying that the
server replies with a specific greeting message.

www.syssec-project.eu 32 November 12, 2014

3.2. BEHAVIOR COMPARISON

Execution Monitoring Behavior Comparison

Behavior
Normalization

Windows
Kernel
Module

Anubis Distance
Measure

and
Scoring

Same Behavior

Different Behavior

Behavioral
Profiles

Figure 3.1: System Architecture of DISARM.

In the arms race between malware analysis systems and malware sam-
ples that evade analysis, its required to rely on more automation. For this,
a scalable tools to screen large numbers of malware samples for evasive be-
havior is needed, regardless of the class of evasion techniques they employ.
This is the role that DISARM aims to fill.

3.1.1 DISARM Architecture

DISARM works in two phases, illustrated in Fig. 3.1. In the execution mon-
itoring phase, a malware sample is executed in a number of analysis sand-
boxes. The output of this execution monitoring provides the malware’s be-
havior represented as a number of behavioral profiles (one for each execu-
tion). In the behavior comparison phase, the behavioral profiles are nor-
malized to eliminate spurious differences. Then the distances between each
pair of normalized behavioral profiles is computed. Finally, these distances
are combined into an evasion score, that is compared against a threshold to
determine whether the malware displayed different behavior in any of the
sandboxes. Samples that are classified as showing signs of evasion can then
be further analyzed in order to identify new evasion techniques and make
sandboxes resilient against these attacks.

3.2 Behavior Comparison

When comparing behavioral profiles produced by different monitoring tech-
nologies, it is highly unlikely that they will contain the same amount of
features. The reason is that each monitoring technology is likely to have
significantly different runtime overheads, so a sample will not be able to ex-
ecute the same number of actions on each system within a given amount of
time. Nor is it possible to simply increase the timeout on the slower system
to compensate for this, since monitoring overheads may vary depending on
the type of load. Thus, given two sandboxes α and β and the behavioral pro-
files consisting of nα and nβ features respectively, DISARM only takes into

www.syssec-project.eu 33 November 12, 2014

CHAPTER 3. MALWARE EVASION

account the first min(nα, nβ) features from each profile, ordered by times-
tamp. In a few cases, however, this approach is not suitable. If the sample
terminated on both sandboxes, or it terminated in sandbox α and nα < nβ,
we have to compare all features. This is necessary to identify samples that
detect the analysis sandbox and immediately exit. Samples that detect a
sandbox may instead choose to wait for the analysis timeout without per-
forming any actions. Therefore, all features are compared in cases where
the sample exhibited “not much activity” in one of the sandboxes. For this, a
threshold of 150 features is used, that covers the typical amount of activity
performed during program startup. This is the threshold used by Bayer et
al. [8], who in contrast observed 1,465 features in the average profile.

Not all features are of equal value for characterizing a malware’s behav-
ior. DISARM only takes into account features that correspond to persistent
changes to the system state as well as features representing network activ-
ity. This includes writing to the file system, registry or network as well as
starting and stopping processes and services. This is similar to the approach
used in previous work [5, 14] and it leads to a more accurate detection of
semantically different behavior.

3.2.1 Behavior Normalization

In order to meaningfully compare behavioral profiles from different exe-
cutions of a malware sample, a number of normalization steps need to be
performed, mainly for the following two reasons: The first reason is that
significant differences in behavior occur even when running an executable
multiple times within the same sandbox. Many analysis runs exhibit non-
determinism not only in malware behavior but also in behavior occurring
inside Windows API functions, executables or services. The second reason
is that behavioral profiles obtained from different Windows installations are
compared. This is necessary to be able to identify samples that evade anal-
ysis by detecting a specific installation. Differences in the file system and
registry, however, can result in numerous differences in the profiles. These
spurious differences make it harder to detect semantically different behav-
ior. Therefore, the following normalizations are performed on each profile.

• Noise reduction. Features generated by benign Windows programs
(notepad.exe, calc.exe, winmine.exe, mspaint.exe) are consider as
”noise”. These features are filtered out of all behavioral profiles.

• User Generalization. Programs can write to the user’s home directory
in C:\Documents and Settings\<username> or the Registry without
needing special privileges. Accesses to values at these locations are
generalized.

www.syssec-project.eu 34 November 12, 2014

3.2. BEHAVIOR COMPARISON

• Environment Generalization. Other system specific values include
hardware identifiers and cache paths which are also generalized.

• Randomization Detection. Malware samples often use random names
when creating new files or registry keys. The generalized profiles are
created by replacing the random names with a special token.

• Repetition Detection. Some types of malware perform the same ac-
tions on different resources over and over again. If any actions (such
as a file write) are found that are performed on three or more such
resources, a generalized resource is created in the queried directory
and these actions are assigned to it.

• File System and Registry Generalization. For each sandbox, a snap-
shot of the Windows image’s state at analysis start is created. This
snapshot includes a list of all files, a dump of the registry, and infor-
mation about the environment which is used to generalize the user
and the environment.

3.2.2 Distance Measure and Scoring

The actions in the behavioral profiles are represented as a set of string fea-
tures. Two behavioral profiles are compared using the Jaccard distance [29]:

J(a, b) = 1− |a ∩ b|/|a ∪ b|. (3.1)

Balzarotti et al. [6] observed that two executions of the same malware pro-
gram can lead to different execution runs. About 25 % of samples execute
at least one different persistent action between multiple executions in the
same sandbox. Because of this, one cannot simply consider a high distance
score as an indication of evasion. Instead, an evasion score is defined as:

E = max
1<i<n

{
max

1<j<n,i6=j

{
distance(i, j)−max{diameter(i), diameter(j)}

}}
.

(3.2)
Here, diameter(i) is the full linkage (maximum) distance between execu-
tions in sandbox i, while distance(i, j) is the full linkage (maximum) dis-
tance between all executions in sandboxes i and j. The evasion score is thus
the difference between the maximum inter-sandbox distance and the maxi-
mum intra-sandbox distance. The evasion score is in the interval [0,1], with
0 representing the same behavior and 1 representing completely different
behavior. If this score exceeds an evasion threshold, DISARM declares that
the malware has performed semantically different behavior in one of the
sandboxes.

www.syssec-project.eu 35 November 12, 2014

CHAPTER 3. MALWARE EVASION

Table 3.2: Sandboxes used for evaluation.

Sandbox
Monitoring
Technology

Image Characteristics
Software Username Language

Anubis Anubis Windows XP Ser-
vice Pack 3, Internet
Explorer 6

Administrator English

Admin Driver same Windows image as Anubis
User Driver Windows XP Ser-

vice Pack 3, Internet
Explorer 7, .NET frame-
work, Java Runtime
Environment, Microsoft
Office

User English

German Driver Windows XP Ser-
vice Pack 2, Internet
Explorer 6, Java Run-
time Environment

Administrator German

3.3 Evaluation

To evaluate the proposed approach, the system was tested using two moni-
toring technologies and three different operating system images. Table 3.2
summarizes the most important characteristics of the four sandboxes.

Each sample is analyzed three times in each of the four different sand-
boxes, resulting in a total of 12 runs per sample.

3.3.1 Large Scale Test

DISARM was tested on a large dataset of 1,686 samples submitted to Anu-
bis between December 2010 and March 2011. A maximum of five samples
were selected per sample family as classified by Kaspersky to make sure the
dataset is diverse. The evasion threshold of 0.4 was selected as in the previ-
ous section. Since there is no ground truth for this dataset, it is impossible
to provide an accuracy score.

In this dataset, a total of 431 (25.56 %) samples resulted in an evasion
score above the threshold. Table 3.3 breaks these results down for each pair
of sandboxes. The sandboxes Anubis and Admin use the same Windows im-
age. Conversely, different behavior for any combination of Admin, User and
German indicates evasion or environment sensitivity related to differences in
the Windows environment. The results for Anubis-User and Anubis-German
are a combination of both factors and therefore produce the highest rates of
evasion.

www.syssec-project.eu 36 November 12, 2014

3.3. EVALUATION

Table 3.3: Samples with evasion scores above the threshold of 0.4 for each
pair of sandboxes.

Anubis Admin User German
Anubis - 252 (14.95 %) 333 (19.75 %) 303 (17.97 %)
Admin - - 121 (7.18 %) 58 (3.44 %)
User - - - 138 (8.19 %)
German - - - -

Table 3.4: Samples with at least one different persistent action for each pair
of sandboxes.

Anubis Admin User German
Anubis 391 (23.19%) 729 (43.24%) 733 (43.48%) 755 (44.78%)
Admin - 440 (26.10%) 727 (43.12%) 730 (43.30%)
User - - 443 (26.28%) 780 (46.26%)
German - - - 435 (25.80%)

Table 3.4 demonstrates that simply assuming a malware sample is evad-
ing an analysis sandbox whenever two executions differ by as little as a
single persistent action (as was done in [14]) leads to misleading results.
Close to one quarter of samples display some difference in behavior even
among executions in the same sandbox. The problem is further exacerbated
when considering different sandboxes: Overall 990 samples (58.72 %) be-
have differently in at least one sandbox according to this criterion.4

3.3.2 Qualitative Results

To get a feeling for differences causing a high ranking in the behavior com-
parison, randomly selected samples were manually rated with an evasion
score above the threshold. The following examples illustrate how DISARM

succeeded in uncovering new methods used by malware to detect the pres-
ence of Anubis, as well as pointing out ways to improve the configuration of
the Windows images in analysis sandboxes.

3.3.2.1 Targeted Evasion.

Several timing-sensitive samples were found, that evade analysis by detect-
ing that the environment in which they are running is much slower than a
real system. For this, they use the GetTickCount API call before and after
executing several benign calls such as GetCommandLine. If the difference
exceeds a threshold, these samples do not exhibit malicious behavior. These

4To allow for a fair comparison across different Windows images, the user and environ-
ment normalization was applied and network activity ignored.

www.syssec-project.eu 37 November 12, 2014

CHAPTER 3. MALWARE EVASION

samples can be detected because the in-the-box monitoring technology, de-
spite running inside Qemu, is much faster than Anubis and does not exceed
the specified thresholds. This further highlights the importance of evasion
detection techniques that are compatible with lightweight instrumentation.
Among these samples were representatives of several well known malware
families such as Zeus, Virut, Agent and Rbot.

Win32.Packed.Krap.ag.5 and Win32.TrojanSpy.Banker.9 evade Anubis by
checking if the parent process is explorer.exe. In Anubis samples are started
by an analysis daemon, which terminates right away. Thus, this condition is
not met and these samples exit without performing any malicious activity.

To render known evasion techniques ineffective, Anubis already ran-
domizes a number of identifiers at each execution, such as those listed in
Table 3.1. This is implemented by intercepting the calls to known sources
for this information and forging the results. Inspecting samples detected
by DISARM, however, reveals that this feature needs to be improved. Sev-
eral samples query a machine GUID stored in HKLM\SOFTWARE\MICROSOFT\
CRYPTOGRAPHY\MACHINEGUID, that is not yet covered by Anubis randomiza-
tion.5 In other cases, the randomization was insufficient to prevent eva-
sion. Trojan-Clicker.Win32.Wistler.d detected Anubis by querying the com-
puter name. The computer names have the format “pc” followed by a ran-
dom number. Clearly, a stronger randomization of this identifier is needed.
Finally, malware can also detect Anubis by checking the hard drive manufac-
turer information. The randomization feature of Anubis already intercepts
the device control code IOCTL STORAGE QUERY PROPERTY and the system call
NtQueryVolumeInformationFile and forges the return information. Some
samples, however, were able to bypass this randomization by instead using
the device control code DFP RECEIVE DRIVE DATA to retrieve the hard drive
serial number and manufacturer.

3.3.2.2 Environment Sensitivity.

The results of the evaluation also exposed various configuration flaws in
the image currently used in Anubis. In this image, third party extensions
for Internet Explorer are disabled. AdWare.Win32.InstantBuzz queries this
setting and terminates with a popup asking the user to enable browser ex-
tensions. Four samples, e.g. Trojan.Win32.Powp.gen, infect the system by
replacing the Java Update Scheduler. Clearly, they can only show this be-
havior in the sandboxes in which the Java Runtime Environment is installed.
Microsoft Office is only installed in one of the sandboxes and is targeted by
Worm.Win32.Mixor. P2P-Worm.Win32.Tibick.c queries the registry for the
presence of a file-sharing application and fails on images where the Kazaa

5Note that this is a different identifier than the hardware GUID listed in Table 3.1, which
Anubis already randomizes.

www.syssec-project.eu 38 November 12, 2014

3.4. DISCUSSION

file-sharing program is not installed. Using this insight it was possible to
modify the image used in Anubis in order to observe a wider variety of mal-
ware behavior.

3.3.2.3 Driver Evasion.

Samples are prevented from loading drivers in order to maintain the in-
tegrity of the kernel module. Nonetheless, samples were found that not
only detect the logging mechanism, but also actively tamper with SSDT
hooks. At least 20 samples employ mechanisms to restore the hooks to
their original addresses and therefore disable the logging in the driver. This
can be done from user space by directly accessing \device\physicalmemory
and restoring the values in the SSDT with the original values read from the
ntoskrnl.exe disk image [83]. Another ten samples achieve the same effect
by using the undocumented function NtSystemDebugControl to directly ac-
cess kernel memory. These techniques are employed by several popular mal-
ware families such as Palevo/Butterfly, Bredolab, GameThief and Bifrose,
probably as a countermeasure against Anti-Virus solutions. By disabling ac-
cess to kernel memory and instrumenting additional system calls, it is pos-
sible to harden a driver against such techniques, so long as the kernel is not
vulnerable to privilege-escalation vulnerabilities.

3.3.2.4 False Positives.

False positives were caused by samples from the Sality family. This virus
creates registry keys and sets registry values whose name depends on the
currently logged in user: HKCU\SOFTWARE\AASPPAPMMXKVS\A1 0 for “Admin-
istrator” and HKCU\SOFTWARE\APCR\U1 0 for “User”. This behavior is not
random and not directly related to the user name and therefore undetected
by the normalization.

3.4 Discussion

Dynamic malware analysis systems are vulnerable to evasion from malicious
programs that detect the analysis sandbox. In fact, the Anubis DMAS has
been the target of a variety of evasion techniques over the years.

In this chapter, we introduced DISARM, a system for detecting environ-
ment sensitive malware. By comparing the behavior of malware across mul-
tiple analysis sandboxes, DISARM can detect malware that evades analysis
by detecting a monitoring technology (e.g. emulation), as well as malware
that relies on detecting characteristics of a specific Windows environment
that is used for analysis. Furthermore, DISARM is compatible with essen-
tially any in-the-box or out-of-the-box monitoring technology.

www.syssec-project.eu 39 November 12, 2014

CHAPTER 3. MALWARE EVASION

DISARM was evaluated against over 1,500 malware samples in four dif-
ferent analysis sandboxes using two different monitoring technologies. As
a result, several new evasion techniques currently in use by malware were
uncovered. These results, however, are not the end of the line. As already
mentioned before, there is a never ending arms race between detection and
evasion. How such new evasion techniques may look like is yet to be seen.

www.syssec-project.eu 40 November 12, 2014

4
Malware experiments

In the previous chapter, we already mentioned how important it is to cre-
ate a safe containment for analysis environments. Observing the host- or
network-level behavior of malware as it executes constitutes an essential
technique for researchers seeking to understand malicious code. Dynamic
malware analysis systems like Anubis [10], CWSandbox [92] and others
have proven invaluable in generating ground truth characterizations of mal-
ware behavior. The anti-malware community regularly applies these ground
truths in scientific experiments, for example to evaluate malware detection
technologies, to disseminate the results of large-scale malware experiments,
to identify new groups of malware, or as training datasets for machine learn-
ing approaches. However, while analysis of malware execution clearly holds
importance for the community, the data collection and subsequent analysis
processes face numerous potential pitfalls.

