
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

Trustworthy ICT

NETWORK OF EXCELLENCE

A European Network of Excellence in Managing Threats and
Vulnerabilities in the Future Internet: Europe for the World †

Deliverable D5.4: Intermediate Report on Internet
Fraud

Abstract: This deliverable presents an overview of the current state of
Internet fraud based on the research and analysis conducted in the context
of WP5. It also presents the current research being performed by the SysSec
consortium to gather and analyze data on the Internet fraud phenomena.

Contractual Date of Delivery August 2013
Actual Date of Delivery September 2013
Deliverable Dissemination Level Public
Editor Stefano Zanero, Christian Platzer
Contributors All SysSec partners
Quality Assurance Davide Balzarotti, Herbert Bos

The SysSec consortium consists of:

FORTH-ICS Coordinator Greece
Politecnico Di Milano Principal Contractor Italy
Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Institut Eurécom Principal Contractor France
IICT-BAS Principal Contractor Bulgaria
Technical University of Vienna Principal Contractor Austria
Chalmers University Principal Contractor Sweden
TUBITAK-BILGEM Principal Contractor Turkey

† The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257007.

www.syssec-project.eu 2 September 23, 2013

Contents

1 Introduction 9

2 Overview of current research on online banking and payment
card fraud 11
2.1 Main Threats to Internet Banking 11
2.2 The Anomaly and Fraud Detection Problem 13

2.2.1 Types of Anomaly . 14
2.2.2 Approaches to Anomaly Detection 15

2.3 Online Banking Fraud and Detection Systems Characteristics . 18
2.3.1 Online Banking Fraud 18
2.3.2 Online Banking Detection Systems 19
2.3.3 Problem of Cooperation in Fraud Detection 20

2.4 State of Art in Internet Fraud Detection 21
2.4.1 Supervised Approach 21
2.4.2 Unsupervised Approach 22
2.4.3 Semisupervised Approach 22
2.4.4 Hybrid Approaches . 22
2.4.5 Biological Approaches 22
2.4.6 Statistical Approaches 22
2.4.7 Credit card fraud detection 24
2.4.8 Fraud detection in online banking 25
2.4.9 Smartsifter . 25

2.5 Open problems and research challenges 27

3 Evolutions of Banking Trojans 29
3.1 Zeus: the most successful example of banking trojan 30
3.2 Peer to Peer Network Topology and challenges 32

3.2.1 Structure of the Zeus P2P network 33

3

3.2.2 The zeus P2P Protocol 33
3.2.3 Communication Patterns 43

3.3 Domain Name Generation Algorithm 44
3.3.1 Algorithm Details . 45

3.4 Analyzing web injections . 46
3.4.1 Information-stealing Trojans: Overview and Challenges 46
3.4.2 Overview of Zarathustra 50
3.4.3 Implementation Details 52
3.4.4 Post-processing Heuristics 55
3.4.5 Experimental Evaluation 55
3.4.6 Discussion and Limitations 59
3.4.7 Related Work . 61
3.4.8 Future Work . 62

4 The Role of Phone Numbers in Understanding Cyber-Crime Schemes 65
4.1 Problem overview and state of the art 65
4.2 Lessons learned from analyzing the Nigerian scam 67

4.2.1 Phone Numbers: Extraction and Quality 67
4.2.2 Data Enrichment . 69
4.2.3 Fraud business models 70
4.2.4 Criminals Behind the Phone 72
4.2.5 Dynamic Analysis of Scam Phone Numbers 77

4.3 Automated collection and analysis of data on phone phishing 81
4.3.1 System overview . 82
4.3.2 Collected data . 83
4.3.3 Limitations and technical challenges 84

5 Social Network Forensics Framework 85
5.1 The need for social network investigation tools 85
5.2 Social Forensics . 88
5.3 System Implementation . 89

5.3.1 Usage Scenario . 90
5.3.2 Data collection components 91
5.3.3 Account correlation component 92
5.3.4 Visualization components 93

5.4 Data Collection . 94
5.5 Activity Visualization . 95

6 Conclusions and future works 101

www.syssec-project.eu 4 September 23, 2013

List of Figures

3.1 Geographical distribution of externally reachable Zeus peers. 32
3.2 Topology of P2P Zeus. Shaded nodes represent proxy bots.

The dotted line shows the information flow between a har-
vester bot and the C2 layer. 34

3.3 The Zeus message structure. 37
3.4 Version reply payload (22 bytes). 38
3.5 Peer list request payload (28 bytes). 39
3.6 Peer struct (45 bytes). 39
3.7 Data request payload (5 bytes). 40
3.8 Data reply payload (length varies). 40
3.9 Proxy struct (304 bytes). 41
3.10 C2 HTTP header. 42
3.11 The P2P Zeus Domain Name Generation Algorithm. 45
3.12 Example of a real WebInject found on a page of extranet.banesto.es,

performed by a ZeuS variant (MD5 15a4947383bf5cd6d6481d2bad82d3b6),
along with the respective webinject.txt configuration file. . 48

3.13 The HTML source code produced by the banking website tran-
sits encrypted over the Internet. When it reaches the OS and
thus the Wininet.dll library, the source code is decrypted
and intercepted. ZeuS modifies it on the fly and sends it
through the same pipeline, up to the browser rendering engine. 49

3.14 Server side architecture of Zarathustra, which is in charge of
analyzing a given URL against a given trojan. 52

3.15 Scalability of Zarathustra: Time required to process 213 URLs
with 76 samples (including crashing samples). the labeled
points indicate the time to process 1 URL. 57

5

LIST OF FIGURES

3.16 False positives due to legitimate differences decrease for an
increasing number, n ∈ [2, 35], of clean VMs, until it reaches
1.0%. We used 206 distinct URLs, rendered on a machine in-
fected with ZeuS (MD5 a4aa162745adcb84373e6a623125c650).
With Heuristic 1 enabled, we achieve zero false positives. . . 60

4.1 UK 07x fraud-share and fraud-vs-range allocation ratio. 72
4.2 Scam email category preferences by phone number country

codes. 73
4.3 Visual relationships between phone numbers (white nodes)

and email addresses (black nodes) that are used as point of
contact in scam messages. The size of nodes is proportional
to the number of edges. 74

4.4 Top 8 largest communities in SCAM dataset, ordered by de-
creasing size from left to right. 75

4.5 Example of links between phone numbers and email addresses. 76
4.6 Accumulated shares of reused cellphones of scammers over

time. 77
4.7 Mobile phone numbers sorted by frequency of OK status. . . . 78
4.8 Mobile phones roaming per country. The arrow goes from

the originating country to the roaming country. Edge labels
indicate the number of roaming phones. The size of the node
reflects the number of roaming phones in that country. 79

4.9 Distribution of mobile phone operators in Top 4 leading coun-
tries - market share vs. scam share. 80

4.10 Overview of the dataflow of our collection system. 82

5.1 The architecture of our framework which is comprised of
three major components. 90

5.2 Two elements from the aggregated statistics perspective. We
provide details regarding the most interesting activities, at a
user-granularity and service-level granularity. 96

5.3 An example plot of the suspect’s social graph. The suspect is
depicted with the green node. The size of a node is defined
by its degree of connectivity. Edges toward the suspect’s node
are grey, while edges between contacts are blue. 97

5.4 This graph plots the overall communication between the sus-
pect and his contacts. This visualization facilitates the recog-
nition of important contacts, as the volume of communication
determines the width of the connection between suspect and
contact. 98

5.5 Extract of the calendar element, depicting the email exchange
activity of the suspect over a period of five months. 99

www.syssec-project.eu 6 September 23, 2013

LIST OF FIGURES

5.6 The word cloud shows the words most frequently contained
in the suspect’s communications. Here we see an example
created from a user’s Twitter hashtags (topics). 99

5.7 Two views of the map plotting the suspect’s check-ins. (a)
An aggregated city-level view. (b) The details of a specific
check-in and the associated activities. 100

www.syssec-project.eu 7 September 23, 2013

LIST OF FIGURES

www.syssec-project.eu 8 September 23, 2013

1
Introduction

In the current digital economy, cyber-crime is ubiquitous and has become
a major security issue. New attacks and business models appear every
year [74, 51] and criminals keep improving their techniques to trap their
victims in order to achieve their, usually financial, goals.

Modern cyber criminals are widely recognized to be well-organized and
profit-driven, as opposed to the reputation-driven underground which was
prevalent years ago [46].

In this Deliverable, we wish to summarize and report recent research
directions that compose the state of the art in the analysis of Internet-related
fraud activities.

We will start by analyzing, in Chapter 2, the complex phenomenon of
Internet banking and credit card fraud, the current approaches to perform
anomaly detection and fraud analysis, and the state of the art and weak
points of current research in this important area.

In Chapter 3 we will drill down on the specific sub-threat of information
stealing trojans, and introduce two approaches we developed to analyze
them.

As a part of their arsenal, the miscreants have learned to streamline their
campaigns also by leveraging automated social engineering attacks over sev-
eral channels including emails, instant messaging, social networks [63],
and the phone system (with both calls and text messages), with the com-
mon goal of expanding their “business” beyond email users. While the
role of other features in illegal online activities has been extensively stud-
ied [83, 119, 78, 50, 45], the role of phone numbers has been largely ig-
nored. In Chapter 4 we analyze this often overlooked component of modern
Internet-based fraud, and report on two sets of experiments we are currently
conducting.

Finally, in Chapter 5 we address the growing importance of data found
in online social network profiles for solving criminal investigations related

9

CHAPTER 1. INTRODUCTION

to Internet fraud, and introduce a modular investigation framework that
targets popular online social networks.

www.syssec-project.eu 10 September 23, 2013

2
Overview of current research on online banking and

payment card fraud

In this chapter we cover the current research on online banking fraud and
anomaly detection. First we give a description of the anomaly detection
theory necessary to understand the analysis, describing the terminologies
used and the different faces of the anomaly detection problem.

For a more complete reference, we refer the reader to [27], Chapter 10.

2.1 Main Threats to Internet Banking

To develop a detection system and, in general, a security system it is neces-
sary to understand what kind of dangers threaten the field under analysis.
In the light of this fact in this section we give an overview of the major
threats related to Internet banking.

Phishing With the term phishing we refer to the act of attempting to ac-
quire information such as usernames, passwords, and credit card de-
tails (and sometimes, indirectly, money) by masquerading as a trust-
worthy entity in an electronic communication ([101], [120]). Al-
though this information can also be obtained through less sophis-
ticated means (e.g., eavesdropping, guessing, dumpster diving, and
shoulder-surfing), phishing is a common form of cybercrime typically
carried out through e-mail, instant messaging, and social networking
sites. Phishing attacks usually provides links or instructions that direct
the user to a fake website whose look and feel are almost identical to
the legitimate one. The unsuspecting users are infected with malware
and enter personal information in forms (such as user names, pass-
words, Social Security Numbers, and credit card/account numbers),
which are then collected by the criminal.

11

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

Password Stealing and Identity Theft With the terms “identity theft” and
“password stealing” we refer to all types of crime in which someone
illicitly obtains and uses another person’s personal data or password
through deception or fraud, typically for monetary gain. With enough
personal information about an individual, a criminal can assume that
individual’s identity to carry out a wide range of crimes. Identity theft
occurs through several methods from very low-tech means, such as
check forgery and mail theft to more high-tech schemes, such as com-
puter spyware and social network data mining. These types of attacks
rely on the ability of the attacker to fool users into giving up their per-
sonal information and credentials. Since users are typically vulnerable
to these types of attacks, any method that relies on a credential that
can be disclosed is vulnerable to social engineering attacks.

Password Database Theft With the term “password database theft” we re-
fer to the attacks that steal user data and passwords from one web site
operator to hack other sites. In fact stolen user credentials are a valu-
able commodity and, often, this information are obtained and sold.
Since many people use the same user ID and password combination
for multiple sites, the attacker can hack additional accounts owned by
the user.

MITM With the term MITM we refer to a form of active eavesdropping in
which the attacker makes independent connections with the endpoints
of the connection and relays messages between them. Even if the end-
points believe that they are talking directly to each other, the entire
conversation is controlled by the attacker. This attacks the mutual au-
thentication and is only successful when the fraudster can imperson-
ate each endpoint without the other noticing. In this type of threat,
the attacker intercept all messages going between the two victims and
may actively inject messages of its own into the traffic between the
user’s machine and the authenticating server. One approach for MITM
attacks involves the usage of malicious network infrastructures (e.g.,
malicious wireless access points, compromised DNS servers) to redi-
rect users from the legitimate site they are trying to access to a mali-
cious fraudulent Web site that accesses the user credentials and acts on
behalf of the user to perform malicious activities. Most cryptographic
protocols include some form of endpoint authentication specifically
to prevent MITM attacks. For example, SSL can authenticate one or
both parties using a mutually trusted certification authority. The use
of SSL authentication using a mutually trusted certification authority
provides strong protection against MITM threats. Although SSL with
server authentication makes man-in-the-middle attacks harder to carry
out, they can fail. In example, when the certificate validation relies on

www.syssec-project.eu 12 September 23, 2013

2.2. THE ANOMALY AND FRAUD DETECTION PROBLEM

the user, the user may fail to reject fake server certificates and will
click through the warning messages. There exists other methods such
as OTP or smart cards/tokens for secure two-factor authentication,
which limit the damage but the vulnerability still exists.

2.2 The Anomaly and Fraud Detection Problem

Many anomaly detection techniques have been specifically developed for
specific application fields, while others are more generic. Anomaly detection
has been the topic of a number of surveys and review articles, as well as
books. From some of these (i.e., [96, 92, 37, 43]) we have extracted this
overview.

Fraud can be defined as the “abuse of a profit organization’s system with-
out that abuse leading necessarily to legal consequences” as in [96], or “the
use of false representations to gain an unjust advantage” ([37]). We can
generalize the definition to fraud being the usage of a system in a way which
does not conform to its intended rules and purposes, but close enough to le-
gal use that the chance to go undetected and therefore not prosecuted is
high.

The relationship of this issue with anomaly detection techniques is very
evident. With the term anomaly detection we refer to the problem of finding
patterns in data that do not conform to the expected behavior ([43]). Its
importance is a consequence of the fact that anomalies in data often are not
only unimportant noise, but often refer to significant information in a wide
variety of application domains. In particular, anomalies may be induced in
the data by malicious activities (e.g., credit card fraud, cyber-intrusion, or
breakdown of a system).

A straightforward anomaly detection approach is to define a region rep-
resenting normal behavior, and declare any observation that does not belong
to this normal region as an anomaly. But there are several factors that make
the anomaly detection problem increasingly challenging.

First, it is very difficult to define a normal region that encompasses every
possible normal behavior. In fact the boundary between normal and anoma-
lous behavior is often imprecise. For example, when anomalies are the re-
sult of malicious actions, the fraudsters often adapt themselves to make the
anomalous observations appear normal, thereby making the task of defining
normal behavior more and more difficult.

Second, in many domains (e.g., intrusion detection) normal behavior
keeps evolving and a current notion of normal behavior might not be suf-
ficiently representative in the future. In addition, those changes might be
mistakenly identified as outliers. This highlights the need of a model able to
deal with concept drift.

www.syssec-project.eu 13 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

Another important challenge is represented by the fact that an exact no-
tion of anomaly is different for different application domains. Thus applying
a technique developed in one domain to another is not straightforward.

The final challenge resides in the quality of data. In fact, often real data
contains noise similar to the actual anomalies and hence difficult to distin-
guish. In addition, the scarcity of labeled data for training and validation of
models is usually a major issue and imposes limitations on the results and
conclusions reached.

Due to these challenges, the anomaly detection problem, in its most
general form, is not easy to solve and researchers have adopted concepts
from diverse disciplines such as statistics, machine learning, data mining,
and information theory to apply them to specific problem formulations. The
formulation is induced by various factors such as the nature of the data,
availability of labeled data, type of anomalies to be detected, and more often
by the application domain. In other words the anomaly detection techniques
needs to be adapted to different application domains.

2.2.1 Types of Anomaly

Anomalies can be classified into either point anomalies, contextual anoma-
lies or collective anomalies.