In this chapter we explore issues relating to prudent experimental evalu-
ation for projects that use malware-execution datasets. As with the previous
chapters, detailed information is available in the original publication [73].
Our interest in the topic arose while analyzing malware and researching
detection approaches, during which we discovered that well-working lab
experiments could perform much worse in real-world evaluations. Investi-
gating these difficulties led to identify and explore the pitfalls that caused
them. For example, we observed that even a slight artifact in a malware
dataset can inadvertently lead to unforeseen performance degradation in
practice. Thus, we highlight that performing prudent experiments involv-
ing such malware analysis is harder than it seems. Related to this, we have
found that the research community’s efforts (including that of the SysSec
consortium) frequently fall short of fully addressing existing pitfalls. Some
of the shortcomings have to do with presentation of scientific work, i.e.,
authors remaining silent about information that they could likely add with

41

CHAPTER 4. MALWARE EXPERIMENTS

ease. Other problems, however, go more deeply, and bring into question the
basic representativeness of experimental results.

As in any science, it is desirable for the community to ensure to under-
take prudent experimental evaluations. We define experiments reported as
prudent if they are are correct, realistic, transparent, and do not harm oth-
ers. Such prudence provides a foundation for the reader to objectively judge
an experiments results, and only well-framed experiments enable compari-
son with related work. However, experiments in our communitys publica-
tions could oftentimes be improved in terms of transparency, e.g., by adding
and explaining simple but important aspects of the experiment setup. These
additions render the papers more understandable, and enable others to re-
produce results. Otherwise, the community finds itself at risk of failing to
enable sound confirmation of previous results. In addition, we find that pub-
lished work frequently lacks sufficient consideration of experimental design
and empirical assessment to enable translation from proposed methodolo-
gies to viable, practical solutions. In the worst case, papers can validate
techniques with experimental results that suggest the authors have solved a
given problem, but the solution will prove inadequate in real use. In con-
trast, well-designed experiments significantly raise the quality of science.
Consequently, it is important to have guidelines regarding both experimen-
tal design and presentation of research results. This chapter aims to frame a
set of guidelines for describing and designing experiments that incorporate
such prudence, hoping to provide touchstones not only for authors, but also
for reviewers and readers of papers based on analysis of malware execution.
To do so, we define goals that we regard as vital for prudent malware experi-
mentation: transparency, realism, correctness, and safety. We then translate
these goals to guidelines that researchers in our field can use. Most pub-
lished papers could significantly benefited from considering these guide-
lines. This assessment is also backed up by a set of conceptually simple
experiments performed using publicly available datasets. Following the pro-
posed guidelines can be difficult in certain cases. Still, the proposed guide-
lines canwhen applicablehelp with working towards scientifically rigorous
experiments when using malware datasets.

4.1 Designing experiments

In this section we discuss characteristics important for prudent experimen-
tation with malware datasets. The inspiration to draw these criteria comes
from extensive experience with malware analysis and malware detection, as
well as from lessons learned when trying to assess papers in the field andin
some casesreproducing their results. We emphasize that the goal is not to
criticize malware execution studies in general. Instead, we highlight pitfalls
when using malware datasets, and suggest guidelines how to devise prudent

www.syssec-project.eu 42 November 12, 2014

4.2. CORRECT DATASETS

experiments with such datasets. We group the pitfalls that arise when rely-
ing on data gathered from malware execution into four categories. Need-
less to say, compiling correct datasets forms a crucial part of any experiment.
We further experienced how difficult it proves to ensure realism in malware
execution experiments. In addition, transparency must be provided when
detailing the experiments to render them both repeatable and comprehensi-
ble. Moreover, legal and ethical considerations mandate discussion of how
to conduct such experiments safely, mitigating harm to others. For each of
these four cornerstones of prudent experimentation, more specific aspects
can be outlined and guidelines to ensure prudence can be described.

4.2 Correct Datasets

4.2.1 Check if goodware samples should be removed from datasets

Whereas goodware (legitimate software) has to be present for example in
experiments to measure false alarms, it is typically not desirable to have
goodware samples in datasets to estimate false negative rates. However,
malware execution systems open to public sample submission lack control
over whether specimens submitted to the system in fact consist of malware;
the behavior of such samples remains initially unknown rather than ma-
licious per se.It would be favorable to use sources of malware specimens
gathered via means that avoid the possible presence of goodware; explic-
itly remove goodware samples from their datasets; or compile sample sub-
sets based on malware family labels.

4.2.2 Balance datasets over malware families

In unbalanced datasets, aggressively polymorphic malware families will of-
ten unduly dominate datasets filtered by sample-uniqueness (e.g., MD5 hashes).
Authors should discuss if such imbalances biased their experiments, and, if
so, balance the datasets to the degree possible.

4.2.3 Check whether training and evaluation datasets should
have distinct families

When splitting datasets based on sample-uniqueness, two distinct malware
samples of one family can potentially appear in both the training and vali-
dation dataset. Appearing in both may prove desirable for experiments that
derive generic detection models for malware families by training on sample
subsets. In contrast, authors designing experiments to evaluate on previ-
ously unseen malware types should separate the sets based on families.

www.syssec-project.eu 43 November 12, 2014

CHAPTER 4. MALWARE EXPERIMENTS

4.2.4 Perform analysis with higher privileges than the malwares

Malware with rootkit functionality can interfere with the OS data structures
that kernel-based sensors modify. Such malware can readily influence mon-
itoring components, thus authors ought to report on the extent to which
malware samples and monitoring mechanisms collide. For example, kernel-
based sensors could monitor whenever a malware gains equal privileges by
observing if it is loading a kernel driver. Ideally, sensors are placed at a
level where they cannot be modified, such as monitoring system calls with
a system emulator or in a VMM.

4.2.5 Discuss and if necessary mitigate analysis artifacts and
biases

Execution environment artifacts, such as the presence of specific strings
(e.g., user names or OS serial keys) or the software configuration of an
analysis environment, can manifest in the specifics of the behavior recorded
for a given execution. Particularly when deriving models to detect malware,
papers should explain the particular facets of the execution traces that a
given model leverages. Similarly, biases arise if the malware behavior in an
analysis environment differs from that manifest in an infected real system,
for example due to containment policies.

4.2.6 Use caution when blending malware activity traces into
benign background activity

The behavior exhibited by malware samples executing in dynamic analysis
environments differs in a number of ways from that which would mani-
fest in victim machines in the wild. Consequently, environment-specific per-
formance aspects may poorly match those of the background activity with
which experimenters combine them. The resulting idiosyncrasies may lead
to seemingly excellent evaluation results, even though the system will per-
form worse in real-world settings. Authors should consider these issues, and
discuss them explicitly if they decide to blend malicious traces with benign
background activity.

4.3 Transparency

4.3.1 State family names of employed malware samples

Consistent malware naming remain a thorny issue, but labeling the em-
ployed malware families in some form helps the reader identify for which
malware a methodology works. A large number of unique malware samples

www.syssec-project.eu 44 November 12, 2014

4.3. TRANSPARENCY

does not imply family diversity, due to the potential presence of binary-
level polymorphism. If page-size limitations do not allow for such verbose
information, authors can outsource this information to websites and add
references to their paper accordingly.

4.3.2 List which malware was analyzed when

To understand and repeat experiments the reader requires a summary, per-
haps provided externally to the paper, that fully describes the malware sam-
ples in the datasets. Given the ephemeral nature of some malware, it helps
to capture the dates on which a given sample executed to put the observed
behavior in context, say of a botnets lifespan that went through a number
of versions or ended via a take-down effort.

4.3.3 Explain the malware sample selection

Researchers oftentimes study only a subset of all malware specimens at their
disposal. For instance, for statistically valid experiments, evaluating only a
random selection of malware samples may prove necessary. Focusing on
more recent analysis results and ignoring year-old data may increase rele-
vance. In either case, authors should describe how they selected the mal-
ware subsets, and if not obvious, discuss any potential bias this induces.
Note that random sample selections still may have imbalances that poten-
tially need to be further addressed.

4.3.4 Mention the system used during execution

Malware may execute differently (if at all) across various systems, software
configurations and versions. Explicit description of the particular system(s)
used (e.g., Windows XP SP3 32bit without additional software installations)
renders experiments more transparent, especially as presumptions about the
standard OS change with time. When relevant, authors should also include
version information of installed software.

4.3.5 Describe the network connectivity of the analysis environ-
ment

Malware families assign different roles of activity depending on a systems
connectivity, which can significantly influence the recorded behavior. For
example, in the Waledac botnet [79], PCs connected via NAT primarily sent
spam, while systems with public IP addresses acted as fast-flux repeaters.

www.syssec-project.eu 45 November 12, 2014

CHAPTER 4. MALWARE EXPERIMENTS

4.3.6 Analyze the reasons for false positives and false negatives

False classification rates alone provide little clarification regarding a systems
performance. To reveal fully the limitations and potential of a given ap-
proach in other environments, we advocate thoughtful exploration of what
led to the observed errors. Sommer and Paxson explored this particular
issue in the context of anomaly detection systems [72].

4.3.7 Analyze the nature/diversity of true positives

Similarly, true positive rates alone often do not adequately reflect the po-
tential of a methodology [72]. For example, a malware detector flagging
hundreds of infected hosts may sound promising, but not if it detects only a
single malware family or leverages an environmental artifact. Papers should
evaluate the diversity manifest in correct detections to understand to what
degree a system has general discriminative power.

4.4 Realism

4.4.1 Evaluate relevant malware families

Using significant numbers of popular malware families bolsters the impact
of experiments. Given the ongoing evolution of malware, exclusively using
older or sinkholed specimens can undermine relevance.

4.4.2 Perform real-world evaluations

A realworld experiment can be defined as an evaluation scenario that in-
corporates the behavior of a significant number of hosts in active use by
people other than the authors. Realworld experiments play a vital role in
evaluating the gap between a method and its application in practice.

4.4.3 Exercise caution generalizing from a single OS version,
such as Windows XP

For example, by limiting analysis to a single OS version, experiments may
fail with malware families that solely run or exhibit different behavior on
disregarded OS versions. For studies that strive to develop results that gen-
eralize across OS versions, papers should consider to what degree we can
generalize results based on one specific OS version.

4.4.4 Choose appropriate malware stimuli

Malware classes such as keyloggers require triggering by specific stimuli
such as keypresses or user interaction in general. In addition, malware of-

www.syssec-project.eu 46 November 12, 2014

4.5. SAFETY

ten expose additional behavior when allowed to execute for more than a
short period [72]. Authors should therefore describe why the analysis dura-
tion they chose suffices for their experiments. Experiments focusing on the
initialization behavior of malware presumably require shorter runtimes than
experiments that aim to detect damage functionality such as DoS attacks.

4.4.5 Consider allowing Internet access to malware

Deferring legal and ethical considerations for a moment, we argue that ex-
periments become significantly more realistic if the malware has Internet ac-
cess. Malware often requires connectivity to communicate with command-
and-control (C&C) servers and thus to expose its malicious behavior. In ex-
ceptional cases where experiments in simulated Internet environments are
appropriate, authors need to describe the resulting limitations.

4.5 Safety

4.5.1 Deploy and describe containment policies

Well designed containment policies facilitate realistic experiments while mit-
igating the potential harm malware causes to others over time. Experiments
should at a minimum employ basic containment policies such as redirecting
spam and infection attempts, and identifying and suppressing DoS attacks.
Authors should discuss the containment policies and their implications on
the fidelity of the experiments. Ideally, authors also monitor and discuss
security breaches in their containment.

4.6 Discussion

These guidelines are designed to aid with designing prudent malware-based
experiments. In [72], the authors assessed these guidelines by surveying 36
original papers. The survey identified shortcomings in most papers from
both top-tier and less prominent venues. By applying these guidelines,
the prudence of most of the experiments could have significantly been im-
proved. But what may be the reasons for such discouraging results? The
shortcomings in experimental evaluation likely arise from several causes.
Researchers may not have developed a methodical approach for presenting
their experiments, or may not see the importance of detailing various as-
pects of the setup. Deadline pressures may lead to a focus on presenting
novel technical content as opposed to the broader evaluation context. Simi-
larly, detailed analyses of experimental results are often not given sufficient
emphasis. In addition, page-length limits might hamper the introduction

www.syssec-project.eu 47 November 12, 2014

CHAPTER 4. MALWARE EXPERIMENTS

of important aspects in final copies. Finally, researchers may simply over-
look some of the presented hidden pitfalls of using malware datasets. Many
of these issues can be addressed through devoting more effort to presenta-
tion. Improving the correctness and realism of experiments is harder than
it seems, though. For instance, while real-world scenarios are vital for real-
istic experiments, conducting such experiments can prove time-consuming
and may raise significant privacy concerns for system or network admin-
istrators. Furthermore, it is not always obvious that certain practices can
lead to incorrect datasets or lead to unrealistic scenarios. For example, it
requires great caution to carefully think of artifacts introduced by malware
execution environments, and it is hard to understand that, for example, ex-
periments on overlay datasets may be biased. The significance of imprudent
experiments becomes even more important in those instances where current
practices inspire others to perform similar experiments - a phenomenon we
observed in our survey.

We hope that the guidelines framed in this deliverable improve this sit-
uation by helping to establish a common set of criteria that can ensure pru-
dent future experimentation with malware datasets. While many of these
guidelines are not new, this approach holds promise both for authors, by
providing a methodical means to contemplate the prudence and transpar-
ent description of their malware experiments, and for readers/reviewers, by
providing more information by which to understand and assess such exper-
iments.

www.syssec-project.eu 48 November 12, 2014

5
URL Shortening Services

In the previous chapters we focused on how malware infects a system and
presented some approaches to detect and mitigate malware infections. What
we did not yet cover is, how malware exploits a target system once it man-
aged to infect it. One key enabler for these mostly fraudulent activities
are URL shortening services. They provide an additional obstacle for anti-
malware solutions since they introduce an additional layer of obfuscation.
The target domain cannot easily be parsed anymore. Consequently, the in-
formation contained in the contacted domain is lost.

In a study characterizing the usage of short URLs [3] it clearly shows
that these shortening services are on the rise. The growing popularity of
such services is the result of their extensive usage in Online Social Networks
(OSNs). Services, like Twitter, impose an upper limit on the length of posted
messages, and thus URL shortening is typical for the propagation of content.
Consequently, URL shortening services have become part of the web’s criti-
cal infrastructure, posing challenging questions regarding its performance,
scalability, and reliability.

5.1 Security Threats and Countermeasures

Users have grown accustomed to following a URL that looks like http://bit.

ly/lhBa6k, even when the mapped URL may be http://evil.com/attack?

id=31337. If it is usually difficult for a user to determine whether a URL is
legitimate or not just by looking at it, this is even harder in case of short
URLs. As a result, shortening services have been abused by miscreants for
masquerading malicious target pages [68, 47, 25]. Large services such as
Twitter, Facebook or YouTube have started running their own shortening
service, upon which their social networks rely (e.g., t.co, fb.me, youtu.be).
Unfortunately, when the hyperlinks of an entire social network rely upon

49

http://bit.ly/lhBa6k
http://bit.ly/lhBa6k
http://evil.com/attack?id=31337
http://evil.com/attack?id=31337

CHAPTER 5. URL SHORTENING SERVICES

one, single URL “translator”, speed and availability also become of concern
(similarly to what happens with the DNS service).

In their paper [43], the authors perform a large-scale and global mea-
surement study of the threats to users introduced by short URLs and the
countermeasures adopted by shortening services. They first assess whether
such countermeasures can substitute blacklist-based protections implemented
in current browsers, so that users can actually trust URLs exposed by popular
shortening services even when client-side defenses are not in place. Accord-
ing to the experiments, popular services react against attempts of shortening
long URLs that expose malicious behavior at the time of submission—by ei-
ther banning offending URLs or by displaying warning pages; however, pre-
liminary experiments show that shortening services do not check existing
short URLs periodically. Such checks are useful in case the aliased landing
pages turn malicious (e.g., after a timeout expiration).

In addition, the end users and how they typically access pages contain-
ing short URLs are also considered. Instead of directly crawling short URLs
found on web pages, the idea is to “crowdsource” the collection to a large
pool of real web users. To this end, a publicly-available web service was de-
veloped and deployed, providing a much-needed feature, that is, a preview
of a short URL’s landing page. While browsing the Web, users submitted
24,953,881 distinct short URLs to the servers automatically, via browser
add-ons. Although the users in the dataset rarely stumbled upon malicious
short URLs, patterns that characterize malicious short URLs can still be iden-
tified. For a more detailed version of this study, please refer to Maggi et
al. [43].

5.2 Current Countermeasures

The first goal is to understand what (if any) measures are taken by short-
ening services to prevent malicious URLs from being shortened and, if they
are shortened, the amount of time it takes for such URLs to be flagged and

Service Malware Phishing Spam

% # % # %

bit.ly 2,000 100.0 2,000 100.0 2,000 100.0
durl.me 1,999 99.9 1,987 99.4 1,976 98.8
goo.gl* 2000 99.9 994 99.4 1,000 100.0

is.gd 1,854 92.7 1,834 91.7 364 18.2
migre.me 1,738 86.9 1,266 63.3 1,634 81.7

tinyurl.com 1,959 99.5 1,935 96.8 587 29.4

Overall 9,550 95.5 9,022 90.2 6,561 65.6

Table 5.1: Number and percentage of malicious URLs that were accepted
for shortening by the top services.

www.syssec-project.eu 50 November 12, 2014

5.2. CURRENT COUNTERMEASURES

removed. To this end, three types of malicious URLs were submitted to the
most popular short URL services that had a public API. More specifically,
10,000 URLs (2,000 for each of the five shortening services examined),
picked randomly, among those that were recently submitted to Wepawet
and that delivered drive-by-download exploits targeted at vulnerabilities in
web browsers and browser plugins (e.g., Adobe Flash, Java) were submit-
ted. In addition, 10,000 phishing URLs that were online and tracked by
PhishTank, and 10,000 URLs that were recently observed in spam emails
that we obtained from Spamhaus were submitted. The purpose of examin-
ing three types of URLs was to determine whether URL shortening services
block one or more classes of threats. After submitting the URLs, it was
recorded whether the shortening service allowed to shorten the URL in the
first place. Then, if the service shortened the URL, it was tracked whether
the corresponding short URL could be expanded on a daily basis for a four
week period.

In addition to the URLs mentioned above, 10 URLs of each type were
submitted, that were manually reviewed to ensure that they were actually
still delivering live exploits at the time of submission, as it is common that a
malicious URL, once discovered, is brought to the attention of a site admin-
istrator and removed. An overview of the results of these measurements is
shown in Tab. 5.1. Interestingly, the most popular service, bit.ly, accepted all
the malicious URLs that were submitted. Among the services that employs
countermeasures, is.gd is particularly effective against spam, as it prevented
the vast majority of spam URLs that we submitted from being shortened,
while migre.me seems to perform some kind of phishing filtering on submit-
ted URLs.

The situation changes significantly when looking at the warnings that are
displayed when short URLs are accessed (expanded), as shown in Tab. 5.2.
Overall 2,049 shortened malicious URLs were blacklisted after the submis-
sion by these services (about 21.45% of the 9,551 that passed the submis-
sion). Here, bit.ly covers a significant fraction of all malicious URLs: It
indeed expands a short URL unless it believes the target is malicious. Over-
all, all services had quite effective spam URL detection systems. It was also

Service Malware Phishing Spam

bit.ly 0.05 11.3 0.0
durl.me 0.0 0.0 0.0
goo.gl 66.4 96.9 78.7
is.gd 1.08 2.27 0.8

migre.me 0.86 14.0 0.0
tinyurl.com 0.66 0.7 2.04

Overall 21.45 26.39 31.38

Table 5.2: Shortened malicious URLs expanded without warnings when
accessed.

www.syssec-project.eu 51 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

rather surprising that goo.gl, was not as effective at blocking malware and
phishing as (at least) Google’s own blacklist.

In summary, bit.ly was the only one that flagged almost all malicious
URLs that we shortened, although they were all accepted for shortening with
no checks upon submission. On the other hand, is.gd prevented the majority
of malicious URLs from being shortened when submitted—probably using
lightweight, blacklist-based checks.

5.2.1 Deferred Malicious URLs

It was measured whether shortening services retroactively analyze malicious
URLs, that is, it was determined if these services perform any repeated ver-
ification of the safety of the long URLs to which their existing short URLs
point to. Thus, a web page was set up that served benign HTML content
for a period of three days; this page’s URL contained 32 random characters
to ensure that no legitimate users accidentally stumbled upon the URL. Af-
ter the third day, the page was modified to redirect to a web site serving
non–legitimate content, i.e. malicious, spam or phishing content. All the
shortening services that were tested did not detect the previously-benign
page that was modified to redirect visitors to a malicious site. After setting
up 3,000 distinct web pages hosted at random domains and URLs they were
fed to each service, totaling 1,000 distinct short URLs per service for a total
of 15,000 short URLs overall. After 72 hours each page was modified so it
redirected to a malicious site. More precisely, 1,000 unique URLs were used
serving drive-by exploits, 1,000 phishing pages, and 1,000 spam URLs. In
other words, after 72 hours, the short URLs became active aliases of the set
of 3,000 malicious URLs. The redirection chain of each short URL was moni-
tored on a weekly basis to determine which shortening services displayed an
alert or blocked the redirection—as a result of a security check performed
after the shortening.

From the results in Tab. 5.3 it shows that only 20% of the malicious
URLs were blocked by the shortening service when accessed after they be-
came malicious—this 20% is actually due to the fact that durl.me always
displays a preview for a short URL, regardless of whether the URL is be-
nign or malicious, which is by not a very effective security mechanism. The

Threat Shortened Blocked Not Blocked

Malware 5,000 20% 80%
Phishing 5,000 20% 80%

Spam 5,000 20% 80%

Overall 15,000 20% 80%

Table 5.3: Deferred malicious short URLs submitted and percentage of
blocked versus not blocked ones.

www.syssec-project.eu 52 November 12, 2014

5.3. MEASUREMENT APPROACH

other services, however, did not block any malicious short URL, neither at
submission time nor after they were modified.

In summary, the most popular shortening services verify the URLs only
upon submission, and an attacker can evade this check by shortening a be-
nign URL that will begin to redirect to a malicious page a few moments later.
Thus, URL shortening services should periodically sanitize past short URLs,
so that benign pages turning malicious can be detected. Clearly, this is not
an easy task as it presents the typical challenges of client-side threat analysis
(e.g., cloaking, fingerprinting, evasion) [42].

These experiments were conducted in April 2011 and repeated in April
2012. The obtained results were statistically similar, showing that none of
the shortening services changed their security measures against dangerous
short URLs in the meantime.

5.3 Measurement Approach

Alarmed by the security assessment discussed in Section 5.2, it was impor-
tant to analyze short URLs at a larger scale, to understand how they are
used with malicious intents. Unlike previous work, the focus was directed
towards the clients’ perspective, so that usage habits can also be charac-
terized: To this end, short URLs were collected while clients accessed web
pages that contained short URLs. Moreover, the analysis is not limited to a
selection of shortening services (e.g., the most popular ones) nor narrowed
on short URLs published on a few, specific online social networks and news
aggregators (e.g., Twitter). Instead, a wide variety of URL shortening ser-
vices, up to 622, whose URLs appear in thousands distinct websites, are
covered.

The collection system comprises a browser add-on (named “collector”)
and a centralized short URL resolver. The collector analyzes container pages
while the user browses the Web. The container page is a web page that,
when rendered on a browser, displays or contains at least one short URL.
Each collector submits short URLs to a resolver, along with a timestamp,
URL of the container page, and client IP address. The resolver finds the
respective landing page.

The browser add-on works on Google Chrome, Mozilla Firefox, Opera, and
any browser that support JavaScript-based add-ons. When the browser ren-
ders a page, the add-on searches its DOM for short URLs and submits them
to the resolver along with the container page URL. The add-on instantiates
contextual tooltips associated to each short URL submitted. These tooltips
are revealed whenever the mouse cursor hovers on a resolved short URL.
The tooltip displays details about the landing page (e.g., URL, size, title,
and content type). Users can also contribute by reporting suspicious short

www.syssec-project.eu 53 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

Landing page is http://example.net
and has "Example page" title (size 10.5 KB)

container page
RESOLVER

DBWWW

meta
dat

a

C
O

LL
EC

TO
RS

C
O

LL
EC

TO
RS

C
O

LL
EC

TO
RS

URL: http://myblog.com

~7
00

0
w

eb
 u

se
rs

http://bit.ly/foo
. . .

http://is.gd/bar1
2

3
4

http://point.to/redir.html
http://example.net

http://bit.ly/foo

30
2

Figure 5.1: Overview of our collection approach.

Figure 5.2: Contributors’ geographical location.

URLs by clicking on a “flag as suspicious” link on the tooltip. This action is
recorded in the database.

For each short URL received, the resolver obtains the landing page URL,
title, size, and content type (e.g., HTML, XML, image), by visiting each short
URL with a mechanized browser that follows and tracks redirections. When
the resolver receives an HTTP 200 response, it assumes that the landing
page has been reached and no further redirections follow. The resolver then
extracts the relevant data from the landing page’s source code and saves
the redirection chain. In addition, the collectors’ IP addresses are stored for
aggregation purposes. The completion of the whole procedure may take up
to a few seconds, depending on network conditions and responsiveness of
the servers that host the landing and intermediate pages. For this reason,
100 load-balanced, parallel resolvers were deployed along with a caching
layer (that stores results for 30 minutes) that ensures short response times.
According to the measurements reported in [3], a short URL random suffix,

www.syssec-project.eu 54 November 12, 2014

5.3. MEASUREMENT APPROACH

0

50000

100000

150000

200000

250000

300000

Apr
’10

May
’10

Jun
’10

Jul
’10

Aug
’10

Sep
’10
Sep
’10

Oct
’10

Nov
’10

Dec
’10

Jan
’11

Feb
’11

Mar
’11

Apr
’11

May
’11

Jun
’11

Jul
’11

Aug
’11

Sep
’11
Sep
’11

Oct
’11

Nov
’11

Dec
’11

Jan
’12

Feb
’12

Mar
’12

Apr
’12

Figure 5.3: Log entries per day between late March 2010 and April 2012.

Distinct URLs Log entries

10,069,846 bit.ly 24,818,239 bit.ly
4,725,125 t.co 12,054,996 t.co
1,418,418 tinyurl.com 5,649,043 tinyurl.com

816,744 ow.ly 2,188,619 goo.gl
800,761 goo.gl 2,053,575 ow.ly
638,483 tumblr.com 1,214,705 j.mp
597,167 fb.me 1,159,536 fb.me
584,377 4sq.com 1,116,514 4sq.com
517,965 j.mp 1,066,325 tumblr.com
464,875 tl.gd 1,045,380 is.gd

Table 5.4: The 10 most popular services ranked by number of log entries
in the database, and number of distinct short URLs collected. Highlighted
rows indicate services at the same rank.

which is its identifier, takes much longer to expire and get recycled. When
the cache expires, a snapshot of the log entry (i.e., the history of each short
URL) is retained.

In summary, the service takes short URLs as input from clients and re-
turns the aliased landing page. These “expansion” services have become
useful for previewing the actual websites behind short URLs. The long
time span of the measurement and the usefulness of the service—which
is free of charge and publicly available through popular browser add-on
marketplaces—allowed to collect a unique, large dataset.

5.3.1 Measurement

The data collection infrastructure was deployed in March 2010 and, as of
April 2012, the database contained 24,953,881 unique short URLs. More
than 7,000 web users downloaded and installed the browser add-on and
submitted short URLs; some users also requested support for additional
shortening services. Around 100 out of the 622 that are currently supported
by the system were suggested by users. The collection infrastructure re-

www.syssec-project.eu 55 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

 0 10 20 30 40 50 60 70 80 90 100

In
b
o
u
n
d

O
u
tb

o
u
n
d

google.com
498,094 logs

facebook.com
4,853,557 logs

youtube.com
366,112 logs

yahoo.com
80,715 logs

baidu.com
266 logs

t.co
bit.ly

goo.gl
ff.im
tinyurl.com

tinyurl.com
bit.ly

t.co
youtu.be
ow.ly

bit.ly
t.co
tinyurl.com

goo.gl
youtu.be

bit.ly
yhoo.it
t.co

goo.gl
tinyurl.com

sqze.it

goo.gl
youtu.be

p.tl

Figure 5.4: Top 5 services by percentage of log entries of outbound short
URLs of Alexa top 5 domains.

ceives data from 500 to 1000 active users every day. A record (Log entry) is
stored in the database for each short URL submitted. Each log entry contains
the source (geo-localized) IP address, the container page and landing page
URLs, and the timestamp. Thus, each log entry corresponds to one short
URL found in a given container page, and represents the fact that a user
viewed the container page at a given time. Identifying information possibly
related to the specific user who submitted a log entry is never retained.

Overall Dataset Statistics Fig. 5.3 shows the daily number of log entries
whereas Fig. 5.2 shows the contributors’ geographical location. Albeit the
system was deployed in March 2010, the vast majority of users became ac-
tive contributors starting from Oct 2010. However, at its beginnings the
system received 20,000 to 50,000 log entries per day. At steady usage rates,
an average of 90,000 log entries was stored per day. Each of the 1,649,071
distinct IPs contributed around 37 requests on average, with a standard de-
viation of 7,157. Distinct IPs may not correspond to distinct users, either
because multiple users could share the same sets of IPs (e.g., via NATs) or
because of dynamic IP-assignment policies employed by ISPs. The system
experienced three outages due to database failures throughout one year: in
late December 2010, in late January 2011, and between late February and
March 2011. Nevertheless, a large amount of short URLs were collected
which are useful to conduct this study.

Before analyzing security aspects of short URLs, it is necessary to de-
scribe the dataset through four aggregated statistics: (1) distinct short URLs,
(2) log entries in the database, (3) log entries of inbound short URLs (dis-

www.syssec-project.eu 56 November 12, 2014

5.4. RESULTS

tinct short URLs pointing to the sites’ pages), and (4) outbound short URLs
(short URLs that are found in their container pages and that point to both
external and internal pages). Shortening services with many distinct short
URLs are more popular (i.e., they have become the “shortener of choice” for
several users), whereas those characterized by many log entries have their
short URLs posted on many popular container pages. As shown in Tab. 5.3
the top most popular services in the dataset are bit.ly, t.co and tinyurl.com,
respectively. As expected, popular shortening services hold a steadily large
number of short URLs, whereas site-specific shortening services exhibit a
behavior that is typical of content shared through social networks. Fig. 5.4
shows the ranking of the top websites with respect to inbound and outbound
short URLs.

5.4 Results

The objective is to assess if malicious short URLs have distinctive features
(§5.4.1) and typical usage patterns (§5.4.2) that criminals may leverage to
target their campaigns.

5.4.1 Malicious Short URLs

First, it is necessary to understand how frequently the users in the database
encounter malicious short URLs in a page. For this, four datasets are lever-
aged: the Spamhaus DBL, a list of DNS domains that are known to host
spam pages, Wepawet, a service able to detect drive-by-download exploit
pages, Google Safe Browsing, a list of domains known for hosting malware
or phishing sites, and PhishTank, a blacklist of URLs that are involved in
phishing operations. For Spamhaus, the domain was checked against the
database. For the other three blacklists, the full URL was checked. Land-
ing URLs are categorized into three classes: spam, phishing, and malware,
according to the dataset they were flagged in: URLs detected by Wepawet
are flagged as malware, domains found in Spamhaus are marked as spam,
and URLs from PhishTank as phishing. Google Safe Browsing classifies both
phishing and malware sites. Tab. 5.4.1 summarizes the breakdown of mali-
cious short URLs.

In total, 44,932 unique short URLs were observed, pointing to 19,216
malicious landing pages. By looking at the referrer, these URLs were hosted
on 1,213 different domains. A more detailed analysis on the container pages
of malicious URLs is provided in the next section. In total, the malicious
URLs in the dataset have been rendered by 1,747 users in their container
pages via the browser add-ons: 378 users (about 21.6%) were located in
South Korea, 282 (about 16.1%) in the United States, and 98 (about 5.6%)
in Germany.

www.syssec-project.eu 57 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

Category Short URLs Long URLs Ratio

Phishing 3,806 920 4.1
Malware 27,203 8,462 3.2
Spam 13,184 10,306 1.2

Blacklist Phishing Malware Spam

Spamhaus - - 10,306
Phishtank 7 - -
Wepawet - 6,057 -
Safe Browsing 913 2,405 -

Table 5.5: Number of short and long URLs, respectively, classified as Phish-
ing, Malware, and Spam. The dash ‘-’ indicates that the blacklist in question
provides no data about that threat.