Point Anomalies An individual data instance is termed as a point anomaly
when it is anomalous with respect to the rest of data. This is the
simplest type of anomaly and is the focus of the majority of research
on anomaly detection (e.g., Credit Card Fraud detection).

Contextual Anomalies A data instance is termed as a contextual anomaly
when it is anomalous in a specific context, but not otherwise. The no-
tion of a context is induced by the structure in the data set and has to
be specified as a part of the problem formulation. Each data instance is
defined using contextual and behavioral attributes ([43]). The contex-
tual attributes are used to determine the context (or neighbourhood)
for that instance, while behavioral attributes define the non contextual
characteristics of an instance. For example, in a spatial data sets the
longitude and latitude of a location might be a contextual attributes
while the amount of rainfall at any location might be a behavioral at-
tribute. The anomalous behavior is determined using the values of the
behavioral attributes within a specific context. A data instance might
be a contextual anomaly in a given context, but an identical data in-
stance (in terms of behavioral attributes) could be considered normal
in a different context. Identifying contextual and behavioral attributes
is a key requirement for a contextual anomaly detection technique.

www.syssec-project.eu 14 September 23, 2013

2.2. THE ANOMALY AND FRAUD DETECTION PROBLEM

Collective Anomalies A collection of related data instances is termed as a
collective anomaly when is anomalous with respect to the entire data
set. The individual data instances in a collective anomaly may not be
anomalies by themselves, but their occurrence together is anomalous.
Clearly this can only occur in data sets where the records are related
to each other.

2.2.2 Approaches to Anomaly Detection

There are many approaches to anomaly detection that depends on various
aspects:

• The type of anomaly

• The type of anomaly detection and challenges associated

• The type of dataset and attributes

• The type of existing techniques

From the point of view of the type of the anomaly the approaches could
either be global or local. Global approaches refer to the techniques in which
the anomaly score is assigned to each instance with respect to the entire
data set. Instead, local approaches assign the anomaly score with respect to
its neighbourhood. The local approaches can detect outliers that can not be
detected with the global methods. In [36] a slightly different approach is
implemented. The implemented tool detects individual objects that begin to
behave in a way distinct from objects to which they had previously been sim-
ilar. Each object is selected as a target object and is compared with all other
objects in the database, using comparison criteria that summarise behavior
patterns of each object. Based on this comparison, a peer group of objects
most similar to the target object is chosen. The behavior of the peer group
is then summarised at each subsequent time point, and the behavior of the
target object is compared with the summary of its peer group. Those target
objects exhibiting behavior most different from their peer group summary
behavior are flagged as meriting closer investigation.

Another classification of anomaly detection techniques can be made on
the basis of when the anomaly detection is performed. The detection can
be online or offline. Online mode detect anomalies as soon as new data
are introduced in input. That is, every time a datum is input, the system
evaluate how much the datum deviated with respect to a normal pattern.
In contrast, most existing works on outlier detection, are concerned with
batch-detection or offline processes, in which outliers are detected only after
the analysis of the entire dataset. The online setting is more realistic in such
situations as Online Banking where data becomes available over time and it
is important to identify deviations as soon as they arise.

www.syssec-project.eu 15 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

Anomaly detection techniques can be divided according to the type of
the training dataset and, in particular, to the fact that its instances are la-
beled or not. Labels associated with a data instance denote whether that
instance is normal or anomalous. It is important to note that obtaining la-
beled data that is accurate and representative of all types of behaviors, is
often very expensive, because this has to be done manually by a human ex-
pert. Typically, getting a labeled set of anomalous data instances that covers
all possible type of anomalous behavior is more difficult than getting labels
for normal behavior. Moreover, the anomalous behavior is often dynamic in
nature. For example, new types of anomalies might arise, for which there is
no labeled training data.

In the light of these facts, anomaly detection techniques can operate in
one of the following three modalities:

• Supervised Anomaly Detection: techniques trained in supervised
mode assume the availability of a training data set that has labeled
instances for normal as well as anomaly classes. A typical approach
is divided into two main phases: training and testing. The training
phase build a predictive model for normal versus anomaly classes. In
the testing phase any unseen data instance is compared against the
trained model to determine which class it belongs to.

• Semi-supervised Anomaly Detection: techniques that operate in a
semi-supervised mode, assume that the training data has labeled in-
stances only for the normal class. Since they do not require labels for
the anomaly class, they are more widely applicable than supervised
techniques. The typical approach used in such techniques is to build
a model for the class corresponding to normal behavior, and use the
model to identify anomalies in the test data.

• Unsupervised Anomaly Detection: techniques that operate in unsu-
pervised mode do not require training data, and thus are most widely
applicable. The techniques in this category make the implicit assump-
tion that normal instances are far more frequent than anomalies. If
this assumption is not true, then such techniques suffer from high false
alarm rate. Unsupervised techniques can be adapted for online detec-
tion upon the availability of a sufficiently large database which would
enable comparison with new data.

Many semi-supervised techniques can be adapted to operate in an unsu-
pervised mode by using a sample of the unlabeled data set as training data
(e.g., [43, 93]). Such adaptation assumes that the test data contains very
few anomalies and the model learned during training is robust to these few
anomalies. Although the supervised learning based approach is popular in
fraud detection, the semi-supervised and unsupervised learning approach

www.syssec-project.eu 16 September 23, 2013

2.2. THE ANOMALY AND FRAUD DETECTION PROBLEM

are not only more technically difficult but also more practically important,
since in real situations fraud labeled examples might not be available, and a
new fraud or intrusion pattern which didn’t appear in past data may possibly
emerge in future data.

An important aspect for any anomaly detection technique is the manner
in which the anomalies are reported. Typically, the outputs produced by
anomaly detection techniques are one of the following two types ([43]):

• Scores: scoring techniques assign an anomaly score to each instance
in the test data depending on the degree to which that instance is
considered an anomaly. Thus the output of such techniques is a ranked
list of anomalies. An analyst may choose to either analyse the top
few anomalies or use a cut-off threshold to select the most anomalous
instance.

• Labels: techniques in this category assign a label (normal or anoma-
lous) to each test instance.

Scoring-based anomaly detection techniques allow the analyst to use a
domain specific threshold to select the most relevant anomalies. Techniques
that provide binary labels to the test instances do not directly allow the
analysts to make such a choice, though this can be controlled indirectly by
tuning parameters specific of each technique.

On the basis of the existing techniques, anomaly detection methods can
be grouped into one of the following main categories ([43]):

• Classification based algorithms are mainly supervised algorithms
that assumes that the distinction between anomalous and normal in-
stances can be modelled for a particular feature space.

• Nearest-neighbour based algorithms assume that anomalies lie in
sparse neighbourhoods and that they are distant from their nearest
neighbours. They are mainly unsupervised algorithms.

• Clustering based algorithms work by grouping similar objects into
clusters and assume that anomalies either do not belong to any cluster,
or that they are distant from their cluster centres or that they belong to
small and sparse clusters. The majority are unsupervised algorithms.

• Statistical approaches label objects as anomalies if they deviate from
the assumed stochastic model.

www.syssec-project.eu 17 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

2.3 Online Banking Fraud and Detection Systems Char-
acteristics

In this section we focus on the specific characteristics of online banking
fraud. Fraudulent online banking activities are becoming more and more
sophisticated, seriously threatening the security and trust of online banking
business. Online banking fraud has become a serious issue in financial crime
management for all banks. It is becoming ever more challenging and leads
to massive losses, due to the emergence and evolution of sophisticated on-
line banking fraud. In fact the more a business switches to online transfers,
the more it is exposed to potential frauds. Frauds is becoming a relevant or
even critical problem, because even if only a small percentage of the transac-
tions committed each day is fraudulent, this can have a big impact not only
on the financial side, but also on the reputational side. A bank not capable
of detecting fraudulent behavior in its transactions, can be accused of not
being careful enough and a loss of customer trust can have an impact much
bigger than only the financial loss caused by the fraudulent transactions.

2.3.1 Online Banking Fraud

In our research, we found out that real-world online banking transaction
datasets and the detection of online banking frauds have relevant charac-
teristics and challenges which are to be necessarily considered for designing
detection systems.

Online banking data involve a large number of transactions, usually mil-
lions per years, but the number of daily frauds is usually very small ([122]).
For this reason the detection of rare fraud dispersed among a massive num-
ber of genuine transactions requires a high level of efficiency and needs to
be real time. In other words a fraud detection alert should be generated as
quickly as possible to prevent money loss.

A second feature is that the fraud behavior is dynamic. Fraudsters con-
tinually advance and change their techniques to contrast online banking
defences. Malware, which accounts for the greater part of online banking
fraud, has been reported in 2013 to have over 200,000 new malicious pro-
grams every day ([31]). This puts fraud detection in the position of having
to defend against an ever-growing set of attacks and requires models to be
adaptive. In addition it opens the possibility of using multiple models ([42])
for challenges that cannot be handled by a single model.

Another feature is that the “forensic” evidence for fraud detection is
weak. For online banking transactions, it is only possible to know source
accounts, destination accounts and amount associated with each transac-
tion, but other information, for example, the profile associated to the user,
its spending pattern, and its general behavior with respect to the online ser-

www.syssec-project.eu 18 September 23, 2013

2.3. ONLINE BANKING FRAUD AND DETECTION SYSTEMS
CHARACTERISTICS

vice are absent. In fact in fraud detection, only the online banking activities
recorded in banking systems can be accessed while information related to
the compromise process are absent or difficult to obtain. This makes the
process of identifying sophisticated fraud very challenging.

A further challenge is the fact that the customer habits and behavioral
patterns are diverse. In conducting online banking business, every customer
may perform very different transactions for different purposes. This leads to
a diversity of genuine customer transactions. Furthermore fraudsters sim-
ulate genuine customer behaviors and change their behavior frequently to
compete with advances in fraud detection. This means that it is very diffi-
cult to characterise frauds and even more difficult to distinguish them from
genuine behaviors.

2.3.2 Online Banking Detection Systems

Fraud detection consists in identifying such unauthorised activity as quickly
as possible once it has been perpetrated and, therefore, when fraud preven-
tion has failed. In practice, fraud detection must be used continuously, since
the system is unaware of when fraud prevention has failed. In addition
fraud detection systems must evolve because once the detection methods
has been discovered, criminals will adapt their strategies and circumvent
it ([37]). Consequently an effective and efficient online detection system
based on transaction monitoring needs to be a main point in the security
policies of financial institutions.

Online banking fraud detection systems are centralised platforms located
in the bank’s data centre that collects heterogeneous information from the
Internet Banking services. The system monitors and scrutinises each trans-
action, and compares its pattern with patterns built through past transac-
tions history. In this way the software can score suspicious transactions
on-the-fly and signal them to the bank’s analyst for verification. All alerts
generated from the detection system need to be manually investigated by
the analyst of the bank, and this activity is very time consuming. As a result
of this, the number of alerts should be kept at a level such that it can be
handled by the available number of investigators and fraud analysts.

Since most customers rarely check their online banking history regu-
larly and therefore are not able to discover and report fraud transactions
immediately after their occurrences ([122]) frauds detection platforms are
expected to continuously monitor transactions and to make almost instant
frauds detection because the cost of a missing or a delayed detection is very
high.

As a consequence the processing of the datasets by the fraud detection
system requires fast and efficient machine learning and data mining algo-
rithms and techniques.

www.syssec-project.eu 19 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

Another problem in automated fraud detection system is the fact that
one can never be completely sure if a transaction is really fraudulent or if
it is a false positive. In fact, fraudsters make illicit transactions as similar
as possible to regular transactions to prevent their discovery ([96]). There-
fore it is nearly impossible to handle the fraud detection without human
interaction.

Fraud detection mechanisms can make a good ranking of suspicious
transactions, but the results normally have to be reviewed by a specialist
nonetheless. This means that fraud detection mechanisms can only give
a hint about which transactions have to be investigated further. Hence it
is very important to have rules on how to weight false positives and false
negatives. False negatives are often more costly than false positives [96],
because an undetected fraudulent transaction can cause much more loss
than a wrongly signalled legitimate transaction. Therefore monetary factors
are often introduced to measure the performance of fraud detection mecha-
nisms.

Another potential weak point of the automated fraud detection mecha-
nisms is that they are not capable of detecting fraudulent behavior for which
they are not designed. If a fraudster finds a way to circumvent the detec-
tion system, this fraud can go undiscovered, even for years. As long as the
mechanisms do not adapt to the new situation, frauds will most certainly
go undetected. The trend in newer works is therefore to create mechanisms
than can adapt or be adjusted to new situations easily. This is not only be-
cause the fraudsters tend to adapt to the new detection mechanisms, but
because the legitimate behavior tends to shift over time, too. As a remark it
is also very important for the developer of anti-fraud mechanisms to main-
tain the old mechanisms to prevent fraudsters to switch back or to deny new,
inexperienced fraudsters the access to old flaws ([37]).

2.3.3 Problem of Cooperation in Fraud Detection

Unfortunately, most of the work done in fraud prevention and fraud detec-
tion is not open to the public. There are several reasons. One is that if the
new findings would be accessible by anyone, potential fraudsters can inform
themselves about the newest development and adapt even faster as they do
at the moment. Another important reason why most of the research work
is not published, is that they often use sensitive data from a particular com-
pany. For banks, these are real transactional data which are under the pro-
tection of the banking secrecy. Despite the lack of real data there is a com-
mon sense about which attributes are important for the development of a
good fraud detection mechanism. These attributes are often dates, amounts
of transferred financial values, locations involved in the transaction, the
transactional history, the payment history and other information([96]). To
compensate these non disclosure agreements and the lack of exchange in

www.syssec-project.eu 20 September 23, 2013

2.4. STATE OF ART IN INTERNET FRAUD DETECTION

this sector, most studies are using artificially generated data ([57]). As with
the experience of years of work, this data is nearly as realistic as real data
would be and can therefore easily be used for further development and in-
vestigations. There are studies [32] with the topic of artificially generated
data compared to real data and they state that it is a legitimate approach to
generate synthetic data to train and implement new fraud detection mech-
anisms. However the results may vary when models built with simulated
data are applied to real data.

The above characteristics make detection very difficult when applied to
online banking fraud and presents several major challenges to the research:
extremely imbalanced data, big data, model efficiency in dealing with com-
plex data, dynamic data mining, pattern mining with limited or no labels,
and discriminant analysis of data without clear differentiation.

2.4 State of Art in Internet Fraud Detection

In this section we cover the most relevant research works which specifically
deal with topics related to the fraud detection.

First, we present techniques that focus the analysis of fraud detection
on Internet Banking and its related field extracted from surveys (i.e., [43],
[96], [37]), plus other relevant works.

2.4.1 Supervised Approach

The first category is the supervised approach on labeled data, and it is one
of the most widely used approaches in this field of research and can be
considered the typical data mining approach.

Various algorithms like Neural Network (e.g., [39], [60], [117], [100],
[26]), Decision Tree (e.g., [95], [90]), case-based reasoning, regression
methods, SVM ([124]), Rule-based Expert Systems ([109]), Bayesian Net-
work ([41]), Contrast sets ([122], [33]), and Random Forests ([65]) are
utilized here.

The ultimate goal is to distinguish fraudulent data from regular data.
These approaches perform well in many classification applications, includ-
ing fraud detection applications, even in certain class-imbalanced scenarios
(e.g., [122], [26], [39], [100], [129]). As soon as this model is generated
and applied to new data, it should be able to determine which part of the
new data is fraudulent. Neural networks have been successfully adopted in
all kinds of fraud detection scenarios and are believed to be a stable model.

The problem with supervised methods is that labeled data is difficult to
come by. In fact, in the Internet Banking fraud detection field, labels are
rarely provided. In addition some algorithms can only process certain types
of attribute and some are too slow when applied to live data.

www.syssec-project.eu 21 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

2.4.2 Unsupervised Approach

Unsupervised approaches such as link analysis, graph mining, HMM (e.g.,
[73], [89]), SOM ([100]), and Clustering (e.g., [66], [28], [125]) are often
used to detect outliers or spikes when the underlying dataset is unlabeled.
Such approaches do not use label information and have the advantage of
detecting novel attacks, but usually have an overall accuracy lower than
that of supervised approaches.