Unsurprisingly, bit.ly is the top most common service, serving 10,392
malicious short URLs, followed by tinyurl.com with 1,389, and ow.ly with
1,327. As a side result, it was also measured whether users perceive and
report malicious short URLs. Only 2,577 distinct short URLs have been sig-
naled as malicious through the browser add-ons. Only 2 of these URLs were
actually malicious according to at least one of the aforementioned blacklists.

Dissemination of Malicious Short URLs Then it was investigated how
malicious pages are aliased through short URLs, and whether this trend
changed over time. During the first year of analysis, multiple short URLs
were sometimes used to point to the same malicious page, although the av-
erage ratio was low. About 2.01 distinct short URLs were used to alias a
malicious landing page, whereas an average of 1.3 distinct short URLs were
observed per distinct benign landing page. Looking at a 2-year span period,
however, those average numbers became very similar: about 1.17 unique
short URLs per malicious page versus 1.14 unique short URLs per benign
page. This comparison is better explained in Fig. 5.5(a) and Fig. 5.5(b),
which show the empirical cumulative distribution function for the ratio of
short URLs per landing page URL of legitimate vs. malicious pages of the
two periods. The pattern here is that benign URLs used to have, in general,
less short URLs pointing to them when compared to malicious URLs. Inter-
estingly, in the second year of measurement, the situation changed slightly.
In particular, as shown in Fig. 5.5(b), the practice of using multiple short
URLs pointing to the same spamming long URL is less used than in the past
(Fig. 5.5(a)), where the aliasing of spam URLs was more evident.

Then the frequent container pages abused to publish malicious short
URLs were analyzed through the HTTP requests’ referer issued while ex-
panding the URLs (9,056 of these had a referrer specified).

www.syssec-project.eu 58 November 12, 2014

5.4. RESULTS

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 10 100 1000

C
D

F

Benign
Spam URLs

Malware URLs

(a) Distinct short URLs per distinct ma-
licious or benign landing URL from April
2010 to April 2011.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 10 100

C
D

F

Benign
Spam URLs

Malware URLs

(b) Distinct short URLs per distinct ma-
licious or benign landing URL from April
2010 to April 2012.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 10 100 1000

C
D

F

Benign URLs
Spam URLs

Malware URLs

(c) Distinct containers per distinct ma-
licious or benign short URL from April
2010 to April 2011.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 10 100 1000

C
D

F

Benign URLs
Spam URLs

Malware URLs

(d) Distinct containers per distinct ma-
licious or benign short URL from April
2010 to April 2012.

Figure 5.5: Comparison of the number of distinct short URLs per unique
landing page (a, c) and distinct container page per unique short URL (b, d)
after 1 year (a, b) and after 2 years (c, d).

socialnetworking
blog

other
chat

news
audio-video

mail
filehosting

searchengines
games

adult
kidstimewasting

vacation
cleaning

 0 5 10 15 20 25 30 35

% of malicious short URLs

Figure 5.6: Malicious short URLs: Categories of container page ranked by
the amount of short URLs they held.

www.syssec-project.eu 59 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

As summarized in Fig. 5.6, the majority of those URLs were found on
social networks. More precisely Twitter accounted for 5,881 URLs, 30% of
the total. In second position there is Facebook—228 requests, accounting for
1.18% of the total. The third most common referrer is a Belgian news site
with 137 requests, accounting for 0.7% of the total. It is plausible that this
website was victim of massive comment spam. It is also interesting to look
at which sites, among those containing malicious short URLs, attracted the
most number of users. Twitter is in first position, with 104 potential victims,
followed by Facebook with 31, and by a hacking forum with 27 distinct IP
addresses visiting it. This forum is probably another example of comment
spam. However, these container pages, which are the most targeted ones,
do not contain many short URLs, as detailed in Fig. 5.8: One can argue
that the cyber criminals are not considering the “density” of short URLs per
container page, but rather its popularity.

Lifespan of Malicious Short URLs In the previous section it was analyzed
whether the dissemination of short URLs exhibits different characteristics
between malicious and benign content, whereas in this section a compari-
son between them by means of timing patterns is presented. The maximum
lifespan of each collected URL based on historical access logs to their con-
tainer pages is derived. Then, the maximum lifespan (or simply lifespan) is
calculated as the delta time between the first and last occurrence of each
short URL in the database. More specifically, the definition of lifespan ac-
counts for the fact that short URLs may disappear from some container pages
and reappear after a while on the same or other container pages. Fig. 5.7
shows the empirical cumulative distribution frequency of the lifespan of ma-
licious versus benign short URLs. About 95% of the benign short URLs have
a lifetime around 20 days, whereas 95% of the malicious short URLs lasted
about 4 months. For example, a spam campaign spanning between April
1st and June 30th 2010 was observed that involved 1,806 malicious short
URLs redirecting to junk landing pages; this campaign lasted about three
months until removed by tinyurl.com administrators. The MessageLabs Intel-
ligence Annual Security Report [2] for that year corroborates these findings:
The Storm botnet, which made a significant reappearance in April 2010,
seems to be the culprit of this massive spam campaign that contains several
shortened URLs.

For the sake of clarity, short URLs involved in such spam campaigns were
removed from the second dashed curve in Fig. 5.7; nevertheless, it shows
that malicious short URLs last longer than benign URLs, in general. Recall
that each short URL may have different container pages at the same point
in time, and these can vary over time. Also recall that the longevity of short
URLs on each container pages is quite low, as observed in [3] by Antoniades
et al. A short URL can make its first appearance on a certain page, disappear
to make room for new pages, and reappear a few moments later (even) on

www.syssec-project.eu 60 November 12, 2014

5.4. RESULTS

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
D

F

Lifespan (hours between first and latest occurrence of a short URLs in our dataset)

3-months spam campaign disseminated
via 1,806 tinyurl.com short URLs
(April 1st-June 30, 2010)

Benign
Malicious

Malicious (excluding 3-months Apr-Jun spam campaign)

Figure 5.7: Delta time between first and latest occurrence of malicious ver-
sus benign short URLs.

chat

mail

instantmessaging

gambling

searchengines

government

filehosting

audio-video

onlinepayment

games

onlinegames

banking

weather

dating

 20 40 60 80 100 120 140 160 180 200

Average number of distinct short URLs/page per container page category

4,746,341

139,107

11,995

42,086

142,765

7,469

370,886

565,188

1,319

278,858

24,825

1,737

7,667

17,383

Figure 5.8: Categories of container page ranked by the average number of
short URLs/page they held.

www.syssec-project.eu 61 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

different container pages. From this observation, one can argue that, from
the miscreants’ point of view, the lifespan as we calculate it—across different
container pages—seems to be of more importance than the lifespan on a
single container page. In fact, short URLs that have a longer lifespan—
regardless if they migrate intermittently across several pages—have higher
chances of receiving visits from a large audience while remaining stealthy
even months after publication. However, those URLs that survive on very
popular pages only for a few hours may have their one day of fame before
disappearing or being deleted by the container page administrators.

Although we clicks are not tracked on short URLs, the collection method
ensures that short URLs are tracked as soon as they appear the web pages
visited by the users in our large pool. This ensures us good visibility over
their evolution. This is corroborated by the statistics about the abuse of
short URLs found in latest three APWG reports [68, 69, 70]: After a growing
trend, at the beginning of our measurement (2010), the subsequent reports
highlight a stable (2011) and decreasing (2012) trend.

5.4.2 The Short URLs Ecosystem

As part of their research, Antoniades and colleagues in [3] have analyzed
the category of the pages to which bit.ly and ow.ly short URLs typically point
to, along with the category of the container page, that they had available
for bit.ly URLs only. They assigned categories to a selection of URLs. Here,
a similar yet more comprehensive analysis was performed by characterizing
all the short URLs that were collected by means of the categories described
in the following.

Categorizing an arbitrary-large number of websites automatically is a
problem that has no solution. However, the goal was to obtain a coarse-
grained categorization. To this end, community-maintained directories and
blacklists were utilized. More precisely, the container pages (about 25,000,000
distinct URLs) and landing pages (about 22,000,000 distinct URLs) were
classified using the DMOZ Open Directory Project (http://www.dmoz.org)
and URLBlacklist.com. The former is organized in a tree structure and in-
cludes 3,883,992 URLs: URLs are associated to nodes, each with localized,
regional mirrors. These nodes are expanded by recursively merging the
URLs found in these mirrors. The latter complements the DMOZ database
with about 1,607,998 URLs and domains metadata. URLBlacklist.com is
used by web-filtering tools such as SquidGuard (http://www.squidguard.org)
and contains URLs belonging to clean categories (e.g., gardening, news),
possibly undesired subjects (e.g., adult sites), and also malicious pages (i.e.,
22.6% of the sites categorized as “antispyware”, 18.15% of those catego-
rized as “hacking”, 8.29% of pages falling within “searchengine” domains,
and 5.7% of the sites classified as “onlinepayment” are in this order, the
most rogue categories according to an analysis that was run through McAfee

www.syssec-project.eu 62 November 12, 2014

http://www.dmoz.org
http://www.squidguard.org

5.4. RESULTS

SiteAdvisor 1). Overall, it resulted in 74 categories. For clearer visualization,
the 48 most frequent categories were selected. These include, for example,
“socialnetworking,” “adult,” “abortion,” “contraception,” “chat,” etc. The
word “other” was reserved for URLs belonging to the less meaningful cate-
gories that we removed, or for URLs that remained unclassified. Note that
each URL can belong to multiple categories.

Frequent and Infrequent Categories Tab. 5.4.2 details the most and least
frequent categories of the landing pages pointed to by short URLs of the
top services.It shows that the five most popular services are used to refer
to various categories including news, audio-video content, blog, and online
social networks. However, the majority of short URLs collected come from
user-authored content (e.g., online social networks, blog posts), mainly be-
cause these sites are very popular (e.g., Facebook). A different viewpoint is
provided by plotting the number of short URLs per page (Fig. 5.8).

Short URLs are seldom used as aliases of reference, science, and health-
related pages. A possible explanation could be that users may have some-
how perceived that, as short URLs shall expire sooner or later, they are
not reliable for spreading really important content (e.g., health). Secondly,
and more importantly, users post short URLs in email and chat messages,
weather sites, search-engine pages (including all *.google.com pages), do-
it-yourself sites, and news pages. In summary, the majority of short URLs
point to content that expires quickly. Therefore, from a security viewpoint,
real-time countermeasures against malicious short URLs such as WARN-
INGBIRD [39] are of paramount importance and much more effective than
blacklists. As detailed in Fig. 5.6, however, the categories that were most
targeted by malicious short URLs in 2010–2012 are social networks and
blogs.

Content-category Change To understand how web pages are interconnected
through short URLs, it was analyzed whether clicking on a short URL brings
the user to a landing page of a category that differs from the category of the
container page (e.g., from a news website to a file-hosting website).

In Fig. 5.9, the top 50 shortening services are ranked by the median fre-
quency of category change (plotted as a dot). More precisely, for each ser-
vice and for each category, the fraction of short URLs that result in a “change
of content category” were calculated—such fraction is then normalized by
the total number of unique short URLs. Then, the 25- and 75-percent quan-
tiles were derived to define a confidence interval around the median; this
is useful to visually highlight how frequencies are distributed. Values close
to 100% are not plotted for the sake of clarity. Services with 0–30% change
frequency typically deal with a small set of categories and have short URLs
often posted on websites of similar subjects. For example, flic.kr is used
exclusively within the Flickr ecosystem; therefore, it covers very few cat-

1http://siteadvisor.com/sites/

www.syssec-project.eu 63 November 12, 2014

http://siteadvisor.com/sites/

CHAPTER 5. URL SHORTENING SERVICES

trunc.it

om.ly

slidesha.re

moby.to

migre.me

wp.me

tumblr.com

lnk.ms

cot.ag

flic.kr

icio.us

tiny.ly

amzn.to

post.ly

youtu.be

p.tl

tcrn.ch

tl.gd

nyti.ms

ht.ly

alturl.com

tinysong.com

dld.bz

su.pr

ustre.am

t.co

j.mp

dlvr.it

fb.me

twurl.nl

goo.gl

ow.ly

ff.im

ping.fm

is.gd

tiny.cc

bit.ly

tinyurl.com

mash.to

ur1.ca

sqze.it

cort.as

shar.es

4sq.com

 0 20 40 60 80 100

Median % category drift

M
o
st p

o
p
u
lar sh

o
rten

ers are also
 g

en
eral-p

u
rp

o
se an

d
 co

v
er

 a w
id

e v
ariety

 o
f categ

o
ries

#
categ

o
ries co

v
ered

 (m
in

. 0
, m

ax
. 4

8
)

Figure 5.9: Frequency of change of category (median with 25- and 75-
percent quantiles) and number of categories covered (size of black dot) of
the top 50 services.

www.syssec-project.eu 64 November 12, 2014

5.4. RESULTS

Service Most freq. % Least frequent %

bit.ly
News 23.56 Naturism 8.3 · 10−4

Audio-video 10.62 Contraception 7.7 · 10−4

Socialnet 9 Astrology 1.6 · 10−4

t.co
Audio-video 29.42 Naturism 1.07 · 10−3

File-hosting 27.43 Anti-spyware 8.89 · 10−4

News 17.48 Contraception 1.78 · 10−4

tinyurl
News 24.08 Contraception 4.5 · 10−3

Audio-video 10.61 Naturism 6.29 · 10−4

File-hosting 9.36 Childcare 2.51 · 10−4

goo.gl
News 19.10 Gardening 3.34 · 10−3

Audio-video 12.23 Weapons 1.69 · 10−3

Socialnet 11.65 Naturism 1.69 · 10−3

ow.ly
News 23.38 Contraception 2.5 · 10−3

Socialnet 12.84 Childcare 1.32 · 10−3

Audio-video 10.03 Naturism 1.32 · 10−3

Table 5.6: Most- and least-popular landing page categories for the top 5
shortening services.

egories and exhibits a very low change frequency, meaning that its short
URLs are posted on websites that regard the same subjects, or even on Flickr
directly. Another popular example is nyti.ms. On the opposite side, services
with values above 50% also cover a small set of categories. However, dif-
ferently from the first tier (i.e., 0–30%), the categories of the containers of
these short URLs rarely match the categories of their landing pages. This is
the case, for example, of 4sq.com (about 100%), whose short URLs always
bring from online social-networking sites to pages categorized as “other”.
The most popular shortening services (e.g., bit.ly, goo.gl, ow.ly) fall into the
second tier (i.e., 32–48%), together with those services that cover a wide va-
riety of categories, and typically interconnect pages of different categories.
The most general-purpose services are those that are more abused to create
aliases of malicious URLs: Here is indeed where the vast majority of mali-
cious short URLs can be found. Unfortunately, general-purpose shortening
services rely on ineffective countermeasures.

Non-obvious Uses of Short URLs It was also investigated how short URLs
interconnect together pages of different categories, to understand whether
some categories have a majority of container or landing pages. To this end,
the average frequency of category change from the perspective of the con-
tainer page and landing page was calculated. With this data a weighted
digraph with 48 nodes was created, each corresponding to a category. The
weights are the frequencies of change, calculated between each pair of
categories—and normalized over all the short URLs and pages within each
category. Then, the average weight of incoming, In(cat), and outgoing,
Out(cat), edges for each category cat were computed, and finally the ratio
ρ(cat) = In(cat)

In(cat)+Out(cat) was derived. When ρ → 0, the category has a ma-

www.syssec-project.eu 65 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

Figure 5.10: Digraph showing the connections between container- and
landing-page categories.

www.syssec-project.eu 66 November 12, 2014

5.4. RESULTS

ρ Category

0.00 abortion 0.07 religion
0.00 antispyware 0.08 personalfinance
0.00 cellphones 0.10 gambling
0.00 childcare 0.14 government
0.00 contraception 0.16 medical
0.00 do-it-yourself 0.16 vacation
0.00 naturism 0.18 onlinegames
0.01 gardening 0.22 onlinepayment
0.01 hacking 0.22 sportnews
0.01 instantmessaging 0.30 searchengines
0.01 jobsearch 0.33 dating
0.01 pets 0.47 kidstimewasting
0.01 weapons 0.55 sports
0.02 artnudes 0.59 adult
0.02 drugs 0.60 games
0.02 jewelry 0.73 ecommerce
0.02 onlineauctions 0.78 shopping
0.02 weather 0.82 blog
0.03 mail 0.82 socialnetworking
0.04 banking 0.83 chat
0.04 cleaning 0.88 news
0.04 clothing 0.90 filehosting
0.06 drinks 0.92 audio-video
0.07 culinary 1.00 astrology

Table 5.7: Ranking of categories by the ratio of incoming and outgoing
connections via short URLs.

jority of outgoing short URLs (i.e., many container pages of such category),
whereas ρ→ 1 indicates that the category has a majority of incoming short
URLs (i.e., many landing pages of such categories). The digraph is shown
on Fig. 5.10.

As summarized in Tab. 5.7, there are clearly categories that exhibit a
container-like usage, that is, they typically contain more outgoing short
URLs than incoming short URLs. Besides a few extreme cases, which are
mostly due to the scarcity of short URLs, container-like categories include,
for instance, “onlineauctions,” “mail” (web based emails contain outgoing
short URLs more often than being referred to by short URLs), and “hack-
ing.”

In summary, categories that would be considered as aggregators (i.e.,
containers) of short URLs are actually more often used as landing pages.
The most notable example is “socialnetworking” (ρ = 0.82), which could
be expected to have many outgoing links as people share lots of resources
through them. Instead, it turns out that, from a global viewpoint, this is
no longer true. As expected, landing pages of a category with a high ρ
(e.g., “socialnetworking”, “blog”, “audio-video”) are the most obvious target
of attacks: Many short URLs that point to malicious resources have their
landing page within these categories.

www.syssec-project.eu 67 November 12, 2014

CHAPTER 5. URL SHORTENING SERVICES

5.5 Discussion

On a global scale, users are seldom exposed, while browsing, to threats
spread via short URLs, or at least no more than they are exposed to the
same threats spread via long URLs. Although a relatively small number of
malicious short URLs can be seen in the wild, it is possible to evade the
security measures currently adopted by the top shortening services to filter
dangerous URLs, with a simple time-of-check to time-of-use attack. How-
ever, shortening services are not—and should not be—a definitive protec-
tion layer between users and malicious resources. In-the-browser defense
tools such as blacklists can alert users before visiting malicious URLs, re-
gardless of whether they are short or long URLs. Since it is very inefficient
for shortening providers to monitor all their aliases periodically, we believe
that this is not necessary when modern browsers are already prepared for
counteracting known malicious URLs.

On the other hand, the previous chapter explains, why URL shortening
services are not necessarily the method of choice to veil malicious URL in
click fraud attacks or spam links. While it is true that the exact location of
the contained domain can be covered, the underlying security mechanism
could very well influence the success rate of a phishing attack. This leads
directly to the next chapter, a topic which is even deemed dead by some
security researches: Spam.

www.syssec-project.eu 68 November 12, 2014

6
Spam Mitigation

The last chapters dealt with technological background of malware, how it
can be analyzed and how to conduct the necessary elements in the first
place. For a comprehensive picture of the malware landscape, we want to
show what malicious software is used for and how it can be monetized.
Malware is the underlying platform for online crime: From spam to identity
theft, denial of service attacks or the emergence of fake-antivirus scams in
recent years [80], malware covertly installed on a victim’s computer plays
an essential role in criminals’ online operations. Thus, investigating the
fraudulent schemes performed by criminals in order to monetize malware
installations is also an important part of malware research.

In this chapter we look at one monetization vector of modern malware
in particular: The sending of unsolicited bulk emails, or spam. First, we
look at the detection of bots engaged in sending spam. We show that by
modeling legitimate (“ham”) and unsolicited (“spam”) email traffic using
social network properties (see Section 6.1) we can identify abusive bots in
the network.

Furthermore, as we discuss in Section 6.2, there is also an often over-
looked gray area between legitimate (ham) and unsolicited (spam) emails.
Messages in this area are often hard to classify with existing antispam so-
lutions, resulting in serious consequences for the end user: As our exper-
iments show, users often find it difficult to distinguish between spam and
ham messages, putting them at risk of falling victim to botnet-generated
spam campaigns.

6.1 Spam Bot Identification

Eliminating the excessive amount of unsolicited spam which is consuming
network and mail server resources is quite challenging. These email commu-
nications mostly originate from botnets of compromised machines [67, 34]

69

CHAPTER 6. SPAM MITIGATION

that are also likely the source of other malicious activities on the Internet.
Although current antispam tools are efficient in hiding spam from users’
mailboxes, there is a clear need for moving the defense against spam as
close to its source as possible. Therefore, it is necessary to understand the
network-level behavior of spam and how it differs from legitimate traffic
in order to design antispam mechanisms that can identify spamming bots
on the network. We study the network-level behavior of email by exam-
ining real email traffic captured on an Internet backbone link. From the
collected traffic, we have generated email networks in which the nodes rep-
resent email addresses and the edges represent email communications. To
the best of our knowledge, this is the largest email traffic dataset used to
study the structure of email networks which contain both legitimate (ham)
and unsolicited email traffic.

We show that the legitimate email traffic exhibits the same structural
properties that other social and interaction networks (e.g., online social net-
works, the Internet topology, the Web, and phone call graphs) typically ex-
hibit, therefore, it can be modeled as a scale-free, small-world network. We
also show that the email traffic containing spam cannot be modeled simi-
larly, and because the unsocial behavior of spam is not hidden behind the
social behavior of legitimate traffic, the structure of email networks con-
taining both ham and spam differ from other social networks. Moreover, we
show that the temporal variations in the social network properties of email
traffic can reveal more distinct properties of the behavior of spam.

In this study our goal is to identify the differences in the social network
properties of spam and ham traffic, and leverage these differences to spot
the abusive nodes in the network.

For a more detailed version of this study, please refer to Moradi et al. [51].

6.1.1 Data Collection and Pre-processing

We have used two distinct email datasets to generate email networks. The
datasets were created from passively captured SMTP packets on a 10 Gbps
link of the core-backbone of the SUNET1. Each dataset was collected during
14 consecutive days with a year time span between the collections. In the
following we refer to the larger dataset as dataset A, and the smaller dataset
as dataset B.

We pruned the unusable email flows, including those with no payload
or missing packets and encrypted communications from the datasets. We
classified the remaining emails as being either accepted (delivered by the re-
ceiving mail server) or rejected (unfinished SMTP command exchange phase
and consequently not containing any email headers and body). Rejection is
generally the result of spam pre-filtering strategies deployed by mail servers

1Swedish University Network (http://www.sunet.se/)

www.syssec-project.eu 70 November 12, 2014

http://www.sunet.se/

6.1. SPAM BOT IDENTIFICATION

(e.g., blacklisting, greylisting, DNS lookups). Then, we classified all ac-
cepted email communications to be either spam or ham to establish a ground
truth for our study. Similar to related work [24, 86], we used a well-trained
filtering tool2 for this classification. Finally, we anonymized all email ad-
dresses and discarded the email contents in order to preserve privacy.

After data collection and pre-processing, we generated a number of
email networks from the datasets. In an email network the email addresses,
which are extracted from the SMTP commands (“MAIL FROM” and “RCPT
TO”), represent the nodes, and the exchanged emails represent the edges.
In order to study and compare the characteristics of different categories of
email, from each dataset we have generated a ham network, a spam network,
and a rejected network, in addition to the complete email network.

6.1.2 Structural and Temporal Properties of Email Networks

In this section we briefly introduce the most significant structural and tem-
poral properties of social networks.

Degree Distribution. The degree distribution of a network is the proba-
bility that a randomly selected node has k edges. In a power law distribution,
the fraction of nodes with degree k is n(k) ∝ k−γ , where γ is a constant
exponent. Networks characterized by such degree distribution are called
scale-free networks. Many real networks such as the Internet topology [19],
the Web [13], phone call graphs [52], and online social networks [50] are
scale free.

Average Path Length. In small-world networks any two nodes in the net-
work are likely to be connected through a short sequence of intermediate
nodes, and the network diameter shrinks as the network grows [40].

Clustering Coefficient. In addition to a short average path length, small-
world networks have high clustering coefficient values [89]. The clustering
coefficient of a node v is defined as Cv = 2Ev/(kv(kv − 1)), where, kv de-
notes the number of neighbors of v, kv(kv − 1)/2 the maximum number
of edges that can exist between the neighbors, and Ev the number of the
edges that actually exist. The average Cv of a social network shows to what
extent friends of a person are also friends with each other and its value is
independent of the network size [71].

Connected Components. A connected component (CC) is a subset of nodes
of the network where a path exists between any pair of them. As social net-
works grow a giant CC (GCC), which contains the vast majority of the nodes
in the network, emerges in the graph and its size increases over time [71].
Moreover, the distribution of CC size for some social networks follows a
power law pattern [13, 52].

2SpamAssassin (http://spamassassin.apache.org)

www.syssec-project.eu 71 November 12, 2014

http://spamassassin.apache.org

CHAPTER 6. SPAM MITIGATION

6.1.2.1 Measurement Results

In the following we present the observed structural and temporal properties
of our email networks. These properties can be used in order to model the
behavior of legitimate traffic and to find the distinguishing properties of the
unsocial behavior of spam. Although the duration of our data collections is
not long enough to study the evolution of email networks, it is still possible
to track the changes in the structure of email networks in order to better
understand the distinct characteristics of ham and spam traffic.

Degree Distribution. Figures 6.1(a) and 6.1(e) show that none of the email
networks generated from datasets A and B exhibit a power law degree dis-
tribution in all points. However, the ham networks generated from each
of the datasets are scale free as their degree distribution closely follow the
distribution n(k) ∝ k−γ with γA = 2.7 and γA = 2.3, respectively 3. The in-
degree (out-degree) distribution for ham networks, which are shown in Fig-
ures 6.1(b) and 6.1(f), also follows a power-low distribution with γAin = 3.2
(γAout = 2.3) and γBin = 3.2 (γBout = 2.1), respectively. Moreover, in con-
trast to previous studies [24, 12], neither the spam, nor the rejected net-
works are completely scale free (Figures 6.1(c), 6.1(g), 6.1(d), and 6.1(h)).

Figure 6.2(a) and 6.2(e) show that the shape of the degree distributions
of the complete email networks may change over time as the networks grow.
The shape of the degree distribution of spam and rejected networks can also
change over time (Figures 6.2(c), 6.2(g), 6.2(d), and 6.2(h)). However,
the ham networks always follow a power law distribution with an almost
constant exponent (Figures 6.2(b) and 6.2(f)).

Clustering Coefficient. The observed average clustering coefficients for
our ham (spam) networks generated from both dataset are quite similar:
CAham

= 9.92 × 10−3 (CAspam = 1.59 × 10−3) and CBham
= 9.80 × 10−3

(CBspam = 1.54× 10−3). These values, similar to small-world networks, are
significantly greater than that of random networks with the same number
of nodes and average number of edges per node, and as Figures 6.3(b) and
6.3(f) show they remain relatively constant as the networks grow.

Average Path Length. The ham and spam networks generated from both
datasets have short average path lengths, 〈l〉, as expected in small-world
networks: 〈lhamA

〉 = 7.0, 〈lspamA〉 = 8.5, 〈lhamB
〉 = 6.7, and 〈lspamB 〉 = 7.8.

Figures 6.3(a) and 6.3(e) show that 〈l〉 decreases for all networks as they
grow, confirming the shrinking diameter phenomenon observed in [40] for
other social networks.

Connected Components. Figure 6.1.2.2 shows the distribution of the size
of the CCs for ham and spam networks. It can be seen that the GCCs of the
networks are orders of magnitude larger than other CCs. The distribution

3The power law fits were calculated using the Maximum Likelihood estimator for power
law and Kolmogorov-Smirnov (KS) goodness-of-fit as presented in [15].

www.syssec-project.eu 72 November 12, 2014

6.1. SPAM BOT IDENTIFICATION

100 102 104101 103 105

100

10−2

10−4

10−6

10−8

Degree

Fr
eq

ue
nc

y

In−degree
Out−degree

(a) Email network (A)

100 105101 102 103 104

10−6

10−4

10−2

100

Degree

In−degree
Out−degree

(b) Ham network (A)

100 102 104101 103 105

100

10−2

10−4

10−6

Degree

In−degree
Out−degree

(c) Spam network (A)

100 105101 102 103 104

10−6

10−4

10−2

100

Degree

In−degree
Out−degree

(d) Rejected network (A)

100 102 104 106101 103 105

100

10−2

10−4

10−6

Degree

Fr
eq

ue
nc

y

In−degree
Out−degree

(e) Email network (B)

100 105101 102 103 104

100

10−2

10−4

10−6

Degree

In−degree
Out−degree

(f) Ham network (B)

100 105101 102 103 104

100

10−2

10−4

10−6

Degree

In−degree
Out−degree

(g) Spam network (B)

100 102 104101 103

100

10−2

10−4

10−6

Degree

In−degree
Out−degree

(h) Rejected network (B)

Figure 6.1: Only the ham network is scale free as the other networks have
outliers in their degree distribution.

of the CC size for the ham network, similar to Web [13] and phone call
graphs [52], follows a power law pattern, but the spam network can have
outliers in their distribution. Figures 6.3(d) and 6.3(h) show that the num-
ber of CCs in all of the ham and the spam networks increases over time, but
this increase is much faster for spam. Moreover, as shown in Figure 6.3(c),
the respective size of the GCC of the networks generated from dataset A in-
creases for the ham but does not change much for the spam network. How-
ever, although the ham network generated from dataset B shows exactly the
same behavior (Figure 6.3(g)), the spam network shows an increase in the
percentage of nodes in its GCC over time.

6.1.2.2 Observations

In the following paragraphs we briefly discuss our observations regarding
the structure of email networks and discuss to what extent our dataset is
representative for the structural and temporal analysis of email networks.

Although the studied datasets differ in size and collection time, our ob-
servations reveal that legitimate email always exhibit the structural prop-
erties that are similar to other social and interaction networks. Previous
studies on the structure of legitimate email networks have also shown that
these networks can be modeled as scale free, small-world networks [17, 40,

www.syssec-project.eu 73 November 12, 2014

CHAPTER 6. SPAM MITIGATION

100 102 104101 103 105

100

10−4

10−2

10−8

10−6

Degree

Fr
eq

ue
nc

y

1 day
7 days
14 days

(a) Email network (A)

100 105101 102 103 104

100

10−2

10−4

10−6

Degree

1 day
7 days
14 days

(b) Ham network (A)

100 105101 102 103 104

10−6

100

10−4

10−2

Degree

1 day
7 days
14 days

(c) Spam network (A)

100 102 104101 103 105

100

10−2

10−4

10−6

Degree

1day
7days
14days

(d) Rejected network (A)

100 102 104 106101 103 105

100

10−2

10−4

10−6

Degree

Fr
eq

ue
nc

y

1 day
7 days
14 days

(e) Email network (B)

100 105101 102 103 104

100

10−2

10−4

10−6

Degree

1 day
7 days
14 days

(f) Ham network (B)

100 105101 102 103 104

100

10−2

10−4

10−6

Degree

1 day
7 days
14 days

(g) Spam network (B)

100 102 104 106101 103 105

100

10−2

10−4

10−6

Degree

1 day
7 days
14 days

(h) Rejected network (B)

Figure 6.2: Temporal variation in the degree distribution of email networks.

36, 12, 24]. In contrast, a vast majority of spam are automatically sent, typ-
ically from botnets, and it is expected that they show unsocial behavior. We
have shown that the structural and temporal properties of spam networks
can reveal their anomalous nature. Although spam networks show some
properties that are similar to ham (i.e., small-world network properties),
they can still be distinguished from ham networks as they have significantly
smaller average clustering coefficient and larger average path length, re-
gardless of the size of the networks. Overall, we have shown that although
the behavior of spam might change over time, its unsocial behavior is not
hidden in the mixture of email traffic, even when the amount of spam is less
than ham (dataset B).