2.4.3 Semisupervised Approach

The third category consists of the semi-supervised approaches with only
non-fraudulent data. In other words they assume that the training set con-
sists only of correctly labeled benign instances.

Approaches in this category (e.g., [93]), try to identify fraudulent be-
havior by searching for instances that deviate from the learned model. This
deviance then fires an alert that indicates a potential fraudulent behavior.
These forms of machine learning are especially useful for credit card transac-
tions, Internet Banking, and in the communication sector, where long term
data is available.

2.4.4 Hybrid Approaches

Hybrid approaches use the same algorithms with the difference that more
than one algorithm is used to generate the final rule set. Normally, these
algorithms are used in a sequential way (e.g., [122], [108]). These ap-
proaches are used especially in the telecommunication sector.

2.4.5 Biological Approaches

Another approach we have identified is represented by methods from the
bilogical sector (e.g., [113], [38]) that try to counter frauds using a system
called AIS (Axon initial Segment) for detection. AIS try to approach the
problem in a biological way, with negative and positive selection, training
an artificial network to detect anomalies in transactions. They are usually
used for detecting credit card fraud.

2.4.6 Statistical Approaches

Other approaches (see [37]) use statistical tools for fraud detection. They
are quite diverse, since data from different applications can vary in both size
and type. Such tools are essentially based on comparing the observed data
with expected values wich, in turn, can be derived in various ways depend-
ing on the context. They may be represented by numerical and graphical

www.syssec-project.eu 22 September 23, 2013

2.4. STATE OF ART IN INTERNET FRAUD DETECTION

models of some aspects of the behavior but there are also more complex
representations of multivariate behavior profiles.

Such behavior profiles may be based on past behavior of the system be-
ing studied (e.g., the way a bank account has been previously used) or be
extrapolated from other similar systems. As [96] states, the possibilities of
a visual fraud detection system seem to be ignored by most of the fraud
detection community, as only very few papers use it. Statistical anomaly
detection techniques (see [43]) are based on the following key assump-
tion: normal data instances occur in high probability regions of a stochastic
model, while anomalies occur in the low probability regions of the stochas-
tic model. Statistical techniques fit a statistical model (usually for normal
behavior) to the given data and then apply a statistical inference test to de-
termine if an unseen instance belongs to this model or not. Instances that
have a low probability of being generated from the learned model, based on
the applied test statistic, are declared as anomalies. Both parametric as well
as non-parametric techniques have been applied to fit a statistical model.
While parametric techniques assume the knowledge of the underlying dis-
tribution and estimate the parameters from the given data, non parametric
techniques do not generally assume knowledge of the underlying distribu-
tion.

2.4.6.1 Histogram-Based

Histogram based approaches ([43]) can be considered the simplest non
parametric statistical technique that use histograms to maintain a profile
of the normal data. Such techniques are also referred to as frequency-based
or counting-based. Histogram based techniques are particularly popular in
the intrusion detection community (e.g., [52]) and fraud detection (e.g.,
[58]), since the behavior of the data is governed by certain profiles (user
or software or system) that can be efficiently captured using the histogram
model.

A basic histogram-based approach anomaly detection technique for uni-
variate data consists of two steps. The first step involves building a his-
togram based on the different values taken by that feature in the training
data. In the second step, the technique checks if a test instance falls in any
of the bins of the histogram. If it does, the test instance is normal, otherwise
it is anomalous. A variant of the basic histogram-based technique is to as-
sign an anomaly score to each test instance based on the height (frequency)
of the bin in which it falls.

The size of the bin used when building the histogram is key for anomaly
detection. If the bins are small, many normal test instances will fall in empty
or rare bins, resulting in a high false alarm rate. If the bins are large, many
anomalous test instances will fall in frequent bins, resulting in a high false
negative rate. Thus a key challenge for histogram-based techniques is to

www.syssec-project.eu 23 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

determine an optimal size for the bins to construct the histogram that main-
tains a low false alarm rate and a low false negative rate.

Histogram based techniques require normal data to build the histograms.
Some techniques even construct histograms for the anomalies, if labels for
anomalous instances are available. For multivariate data, a basic technique
is to construct attribute-wise histograms. In other words it builds a his-
togram for each feature. During testing, for each test instance, the anomaly
score for each attribute value of the test instance is calculated as the height
of the bin that contains the attribute value. The per-attribute anomaly scores
are aggregated to obtain an overall anomaly score for the test instance.
The basic histogram-based technique for multivariate data has been applied
to system call intrusion detection, network intrusion detection, fraud de-
tection, damage detection in structures, detecting Web-based attacks, and
anomalous topic detection in text data (see [43]).

The key shortcoming of such techniques is that for multivariate data they
are not able to capture the interactions between different attributes. For
example, an anomaly might have attribute values that are individually very
frequent, but whose combination is very rare. An attribute-wise histogram-
based technique would not be able to detect such anomalies.

2.4.7 Credit card fraud detection

Credit card fraud can be divided into two types: offline fraud and online
fraud.

Offline fraud is committed by using a stolen physical card. In most cases,
the institution issuing the card can lock it before it is used in a fraudulent
manner, if the theft is discovered quickly enough.

Online fraud is committed via web, phone shopping, or cardholder-not-
present scenarios. With the increase of e-commence, online credit card
transaction frauds are increasing likewise. Compared to online banking
fraud detection, there are many available research discussions and solutions
for credit card fraud detection (e.g., [113], [26], [124], [109], [111], [73],
[90]). Most of the work on preventing and detecting credit card fraud has
been carried out with neural networks (see [43, 77]).

Machine learning, adaptive pattern recognition, neural networks, HMM,
SOM, and statistical modeling are employed to develop predictive models
to provide a measure of certainty about whether a particular transaction is
fraudulent or not.

[26] and [100] feature a neural network trained with the past data of a
particular customer and uses the network to process current spending pat-
terns to detect possible anomalies. [109] extracts a set of fuzzy association
rules from a data set containing genuine and fraudulent transactions made
with credit cards. [113] develops an AIS that generates normal memory
cells using each user’s transaction records and fraud memory cells are gen-

www.syssec-project.eu 24 September 23, 2013

2.4. STATE OF ART IN INTERNET FRAUD DETECTION

erated based on all fraudulent records. [90] use a decision tree learning
algorithm called Very Fast Decision Tree, which scans real credit card trans-
action data as a data stream and use decision trees to detect frauds.

There are also some unsupervised methods, such HMM (e.g., [73]) and
clustering (e.g., [111]), which targets unlabeled data sets.

The problem with most of the above approaches is that they require la-
beled data for both genuine as well as fraudulent transactions to train the
classifiers. In fact getting real-world fraud data is one of the biggest prob-
lems associated with credit card fraud detection. Also, these approaches
cannot detect new kinds of fraud for which labeled data is not available.
They are not suitable for online banking because of the diversity of online
banking customers’ activities.

2.4.8 Fraud detection in online banking

As mentioned before there are very few papers about fraud detection in
online banking.

Most of them concern fraud prevention, which uses efficient security
measures to prevent fraudulent financial transactions performed by unau-
thorized users and to ensure transaction integrity.

[25] proposed an online banking fraud detection system for offline pro-
cessing. Another system presented in [108] works well online but needs
a component that must be downloaded and installed in the client device,
which is inconvenient for deployment.

A supervised direction that emerged recently scrutinizes the difference
between fraudulent and genuine behavior, and develops corresponding ap-
proaches for mining contrast patterns, for instance, contrast sets (e.g., [33])
and emerging patterns (e.g., [49]). According to the research in [121], con-
trast pattern mining is an NP hard problem, the time cost is expensive, espe-
cially when the number of attributes is large, and the threshold of minimal
detection rate is small. This indicates that this methods does not perform ef-
ficiently in the online banking scenario. Another similar approach presented
in [122] tries to overcome this shortcomings and treats events at different
time points as dependent. It considers the information incorporated in event
sequences in each transaction for differentiating fraudulent behavior from
genuine behavior. In practice it introduces a hybrid model, combining con-
trast pattern with a neural network to increase its statistic modeling and
reduce the number of “false” rejections.

2.4.9 Smartsifter

In our opinion, one of the most promising research directions is represented
by the SmartSifter algorithm [126]. The approach of SmartSifter is as fol-
lows:

www.syssec-project.eu 25 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

1. SmartSifter uses a probabilistic model as a representation of an under-
lying mechanism for data-generation. The model takes a hierarchical
structure. A histogram density with a number of cells is used to rep-
resent a probability density over the domain of categorical variables.
For each cell a finite mixture model is used to represent the probability
density over the domain of continuous variables.

2. Every time a datum is input, SmartSifter employs an on-line learning
algorithm to update the model. For the categorical domain a Sequen-
tially Discounting Laplace Estimation algorithm is applied for learning
the histogram density. For the continuous domain a Sequentially Dis-
counting Expectation and Maximizing algorithm is applied for learn-
ing the finite mixture model underlying the distribution of the features
under analysis. The most important feature of these two algorithms is
that they gradually discount the effect of past examples in the on-line
process.

3. SmartSifter assigns a score to each input datum on the basis of the
learned model, measuring the change to the model after learning. A
high score indicates a high possibility that the datum is an outlier.

In particular, SmartSifter shows the necessity to build systems adap-
tive to non-stationary sources. In the paper under analysis this is done
by a discounting algorithm that learns from the source and forgets out-
of-date statistics of the data using a decay factor. Another main point of
the approach is represented by the score. It is calculated with a clear
statistical/information-theoretic meaning. In fact it measures the change
in the distribution learned from the data before and after the new datum
is incorporated. This highlights the need of scores that do not just indicate
if a transaction is an anomaly, but can be understood by the analyst. An-
other highlighted key point is the computational complexity. SmartSifter
computes the score for each datum with a linear complexity in the number
of parameters of the model and cubic in the number of variables. The last
key aspect of SmartSifter is that it can deal with both categorical and con-
tinuous variables in an almost semi-automated way. We believe that this
characteristics should be at the basis of every detection system that works
in the Internet Banking field.

However this approach also presents some shortcomings. The first short-
coming we have detect is represented by the computational and spatial com-
plexity. If from the one hand this complexity is less than the complexity of
other methods, on the other hand it makes SmartSifter not applicable to real
Online Banking data.

The second shortcoming is indeed the scarce readability of the model
itself. In fact the score simply indicates how much a particular datum is
anomalous, without giving the indication of how each attribute contributes

www.syssec-project.eu 26 September 23, 2013

2.5. OPEN PROBLEMS AND RESEARCH CHALLENGES

to the score or, in other words, why this particular datum has been detected
as an outlier. These information are necessary to the analyst. In fact the
model built by SmartSifter is complex, due to the multivariate data distribu-
tion that considers the relations between each attribute.

2.5 Open problems and research challenges

As mentioned in the previous section, different approaches have different
advantages, but no single existing method can solve the online banking
fraud detection problem easily. Hence it is necessary to analyze the main
problems the described approaches have to cope with.

One of the main problems is that they are not designed on a study of real
transactions data. Real transactions data has many peculiarities (e.g. very
skewed dataset, huge attribute cardinality) which requires several adjust-
ments to the typical statistical and data mining methods used in the outlier
detection field. An approach not tested on real data may be not applicable to
real scenarios and this seems to be confirmed by the fact that only few of the
proposed methods were actually implemented in a productive system. This
is also confirmed by [122] which states that classic methods demonstrates
poor performance when directly applied to online banking fraud detection.

A second strong drawback of existing approaches is that nearly none
of them incorporates temporal data and spatial information for fraud de-
tection. In transactional data, temporal and spatial information are almost
always available. This information can, together with other information,
give a good hint for fraudulent or non fraudulent behavior. For example a
lot of transactions from one account in a given EU country to an account in
a non-EU country can be suspicious.

A third issue is that it is difficult to compare performance between state-
of-the-art approaches, because they all use different metrics due to the great
variety of methods adopted. This aspect is aggravated by the fact that per-
formances depend on the dataset features and on their distributions.

A fourth criticism can be made on the fact that the majority of the de-
scribed approaches build black box models and thus, are not easily inter-
pretable: the system communicates only a score indicating the anomaly,
without any additional information for the bank analyst. As written before,
the final output of a transaction monitoring system goes to the analyst, who
must investigate over the indicated transaction. This is a time consuming
activity.

Another drawback of previous work is that nearly none of them handle
the problem of dealing with the scarcity of data that might not be enough
to train an anomaly detection system in a reasonable time frame. The only
work we have found is [104], in which they propose an approach indepen-
dent from the contest which addresses local training data deficiencies by ex-

www.syssec-project.eu 27 September 23, 2013

CHAPTER 2. OVERVIEW OF CURRENT RESEARCH ON ONLINE BANKING
AND PAYMENT CARD FRAUD

ploiting clustering techniques to construct a knowledge base of well-trained
models. These models are then used to handle the case of an undertrained
user.

A shortcoming of most of the described methods is their complexity. As
stated before, fraud detection is a time critical matter, especially when it
comes to adapting to new fraudulent techniques. This is because as long as
the detection mechanism do not adapt, the fraudulent transactions are not
recognized. Complex techniques can indeed be more accurate, but often
they are slower than the less complex ones.

Finally, some of the approaches seen before build profiles on global mod-
els of frauds or fraudulent behavior. These approaches generally have a
lower accuracy than approaches that build profiles that model each user’s
behavior, in particular if a country, region or bank has a very specific type of
customers with atypical behavior.

www.syssec-project.eu 28 September 23, 2013

3
Evolutions of Banking Trojans

The Internet has become the infrastructure of choice for storing, transmit-
ting and using sensitive personal and business information. A large and
diverse population of users accesses online banking services, or performs
different kinds of electronic financial transactions. Unsurprisingly, endpoint
devices such as computers, mobile phones and tablets have become easy
targets for cyber criminals, who infect devices with malware that is built
to steal sensitive data or perform fraudulent monetary transactions without
the owner’s consent.

A recent study of the Russian underground market of cyber criminals [61]
estimated a USD 2.3 billion market, that is 18% of the estimated total USD
12.5 billion worldwide cybercrime figure in 2011 according to [23]. In
this market, malicious goods are a “service” with a price tag: from encryp-
tion to servers, from distributed denial-of-service attacks to spamming. A
spam campaign is particularly cheap, costing down to USD 10 per million of
emails. Anybody can easily buy a customized trojan, or a malware-building
toolkit to create a customized sample. Malware authors and their “affiliate”
employees even offer paid support and customizations, or sell advanced con-
figuration files that the customers can include in their builds, for instance
to add new functionality, or to target the users of a specific website. The
customer can pay on a per-installation basis, with prices depending on the
targeted country: 1,000 infected Russian users, for instance, cost approxi-
mately USD 100. This malware-as-a-service phenomenon [62] is alarming,
as it turns botnets into a commodity, and allows traditional crime gangs to
enter the cyberfraud landscape. Unsurprisingly, online banking fraud is one
of the fastest growing segments of cybercrime, amounting to just below USD
1 billion [23].

29

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

3.1 Zeus: the most successful example of banking
trojan

Among these menaces, information-stealing trojans are a growing [86], so-
phisticated threat. The most famous examples are ZeuS and SpyEye. Since
its first appearance in 2007, Zeus has grown into one of the most popu-
lar families of credential-stealing trojans. Due to its popularity, previous
versions of Zeus have been extensively investigated by the security commu-
nity [56, 123].