The datasets used in this study to analyze the characteristics of spam do
not contain the email communications that do not pass the measurement
location. Due to asymmetric routing and load-balancing policies deployed
by the network routers, not all traffic travels the link, and less traffic is seen
in the outgoing than the incoming direction of the link. However, our goal
is to perform a comparative analysis of the distinguishing behavior of spam
and ham traffic that are observed over the link. Therefore, it is not required
to generate a complete email network of all exchanged emails to be able
to study the differences in the social network properties of legitimate and
spam traffic.

www.syssec-project.eu 74 November 12, 2014

6.1. SPAM BOT IDENTIFICATION

1 4 7 10 147

8

9

10

11

12

Days

<l
>

Ham
Spam

(a) Average path length (A)

2 4 6 8 10 12 140

0.005

0.01

0.015

Days

C

Ham
Spam

(b) Average clustering coeffi-
cient (A)

2 4 6 8 10 12 140.2

0.4

0.6

0.8

1

Days

R
el

at
iv

e
G

C
C

 s
iz

e

Ham
Spam

(c) Relative GCC size (A)

2 4 6 8 10 12 140

0.5

1

1.5

2x 105

Days

#C
C

s

Ham
Spam

(d) Number of CCs (A)

2 4 6 8 10 12 146

7

8

9

10

Days

<l
>

Ham
Spam

(e) Average path length (B)

2 4 6 8 10 12 140

0.005

0.01

0.015

Days

C

Ham
Spam

(f) Average clustering coeffi-
cient (B)

2 4 6 8 10 12 140.4

0.5

0.6

0.7

0.8

0.9

1

Days

R
el

at
iv

e
G

C
C

 s
iz

e

Ham
Spam

(g) Relative GCC size (B)

2 4 6 8 10 12 141

2

3

4

5

6x 104

Days

#C
C

s

Ham
Spam

(h) Number of CCs (B)

Figure 6.3: Both networks are small-world networks (a,b,e,f), however, ham
has a higher average clustering coefficient. The ham networks become more
connected over time (c,g), and the number of CCs increases faster for the
spam networks (d,h).

In addition, the “missing past” problem, which is not limited to our
dataset, exists since it is not possible to gather data reaching all the way back
to a network’s birth. Leskovec et al. [40] showed that the effect of missing
past is minor as we move away from the beginning of the data observation.
We investigated the effect of missing past by constructing an email network
which lacked the first week of data from dataset A and comparing it with the
network containing both weeks. We have observed that the structural prop-
erties of the email networks was relatively similar for both of the networks
particularly for the legitimate email.

Earlier studies [17, 36, 24, 12, 86, 37] have also used incomplete email
networks to study the structure of email networks or to deploy a social
network-based approach to mitigate spam. Even though our measurement
duration was shorter than previous studies [17, 40, 24, 36], we have gener-
ated the largest and most general datasets used for this type of analysis. The
14 days of data collection might not be large enough to study the evolution
of email networks, but our analysis of the temporal variation in the structure
of email networks provides us with evidence on how their structure might
change with longer periods of measurements.

www.syssec-project.eu 75 November 12, 2014

CHAPTER 6. SPAM MITIGATION

100 102 104 106101 103 10510−6

10−4

10−2

100

CC size

Fr
eq

ue
nc

y

Ham
Spam

(a) CC distribution (A)

100 102 104 106101 103 105

100

10−2

10−4

10−6

CC size

Fr
eq

ue
nc

y

Ham
Spam

(b) CC distribution (B)

Figure 6.4: The distribution of size of CCs. The GCCs of the networks are
orders of magnitude larger than other CCs.

Overall, this work has provided us with very large datasets of real traffic
traversing a high speed Internet backbone link. These datasets allow us to
model the behavior of email traffic as observed from the vantage point of a
network device on the link and reveal the differences in the network-level
behavior of ham and spam traffic.

6.1.3 Anomalies in Email Network Structure

The structural properties of real networks that deviate from the expected
properties for social networks, suggest anomalous behavior in the network
[1]. In this section, we show that the anomalies caused by the unsocial
behavior of spam can be detected in the email networks by using an outlier
detection mechanism.

We have shown in Section 6.1.2 that the ham networks exhibit power
law out-degree distributions with γAout=2.3 and γBout=2.1 for dataset A and
B respectively. The outliers in the out-degree distribution of the email net-
works are of particular importance, as we are interested in finding the nodes
that send spam.

We detect outliers from the out-degree distribution in the following steps:
First we calculate the ratio of the out-degree distribution of the email net-
work, containing both ham and spam, and our model. Then we deploy the
Median Absolute Deviation (MAD) method to calculate the median of the
absolute differences of the obtained ratios from their median. Finally, we
mark the nodes in the network that have an out-degree that deviates a lot
(based on a threshold value) from the median as outliers.

Table 6.1.3 shows the percentage of spam that were sent in different net-
works and the percentage of spam sent by the identified outlier nodes. The
nodes in the email networks generated from dataset A (B) have sent in aver-
age around 70% (40%) spam and the identified outlier nodes have sent just
slightly more spam than the average node. The reason is that the outlier de-
tection method tends to mark both nodes that have sent only one email and
those that have sent a large number of email as outliers. However, we have
observed that the nodes which have sent only one email had sent ham and
spam with the same probability, and the nodes with high out-degree have

www.syssec-project.eu 76 November 12, 2014

6.1. SPAM BOT IDENTIFICATION

Table 6.1: Percentage of total spam, spam sent by all the identified out-
lier nodes, and those with degree between one and 100, in email networks
containing both ham and spam.

Dataset Network Total spam Spam sent by Spam sent by outliers
outliers with 1 < k < 100

A
1 day 68% 69.9% 95.5%
7 days 70% 74.0% 96.8%
14 days 70% 74.8% 96.9%

B
1 day 40% 43.6% 82.7%
7 days 35% 42.8 % 81.3%
14 days 39 % 46.7% 87.3%

mostly sent legitimate email (e.g., mailing lists). By excluding the nodes
that have a high out-degree (100 in our experiments) from the outliers as
well as the nodes that have only sent one email during the collection period,
we can see that more than 95% (81%) of the email sent by the identified
outliers in dataset A (B) have actually been spam. Moreover, these nodes
have actually sent around 25% (35%) of the total spam in the network.

The outliers in the out-degree distribution of the complete email network
which in addition to ham and spam contains rejected email can be identified
similarly. As an example, the nodes in the complete email network gener-
ated from one day of email traffic in dataset A have sent in average 94.8%
spam and rejected email. The emails sent by the outlier nodes detected by
our method have been 99.3% spam or rejected.

6.1.4 Discussion

In this study we have investigated the social network properties of email
networks to study the characteristics of legitimate and unsolicited emails.
The email networks were generated from real email traffic which was cap-
tured on an Internet backbone link. We have analyzed the structural and
temporal properties of the email networks and have shown that legitimate
email traffic generates a small-world, scale-free network that can be mod-
eled similar to many other social networks. Moreover, the unsocial behavior
of spam, which might change over time, is not hidden in the mixture of
email traffic. Therefore, email networks that contain spam do not exhibit all
properties commonly present in social networks.

Moreover, we have shown that by identifying the anomalies in the struc-
tural properties of email networks, it is possible to reveal a number of abu-
sive nodes in the network. More specifically, we have shown that the outliers
in the out-degree distribution of email networks to a large extent represent
the spamming nodes in the network. Therefore, the social network proper-
ties of email networks can potentially be used to detect malicious hosts on
the network.

www.syssec-project.eu 77 November 12, 2014

CHAPTER 6. SPAM MITIGATION

6.2 Emails in the Gray Area

Nowadays, many antispam filters provide a good level of protection against
large-scale unsolicited email campaigns. However, as spammers have im-
proved their techniques to increase the chances of reaching their targets,
also antispam solutions have become more aggressive in flagging suspicious
emails. On one side, this arms race has lead to a steady increase in the
detection rate. On the other, it also contributed to the increase of the false
positives, with serious consequences for the users whenever an important
message is erroneously flagged as spam. It is a well known fact that most
of the users regularly check their spam folder to verify that no important
messages have been misclassified by the antispam filter.

Unfortunately, this process is very time-consuming and error-prone. An-
tispam solutions are not very helpful in this direction, and do not usually
provide any additional information to help users in quickly identifying mar-
keting emails, newsletters, or “borderline” cases that may be interesting for
the users. While most of the existing research deals with the problem of
efficiently and accurately distinguishing spam from ham, we focus on the
thin line that separates the two categories. In particular, we limit our study
to the often overlooked area of gray emails [93], i.e., those ambiguous mes-
sages that cannot be clearly categorized one way or the other by automated
spam filters.

For a more detailed version of this study, please refer to Isacenkova et
al. [27].

6.2.1 Approach

We start our study by analyzing a real deployment of a challenge-response
antispam solution to measure the extent of this gray area. We use system’s
quarantined emails that already exclude the majority of the ham and spam
messages as an approximation of the gray emails category. We analyze
the messages further in order to improve our understanding about them
and the reasons that make them difficult to categorize. In particular, we
adopt a three-phase approach based on message clustering, classification,
and graph-based refinement. Extracted email features are applied in a con-
text of email campaigns instead of individual emails. In particular, we start
by clustering emails based on the email headers. We then extract a set of
features based on a number of campaign attributes and we use them to
train a classifier in order to predict the campaign class. Finally, we employ
a graph-based refinement technique to further increase the coverage and
precision of our classification.

Data Collection. The amount and diversity of the available data is cru-
cial in order to successfully identify email campaigns. Messages should be

www.syssec-project.eu 78 November 12, 2014

6.2. EMAILS IN THE GRAY AREA

collected from multiple feeds, cover numerous recipients, several organiza-
tions, and for a long period of time [56, 60]. Our email dataset fulfills these
requirements as it was collected from a commercial Challenge-Response
(CR) spam system deployed in tens of different organizations. A CR fil-
ter is a software that automatically replies with a challenge (in our case a
CAPTCHA) to any previously-unknown sender of incoming emails. If the
sender solves the challenge, the message is delivered to the recipient and
the sender is added to a whitelist; if not, it remains in a quarantined folder,
where its recipient can manually view and whitelist/blacklist it.

The monitoring period covered 6 months, from August 2011 to January
2012. During this period around 11 million messages were delivered to the
monitored mail servers. 29.4% of them belonged to the class of gray mes-
sages. To protect the privacy of both the users and the companies involved
in the study, the data we used in our experiments did not include the email
bodies, and the headers were sanitized and analyzed in an aggregated form.

We also instrumented the CR-system to collect additional information:
opened emails by the users, and whitelisted messages (thus showing that
the user manually classified them as legitimate). This provides insights on
the users ability to distinguish harmless from harmful messages. Finally, our
sensor collected the delivery status information, e.g. sent, bounced, and
delivered, for each challenge email sent back by the CR system.

Email Clustering. Previous results were very successful in identifying email
campaigns, but, unfortunately, often relied on the content of the email body.
Our dataset is limited to the email headers, thus forcing us to use a different
approach based only on the email subjects. The main limitation of this
technique is that the email subjects have to be long enough to minimize the
chances of matching different messages by coincidence.

We decided to use a simple approach for grouping similar subjects based
on “almost exact” text matching, extended to include subjects with a vari-
able part. The latter could be a varying phrase in the subject, including
random words, identifiers, or user names.

Feature-based Classification. To be able to differentiate and classify the
identified clusters, we extract a set of eleven features grouped in three cat-
egories (see Table 6.2).

Before performing our classification, we build a training set by randomly
selecting 2,000 campaigns and performing a manual labeling of them. We
labeled 1,581 (79%) as legitimate and 419 (21%) as spam campaigns. We
take a conservative approach, and flag as spam only campaigns with poten-
tially illegal content that may involve malicious, fraudulent or illegal online
activities. This includes different “business models”: illegal product sell-
ers, malware spreading emails, personal data and credential thieves, or ad-
vanced fee fraud specialists. Finally, we consider any email belonging to a
commercial marketing campaign as legitimate (in the sense that general an-

www.syssec-project.eu 79 November 12, 2014

CHAPTER 6. SPAM MITIGATION

Table 6.2: Cluster features.

Group A
Sender IPs Distribution of network prefixes (/24)
Sender names Distribution of email sender names
Sender add.domain Distribution of email domain names
Sender add.prefix Distribution of email prefixes

Group B
Rejections Percentage of rejected emails at MTA
White emails Percentage of whitelisted emails
Challenges bounced Percentage of bounced challenges
CAPTCHAs solved Percentage of solved challenges
Unsubscribe header Percentage of Unsubscribe headers

Group C
Number of recipients per email Normalized number of unique recipients per email
Recipient’s header Location of recipient’s email: To/Cc/Bcc/Mixed
Countries Distribution of countries based on originating IPs

Table 6.3: Campaign classification results.

Campaign Type Manual Sampling % Unlabeled %

Legitimate 1,581 79% 8,398 81.9%
Spam 419 21% 1,852 18.1%

Total 2,000 10,250

tispam filters should not block them, unless they are specifically instructed
to do so by the user).

Using the eleven listed presented above, we trained a binary classifier.
Finally, we applied the model extracted from our training set to predict the
classification of the remaining unlabeled campaigns. Results are presented
in Table 6.3.

Graph-based Refinement. Although we achieved a relatively high accuracy
using our classifier, we still found that for some campaigns our algorithm
gave uncertain results.

With the use of several graph-based techniques, detailed in Isacenkova et
al. [27], we were able to reduce the false positives from 0.9% to 0.2% and
split the entire dataset into three groups: legitimate (80%), spam (17%)
and gray (2.9%) messages.

6.2.2 Attribute Analysis

In this section we analyze the characteristics of spam and legitimate cam-
paigns. Our classifier provides some information about the relevance of each
feature. Interestingly, the least important attributes are the ones in Group B,

www.syssec-project.eu 80 November 12, 2014

6.2. EMAILS IN THE GRAY AREA

and in particular the percentage of already whitelisted emails in the cluster.
The most important ones are the distributions of countries and IP addresses,
followed by the average number of recipients, and the sender email address
similarity. The latter proved to be useful because spammers often change
sender emails, while legitimate campaigns use a single or several repetitive
patterns. In particular, we found the number of originating countries to be
the most indicative parameter.

The Role of IPs and Geolocation. IP address variation is often regarded as
a strong indicator of botnet activity and often used as a reliable metric to
detect spam. However, it is unclear what should be adopted as a threshold
for this metric, how many different IPs should alert us of a distributed mali-
cious activity, or how accurately we can classify email campaigns simply by
looking at their IP address distribution.

In a previous study of spam campaigns, Qian et al. [65] used a threshold
of 10 IPs per campaign to separate spam campaigns from legitimate ones.
To evaluate this threshold, we applied it on our gray dataset as shown in
Figure 6.5 (a). The graph plots the distribution of unique IP prefixes for both
spam and legitimate campaigns. Around 90% of the legitimate campaigns
are indeed below the 10 IP threshold, while 90% of the spam is above -
resulting in a global error rate of 9.2%. In comparison, this error is 5 times
higher than the one of our classifier.

By looking at Figure 6.5 (a), we notice that above 50 IP prefixes there are
few legitimate campaigns left and 99.8% of legitimate campaigns are below
this threshold. However, half of the spam campaigns are located above the
threshold and another half in between the two thresholds (10-50). This
suggests that there is not a single value that separates the two classes with
an acceptable error rate.

When we look at IP country distribution, the results improve consid-
erably as some legitimate campaigns have many IP prefixes, but originate
from few countries. This could be explained by one commercial campaign
being distributed by several marketing companies in different locations. In
contrast, the vast majority of spam campaigns originate from multiple IP
prefixes and multiple countries. In fact, by using a six-countries threshold
(the one chosen by our classifier) we misclassify only 0.4% of legitimate and
12% of spam campaigns - resulting in a total error rate of 2.8%. Figure 6.5
(b) shows the classification error.