Information-stealing trojans allow a malware operator to intercept cre-
dentials such as usernames, passwords, and second factors of authentica-
tion (e.g., PINs or token-generated codes). These trojans are also referred
to as “banking trojans”, because they are often used to steal banking cre-
dentials when the victim is using an online banking service. As we detail in
Section 3.4.1.1, the typical information stealer implements the interception
mechanism through injection modules. An injection module, codenamed
“WebInject” in the case of ZeuS and SpyEye, manipulates and injects arbi-
trary content into the data stream transmitted between an HTTP(S) server
and the user browser. The injection modules are placed between the ren-
dering engine of the browser and the network-level libraries. Thus, they are
able to circumvent any form of transmission encryption such as SSL, as we
describe in Section 3.4.1.2. A comprehensive list of Trojan families used to
conduct Man-in-the-Browser (MitB) attacks is presented in Table 3.1

The internals of the first two versions of Zeus, which are based on cen-
tralized command and control (C2) servers, are well understood, and C2
servers used by these variants are routinely tracked and blocked. 1

In May 2011, the source code of the second centralized version of Zeus
was leaked. This has led to the development of several centralized trojans
based on Zeus, such as ICE IX [118], and the more successful Citadel [112].
In September 2011, a peer-to-peer (P2P) mutation of centralized Zeus ap-
peared, known as P2P Zeus or GameOver. Due to its lack of centralized
C2 servers, P2P Zeus is not susceptible to traditional anti-Zeus countermea-
sures, and is much more resilient against takedown efforts than centralized
Zeus variants. In this section, we perform a detailed analysis of the P2P
Zeus protocol to highlight how it achieves its resilience. Our insights also
shed light on the resilience potential of peer-to-peer botnets in general.

Centralized Zeus variants are sold as builder kits in the underground
community, allowing each user to build a private Zeus botnet.

1http://zeustracker.abuse.ch

www.syssec-project.eu 30 September 23, 2013

http://zeustracker.abuse.ch

3.1. ZEUS: THE MOST SUCCESSFUL EXAMPLE OF BANKING TROJAN

Adramax Murofet (Licat)
Ainslot Neloweg
Ares Nimkey
Banbra (Dadobra, Nabload) Nuklus (Apophis)
Bancos OddJob
BankDiv (Banker.BWB) Origami
Bankolimb (NetHell, Limbo) Papras (Snifula)
BankPatch (Patcher) Pophot
Bradesco PowerGrabber
Bjlog Qakbot (Qbot)
Briz (VisualBreez) QQLogger
Bugat (Feodo, Cridex) QQShou
Carberp (Syscron) Ramnit (DesktopLayer)
Chekafev Ruftar
Cimuz (Bzud, Metafisher, Abwiz,
Agent-DQ)

Shylock

Citadel SilentBanker
Clampi Silon
DBJP Sinowal (Wsnpoem, Anserin, Au-

dioVideo)
Dumador (Dumarin, Dumaru) Snatch (Gozi)
Dybalom Specbot
Eurosol SpyEye
Family18 Spyforms
Fingotok SunSpot
Gameover (P2P ZeuS) Tatanga (Gataka, Hermes)
Goldun (Haxdoor, Nuclear Grabber) Tepfer
Ice IX Tigger
Kykymber Tilon
LdPinch Tiny Banker (Tinba, Zusy)
Lego Torpig (Xorpig, Mebroot)
Lenin URLZone
Leprechaun Usteal
Lmir Vkont
Malintent Wemon
Mimicker ZeuS (Zbot)

Table 3.1: A summary of MITB trojan families

www.syssec-project.eu 31 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

Figure 3.1: Geographical distribution of externally reachable Zeus peers.

3.2 Peer to Peer Network Topology and challenges

In this Section, we analyze in detail a very damaging and resilient example
of malware: the peer-to-peer version of the Zeus banking trojan. We are
particularly interested in resilience, as it indicates how advanced modern
malware has become and how hard it will be to dismantle it – now and
even more so in the near future.

The main P2P network is divided into several virtual sub-botnets by a
hardcoded sub-botnet identifier in each bot binary. While the Zeus P2P net-
work is maintained and periodically updated as a whole, the sub-botnets
are independently controlled by several botmasters. Bot enumeration re-
sults from our previous work indicate that the Zeus P2P network contains
at least 200.000 bots [105]. The number is fairly stable. In other words, if
the botnet loses, say, 50.000 nodes due to a sinkholing attempt, it will grow
again to roughly the same size (and no more). The geographical distribution
of the externally reachable peers is shown in Figure 3.1.

The Zeus P2P network serves two main purposes. First, bots exchange
binary and configuration updates with each other. Second, bots exchange
lists of proxy bots, which are designated bots where stolen data can be
dropped and commands can be retrieved. Additionally, bots exchange neigh-
bor lists (peer lists) with each other to maintain a coherent network. As a
backup channel, P2P Zeus also uses a Domain Name Generation Algorithm
(DGA) [29], in case contact with the regular P2P network is lost.

Our contributions in this deliverable on the subject of P2P Zeus networks
are:

1. We reverse engineered the entire Zeus P2P protocol and topology, and
will highlight the features that increase the botnet’s resilience to take-
down attempts.

www.syssec-project.eu 32 September 23, 2013

3.2. PEER TO PEER NETWORK TOPOLOGY AND CHALLENGES

2. We show that P2P Zeus has evolved into a complex bot with attack ca-
pabilities that go beyond typical banking trojans. Particularly, we find
that P2P Zeus is used for activities as diverse as DDoS attacks, malware
dropping, Bitcoin theft, and theft of Skype and banking credentials.

3. Reports from academia and industry have long warned of the high
resilience potential of peer-to-peer botnets [128, 47, 48, 127, 69].
Through our analysis of the communication protocol and resilience
mechanisms of P2P Zeus, we show that highly resilient P2P botnets
are now a very real threat.

3.2.1 Structure of the Zeus P2P network

The Zeus network is organized into three disjoint layers, as shown in Fig-
ure 3.2. At the bottom of the hierarchy is the P2P layer, which contains the
bots. Periodically, a subset of the bots is assigned the status of proxy bot.
This appears to be done manually by the botmasters, by pushing a cryp-
tographically signed proxy announcement message into the network. The
details of this mechanism are explained in Section 3.2.2. The proxy bots are
used by harvester bots to fetch commands and drop stolen data. Aside from
their special function, proxy bots behave like harvester bots.

The proxy bots act as intermediaries between the P2P layer and a higher
layer, which we call the C2 proxy layer. The C2 proxy layer contains several
dedicated HTTP servers (not bots), which form an additional layer between
the proxy bots and the true root of the C2 communication. Periodically,
the proxy bots interact with the C2 proxy layer to update their command
repository, and to forward the stolen data collected from the bots upward in
the hierarchy.

Finally, at the top of the hierarchy is the C2 layer, which is the source of
commands and the final destination of stolen data. Commands propagate
downward from the C2 layer, through the C2 proxy layer to the proxy bots,
where they are fetched by harvester bots. Similarly, data stolen by harvester
bots is collected by the proxy bots, and periodically propagated up until it
ultimately reaches the C2 layer.

As mentioned in Section 3.1, the main P2P network is divided into sev-
eral virtual sub-botnets by a hardcoded sub-botnet identifier in each bot bi-
nary. Since each of these sub-botnets is independently controlled, the C2
layer may contain multiple command sources and data sinks.

3.2.2 The zeus P2P Protocol

This section describes our analysis results on the Zeus P2P communica-
tion protocol. The results are based on Zeus variants we tracked between
February 2012 and July 2013. In that time, several changes were made to

www.syssec-project.eu 33 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

P2P Layer

C2 Proxy Layer

C2 Layer

Figure 3.2: Topology of P2P Zeus. Shaded nodes represent proxy bots. The
dotted line shows the information flow between a harvester bot and the C2
layer.

the protocol by the Zeus authors. The results presented here apply to all
recent P2P Zeus versions, except where noted differently.

We first provide a high level overview of the Zeus P2P protocol in Sec-
tion 3.2.2.1. Next, we describe the encryption used in Zeus traffic in Sec-
tion 3.2.2.2. Sections 3.2.2.3 and 3.2.2.4 provide a detailed overview of the
Zeus message structure. Finally, Section 3.2.3 describes in detail how the
Zeus P2P protocol operates.

3.2.2.1 Overview

As mentioned in Section 3.1, the Zeus P2P network’s main functions are
(1) to facilitate the exchange of binary and configuration updates among
bots, and (2) to propagate lists of proxy bots. Most normal communication
between bots is based on UDP. The exceptions are Command and Control
(C2) communication between harvester bots and proxy bots, and binary/-
configuration update exchanges, both of which are TCP-based.

Bootstrapping onto the network is achieved through a hardcoded boot-
strap peer list. This list contains the IP addresses, ports and unique identi-
fiers of up to 50 Zeus bots. Zeus ports range between 1024 and 10000 in
versions after June 2013, and between 10000 and 30000 in older versions.
Unique identifiers are 20 bytes long and are generated at infection time by
taking a SHA-1 hash over the Windows ComputerName and the Volume ID

www.syssec-project.eu 34 September 23, 2013

3.2. PEER TO PEER NETWORK TOPOLOGY AND CHALLENGES

of the first hard-drive. These unique identifiers are used to keep contact
information for bots with dynamic IPs up-to-date.

Network coherence is maintained through a push-/pull-based peer list
exchange mechanism. Zeus generally prefers to push peer list updates;
when a bot receives a message from another bot, it adds this other bot to its
local peer list if the list contains less than 50 peers. Bots in desperate need
of new peers can also actively request them. In principle, the peer push-
ing mechanism facilitates peer list poisoning attacks against Zeus. However,
as we will see in Sections 3.2.2.2, 3.2.3.1 and 3.3, Zeus includes several
resilience measures which severely complicate poisoning attacks.

Zeus bots check the responsiveness of their neighbors every 30 minutes.
Each neighbor is contacted in turn, and given 5 opportunities to reply. If a
neighbor does not reply within 5 retries, it is deemed unresponsive, and is
discarded from the peer list. During this verification round, every neighbor
is asked for its current binary and configuration file version numbers. If
a neighbor has an update available, the probing bot spawns a new thread
to download the update. Updates are signed using RSA-2048, and are ap-
plied after the bot has checked that the update’s embedded version number
is higher than its current version. Thus, it is impossible to force bots to
“update” to older versions.

The neighbor verification round is also used to pull peer list updates
if necessary. If the probing bot’s peer list contains less than 25 peers, it
asks each of its neighbors for a list of new neighbors. The returned peer
lists can contain up to 10 peers. The returned peers are selected by minimal
Kademlia-like XOR distance to the requesting bot’s identifier [88]. However,
we note that the Zeus P2P network is not a Distributed Hash Table, and apart
from this XOR metric the protocol bears no resemblance to Kademlia.

In case a Zeus bot finds all of its neighbors to be unresponsive, it at-
tempts to re-bootstrap onto the network by contacting the peers in its hard-
coded peer list. If this also fails, the bot switches to a DGA backup channel,
which can be used to retrieve a fresh, RSA-2048 signed, peer list. Addition-
ally, in recent variants of Zeus, the DGA channel is also contacted if a bot
is unable to retrieve updates for a week or longer. This is a very important
resilience feature, as it allows the botnet to recover from peer list poisoning
attacks. The DGA mechanism is described in more detail in Section 3.3.

As mentioned, one of the most important functions of the Zeus P2P net-
work is to propagate lists of proxy bots. These proxy bots are periodically
selected from the general bot population, and are contacted by bots to fetch
commands from and drop stolen data to. Like the peer list exchange mecha-
nism, the proxy list mechanism is also push-/pull-based. When a new proxy
bot is appointed by the botmasters, an RSA-2048 signed push message is
disseminated through the network to announce it.

www.syssec-project.eu 35 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

Bots are commanded in two ways. First, harvester bots can contact proxy
bots to retrieve commands. Second, configuration file updates can also be
used to convey commands to the bots.

3.2.2.2 Encryption

Until recently, bot traffic was encrypted using a rolling XOR algorithm,
known as “visual encryption” from centralized Zeus [123], which encrypts
each byte by XORing it with the preceding byte. Since June 2013, Zeus uses
RC4 instead of the XOR algorithm, using the recipient’s bot identifier as the
key. Rogue bots used by analysts to infiltrate the network typically use con-
tinuously changing bot identifiers to avoid detection [105]. The new RC4
encryption is a problem, because a rogue bot may not always know under
which identifier it is known to other bots, thus preventing it from decrypting
messages it receives. In addition, RC4 increases the load on botnet detection
systems which rely on decrypting C2 traffic [106].

Zeus uses RSA-2048 to sign sensitive messages originating from the bot-
masters, such as updates and proxy announcements. In all P2P Zeus variants
we studied, update exchanges and C2 messages feature RC4 encryption over
an XOR encryption layer. For these messages, either the identifier of the re-
ceiving bot or a hardcoded value is used as the RC4 key, depending on the
message type.

3.2.2.3 Message Structure

This section describes the structure of Zeus network messages. Zeus mes-
sages vary in size, but have a minimum length of 44 bytes. The first 44
bytes of each message form a header, while the remaining bytes form a
payload concatenated with padding bytes. The Zeus message structure is
illustrated in Figure 3.3. The following message structure diagrams are to
scale. Shaded areas do not represent part of the message structure itself,
but serve to align the fields in the figures.

3.2.2.3.1 rnd (random) In Zeus versions which use the XOR encryption,
this byte is set to a random value. This is done to avoid leaking information,
since the XOR encryption leaves the first byte in plaintext. In Zeus versions
which use RC4 for message encryption this byte is set to match the first byte
of the session ID, so that it can be used to confirm that packet decryption
was successful. Backward compatibility with older bots is achieved by falling
back to the XOR encryption if RC4 decryption fails.

3.2.2.3.2 TTL (time to live) The TTL field is usually unused, in which
case it is set to a random value, or to the second byte of the session ID

www.syssec-project.eu 36 September 23, 2013

3.2. PEER TO PEER NETWORK TOPOLOGY AND CHALLENGES

rnd
(1B)

TTL
(1B)

LOP
(1B)

type
(1B)

session ID (20 bytes)

source ID (20 bytes)

payload + padding
...

Figure 3.3: The Zeus message structure.

for variants using RC4 encryption. However, for certain message types, this
field serves as a time to live counter. A bot receiving a message using the
TTL field forwards it with a decremented TTL. This continues iteratively
until the TTL reaches zero.

3.2.2.3.3 LOP (length of padding) Zeus messages end with a random
amount of padding bytes. This is most likely done to confuse signature-
based intrusion detection systems. The length of padding field indicates the
number of padding bytes appended to a message.

3.2.2.3.4 type This field indicates the type of the message. The message
type is used to determine the structure of the payload, and in certain cases
the meaning of some of the header fields, such as the TTL field. Valid Zeus
message types are described in Section 3.2.2.4.

3.2.2.3.5 session ID When a Zeus bot sends a request to another bot,
it includes a random session ID in the request header. The corresponding
reply will include the same session ID, and incoming replies with unexpected
session ID values are discarded. This makes it more difficult for attackers to
blindly spoof Zeus messages.

3.2.2.3.6 source ID This field contains the 20 byte bot identifier of the
sending bot. The source ID field facilitates the push-based peer list update
mechanism, where a bot receiving a message adds the sender of the message
to its peer list in case the peer list contains less than 50 peers.

3.2.2.3.7 payload This is a variable-length field which contains a pay-
load that depends on the message type. The structures of relevant message
payload types are described in detail in Section 3.2.2.4.

www.syssec-project.eu 37 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

binary version (4 bytes)

config file version (4 bytes)

TCP port (2 bytes)

random (12 bytes)

Figure 3.4: Version reply payload (22 bytes).

3.2.2.3.8 padding This field contains a random number of random (non-
zero) padding bytes. The number of padding bytes is specified in the length
of padding field in the message header.

3.2.2.4 Payload Structure

In this section, we describe the structure and usage of the most relevant
Zeus message types. Each of these message types is communicated over
UDP, except for C2 messages and updates, which are exchanged over a TCP
connection.

3.2.2.4.1 Version request (type 0x00) Version request messages are used
to request a bot’s current binary and configuration file version numbers.
These messages usually contain no payload, but may contain a payload con-
sisting of a little endian integer with value 1, followed by 4 random bytes.
Such a payload serves as a marker to indicate that the requesting peer wants
to receive a type 0x06 proxy reply message (see Section 3.2.2.4.7).

3.2.2.4.2 Version reply (type 0x01) A version reply contains the ver-
sion numbers of the binary and configuration files of the sender. The binary
version indicates the sender’s Zeus version, while the configuration file ver-
sion indicates the sender’s configuration file version. A TCP port is also
sent, which may be contacted to download the updates via TCP, although
some Zeus variants also support using UDP for this (see Sections 3.2.2.4.5
and 3.2.2.4.6). Version replies end with 12 random bytes. The reply struc-
ture is shown in Figure 3.4.

3.2.2.4.3 Peer list request (type 0x02) Peer list requests (Figure 3.5)
are used to request new peers from other bots. Zeus only sends active peer
list requests if its peer list is becoming critically short (less than 25 peers).
Otherwise, bots typically rely on storing the senders of incoming requests.

www.syssec-project.eu 38 September 23, 2013

3.2. PEER TO PEER NETWORK TOPOLOGY AND CHALLENGES

identifier (20 bytes)

random (8 bytes)

Figure 3.5: Peer list request payload (28 bytes).

IP type (1B)

peer ID (20 bytes)

IPv4 addr (4 bytes) IPv4 port
(2B)

IPv6 addr (16 bytes)
IPv6 port

(2B)

Figure 3.6: Peer struct (45 bytes).

The payload of a peer list request consists of a 20 byte identifier, followed
by 8 random bytes. The responding peer will return the peers from its own
peer list that are closest to the requested identifier.

3.2.2.4.4 Peer list reply (type 0x03) Peer list replies contain 10 peers
from the responding peer’s peer list which are closest to the requested iden-
tifier. If the responding peer knows fewer than 10 peers, then as many peers
as possible (potentially zero) are returned, and any remaining peer slots
are zeroed out. For each returned peer, the payload format is as shown in
Figure 3.6. Zeus supports both IPv4 and IPv6, but in practice we have ob-
served very few IPv6 peers. The IP type field indicates whether the peer is
reachable via IPv4 (set to 0) or IPv6 (set to 2). The remaining fields con-
tain the peer’s identifier, IP address and UDP port. Any unused fields are
randomized.

3.2.2.4.5 Data request (type 0x04/0x68/0x6A) A UDP data request pay-
load, shown in Figure 3.7, starts with a single byte indicating the kind of
requested data. This byte is set to 1 for a configuration file download, or to
2 for a binary update. The offset field indicates the word offset into the data
to be transmitted and the size field specifies how many data bytes should be
sent. TCP data requests consist of a message header with type 0x68 for a
binary request, or type 0x6A for a configuration request.

www.syssec-project.eu 39 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

type (1B)

offset (2 bytes) size (2 bytes)

Figure 3.7: Data request payload (5 bytes).

data block ID (4 bytes)

data
...

Figure 3.8: Data reply payload (length varies).

3.2.2.4.6 Data reply (type 0x05/0x64/0x66) UDP data transfers (type
0x05) are sent in chunks of 1360 bytes, until no more data is available. If
a bot receives a data reply containing less than 1360 data bytes, it assumes
that this is the last data block, and ends the download. If a data reply takes
longer than 5 seconds to arrive, the download is aborted, and the maximum
total size of any download is 10MB. These constraints mean that it is not
possible to launch “tarpit” attacks, where bots are tied up by very slow and
never ending downloads.

Each data reply (Figure 3.8) starts with a 4 byte randomly chosen file
identifier, followed by the requested data. The transmitted files end with an
RSA-2048 signature over the MD5 hash of the plaintext data, and are en-
crypted with RC4 using a hardcoded key on top of an XOR encryption layer.
Before applying an update, Zeus checks that the version number contained
in the update is strictly higher than its current version number. This means
that it is not possible to make Zeus bots revert to older versions.

TCP data transfers start with a message header of type 0x64 for a binary
update, or 0x66 for a configuration update, followed by the RC4 encrypted
data.

3.2.2.4.7 Proxy reply (type 0x06) Proxy replies return proxy bots in re-
sponse to version requests carrying a proxy request marker. A proxy reply
can contain up to 4 proxy bot entries, each of which is RSA-2048 signed.
Each proxy entry is formatted as shown in Figure 3.9. The format is similar
to that used in peer list replies, except that the IP type field is 4 bytes long,
and there is an RSA signature at the end of each proxy entry.

www.syssec-project.eu 40 September 23, 2013

3.2. PEER TO PEER NETWORK TOPOLOGY AND CHALLENGES

IP type (4 bytes)

proxy ID (20 bytes)

IPv4 addr (4 bytes) IPv4 port
(2B)

IPv6 addr (16 bytes)
IPv6 port

(2B)

RSA signature (256 bytes)
...

Figure 3.9: Proxy struct (304 bytes).

3.2.2.4.8 Proxy announcement (type 0x32) Proxy announcements are
similar to proxy replies, but are actively pushed through the Zeus network
by bots which are appointed as proxies by the botmasters. Newly appointed
proxy bots announce themselves to all their neighbors, which pass on the
message to all their neighbors, and so on. This continues until the TTL field
(Section 3.2.2.3) reaches zero. The TTL field has an initial value of 4 for
proxy announcements. Thus, proxy announcements propagate very rapidly,
although they cannot reach NATed bots directly. Proxy announcements con-
tain a single proxy entry of the same format used in type 0x06 messages, as
shown in Figure 3.9.

3.2.2.4.9 C2 message (type 0xCC) Unlike most message types, C2 mes-
sages are only exchanged between harvester bots and proxy bots, and are
exchanged over TCP. C2 messages are used as wrappers for HTTP messages.
Because of this, we suspect that the communication between proxy bots and
the C2 proxy layer is HTTP-based. The HTTP-based C2 protocol is heavily
based on the C2 protocol used in centralized Zeus [34, 56]. An example C2
HTTP header for a command request is shown in Figure 3.10. The X-ID field
specifies the sub-botnet for which a command is being requested.

The HTTP header is followed by an HTTP payload, which consists of
several, optionally zlib-compressed, data fields. The payload begins with a
header specifying the payload size and flags, and the number of data fields
that follow. The payload header ends with an MD5 hash of the combined
data fields, which is used to verify message integrity.

Each data field is XOR encrypted, and starts with a header specifying the
field type, flags, and compressed and uncompressed sizes. The header is

www.syssec-project.eu 41 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

POST /write HTTP/1.1

Host: default

Accept-Encoding:

Connection: close

Content-Length: 400

X-ID: 100

Figure 3.10: C2 HTTP header.

Type Content

0x65 System name and volume ID
0x66 Bot identifier
0x67 Infecting spam campaign
0x6b System timing information
0x77 Stolen data

Table 3.2: Typical C2 request fields.

followed by the actual data, the structure of which is dependent on the field
type.

C2 request messages typically contain several fields describing status of
and information about the requesting bot. Typical fields included in C2
requests are shown in Table 3.2. Note that the type numbers of data fields
are completely independent from Zeus message type numbers.

The most important data field contained in a C2 response is the com-
mand field, which has type 0x01. It contains an MD5 hash used to verify
integrity of the command, followed by the command itself in the form of an
ASCII-string. Notable command strings are listed in Table 3.3.

As can be seen from Table 3.3, Zeus supports a diverse set of commands,
which goes far beyond that of a typical banking trojan. The supported

Command Meaning

user execute Execute file at URL
user certs get Steal crypto certificates
user cookies get Steal cookies
ddos url DDoS a given URL
user homepage set Set homepage to URL
fs pack path Upload local files to botmaster
bot bc add Open VNC server

Table 3.3: Notable C2 command strings.

www.syssec-project.eu 42 September 23, 2013

3.2. PEER TO PEER NETWORK TOPOLOGY AND CHALLENGES

commands include dropping files, launching DDoS attacks, providing re-
mote access to the botmasters, and stealing a plethora of credentials. Aside
from banking credentials, we have observed Zeus stealing Skype and MSN
database files, as well as Bitcoin wallets.

3.2.3 Communication Patterns

Each Zeus bot runs a passive thread, which listens for incoming requests,
as well as an active thread, which periodically generates requests to keep
the bot up-to-date and well-connected. We describe the behavior of each of
these threads in turn.

3.2.3.1 Passive thread

Every Zeus bot listens for incoming messages in its passive thread. A Zeus
bot receiving an incoming request attempts to handle this request as de-
scribed in Section 3.2.2.4. The sender of any successfully handled request
is considered for addition to the receiving bot’s peer list. This is the main
mechanism used by externally reachable Zeus bots to learn about neighbors,
and it is also how new bots introduce themselves to the network. If the
receiving bot has fewer than 50 neighbors, then it always adds the sender
of the request to its peer list. Additionally, if the identifier of the sender is
already present in the peer list, then both corresponding IP address and port
are updated. This is done to accommodate senders with dynamic IPs and
discard stale dynamic IPs. If the identifier of the sender is not yet known,
but the peer list already contains 50 peers or more, then the sending peer
is stored in a queue of peers to be considered for addition during the next
neighbor verification round (see Section 3.2.3.2).

Before adding a new peer to the peer list, a number of sanity checks are
performed. First, only peers which have a source port in the expected range
are accepted. NATed bots may make it into the peer lists of other bots, if they
happen to choose a port in the valid range. Additionally, only one IP address
per /20 subnet may occur in a bot’s peer list at once. This defeats peer list
poisoning attempts which use IP ranges within the same subnet. Recent
versions of Zeus also include an automatic blacklisting mechanism, which
blacklists IPs that contact a bot too frequently in a specified time window.
This mechanism further complicates efficient crawling and poisoning of the
network.

When a type 0x32 proxy announcement arrives, its signature is first
checked for validity. If the message passes the check, the TTL field is decre-
mented and the message is forwarded to all known neighbors if the TTL
is still positive. Furthermore, new proxy bots which pass verification are
considered for addition to the receiving bot’s proxy list. The proxy list is
similar to the peer list, but is maintained separately. If the identifier of the

www.syssec-project.eu 43 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

new proxy is already in the proxy list, then both corresponding IP address
and port are updated. Otherwise, if a proxy list entry is found that is over
100 minutes older than the new proxy, this entry is overwritten with the
new proxy (this is not done for type 0x06 proxy replies). In any other case,
the new proxy is added to the end of the proxy list. Finally, the proxy list
is truncated to its maximum length of 10 entries, effectively discarding the
new proxy if the proxy list was already 10 entries long.

3.2.3.2 Active thread

The Zeus active communication pattern consists of a large loop which re-
peats every 30 minutes. The function of the active communication loop is
to keep Zeus itself, as well as the peer list and proxy list, up to date.

In each iteration of the loop, Zeus queries each of its neighbors for their
binary and configuration file versions. This step serves to keep the bot up to
date, and to check each neighbor for responsiveness. If Zeus knows fewer
than 4 proxy bots, it piggybacks a proxy request marker with each version
request. Each peer is given 5 chances to respond to a version request. If
a peer fails to answer within the maximum number of retries, Zeus checks
if it has working Internet access by attempting to contact www.google.com
or www.bing.com. If it does, the unresponsive peer is discarded. If the
peer responded and is found to have an update available, the update is
downloaded in a separate thread.

After version querying all peers in its peer list, Zeus proceeds to handle
any pending peers which were queued from incoming requests (see Section
3.2.3.1). Pending peers are only handled if the peer list contains fewer than
50 peers, and the procedure is stopped as soon as the peer list reaches length
50. Each pending peer is sent a single version request, and is added to the
peer list if it responds.

Finally, if the peer list contains fewer than 25 peers, the bot will actively
send peer list requests to each of its neighbors until the peer list reaches
a maximum size of 150 peers. This is only done once every 6 loop cycles
(3 hours), and is an emergency measure to prevent the bot from becoming
isolated. If, despite this effort, a bot does find itself isolated, it will attempt
to recover connectivity by contacting its hardcoded bootstrap peer list. If this
also fails, the bot will enter DGA mode, as further described in Section 3.3.

3.3 Domain Name Generation Algorithm

As mentioned in Section 3.2.2.1, Zeus contains a Domain Generation Al-
gorithm, activated if all of a bot’s neighbors are unresponsive, or the bot
cannot fetch updates for a week. The DGA generates domains where Zeus
can download a fresh RSA-2048 signed peer list. The DGA is a very potent

www.syssec-project.eu 44 September 23, 2013

3.3. DOMAIN NAME GENERATION ALGORITHM

for(i = 0; i < 1000; i++) {

S[0] = (year + 48) % 256; S[1] = month;

S[2] = 7 * (day / 7); *(in t *)&S[3] = i;

/* convert hash to domain name */

name = ""; hash = md5(S);

for(j = 0; j < len(hash); j++) {

c1 = (hash[j] & 0x1F) + ’a’;

c2 = (hash[j] / 8) + ’a’;

i f (c1 != c2 && c1 <= ’z’) name += c1;

i f (c1 != c2 && c2 <= ’z’) name += c2;

}

/* select TLD for domain */

i f (i % 6 == 0) name += ".ru";

else i f (i % 5 != 0) {

i f (i & 0x03 == 0) name += ".info";

else i f (i % 3 != 0) {

i f ((i % 256) & 0x01 != 0) name += ".com";

else name += ".net";

} else name += ".org";

} else name += ".biz";

domains[i] = name;

}

Figure 3.11: The P2P Zeus Domain Name Generation Algorithm.

backup mechanism, which makes long term poisoning or sinkholing attacks
against Zeus very difficult [105].

3.3.1 Algorithm Details

The Zeus Domain Generation Algorithm generates 1000 unique domains
per week. A bot entering the DGA starts at a random position in the current
week’s domain list and sequentially tries all domains until it finds a respon-
sive domain. The DGA uses top-level domains taken from the set {biz, com,
info, net, org, ru}. The Zeus DGA bears some resemblance to the DGA of
Murofet, a malware known to be related to centralized Zeus [72].

The Zeus DGA is shown in C-like pseudocode in Figure 3.11. The code
shown generates all 1000 domains for a given week. The generation of
a domain name starts by taking the MD5 hash over the concatenation of
(transformations of) the year, month, day, and domain index. The MD5
hash is then used to generate a domain name of at most 32 lower case
alphabetic characters. Finally, the domain is completed by selecting one of
the six top-level domains and concatenating it to the domain name.

www.syssec-project.eu 45 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

3.4 Analyzing web injections

3.4.1 Information-stealing Trojans: Overview and Challenges

State-of-the-art malware is very sophisticated and the development indus-
try is quite mature. [82] recently measured that trojans such as ZeuS and
GenericTrojan are actively developed and maintained. Indeed, both mal-
ware families live in a complex environment with development kits, web-
based administration panels, builders, automated distribution networks, and
easy-to-use customization procedures. The most alarming consequence is
that anyone can buy a malware builder from underground marketplaces
and create a customized sample. Interestingly, cyber criminals also offer
paid support and customizations, or sell advanced configuration files that
the end users can include in their custom builds, for instance to extract in-
formation and credentials of specific (banking) websites. [82] also found
an interesting development evolution, which indicates a need for forward-
looking malware-analysis methods that are less dependent on the current or
past characteristics of the malware.

3.4.1.1 WebInject Functionality

From hereinafter we use ZeuS and SpyEye as a study case. However, as de-
tailed in Section 3.4.2, our approach does not rely on their implementation
of the WebInject functionality.

Malware families that follow the same approach of ZeuS and SpyEye
usually include data-stealing functionalities. For instance, since version
1.0.0, SpyEye features a so-called “FormGrabber” module, which can be
arbitrarily configured to intercept the data that the victim types into (legiti-
mate) websites’ forms. This type of trojans are often referred to as “infosteal-
ers”, in jargon. Unsurprisingly, the main goal of money-motivated criminals
that rent or operate information-stealing campaigns is to retrieve valid, full
credentials from infected systems. Online-banking websites credentials are
among the most targeted ones. Typically, these credentials comprise both
the usual username and password, and a second factor of authentication
such as a PIN or a token. This (one-time) authentication element is normally
used only when performing money transfers or other sensitive operations.
As a security measure, many banking websites use separate forms, and do
not ask for login credentials along with the second factor of authentication.