Finally, we investigate closer this group of spam campaigns with few
origins. Interestingly, the classifier for most of them gave a weak score. At a
closer manual inspection, these cases mainly corresponded to phishing and
Nigerian scams. Several of these campaigns are sent in low volume and for
short periods of time using webmail accounts, thus hiding under benign IP
addresses.

www.syssec-project.eu 81 November 12, 2014

CHAPTER 6. SPAM MITIGATION

(a) Logarithmic plot of unique
IP prefix distribution

(b) Campaigns with a
threshold of 6 countries

(c) Emails rejections per
campaign

Figure 6.5: Attribute distributions in campaigns.

Recipient-Oriented Attributes. The email recipient can be specified in
three different headers: To, Cc, and Bcc. Interestingly, we found no cam-
paigns using the Cc header, and some campaigns that seem to randomly
change the location of the recipient over time (we categorize them as Mixed).
We also looked at the number of recipients per incoming email and at the
number of non-existing email accounts (rejected at MTA-in because of non-
existent user) in multiple recipient emails.

Around 75% of the legitimate campaigns use the To header, whereas
spammers often mix different headers in the same campaign. The Bcc header
is adopted by both campaign types, although less frequently. However, it is
very common among gray campaigns: in fact, half of them use exclusively
this header to specify the recipient. Again, this is very common between the
previously mentioned scam campaigns.

Since the campaigns located in the gray zone often use the Bcc field,
they have shorter recipient lists including on average only 1.2 recipients per
email. In contrast, 94% of legitimate campaigns have a single recipient,
while spammers tend to include an average of at least three recipients per
email.

However, these features alone cannot be used to reliably separate spam
from legitimate messages. For example, 36% of spam campaigns used only
one recipient per email, and in 30% of the cases specified in the To header.
Interestingly, by combining these two criteria with the fact that these cam-
paigns also have high IP prefix distribution, we can deduct that they origi-
nate from infected machines or botnets.

When some of the messages in a campaign are rejected, it is an indicator
that the sender’s recipient list was unverified or not up-to-date. Although
sometimes users make typos while providing their email addresses, a higher
rejection ratio, as shown in Figure 6.5 (c), along with multiple recipients is a
good indicator of spammer activity. In fact, only 1% of spam campaigns sent
with two recipients per email have a rejection ratio lower than 0.1. Thus,

www.syssec-project.eu 82 November 12, 2014

6.2. EMAILS IN THE GRAY AREA

Figure 6.6: Newsletter subscription header distribution.

the combination of these two characteristics performs well for campaign
classification.

Newsletter Subscription Header. One of our features counts the presence
of the List-Unsubscribe header in the emails. This header is intended specifi-
cally to indicate bulk email senders in order to treat such emails separately,
and normally points to a URL or email address that can be used to unsub-
scribe from a mailing list. This header is recommended to be used by regular
bulk senders.

Figure 6.6 shows the percentage of each campaign type that uses the
unsubscribe header. Only 10% of the spam campaigns adopt the header,
counting only for a total of 0.6% of the spam messages. While legitimate
campaigns tend to use the header in most of their emails, around half of the
campaigns do not use it at all. This is due to several different email mar-
keting companies advertising the same campaign, where some include the
header, and some do not. In total, around half of the legitimate campaigns
include the header, and 27% of all legitimate campaigns have the header
present in all messages.

In conclusion, we find it uncommon for spammers to use the Unsubscribe
header, but at the same time legitimate campaigns use it in only half of their
emails. While this attribute seems to be a good feature to identify marketing
campaigns, spoofing the Unsubscribe header is extremely easy and could be
done with minimal additional costs for spammers.

6.2.3 Email Campaigns

In this section we present four categories of email campaigns that we iden-
tify in the gray area. We already separated spam from legitimate campaigns.
We further divide the spam in two categories: the one generated by dis-
tributed and dynamic infrastructures (likely sent by botnet or infected ma-
chines) from the smaller campaigns sent by few IPs.

www.syssec-project.eu 83 November 12, 2014

CHAPTER 6. SPAM MITIGATION

We also split the legitimate campaigns into two groups. The first sent
by private marketing companies as a service to distributes legitimate bulk
advertisements, i.e., commercial campaigns. The second including newslet-
ters that are sent to the users subscribed to a web services or mailing lists,
and the automatically generated notifications (e.g. for online registrations).
Again, the first ones are delivered by large infrastructures, while the second
ones are often sent from a limited and constant set of IP addresses.

Commercial Campaigns. This is the largest category in our dataset cover-
ing 42% of the identified campaigns, with an average of 148 emails each.
By looking manually at these clusters, we confirm that these messages are
mainly generated by professional email marketers sending. We were able to
identify some of the main players (both national and international), and of-
ten confirmed that they actually run a legal business. On their websites, they
repeatedly underline the fact that “they are not spammers”, and that they
just provide to other companies a way to send marketing emails within the
boundaries of the current legislation. In fact, they also offer an online pro-
cedure for users to opt-out and be removed from future communications.
These companies also use wide IP address ranges to run the campaigns,
probably to avoid being blacklisted. Moreover, we find quite interesting that
some of these companies also provide a pre-compiled list of emails (already
categorized by user interests) that can be used to acquire new clients.

On average, this class of campaigns lasts for 26 days, but some also
continue for several months. Different email marketing companies are often
involved in sending a single campaign, where each company is only active
during a certain time frame. Also, each marketing service provider has its
own dedicated range of IP addresses, which explains sometimes high IP
address variance and high geographical distribution of campaigns in this
group.

To conclude, commercial campaigns can be highly distributed, but, at the
same time, they often adopt consistent email patterns with similar sender
names and email addresses.

Newsletter Campaigns. The newsletter senders rely mostly on static and
small mailing infrastructure. The sender is often the actual company dis-
tributing the emails, with typically a small and fixed IP address range. This
category contains half of the emails of the previous one (probably because
most of the legitimate mailing lists do not get into the quarantined area as
they are already whitelisted by their customers) and covers around 30% of
the total campaigns with an average size of 90 emails each.

A manual inspection seems to confirm that these campaigns consist mainly
of notifications and newsletters sent by online services to which users have
subscribed in the past. The senders are geographically localized (we en-
countered only one exception of a distributed newsletter campaign) and
have extremely consistent sending patterns. Since we cluster campaigns

www.syssec-project.eu 84 November 12, 2014

6.2. EMAILS IN THE GRAY AREA

based on their subjects, newsletters tend to last for very short periods of
time. In addition, they normally use valid email recipient lists, and ex-
hibit the lowest IP address, country, and sender email address variations.
The consistent patterns in the email headers of this category indicate that
the senders are making an effort to build a reputation and successfully de-
liver their correspondence. Not surprisingly, this is also the category that is
whitelisted most often by the users.

Botnet-Generated Campaigns. Unsurprisingly, botnet-generated campaigns
have highly dynamic attribute values, making them the easiest category to
identify automatically. This category contains clusters that accounts for only
17% of all campaigns (also because most of the spam emails were already
excluded from the gray emails by other antispam filters). Botnet campaigns
have the highest geographical distribution as they are sent by infected com-
puters from all over the world: 172 unique /24 networks per campaign,
spread on average over 28 countries. Another prevalent characteristic is the
use of multiple recipient emails sent using unverified email lists. Conse-
quently, this leads to the highest email rejection rates (24%), and highest
bounced CAPTCHA requests. The Unsubscribe header is rarely used, and
sender email addresses have low similarities.

On average, botnet campaigns are the ones lasting the longest, with one
drug-related campaign sent slowly over the entire six-months period of our
experiments.

Despite the easily recognizable characteristics of these campaigns, users
show a surprisingly high interest in these emails. This category has the
highest number of email views per campaign, suggesting that users are often
curious about products promoted and sold on the black market [46].

Scam and Phishing Campaigns. These campaigns contain phishing and
Nigerian scam emails. Fraudsters trick their victims using threatening mes-
sages or by trying to seduce them with huge monetary gains. The character-
istics of this category largely resemble those of commercial campaigns, thus
making it difficult to automatically separate these campaigns without ana-
lyzing the email body. In fact, most of these campaigns belong to the gray
area of our classifier. This is the reason why we needed to verify this set
manually. These kind of threats are more likely to be identified by content-
based detection techniques, e.g., by looking at email addresses and phone
numbers [28], or URL [56, 84] included in the body.

We found only 12,601 of such emails, with an average campaign size
of 84 emails. Phishing campaigns often spoofed the email addresses us-
ing well known company names (e.g. banks, eBay, Paypal), whereas Nige-
rian scammers relied mostly on webmail accounts [28]. In this case, many
senders solved the CAPTCHA challenge – confirming that there is usually a
real person behind these kinds of scams. The IP addresses from where the
CAPTCHAs were solved are mostly located in West-African countries, like

www.syssec-project.eu 85 November 12, 2014

CHAPTER 6. SPAM MITIGATION

Nigeria or Ivory Coast. None of the messages in this category include an
Unsubscribe header.

Unfortunately, users seemed to often fall victims to this type of attack,
as they opened and even whitelisted messages in these campaigns.

6.2.4 User Behavior

Our dataset also provides information about which actions were performed
by the users on the quarantined emails. In particular, we collected infor-
mation regarding the messages that were read, added to a user whitelist or
blacklist, and the CAPTCHA that was later solved by the sender. These data
can give us some useful insights on the ability of average users to identify
suspicious emails.

Table 6.4 presents three user action statistics. As expected, user activity
involves mainly legitimate and gray campaigns. In fact, the main reason
for users to go through the emails in this folder is to spot missed notifica-
tions or undelivered benign messages. However, a large fraction of users
also opened spam messages, maybe attracted by some deceiving subjects.
The highest campaign viewing rates are produced by botnet-generated cam-
paigns, overpassing even newsletters. Over 3,888 spam emails were viewed
by users during our six-month experiments, resulting in the fact that one out
of five users has viewed at least one spam message, and, on average, opened
5 of them.

After a manual inspection of botnet-generated campaigns where the
emails were read and whitelisted, we confirmed that those campaigns were
promoting illegal products, e.g. drugs and pirated software. This may sug-
gest two things: either users have problems in distinguishing legitimate
emails from harmful, or some users are genuinely interested in the products
promoted by spammers. It is difficult to draw conclusions as both hypothe-
ses might be true for different users, but, clearly, most of them are unaware
of the security threats involved in opening malicious emails.

Meanwhile, we should compare the reported statistics of viewed emails
with the number of emails that actually got whitelisted – an action that
could be interpreted as the equivalent of clicking the “Not Spam” button
provided by several webmail services. The number of whitelisted emails per
botnet-generated campaign (1.26 emails) is the lowest among all the cate-
gories, suggesting that most users successfully differentiate them. However,
we notice that scam/phishing campaigns have almost the same number of
emails being whitelisted per campaign as commercial campaigns (2.25 vs
2.9). This suggests that users might have difficulties in differentiating these
categories. It is important to remember that this category was manually
sampled by domain experts, which is not the case for the typical users as
most of them are untrained and are more likely to fall for these kind of
fraud.

www.syssec-project.eu 86 November 12, 2014

6.2. EMAILS IN THE GRAY AREA

Table 6.4: User actions performed on campaigns.

Viewed Whitelisted CAPTCHA solved

Legitimate 42% 12% 3.5%
Spam 25% 6% 0.2%
Gray 40% 17% 10%

To further measure how significant this phenomenon is, we compute
that there is a 0.36% probability that a certain user whitelists a legitimate
email and 0.0005% that she whitelists a spam message. These numbers may
seem low, but they rapidly increase when multiplied by the number of users
and the number of messages received. In total, an average of 3.9 emails
get whitelisted per legitimate campaign compared to 1.1 emails per spam
campaign.

To conclude, user-generated actions on gray emails are erroneous and
thus are inaccurate to use for prediction. They often open even potentially
dangerous emails, ignoring security risks.

www.syssec-project.eu 87 November 12, 2014

CHAPTER 6. SPAM MITIGATION

6.2.5 Discussion

We presented a system to identify and classify campaigns of gray emails.
As an approximation of this set, we chose to use the quarantined folder of
a challenge-response antispam filter, since it is already clean from obvious
spam and ham messages.

Our analysis unveiled the most and the least predictive email campaign
class attributes. We also demonstrated that previous techniques used for
email campaign classification [65] did not provide acceptable results in our
settings, confirming that the gray area contains the hardest messages to
classify. Additionally, we confirmed and extended some of the findings of
previous studies regarding botnet campaigns [56].

Our system could be used in different ways. First of all, it can help
understanding how large commercial campaigns work, how they originate,
and how they differ from other unsolicited emails. It could also serve as
an input to automatically place marketing campaigns and newsletters in a
separate folder, so that users can clearly differentiate these messages from
other forms of spam. In fact, the users in our study often opened botnet-
generated emails and were especially prone to errors when dealing with
scam and phishing messages; we believe that a separate folder dedicated
to legitimate bulk emails would create an extra layer between the users
and the malicious messages, thus allowing users to focus on the bulk folder
when looking for missing and misclassified emails. Interestingly, after we
completed our study, a similar solution was deployed by GMail [26], to place
user newsletters, notifications, and other commercial email into distinctive
categories.

www.syssec-project.eu 88 November 12, 2014

7
Conclusions

With this final deliverable we provided an overview of the most interesting
research on malware and fraud topics. Both areas are quite hard to separate
since one often depends on the other. Fraudulent activity, for instance, al-
most always relies on some kind of malware which needs to be installed at
the victim’s host. Still, the areas we covered are far from complete. There
are a lot of interesting other topics ranging from advanced malware analysis
over detailed botnet takedowns to online banking fraud. Covering them in
a single deliverable, however, is not feasible. Furthermore, we covered only
technological aspects of the two worlds. There are just as many sociological
and human aspects connected to fraud alone. In order not to drop them
completely, they are discussed in the final roadmap, which is deliverable
D4.4.

Here we also cover another important aspect of work package 5: The
expert meetings. All the input that led to this deliverable originally stems
from various publications created by members or collaborations of the con-
sortium. The working group meetings were held with the goal to get input
beyond the consortium. And it worked surprisingly well. These discussions
resulted in ideas about future research directions but also brought existing
work to attention. In the case of working group 5 (working group on mal-
ware and fraud), for example, we were provided with insight about banking
fraud but from the moment when an account is already compromised. These
insights inspired new ideas on where to disrupt the scamming scheme and
not necessarily on the technological side. Again, a more detailed discussion
is provided in the final roadmap.

These insights were exactly what we were targeting with the SysSec
project. Building a network of qualified and knowledgeable people from
various fields, to give ideas and discuss experiences in their respective topic.

89

CHAPTER 7. CONCLUSIONS

www.syssec-project.eu 90 November 12, 2014

Bibliography

[1] L. Akoglu, M. McGlohon, and C. Faloutsos. OddBall: Spotting Anomalies in Weighted
Graphs. In PAKDD, 2010.

[2] P. W. e. al. MessageLabs Intelligence: 2010 Annual Security Report. Technical report,
Symantec, 2010.

[3] D. Antoniades, E. Athanasopoulos, I. Polakis, S. Ioannidis, T. Karagiannis, G. Kontaxis,
and E. P. Markatos. we.b: The web of short URLs. In WWW ’11, 2011.

[4] P. Baecher and M. Koetter. libemu, 2009. http://libemu.carnivore.it/.

[5] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. Au-
tomated Classification and Analysis of Internet Malware. In Proceedings of the 10th
International Symposium on Recent Advances in Intrusion Detection (RAID), 2007.

[6] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna. Efficient
Detection of Split Personalities in Malware. In Proceedings of the 17th Annual Network
and Distributed System Security Symposium (NDSS), 2010.

[7] P. Bania. Evading network-level emulation, 2009. http://piotrbania.com/all/
articles/pbania-evading- nemu2009.pdf.

[8] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A View on Current Mal-
ware Behaviors. In 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2009.

[9] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware. In Pro-
ceedings of the 15th European Institute for Computer Antivirus Research (EICAR) Annual
Conference, 2006.

[10] U. Bayer and F. Nentwich. Anubis: Analyzing Unknown Binaries, 2009. http://
anubis.iseclab.org/.