As of version 1.1.0, SpyEye incorporates the WebInject module, which
can be used to manipulate and inject arbitrary content into the data trans-
mitted between an HTTP(S) server and the browser. As described in detail
in Section 3.4.1.2, a WebInject module is placed between the browser’s ren-
dering engine and the HTTP(S) API functions. For this reason, the trojan
has access to the decrypted data, if any encryption is used (e.g., SSL).

www.syssec-project.eu 46 September 23, 2013

3.4. ANALYZING WEB INJECTIONS

In the case of information stealers, the WebInject module is leveraged
to selectively insert the HTML or JavaScript code that is necessary to steal
the target information. For example, as shown in Figure 3.12, the WebInject
module inserts an additional input field in the main login form of an online
banking website. The goal is to lure the victim such that he or she believes
that the web page is legitimately asking for the second factor of authentica-
tion up front. In fact, the victim will notice no suspicious signs (e.g., invalid
SSL certificate or different URL) because the page is modified “on the fly”
right before display, directly on the local workstation.

WebInjects effectively allow attackers to modify only the portion of page
they need by means of site-specific content-injection rules. More precisely,
the attacker sets two hooks (data before and data after) that identify a
portion of a web page where the HTML or JavaScript content (defined with
the data inject variable) is injected. These variables are set at configu-
ration time into a proper file, named webinjects.txt in the case of ZeuS,
SpyEye, and derivatives. Additionally, at runtime, the malware polls the bot-
net command-and-control (C&C) server for further configuration options—
including new injection rules.

In contrast to phishing, which requires the attacker to host and main-
tain a spoofed web page, WebInjects do not require any external resource.
Therefore, they reduce the upkeep effort for the attacker and also remove a
point of failure (i.e., the external web page). Unfortunately, unlike phishing,
which is indeed affected by take-down actions [91], the targeted organiza-
tions can do little to protect infected clients, because the injection itself is
only visible on the client side.

Because of their effectiveness and flexibility, WebInjects have gained a lot
of popularity in the underground economy, and contributed to the malware-
as-a-service phenomenon. To some extent, the configuration files embody
the actual value of an information stealer. Indeed, these files, and in par-
ticular webinjects.txt files, are traded2 or sold3 on underground market-
places.

3.4.1.2 Characterizing WebInjects: State of the Art and Challenges

From the malware analysis point of view, the threat landscape described
above translates into an increased volume of distinct samples. In fact, not
only the malware binaries can be packed and obfuscated with a wide array
of options (e.g., packing method, encryption key), also the custom configu-
ration files are encrypted, and embedded in the final executable. This char-
acteristic, combined with the evolving nature of modern trojans, makes it
very difficult to extract the static and dynamic configuration files—besides,

2http://trackingcybercrime.blogspot.it/2012/08/
high-quality-webinject-for-banking-bot.html

3https://www.net-security.org/malware_news.php?id=2163

www.syssec-project.eu 47 September 23, 2013

http://trackingcybercrime.blogspot.it/2012/08/high-quality-webinject-for-banking-bot.html
http://trackingcybercrime.blogspot.it/2012/08/high-quality-webinject-for-banking-bot.html
https://www.net-security.org/malware_news.php?id=2163

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

s e t u r l h t tp s : // ex t rane t . banesto . es /npage/ OtrosLogin / LoginIBanesto . htm GP
data be fo re
name=usuar io*</td>
data end
d a t a i n j e c t
</t r><t r>
</TR> <TR> <TD a l i g n=l e f t >
Clave ; de Firma:</TD> <TD a l i g n=l e f t colSpan=3><INPUT type=password maxLength=8 a l i g n=center s i z e=8 value =”” name=ESpass></TD>
data end
d a t a a f t e r
data end

Figure 3.12: Example of a real WebInject found on a page
of extranet.banesto.es, performed by a ZeuS variant (MD5
15a4947383bf5cd6d6481d2bad82d3b6), along with the respective
webinject.txt configuration file.

of course, through custom, time-consuming reverse-engineering efforts, or
in the lucky case that the malware itself exposes some vulnerabilities (e.g.,
SQL injection, weak cryptography). Examples of such approaches are pro-
posed in [103]. They leverage a vulnerability of the encryption routines to
create a chosen-plaintext attack. On the one hand, approaches that revolve
around an initial, in-depth reverse engineering of a malware binary are use-
ful to identify vulnerabilities or patterns of activities that can be exploited
as detection criteria. On the other hand, the generality of these approaches
is obviously limited.

[40] analyzed the WebInject functionality to fingerprint the behavior of
information stealers. Their key intuition is that WebInjects are currently
implemented by hooking into the Windows API functions. More precisely,
since version 2, ZeuS hooks into the Wininet.dll library, which defines
functions that are used by Microsoft Internet Explorer to handle web traf-
fic (e.g., HttpSendRequestA, InternetReadFile), as summarized in Fig-
ure 3.13. The authors analyzed all the possible hooking mechanisms that
could be implemented in the Windows OS (i.e., inline hooks, import ad-
dress table hooks, export address table hooks, and hooking techniques that
manipulate the windows loader mechanism) and, from them, they derived
behavioral fingerprints. In practice, they look for extra code sections in the

www.syssec-project.eu 48 September 23, 2013

3.4. ANALYZING WEB INJECTIONS

<html>
...
...

</html>

Browser

Network APIs

<html>
...

</html>

<input />

<input />
WebInject

<input />...

...

U
se

r s
pa

ce
K

er
ne

l s
pa

ce

90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
90 [NOP]
8bff [MOV EDI, EDI] (FUNCTION ENTRY)
55 [PUSH EBP]
8bec [MOV EBP, ESP]

INFECTED CLIENT SERVER

O
rig

in
al

 p
ag

e

HTTPS

Hooking

Figure 3.13: The HTML source code produced by the banking website tran-
sits encrypted over the Internet. When it reaches the OS and thus the
Wininet.dll library, the source code is decrypted and intercepted. ZeuS
modifies it on the fly and sends it through the same pipeline, up to the
browser rendering engine.

basic Windows libraries, by comparing the version stored on disk against
the version loaded in the process memory. Extra code sections are a sign of
code injection due to hooking.

The generality of existing techniques depends on the fact that families
of information-stealing trojans (as well as many other families of complex
malware) hail portions of code from each other. For example, [40] notices
that the implementation of the WebInject module of ZeuS is similar to that
of SpyEye: They both rely on API hooking. Unfortunately, the knowledge
that is necessary to build signatures of the action of the WebInject module
can only come from reverse engineering of the samples. Although SpyEye
and ZeuS feature a similar WebInject module, if an unknown sample or fam-
ily implements a web-injection module differently, further time-consuming
reverse engineering would be needed. Additionally, the whole approach is
OS and browser dependent: Browsers other than Internet Explorer (e.g.,
Firefox is already targeted by the current versions of SpyEye, as described
in [22]) use different libraries; OSs other than Windows have different user-
land APIs. Indeed, as highlighted in the latest ENISA Threat Landscape [86],
the popularity of cross-platform malware increased in 2011–2012 (the most
notable example is the Flashback botnet, which was reported that contained
more than 600,000 Apple Macs).

www.syssec-project.eu 49 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

Therefore, given the motivations presented in this section, we conclude that
a generic approach for generating the signatures of an information stealer
that performs WebInjects is needed.

3.4.2 Overview of Zarathustra

From hereinafter we use the term “WebInject” in its most general interpreta-
tion to refer to any mechanism used by malware to inject arbitrary content
in the (decrypted) data that transits between the network layer and the ren-
dering engine of a browser (see Figure 3.13). Although we focus on various
ZeuS samples as a study case, our approach is not limited to this family:
It applies to (possibly unknown) software that may implement an in-the-
browser injection mechanism that results in additional code injected in a
rendered web page.

The goal of our approach, called Zarathustra, is to generate signatures
of the injection functionality automatically. A fast method to fingerprint the
injection behavior of a malware is useful because it can tell whether an end
host is infected by a known sample. This task is usually accomplished by
antivirus software, whose signatures are manually constructed by analysts
through tedious reverse engineering. In addition to producing signatures
automatically, our system isolates precisely the injected code, as if the con-
figuration files of the custom malware variant were available. This piece of
information is particularly useful for security officers of bank institutions,
because it allows them to verify automatically if and how their website is
targeted by an information-stealing campaign.

The action of an injection module eventually results in changes to the
document object model (DOM). This is the key observation behind our
work. In particular, Zarathustra generates the aforementioned signatures by
first rendering a website’s page multiple times in an instrumented browser
that runs on distinct, clean machines. In this phase, Zarathustra removes
the legitimate DOM differences (e.g., due to ads, A/B testing, cookies, load
balancing, anti-caching mechanisms). Zarathustra repeats the same proce-
dure on an infected machine, and finally extracts and generalizes the re-
sulting, malicious differences—which we call “fingerprints” (or signatures).
The whole system runs on dedicated machines with no interactions with
real clients.

The source code of Zarathustra is available at https://code.google.com/
p/zarathustra/.

Zarathustra recognizes the behavior of any WebInject-based information
stealer by looking for the visible effect of the WebInjects in the targeted web-
sites, regardless of the underlying implementation of the injection mech-
anism (e.g., API hooking, DLL patching, other yet unknown techniques).
Zarathustra does not leverage any malware-specific component or vulner-

www.syssec-project.eu 50 September 23, 2013

https://code.google.com/p/zarathustra/
https://code.google.com/p/zarathustra/

3.4. ANALYZING WEB INJECTIONS

ability to observe and characterize the injection behavior. Therefore, it is
more general by design.

To remove the dependence on a specific (version of the) OS, browser,
and malware, we lift the detection of WebInjects to a higher level in user-
land. In particular, we position the observation point of Zarathustra on top
of the process space of the browser. Specifically, by generalizing the exam-
ple WebInject in Figure 3.12, we observe that the source code of a website
rendered on an infected client differs from the source code of the very same
page rendered on a clean machine.

Although this approach is in principle quite simple when applied at a
small scale (e.g., by manual analysis of a handful of target websites and
samples, as shown in an example in [94]), streamlining the generation of
these fingerprints in the large scale presents two main issues:

• websites, by their own nature, may vary legitimately. This can be due
to several factors, including server-side caching, web replication mech-
anisms adopted by the internet service providers or content-delivery
networks and, mainly, upgrades of the (banking) web application. As
noted in [85], these changes are very frequent in real-world web ap-
plications. The unfortunate side effect is that protection tools based
on anomaly models yield false detections, because they confuse legit-
imate changes with tampered HTTP interactions.

• The rendering of a legitimate web page can vary depending on the in-
clusion of external resources performed on the client side (e.g., mashups),
which is a common practice in websites nowadays (e.g., advertising,
asynchronous content).

Both these issues yield differences that are not actual injections. This prob-
lem is hard to solve in general and its solution is beyond the scope of our
research. However, in the limited scope of an attacker that needs to inject
at least one piece of static code without disrupting the legitimate look of a
web page, we can address the above issues as described in Section 3.4.3.2
and 3.4.3.3.

3.4.2.1 Workflow

As summarized in Figure 3.14, Zarathustra receives a trojan sample in the
form of an executable file, and a target URL (list) as input. First, in the
DOM Collection phase (Section 3.4.3.1), it collects a set of DOMs from a
set of identical clean machines, and one DOM from the machine infected
with the malicious executable. The DOMs are compared in the DOM Com-
parison phase (Section 3.4.3.2), which finds the differences between the
“clean DOMs” and the “malicious DOM”. In the Fingerprint Generation
phase (Section 3.4.3.3), the differences are analyzed to eliminate obvious

www.syssec-project.eu 51 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

Fingerprint
generationDOM collection DOM comparison

Clean VM 1

VM images

Infected VM

Clean VM 2

Clean VM n

. . .

DOM
injection

DOMn

DOM2

DOM1

DOM

Heuristics

D
O

M
 V

AR
IA

N
TS

M
AL

IC
IO

U
S

D
O

M

h
tt

p
:/

/w
w

w
.b

a
n

ki
n

g
.s

it
e

Trojan
sample

Figure 3.14: Server side architecture of Zarathustra, which is in charge of
analyzing a given URL against a given trojan.

duplicates (e.g., due to legitimate changes or caching) and other recurring
patterns of legitimate differences.

3.4.3 Implementation Details

We implemented the DOM Collection phase on top of Oracle VirtualBox. We
wrote a thin library on top of its API to create, snapshot, start-stop the VMs,
and a library based on WebDriver4, a platform- and language-neutral inter-
face that introspects into, and controls the behavior of, a web browser and
dumps the DOM once a page is fully loaded. The DOM Comparison relies
on XMLUnit’s DetailedDiff class functions. The Fingerprint Generation
phase does not rely on 3rd-party libraries.

3.4.3.1 DOM Collection

This phase receives a target URL as input. It starts n clean VMs plus one
infected VM. Each VM automatically starts the browser with WebDriver,
sleeps for T seconds, visits the URL, lets the page load completely, and saves
the resulting DOM. We then access and store the DOM as computed by the
browser, thus including all the manipulations performed by client-side code

4http://www.w3.org/TR/webdriver/

www.syssec-project.eu 52 September 23, 2013

http://www.w3.org/TR/webdriver/

3.4. ANALYZING WEB INJECTIONS

at runtime while the page loads. The DOM encompasses the content of the
nodes in the page, including script tags. This phase outputs the n “clean
DOMs” that result from visiting the target URL with the clean VMs, plus one
“malicious” DOM for the infected machine.

As [40] measured that ZeuS typically waits 30–110 seconds before hook-
ing the OS functions, allowing more time after starting the browser may
increase chances to detect injections. However, we manually verified that,
in our dataset, the injections were visible even after T = 3 seconds. So,
we left this timeout as a parameter, which can be increased in production
environments.

3.4.3.2 DOM Comparison

This phase compares DOM , the “malicious DOM” against the “clean” DOMi ∈
[1, n] to find distinct differences. We rely on XMLUnit’s DetailedDiff.get-
AllDifferences(), which walks the tree of DOM and, for each node,
walks the tree of DOMi to look for the following differences:

New node: This is extremely important to catch one of the most common
manifestations of an information stealer: new <input /> fields. This
phase takes into account any element type (e.g., forms, scripts, iframes,
text).

New attribute: This type of difference reveals the presence of possibly ma-
licious attributes such as the onclick trigger, used to bind JavaScript
code that peforms (malicious) actions whenever certain user-interface
events occur.

Attribute value modification: This type of difference occurs when the in-
formation stealer manipulates an existing attribute (e.g., to change
the server that receives the data submitted with a form, or modifies
the JavaScript code already associated to an action).

Text node content modification: This occurs when a malware modifies the
content of an existing node, for instance to add new code within a
<script /> tag.

We did not observe removal of DOM nodes in our dataset, nor there is any
malware capability in this direction as the WebInject configuration file only
allows to add nodes. Indeed, DOM node removal not followed by any node
addition is against the goals of the malware operator. A DOM node substi-
tution is accounted for by Zarathustra as a modification (3rd and 4th case).

The output of this phase is a set of differences diff(DOMi, DOM),∀i ∈
[1, n], where “diff(A,B)” indicates the distinct differences between DOM A
and B.

www.syssec-project.eu 53 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

3.4.3.3 Fingerprint Generation

This phase processes the differences from the DOM Comparison and gener-
ates a set of fingerprints F = ∪ni=1diff(DOMi, DOM). Before computing the
union, we remove the differences between each couple DOMi and DOMj ,
∀i 6= j to take into account the legitimate changes between “clean DOMs”,
which could cause false (positive) signatures. An example generated finger-
print is

"clean_node ": {

"parent ": "null",

"value": "null",

"xpath": "null"

},

"malicious_node ": {

"parent ": "form",

"value": "input",

"xpath": "/html [1]/ body [1]/ center [3]/ table [1]/ tbody [1]/tr[1]/ form [1]/ input [13]"

}

which specifies the <input /> field injected in the real case of Figure 3.12.
The set of fingerprints F already contains valuable information that pre-
cisely characterizes if and how an injection takes place.

As F is generated in a fully automated way, it may contain false differ-
ences. These are addressed by two heuristics.

Heuristic 1: Ignoring Dynamic DOM Differences. Our system can disable
the JavaScript interpreter during fingerprint generation. We observed that
several legitimate differences found in our dataset are actually due to DOM
modifications performed by the browser that executes JavaScript routines
while rendering the page. At a first glance, disabling JavaScript may lead to
excluding malicious DOM modifications caused by the malware. However, a
genuine WebInject always results in at least one static code injection, which
would be still visible even when JavaScript is disabled. As we discuss in
Section 3.4.6, even in the corner case of a malware that injects code inside
an existing <script /> tag, by adding static code that performs the actual
DOM manipulation, Zarathustra still generates a signature of the static code
injection in the first place.

Heuristic 2: Caching Server Responses. From our experiments, we ob-
serve that the DOM Comparison phase needs at least n = 30 clean VMs in
order to correctly distinguish between legitimate and malicious differences.
However, visiting or rendering the same site n times may not be feasible
(e.g., banning, hardware restrictions). By caching server responses—using
the URL as the caching key—we reduce the false differences due to dynamic
code on the server side, which may insert, for instance, a unique identifier
in each response (e.g., to avoid cross-site request forgery or caching).

www.syssec-project.eu 54 September 23, 2013

3.4. ANALYZING WEB INJECTIONS

3.4.4 Post-processing Heuristics

The output of the previous phase is the set F of fingerprints, which is post
processed through the following two heuristics that minimize the occurrence
of false differences.

Heuristic 3: Filtering Special Attributes. Several attributes can be safely
ignored, because they would not lead to new DOM nodes. We assume that if
a malware attempts to forcefully inject a DOM node (e.g., <input />) into
an attribute value, this would lead to parsing errors, and thus to a useless
DOM node. Specifically, we ignore value, style, class, width, height,
sizset, sizcache, and alt. The style attribute may be used maliciously,
to inject JavaScript code. However, Heuristic 1 prevents this case.

Heuristic 4: Filtering Text Nodes. Text nodes are harmless, because they
can only contain pure text. We ignore all the text nodes, unless they are
children of <script /> tags. There are many other ways through which
a malware can insert custom client-side code, but Zarathustra already ac-
counts for these types of WebInjects during DOM Comparison.

3.4.5 Experimental Evaluation

Between January and February 2013 we evaluated our implementation of
Zarathustra against 213 real, live URLs of banking websites and 56 dis-
tinct samples of ZeuS (see Table 3.4). Our main goal was to measure the
correctness of the fingerprints, with and without the heuristics described
in Section 3.4.3. We also wanted to assess the resource requirements of
Zarathustra in order to analyze a given amount of URLs and samples.

3.4.5.1 Dataset

With the above premises, our decision fell on ZeuS, because it is by far
the most widespread information stealer that performs injections: Accord-
ing to ZeuS Tracker, as of September 23, 2013 there are 887 known C&C
servers (449 active), and an alarmingly low estimated antivirus detection
rate (38.29%, zero for the most popular and recent samples). We also con-
ducted a series of explorative experiments with SpyEye, which is less moni-
tored than ZeuS (216 C&C servers, 77 active, and an average detection rate
of 27.1%); thus, it is more difficult to obtain an ample set of recent samples.
However, SpyEye features the same WebInject module of ZeuS, as described
in [114, 35, 40]. For these reasons, for the purpose of evaluating the qual-
ity of our fingerprint-generation approach, we decided on ZeuS as the most
representative information stealer that generated real-world injections.

We constructed the list of the target URLs by merging 2 webinjects.txt

files found on underground forums, plus the webinjects.txt leaked as part

www.syssec-project.eu 55 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

MD5 Injections

68ab93087e2bf697e48b912b4546e666.exe 0
93895e081e679f8d9760de48b4ad349f.exe 17
757f4dcb8fb34e8d168e632f16cebd53.exe 13
1a45e46567b84d38ba868f702e795913.exe 4
fd622057a281813c32cade7ad54843a5.exe 12
9cd8fbd475c088d860bdc1371924dd4f.exe 13
9ffe865c925bf06d35aa6b68cdaf3609.exe 0
85719c933ccdb42f37e8c4d9b5e6bcfd.exe 0
2105082b794ecfa02136e012f5ab4e6b.exe 0
15a4947383bf5cd6d6481d2bad82d3b6.exe 13
b2a52dabdc8134199cd7858dd8e41013.exe 17
b68d88be4d65b29ad17937d8a419d8ba.exe 0
bb0c5a0c13682b996f5ab4b5dd79f430.exe 17
254712088ab8e08619f20705d7a09cf1.exe 0
6ba342b445092151d8171a62efe633cb.exe 17
71d1a97b5776f3adc7f92ba6e82d162b.exe 13
b82eeaf8d5c0ed3d44269196865beb80.exe 13
21ef35e6e3f3494d134e9928ca6f38e8.exe 17
e54d1b119211907dad7dc33ff087d5be.exe 13
56f8a7c7721aa96e543d57b0fef0f98f.exe 0
2a12ba5847c0fb58a89ea6b2f6dd1a97.exe 0
1ad8e54179e8c2c7767ea3b039d542fc.exe 2
9b9951c50e04818c413c8cd1a3096a6b.exe 0
d60487f05000160d85db0b354dbdd866.exe 16
cdf3bb9c75000fc49c7c148b76c20b45.exe 17
31ea03a2a33a75ddf48d52f4605ef0bb.exe 16
b1a49aa03fc1a8226ebc1205bdcf5562.exe 13
6384e4f1b5eeefbcb99a281ac514078a.exe 0

MD5 Injections

4df1446e8419978a0999ff2fa3fd60a3.exe 17
041c17a7b97550fd69d25613d9ef8f46.exe 0
9bc0e3d19af915c608a784fda63b0076.exe 13
a4aa162745adcb84373e6a623125c650.exe 12
22788996e2381bdb97480b8de141ec2c.exe 0
5e26d372feb7d085b752fffa931fc156.exe 0
39ad78a889a2b40a94dd700d67f1a5ed.exe 2
b2c82ffe10763cdc241c7fa8d97097ae.exe 13
bf45f27a403acfd3847fbbae88a8375f.exe 0
9abaffda80841aa87c9f5786e0db639e.exe 0
029d4f8dcf43837f773116439b07e980.exe 1
08e01221186cf82952c25d995176561b.exe 0
6436032a3d5bf53c6273ddd0ffab80be.exe 40
fd12f0d2e2bbef953ac87d4dca32c15d.exe 0
3ba3149213e6b9091c727104dbb26ea6.exe 41
b62dbd301f130487dfbc1473dced8aad.exe 17
f75e3fa05762072e5e6471f3fb982087.exe 13
c04fddfaab6b879a25b036980a34908e.exe 12
ffcaf8a2f2f59e0f7b165d085842bd17.exe 16
70dfde201f6a9a66730d9ae6b69450f8.exe 42
ecc0a5bdf5174efcd9d292e815de06f4.exe 11
5298f1fd6b300223f6bcdbc1fa89c2c0.exe 0
7f280b73093e5b61ab2eec7b6ebda420.exe 17
21248f3752c84ee5866a95992dba0813.exe 17
51eef801f614a0278c8b79f7be9d2fdf.exe 12
be4f416d394b4e305fd0e11d40a4242c.exe 17
99646549006435d73efeddbbbcf4313f.exe 13
c4ba4d84e5b40132e82b403469eb13ca.exe 0

Table 3.4: Evaluation dataset overview. All of the samples are variants of the
ZeuS family.

of ZeuS 2.0.8.9 source code5. We so obtained 293 distinct URLs. To make it
feasible to manually verify the results in a reasonable time, we selected 213
URLs (143 organizations) among the URLs that were active at the time of
evaluation. Building a list of URLs from webinjects.txt files found in the
wild allowed us to deal with real-world targeted pages. As WebInjects occur
on landing or login pages, we concentrated our search on such pages.

We created the ground truth by configuring Zarathustra with all the
heuristics enabled. We then manually analyzed the results to ensure that
no false signatures or negatives were found. An alternative approach could
have been to craft a proper webinjects.txt as the ground truth. However,
we wanted to test Zarathustra on injections found in the wild.

3.4.5.2 Setup and Scalability

We deployed Zarathustra on a 1.6GHz, 4-core x86-64 Intel machine with
16GB of RAM. We installed Windows XP SP3 (Internet Explorer 6, 7, 8) on
each VM and granted outbound and inbound Internet access. Zarathustra
required 256MB of RAM and 2 to 5GBs of disk space per VM; in our exper-
iments we used 2 to 35 VMs. We downloaded 76 samples, but 20 of these
failed to install or crashed, leaving 56 distinct samples. Figure 3.15 shows
that Zarathustra scales well: With 10 VMs running in parallel we are able to
process 1 URL in less than 3 seconds. The architecture of Zarathustra has no

5https://bitbucket.org/davaeron/zeus/

www.syssec-project.eu 56 September 23, 2013

https://bitbucket.org/davaeron/zeus/

3.4. ANALYZING WEB INJECTIONS

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 4 5 6 7 8 9 10

T
im

e(
n

)
[s

ec
o

n
d

s]

n = Virtual machines running in parallel

5.702

4.164

3.277

2.836

Figure 3.15: Scalability of Zarathustra: Time required to process 213 URLs
with 76 samples (including crashing samples). the labeled points indicate
the time to process 1 URL.

central node, nor any dependency that prevent full parallel operation: As a
result, its capacity scales directly with the amount of resources available.

3.4.5.3 Correctness of the Signatures

Table 3.5 summarizes the top-ten domains where Zarathustra correctly rec-
ognized injections caused by ZeuS. Some samples perform zero injections,
although usually we found around 1 to 9 injections per distinct URL of the
same domain.

Table 3.6 summarizes the influence of each heuristic: We disabled one
heuristic at a time and ran the same experiment. The last row reports the
correctness of the signatures when all the heuristics are enabled: We man-
ually verified the presence of actual injections and set this as the ground
truth for the experiments reported in the above rows. Overall, Zarathustra
correctly detected that ZeuS was performing an injection in 23.48% of the
URLs. The second column is the most important one. It shows the fraction
of URLs where Zarathustra correctly detected that a specific sample was
performing an injection. We notice that the contribution of the first heuris-
tic is fundamental, because such fraction of URLs decreases to 39.58% (on
average) when disabled. The second heuristic also provides a significant
contribution, whereas the last two heuristics are not particularly influential
in our dataset.

3.4.5.4 Signatures that Cause False Positives

A false positive occurs mainly when Zarathustra generates a signature of
a legitimate, benign difference. Obviously, the false positives have lower
impact when raised on an infected machine than on a clean machine. The
rationale is that an alarm usually leads to some reaction (e.g., investigation,
disinfection), which would waste time and resources on a clean machine.

www.syssec-project.eu 57 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

EFFECTIVE TLD INJECTIONS

min max tot avg

ybonline.co.uk 0 28 952 9.0667
cbonline.co.uk 0 45 699 2.6885
lloydstsb.com 0 23 677 4.3121

bbvanetoffice.com 0 14 312 5.7778
virginmoney.com 0 279 279 5.6939

if.com 0 77 231 4.2778
banesto.es 0 10 194 0.7239

rbkmoney.ru 0 8 112 2.1132
accessmycardonline.com 0 31 93 1.7547

smile.co.uk 0 29 87 1.6415

Table 3.5: Top ten websites in our dataset. The no. of injections is calculated
and averaged over the set of ZeuS 56 samples, and on the URLs within each
domain.

HEURISTICS AVG. CORRECT (± VAR.) %URLs

2,3,4 39.58 ± 11.53% 52.17%
1,3,4 74.98 ± 15.42% 23.48%
1,2,4 97.97 ± 0.069% 22.61%
1,2,3 98.42 ± 0.124% 23.04%

All 100.0% 23.48%

Table 3.6: Contribution of each heuristic on the quality of the signatures.
The second column reports the fraction of URLs with correctly-identified
injections (this fraction is averaged over the set of 56 samples). The last
column reports the fraction of URLs where at least one sample was detected
while performing an injection, including false signatures, which are ana-
lyzed separately in Section 3.4.5.4.

www.syssec-project.eu 58 September 23, 2013

3.4. ANALYZING WEB INJECTIONS

On the other hand, a false alarm raised on the wrong site is beneficial any-
ways if it occurs on an infected machine. In both cases, on the data collected
during the experiment described in Section 3.4.5.3, we obtained zero false
positives when using all the heuristics on the entire dataset.

In a more detailed analysis, we concentrated on the influence of Heuris-
tic 1, which was the most effective at eliminating false positives, as the
first row of Table 3.6 shows. For this, we disabled Heuristic 1; then, on
all the URLs in our dataset, generated the signatures using an increasing
number n ∈ [1, 35] of clean machines. In this way, we can assess how well
Zarathustra can tell legitimate differences and true positives apart when us-
ing a sufficiently large number of emulated clean clients. We then prepared
four machines, each infected with a distinct ZeuS sample, to evaluate the
false positives also on infected machines.

As Figure 3.16 shows, both the false positives decrease while n increase.
More importantly, the false positive rate on clean machines drops to almost
zero (1%) if at least 35 clean machines are used to generate the signatures.
We manually observed that the vast majority of that 1%, at n = 35, was
caused by JavaScript-based advertisement networks and modifications per-
formed by the browser, which lead to highly-dynamic DOMs. Thus, when
deploying Zarathustra to protect from injections on web pages that have a
dynamically-generated DOM, it is recommended that either Heuristic 1 is
enabled, or a large number of machines is used.

Overall, we can conclude that the most relevant class of false positives
is low. Signatures extracted by state-of-the-art approaches (e.g., via re-
verse engineering) may have lower false positives. However, considering
the time required to generate signatures with these methods, the price is
that of missed signatures (i.e., false negatives). Zarathustra, instead, builds
signatures of known WebInject-based malware automatically and quickly.

3.4.6 Discussion and Limitations

The first critical issue with Zarathustra is that malware operators could
rewrite the injected code, introducing no-op DOM nodes with the goal of
evading the signatures generated by Zarathustra: Adding an additional <div
/> wrapper to a page (in a random position), for instance, would circumvent
a näıve use of our signatures. However, none of the samples in our dataset
adopted this technique. In addition, and more importantly, modifying the
structure of a page can easily result in user-visible, brittle modifications.
This is clearly against the malware operator’s goal of preserving the look
of the page as much as possible. Although we leave the implementation of
a proper signature matching algorithm to future work, we are aware that
there is an accuracy trade off between matching the entire XPath expression
of a signature versus matching only the leaf nodes. However, if the leaf

www.syssec-project.eu 59 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35
-10

 0

 10

 20

 30

 40

 50

 60

 70

%
 F

P
R

(n
)

n = distinct virtual machines

Clean machine
Infected machine

Figure 3.16: False positives due to legitimate differences decrease for an
increasing number, n ∈ [2, 35], of clean VMs, until it reaches 1.0%. We
used 206 distinct URLs, rendered on a machine infected with ZeuS (MD5
a4aa162745adcb84373e6a623125c650). With Heuristic 1 enabled, we
achieve zero false positives.

nodes are detailed enough (e.g., they contain attributes), an algorithm that
matches on the leaf nodes can achieve good accuracy and high generality.

The second issue is that Zarathustra focuses on generating signatures of
information stealers automatically, but it is still a reactive approach: given
a sample of the malware, we can generate a signature, but there is no guar-
antee that this signature will also proactively match future generations of
the sample. However, the scalability of Zarathustra allows analysts to auto-
matically determine the targets of a large set of information stealers, with
no reverse engineering required.

Another obstacle that Zarathustra has to face are evasion mechanisms
employed by the malware to fool dynamic analysis. For example, a sample
may refuse to expose its true malicious behavior when it detects the action of
well-known debugging tools or analysis environments. However, we do not
rely on debugging or introspection tools: We rely on virtual machines solely
for ease of implementation and flexibility during evaluation. Zarathustra
works perfectly, and even faster, on bare metal. Hence, this obstacle is easily
circumvented by adopting the method proposed in [76] to obtain a virtual-
machine-equivalent snapshots on physical hardware. This way, no malware
can possibly recognize that it is running in a controlled environment.

WebInjects are the only artifacts that we rely on to observe the action of
an information stealer. As a result, if a banking trojan succeeds in hiding
its behavior (e.g., by injecting content only in some requests), Zarathustra
cannot guarantee to extract differences every time a targeted URL is visited.
However, this limitation does not constrain our system only; it also affects
state-of-the-art mechanisms based on APIs hooking detection. Hooking of
APIs may not always take place, or be delayed as noticed in [40]. In this

www.syssec-project.eu 60 September 23, 2013

3.4. ANALYZING WEB INJECTIONS

regard, Zarathustra provides the same result of other techniques, while re-
quiring less implementation efforts and more portability.