[11] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical
Conference, 2005.

[12] P. O. Boykin and V. P. Roychowdhury. Leveraging social networks to fight spam. Com-
puter, 38(4), 2005.

[13] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. Graph structure in the web. Computer Networks, 33(1-6), 2000.

91

http://libemu.carnivore.it/
http://piotrbania.com/all/articles/pbania-evading-
http://piotrbania.com/all/articles/pbania-evading-
nemu2009.pdf
http://anubis.iseclab.org/
http://anubis.iseclab.org/

BIBLIOGRAPHY

[14] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an Understanding
of Anti-Virtualization and Anti-Debugging Behavior in Modern Malware. In Proceedings
of the 38th Annual IEEE International Conference on Dependable Systems and Networks
(DSN), 2008.

[15] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical
data. SIAM Reviews, June 2007.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware Analysis via Hardware
Virtualization Extensions. In Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS), 2008.

[17] H. Ebel, L. Mielsch, and S. Bornholdt. Scale-free topology of e-mail networks. Physical
Review E, 66, 2002.

[18] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers against drive-
by downloads: Mitigating heap-spraying code injection attacks. In Proceedings of the
6th international conference on Detection of Intrusions and Malware, & Vulnerability
Assessment (DIMVA), 2009.

[19] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. SIGCOMM Comput. Commun. Rev., 29, 1999.

[20] P. Ferrie. Attacks on Virtual Machine Emulators. Technical report, Symantec Research
White Paper, 2006.

[21] P. Ferrie. Attacks on More Virtual Machines, 2007.

[22] S. Ford, M. Cova, C. Kruegel, and G. Vigna. Wepawet, 2009. http://wepawet.cs.
ucsb.edu/.

[23] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. Compatibility is Not Transparency:
VMM Detection Myths and Realities. In Proceedings of the 11th Workshop on Hot Topics
in Operating Systems (HotOS-XI), 2007.

[24] L. H. Gomes, R. B. Almeida, L. M. A. Bettencourt, V. Almeida, and J. M. Almeida.
Comparative graph theoretical characterization of networks of spam and legitimate
email. In Proc. of the Conference on Email and Anti-Spam, 2005.

[25] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the underground on 140
characters or less. In CCS ’10, pages 27–37, New York, NY, USA, 2010. ACM.

[26] G. inc. Inbox tabs and category labels. http://gmailblog.blogspot.fr/2013/
05/a-new-inbox-that-puts-you-back-in.html.

[27] J. Isacenkova and D. Balzarotti. Shades of gray: A closer look at emails in the gray
area. In Proceedings of the 9th ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS), 2014.

[28] J. Isacenkova, O. Thonnard, A. Costin, D. Balzarotti, and A. Francillion. Inside the
scam jungle: A closer look at 419 scam email operations. IWCC, 2013.

[29] P. Jaccard. The Distribution of Flora in the Alpine Zone. The New Phytologist, 11(2),
1912.

[30] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant, P. Poosankam, D. Reynaud, and
D. Song. Differential Slicing: Identifying Causal Execution Differences for Security
Applications. In IEEE Symposium on Security and Privacy (2011), 2011.

[31] V. Kamluk. A black hat loses control. http://www.securelist.com/en/weblog?
weblogid=208187881, 2009.

[32] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden Code Extractor for Packed
Executables. In ACM Workshop on Recurring Malcode (WORM), 2007.

www.syssec-project.eu 92 November 12, 2014

http://wepawet.cs.ucsb.edu/
http://wepawet.cs.ucsb.edu/
http://gmailblog.blogspot.fr/2013/05/a-new-inbox-that-puts-you-back-in.html
http://gmailblog.blogspot.fr/2013/05/a-new-inbox-that-puts-you-back-in.html
http://www.securelist.com/en/weblog?weblogid=208187881
http://www.securelist.com/en/weblog?weblogid=208187881

BIBLIOGRAPHY

[33] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song. Emulating Emulation-
Resistant Malware. In Proceedings of the 2nd Workshop on Virtual Machine Security
(VMSec), 2009.

[34] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson, and S. Sav-
age. Spamalytics: an empirical analysis of spam marketing conversion. Proc. of the
ACM conf. on computer and communications security, 52(9), 2009.

[35] P. Kleissner. Antivirus Tracker. http://avtracker.info/, 2009.

[36] G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science,
311(5757), 2006.

[37] H. Lam and D. Yeung. A learning approach to spam detection based on social networks.
In Proceedings of the Conference on Email and Anti-Spam, 2007.

[38] B. Lau and V. Svajcer. Measuring virtual machine detection in malware using DSD
tracer. Journal in Computer Virology, 6(3), 2010.

[39] S. Lee and J. Kim. WarningBird: Detecting Suspicious URLs in Twitter Stream. In
NDSS ’12, 2012.

[40] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrink-
ing diameters. ACM Transactions on Knowledge Discovery Data, 1(1), 2007.

[41] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detecting environment-sensitive
malware. In Recent Advances in Intrusion Detection, pages 338–357. Springer, 2011.

[42] B. Livshits. Finding malware on a web scale. Computer Network Security, 2012.

[43] F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross, C. Kruegel, and G. Vigna.
Two years of short URLs internet measurement: Security threats and countermeasures.
In Proceedings of the 22nd International Conference on World Wide Web (WWW), 2013.

[44] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack: Fast, Generic, and Safe
Unpacking of Malware. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2007.

[45] J. Mason, S. Small, F. Monrose, and G. MacManus. English shellcode. In Proceedings
of the 16th ACM conference on Computer and communications security (CCS), 2009.

[46] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver, C. Kreibich, B. Krebs, G. M. Voelker,
S. Savage, and K. Levchenko. Pharmaleaks: Understanding the business of online
pharmaceutical affiliate programs. USENIX, 2012.

[47] D. K. McGrath and M. Gupta. Behind phishing: an examination of phisher modi
operandi. In LEET ’08, pages 4:1–4:8, Berkeley, CA, USA, 2008. USENIX Association.

[48] Metaspploit. The metasploit project. http://www.metasploit.com/.

[49] Microsoft. Win32 assembly components, Dec. 2002. http://lsd-pl.net.

[50] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measure-
ment and analysis of online social networks. In IMC, 2007.

[51] F. Moradi, T. Olovsson, and P. Tsigas. Towards modeling legitimate and unsolicited
email traffic using social network properties. In Proceedings of the Fifth Workshop on
Social Network Systems (SNS), 2012.

[52] A. A. Nanavati, R. Singh, D. Chakraborty, K. Dasgupta, S. Mukherjea, G. Das, S. Guru-
murthy, and A. Joshi. Analyzing the structure and evolution of massive telecom graphs.
IEEE Trans. on Knowledge & Data Engineering, 20(5), 2008.

[53] Nepenthes. Common shellcode naming initiative, 2009. http://nepenthes.
carnivore.it/csni.

[54] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrikson, J. Giffin, and S. Jha.
Automatic Generation of Remediation Procedures for Malware Infections. In Proceed-
ings of the 19th USENIX Conference on Security, 2010.

www.syssec-project.eu 93 November 12, 2014

http://avtracker.info/
http://www.metasploit.com/
http://lsd-pl.net
http://nepenthes.carnivore.it/csni
http://nepenthes.carnivore.it/csni

BIBLIOGRAPHY

[55] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi. A fistful of red-pills: How to
automatically generate procedures to detect CPU emulators. In Proceedings of the 3rd
USENIX Workshop on Offensive Technologies (WOOT), 2009.

[56] A. Pathak, F. Qian, Y. C. Hu, Z. M. Mao, and S. Ranjan. Botnet spam campaigns can be
long lasting: Evidence, implications, and analysis. SIGMETRICS, 2009.

[57] B. B. Pek, G. and and B. L. nEther: In-guest Detection of Out-of-the-guest Malware
Analyzers. In ACM European Workshop on System Security (EUROSEC), 2011.

[58] R. Perdisci, W. Lee, and N. Feamster. Behavioral Clustering of HTTP-Based Malware
and Signature Generation Using Malicious Network Traces. In USENIX Conference on
Networked Systems Design and Implementation (NSDI), 2010.

[59] M. Pietrek. A crash course on the depths of Win32™structured exception handling,
1997. http://www.microsoft.com/msj/0197/exception/exception.aspx.

[60] A. Pitsillidis, C. Kanich, G. M. Voelker, K. Levchenko, and S. Savage. Taster’s choice: a
comparative analysis of spam feeds. IMC, 2012.

[61] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. An empirical study of real-
world polymorphic code injection attacks. In Proceedings of the 2nd USENIX Workshop
on Large-scale Exploits and Emergent Threats (LEET), April 2009.

[62] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Comprehensive shellcode
detection using runtime heuristics. In Proceedings of the 26th Annual Computer Security
Applications Conference, pages 287–296. ACM, 2010.

[63] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis. Network-level polymorphic
shellcode detection using emulation. In Proceedings of the Third Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 2006.

[64] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis. Emulation-based detection
of non-self-contained polymorphic shellcode. In Proceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection (RAID), September 2007.

[65] F. Qian, A. Pathak, Y. C. Hu, Z. M. Mao, and Y. Xie. A case for unsupervised-learning-
based spam filtering. SIGMETRICS, 2010.

[66] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting System Emulators. In Information
Security Conference (ISC), 2007.

[67] A. Ramachandran and N. Feamster. Understanding the network-level behavior of
spammers. SIGCOMM Comput. Commun. Rev., 36, 2006.

[68] R. Rasmussen and G. Aaron. Global Phishing Survey: Trends and Domain Name Use
in 1H2010. Technical report, APWG, Oct. 2010.

[69] R. Rasmussen and G. Aaron. Global Phishing Survey: Trends and Domain Name Use
in 1H2011. Technical report, APWG, Nov. 2011.

[70] R. Rasmussen and G. Aaron. Global Phishing Survey: Trends and Domain Name Use
in 1H2012. Technical report, APWG, Oct. 2012.

[71] A. Reka and Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys.,
74:47–97, June 2002.

[72] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. Van Steen, F. C. Freiling, and
N. Pohlmann. Sandnet: Network traffic analysis of malicious software. In Proceedings
of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security, pages 78–88. ACM, 2011.

[73] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos, and
M. Van Steen. Prudent practices for designing malware experiments: Status quo and
outlook. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 65–79. IEEE,
2012.

www.syssec-project.eu 94 November 12, 2014

http://www.microsoft.com/msj/0197/exception/exception.aspx

BIBLIOGRAPHY

[74] J. Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU instruction.
http://invisiblethings.org/papers/redpill.html, 2004.

[75] Skape. Understanding windows shellcode, 2003. http://www.hick.org/code/
skape/papers/win32-shellcode.pdf.

[76] Skape. Safely searching process virtual address space, 2004. http://www.hick.
org/code/skape/papers/egghunt-shellcode.pdf.

[77] SkyLined. SEH GetPC (XP SP3), July 2009. http://skypher.com/wiki/index.
php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/
SEH_GetPC_(XP_sp3).

[78] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo. On the infeasibility
of modeling polymorphic shellcode. In Proceedings of the 14th ACM conference on
Computer and communications security (CCS), 2007.

[79] B. Stock, J. Gobel, M. Engelberth, F. C. Freiling, and T. Holz. Walowdac-analysis of a
peer-to-peer botnet. In Computer Network Defense (EC2ND), 2009 European Conference
on, pages 13–20. IEEE, 2009.

[80] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel, D. Steigerwald, and G. Vigna. The
Underground Economy of Fake Antivirus Software. In Proceedings of the Workshop on
Economics of Information Security (WEIS), 2011.

[81] B. Stone-Gross, A. Moser, C. Kruegel, K. Almaroth, and E. Kirda. FIRE: FInding Rogue
nEtworks. In Proceedings of the Annual Computer Security Applications Conference (AC-
SAC), 2009.

[82] P. Ször. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
February 2005.

[83] C. K. Tan. Defeating Kernel Native API Hookers by Direct Service Dispatch Table
Restoration. Technical report, SIG2 G-TEC Lab, 2004.

[84] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-
time url spam filtering service. IEEE Symposium on Security and Privacy, 2011.

[85] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract payload exe-
cution. In Proceedings of the 5th Symposium on Recent Advances in Intrusion Detection
(RAID), Oct. 2002.

[86] C. Tseng and M. Chen. Incremental SVM model for spam detection on dynamic email
social networks. In Conf. on Computational Science and Engineering, 2009.

[87] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Still: Exploit code detection via static taint
and initialization analyses. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2008.

[88] X. Wang, C.-C. Pan, P. Liu, and S. Zhu. Sigfree: A signature-free buffer overflow attack
blocker. In Proceedings of the USENIX Security Symposium, Aug. 2006.

[89] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684), 1998.

[90] B.-J. Wever. SEH Omelet Shellcode, 2009. http://code.google.com/p/
w32-seh-omelet-shellcode/.

[91] G. Wicherski. Win32 egg search shellcode, 33 bytes, Feb. 2009. http://blog.oxff.
net/2009/02/win32-egg-search- shellcode-33-bytes.html.

[92] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis
using CWSandbox. IEEE Security and Privacy, 5(2):32–39, 2007.

[93] W.-t. Yih, R. McCann, and A. Kolcz. Improving spam filtering by detecting gray mail.
CEAS, 2007.

www.syssec-project.eu 95 November 12, 2014

http://invisiblethings.org/papers/redpill.html
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_(XP_sp3)
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_(XP_sp3)
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_(XP_sp3)
http://code.google.com/p/w32-seh-omelet-shellcode/
http://code.google.com/p/w32-seh-omelet-shellcode/
http://blog.oxff.net/2009/02/win32-egg-search-
http://blog.oxff.net/2009/02/win32-egg-search-
shellcode-33-bytes.html

BIBLIOGRAPHY

[94] K. Yoshioka, Y. Hosobuchi, T. Orii, and T. Matsumoto. Your Sandbox is Blinded: Im-
pact of Decoy Injection to Public Malware Analysis Systems. Journal of Information
Processing, 19, 2011.

[95] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Lyer. Analyzing network traffic to detect
self-decrypting exploit code. In Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2007.

www.syssec-project.eu 96 November 12, 2014

	Foreword
	Malware and Fraud Related Works of the SysSec Consortium

	Malware infection
	The Gene architecture
	Heuristics
	Resolving kernel32.dll
	Process Memory Scanning
	SEH-based GetPC Code

	Evaluating Gene
	Detection Effectiveness
	Runtime Performance

	Discussion

	Malware Evasion
	Evasion prevalence in malware
	Disarm Architecture

	Behavior Comparison
	Behavior Normalization
	Distance Measure and Scoring

	Evaluation
	Large Scale Test
	Qualitative Results

	Discussion

	Malware experiments
	Designing experiments
	Correct Datasets
	Check if goodware samples should be removed from datasets
	Balance datasets over malware families
	Check whether training and evaluation datasets should have distinct families
	Perform analysis with higher privileges than the malware™s
	Discuss and if necessary mitigate analysis artifacts and biases
	Use caution when blending malware activity traces into benign background activity

	Transparency
	State family names of employed malware samples
	List which malware was analyzed when
	Explain the malware sample selection
	Mention the system used during execution
	Describe the network connectivity of the analysis environment
	Analyze the reasons for false positives and false negatives
	Analyze the nature/diversity of true positives

	Realism
	Evaluate relevant malware families
	Perform real-world evaluations
	Exercise caution generalizing from a single OS version, such as Windows XP
	Choose appropriate malware stimuli
	Consider allowing Internet access to malware

	Safety
	Deploy and describe containment policies

	Discussion

	URL Shortening Services
	Security Threats and Countermeasures
	Current Countermeasures
	Deferred Malicious URLs

	Measurement Approach
	Measurement

	Results
	Malicious Short URLs
	The Short URLs Ecosystem

	Discussion

	Spam Mitigation
	Spam Bot Identification
	Data Collection and Pre-processing
	Structural and Temporal Properties of Email Networks
	Anomalies in Email Network Structure
	Discussion

	Emails in the Gray Area
	Approach
	Attribute Analysis
	Email Campaigns
	User Behavior
	Discussion

	Conclusions