Last, a minor point of our current implementation of Zarathustra is that
we use the (banking) website as an oracle. For reasons that fall outside our
attacker model (e.g., client-side malware), an injection may match exactly
with a benign difference. For example, this happens if the website is up-
dated with a new form input that has the very same DOM representation
of an injection. Not only is this very unlikely to happen, it is also very easy
to remediate, by leveraging feedback from the bank whenever their site is
updated, or possibly by requesting an update of the signatures for that do-
main. It is indeed reasonable to imagine Zarathustra being deployed within
a bank information system: this use case would erase most, if not all the pos-
sibilities for false positives as a fully up-to-date model of the clean website
would always be available. In a similar way, Zarathustra can easily moni-
tor authenticated web pages, which are not a limitation when our system is
deployed by the website provider (e.g., bank).

3.4.7 Related Work

This section complements Section 3.4.1, where we mention the work that is
most relevant to ours.

With particular attention to ZeuS and SpyEye, trojans have been studied
in the past two years. [114] gives a detailed overview of the components of
SpyEye, including its development kit, and describe how SpyEye integrates
in the whole criminal ecosystem. [35] performed a similar study on the
ZeuS crimeware toolkit.

In Section 3.4.1 we already introduced BankSafe [40], a recent approach
that specifically targets the mitigation of information stealers, which in-
spired on to create Zarathustra. BankSafe is similar in spirit to Zarathus-
tra: It also looks for observable changes, although BankSafe focuses on the
binary libraries loaded in memory. The assumption is that information steal-
ers leave traces in loaded libraries by means of hooked functions. Because
of this assumption, BankSealer is limited to the Windows OS and, more
importantly, is highly dependent on the hooking mechanism and functions
adopted by a specific malware binary. The approach proposed in [67] pro-
tects the browser from malicious websites that perform dynamic changes
to the DOM. Although not designed specifically to target information steal-
ers, it could be applied to recognize WebInjects. The system instruments
the ECMA script layer by proxying its functions so to profile their execution
and recognize malicious patterns. However, the authors mention that their
method can detect dynamic changes of the DOM, whereas WebInjects work
at the source-code level.

Along a different line, [103] developed a chosen-plaintext attack against
the encrypted stream that flows between ZeuS (1.x and 2.x) and its C&C.

www.syssec-project.eu 61 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

The chosen plaintext is a combination of the information from the analysis
of the malware toolkit and the data collected while running a sample in a
controlled environment (e.g., cookies, user credentials, or computer host-
name). As discussed in Section 3.4.1.2, these attacks are effective, but their
applicability requires the reverse engineering of the malware and parts of
its ecosystem in order to retrieve sufficient knowledge.

Malware analysis is a broad research area that was recently systematized
in [107], who surveyed and discussed 36 academic publications presented
at the 6 highest-ranked security conferences between 2006 and 2011. The
goal of the work was to set the guidelines for performing rigorous mal-
ware experiments. We strive to adhere to such guidelines while evaluating
Zarathustra, as described in Section 3.4.5.

3.4.8 Future Work

Besides addressing the limitations described in Section 3.4.6, there are two
future directions that we deem promising.

First, the most practical future work that needs to be evaluated is a sys-
tem that protects the clients of a website from information stealers in a fully
centralized manner, with no additional software component installed on the
client side. In our vision, such a system would consist of a reverse proxy that
“appends” a JavaScript routine before sending HTTP responses to the client.
This routine would (embed and) match the known signatures for the current
URL once the browser has rendered the requested page. This scheme poses
two challenges: first, the matching must be computationally inexpensive
and fast; secondly, the insertion of the JavaScript code must be performed
in such a way that its removal would require major re-engineering of the
malware internals, or at least trigger some integrity check.

Second, as described in [75], some attackers are shifting towards more
advanced WebInject methods, operating more subtle changes which do not
result in user-visible DOM modifications. Although some of these methods
can be directly detected using the approach described in this section, others
result in advanced manipulation of the HTTP requests to divert monetary
transactions to a bank account under the attacker’s control. The respective
HTTP responses (e.g., page that confirms the result of a transaction) and
all the subsequent interactions with the banking website are also modified
such that the true recipient of malicious wire transfers is masqueraded (i.e.,
replaced with the intended recipient’s name). This threat will require modi-
fications to Zarathustra, because the injections may occur in pure text nodes.
Thus, the set of heuristics will need to be refined to cope with these corner
cases.

Finally, in Zarathustra we showed that the DOM is a simple yet effective
observation point. However, we believe that other aspects of the browser
behavior can be observed and compared on infected vs. clean clients, to

www.syssec-project.eu 62 September 23, 2013

3.4. ANALYZING WEB INJECTIONS

assess whether the information stealers cause side effects in the browser
that can be used as a detection criteria.

www.syssec-project.eu 63 September 23, 2013

CHAPTER 3. EVOLUTIONS OF BANKING TROJANS

www.syssec-project.eu 64 September 23, 2013

4
The Role of Phone Numbers in Understanding

Cyber-Crime Schemes

Both Internet and telephones are part of everyone’s modern life. Unfortu-
nately, several criminal activities also rely on these technologies to reach
their victims. While the use and importance of the Internet has been largely
studied, previous work overlooked the role that phone numbers can play in
understanding online threats.

In this chapter we aim at determining if leveraging phone numbers anal-
ysis can improve our understanding of the underground markets, illegal
computer activities, or cyber-crime in general. This knowledge could then
be adopted by several defensive mechanisms, including blacklists or ad-
vanced spam heuristics. Our results show that, in scam activities, phone
numbers remain often more stable over time than email addresses. Using
a combination of graph analysis and geographical Home Location Register
(HLR) lookups, we identify recurrent cyber-criminal business models and
link together scam communities that spread over different countries.

4.1 Problem overview and state of the art

In many fraud schemes phone numbers play an important role. For example,
criminals have been analyzed by authorities based on their phone numbers
on public or underground forums [17]. In other online fraud cases, like
one-click fraud [44], usage of a phone number can make the fraud appear
more legitimate to a victim. Finally, scammers will often use the phone to
defraud victims [115].

However, traditional a-lá-Mitnick scams are based on pure social engi-
neering techniques and, despite their effectiveness, they are relatively slow.
To make this a viable business, modern scammers have begun to take advan-
tage of the customers’ familiarity with “new technologies” such as Internet-

65

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

based telephony, text-messages [68], and automated telephone services.
Another example is the use of instant messaging (e.g., Windows Live Messen-
ger, Skype, the FaceBook chat), which involves some form of conversation
with computer programs that leverages natural language processing and ar-
tificial intelligence techniques to mimic a real person [81].

A particular variant of phishing, known as vishing (i.e., voice phishing),
was popular in the U.S. in 2006–2009 [71], and is now slowly gaining
ground in Europe. Notably, an experiment conducted in 2010 by the United
Nations Interregional Crime and Justice Research Institute revealed that the
25.9% of Italians (on a sample comprising 800 randomly-selected citizens)
were successfully tricked by phone scammers.

A recent study of fraud activity in Japan [44] demonstrates that phone
numbers can play an important role in online fraud and can be used as a
way to link and identify criminals. While there are several indications of
criminals using phone numbers for their malicious activities [17], we still
lack a global understanding to compare the usage and the role of the phone
numbers in different criminal schemes. Previous work is limited to the study
of spam over SMS, or to phone number abuses through premium services
[110] [98] [70].

To address these growing concerns, we follow two lines of research.
In the first, we use as a case study the well known Nigerian scam at-

tacks. First, we want to evaluate the reliability of leveraging automated
phone numbers analysis to improve our understanding of the underground
markets, illegal computer activities and cyber-criminals in general. Second,
we aim at finding patterns associated with recurrent criminal activities, in
particular we automatically identify the communities responsible for Nige-
rian scam campaigns. Finally, we correlate the extracted information and
enrich it with geographical and phone number life-cycle information from
HLR lookups, to validate our hypothesis of phone numbers being actively
re-used instead of discarded. Along these three directions, we summarize
our main findings and contributions as follows:

• We present a study of the use of phone numbers on Nigerian scam
attacks.

• We show that phone numbers are a good way to automatically detect
communities of scammers and study their behavior.

• To the best of our knowledge, we are the first to propose and use
HLR lookups to verify our findings, and to study the use of phones
and phone numbers over time by different and distributed criminal
groups.

As a second line of research, we are developing a data collection sys-
tem to capture different aspects of phishing campaigns, with a particular

www.syssec-project.eu 66 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

focus on the emerging use of the voice channel. The general approach
is to record inbound calls received on decoy phone lines, place outbound
calls to the same caller identifiers (when available) and also to telephone
numbers obtained from different sources. Specifically, our system analyzes
instant messages (e.g., automated social engineering attempts) and suspi-
cious emails (e.g., spam, phishing), and extracts telephone numbers, URLs
and popular words from the content. In addition, users can voluntarily sub-
mit voice phishing (vishing) attempts through a public website. Extracted
telephone numbers, URLs and popular words will be correlated to recognize
campaigns by means of cross-channel relationships between messages.

4.2 Lessons learned from analyzing the Nigerian scam

4.2.1 Phone Numbers: Extraction and Quality

Phone numbers are often used, both directly and indirectly, in many cyber-
criminal activities. For example, they appear in the registration of malicious
domains, in the signatures of spam messages, in malware for mobile devices,
and as main contact in scam and phishing campaigns. In some cases they
are provided just to increase the credibility of some fake information, while
in other scenarios they may represent a core component of the malicious
activity itself.

At the beginning of our study we collected data from several sources re-
lated to illegal online activities. In particular, we focused on scam messages,
spam messages, registration information of malicious domains (WHOIS)
and Android malware. We selected those data sources because they are very
likely to contain phone numbers and they are strictly related to cyber-crimes
or fraud schemes.

After a first screening of the data, we observed a great variability in the
quality and reliability of the collected information. To better describe this
phenomenon, we classified the phone numbers along two directions: how
difficult it is to extract them from raw data, and how reliable they are once
they are properly extracted.

4.2.1.1 Extracting Phone Numbers

Properly recognizing and extracting numbers from a raw data stream proved
to be quite challenging, which is consistent with results in [102]. The results
mainly depend on three orthogonal factors:

How structured and easy to parse the information is For example, WHOIS
records are very easy to process and the phone number is always located in-
side a known and well defined field. At the other end of the spectrum, phone

www.syssec-project.eu 67 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

numbers stored in malicious binaries can be obfuscated and are, in general,
very difficult to extract automatically.

How well formatted the number is A simple regular expression can be
used to extract a fully qualified number with a clearly separated interna-
tional prefix (e.g., “+1 (805) 403-1234”). Unfortunately, numbers can be
written in many different forms, which can be combined thus making auto-
mated parsing even harder. Phone numbers can include international prefix
’+’ or ’00’ codes, only local prefix codes, or only the phone number dig-
its. After that, phone numbers can be grouped in variable-length groups of
2, 3 or 4 digits. Additionally, the prefixes and groups can be separated by
spaces, ’.’, ’-’ or other delimiting characters, which can be country specific as
well. A number without its international prefix may potentially correspond
to many different numbers in different countries. Therefore, a normaliza-
tion algorithm has to be used to transform the extracted number into a non
ambiguous fully qualified E.164 number. When adding a country code to
a candidate phone number, a numbering plan can be used to check if the
resulting number is a valid number or not (e.g., the range is allocated and it
has the correct number of digits). Unfortunately, repeating this step with too
many possible country codes leads to many false positives. This is a com-
mon problem in localized cyber-crime (e.g., malicious mobile application
targeting the Chinese market) because the lack of an international prefix
may force the analyst to try many possibilities, thus decreasing the reliabil-
ity of the collected information. Finally, short numbers (e.g., 57341) can be
very challenging to detect. In fact, since the length and format are country-
specific, these numbers can be easily confused with other short sequences
of digits.

How noisy the data source is This is a measure of how often the source
data includes strings of digits that can be misinterpreted as phone numbers,
such as identification or reference numbers, and IP addresses. This is often a
problem when parsing email messages that contain several numbers mixed
with text. The presence of many sequences that may resemble valid phone
numbers can greatly increase the number of false positives of the automated
extraction routine.

A number of heuristics can be used to improve the extraction process.
For example, the immediate context of a phone number can be very useful
to detect the presence of a phone number. Such context may include ab-
breviations or words to indicate a phone number is following (e.g., phone,
mobile, tel, fax, mobile, call, contact, line, dial, direct, ext), combined with
punctuation marks (e.g., ’.’, ’:’).

The language used in the text surrounding the extracted number can also
be used as a good indication of the geographic areas in which the number

www.syssec-project.eu 68 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

is supposed to be used. This is especially true for phone numbers used in
scam activities, when the scammer expects the victim to call that number
without ambiguity. For example, for a message written in Russian language,
that includes a phone number without a full international prefix, one can try
to complete the number by considering those countries where the Russian
language is widely spoke, e.g., Russia ’+7’, Ukraine ’+380’, Belarus ’+375’,
Moldova ’+373’.

However, there is always a trade-off between the amount of extracted
numbers and the accuracy of the results. Even by applying properly tuned
heuristics, the amount of false positives when extracting poorly formatted
numbers from noisy sources can be very high.

4.2.1.2 Phone Number Extraction Reliability

After a set of candidate numbers are extracted from the raw data, it is im-
portant to distinguish the real numbers from the fake ones. This is largely
dependent on the type of activity and on the reason why the phone number
was used by the attacker.

For example, numbers present in spam messages can be randomly-generated
or spoofed to mimic existing phone numbers and to deceive anti-spam fil-
ters. Also, when registering a domain name there is often no validation
of the authenticity of the provided numbers. However, in certain forms of
cyber-crime the number has to be real and somehow controlled by the at-
tacker. This is the case of premium numbers used in mobile malware or
contact numbers used in scam campaigns.

Since distinguishing a fake or spoofed number from a real one is very
hard, we decided to focus our analysis on a data source containing more
reliable numbers. Unfortunately, the mobile malware dataset is very small
and most of its data consists of short numbers. Therefore, in the rest of the
chapter we adopt the SCAM dataset for our study.

A potential improvement to reliable extraction could be achieved via dy-
namic analysis validation, i.e. calling the numbers. However, this technique
is not feasible for many reasons, ranging from illegality of unsolicited calling
or wardialing to financial infeasibility to call so many numbers. It is left as
a separate future work.

4.2.2 Data Enrichment

The SCAM dataset consists of data from user reports. There are several user
reports aggregators that cover a wide range of fraudulent activities. This
information is usually reported in dedicated forums, blogs, and other on-
line media sites. We selected the community-supported site 419scam.org

because it has a large dataset of well formatted scam reports. This dataset
was manually collected, filtered and pre-processed from January 2009 to

www.syssec-project.eu 69 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

August 2012. The dataset includes meta-data on each entry, i.e., the cat-
egory, message headers and, for 16% of them, the corresponding original
email body.

The original dataset was enriched with the service type (e.g., mobile,
land line, premium) of each phone number using two different databases
(so called numbering plans or NNPC). The first one is a free and open source
XML-based database included in libphonenumber which derives the service
type during the extraction and normalization process. The second one, is a
commercial database [21] which is more complete. We use both sources to
cross-check the results and detect possible discrepancies.

In our SCAM dataset, we identified in total 67,244 unique normalized
phone numbers. Out of them 34,424 were UK PRS (Premium Rate Services)
numbers (51% of total) and the rest 32,820 were non UK PRS numbers
(49% of total). Out of the 32,820 non UK PRS numbers, there were 29,685
mobile phone numbers.

Finally, we collected additional information about the mobile numbers
by performing an HLR lookup. HLRs are databases maintained by mobile
operators containing information about the current status of a phone num-
ber – i.e., the International Mobile Subscriber Identity (IMSI), roaming sta-
tus, and roaming operator. This can be very useful for our study, because
this allows to know if a mobile phone number is still active and if it is roam-
ing to a foreign country. However, HLRs are only accessible from within the
SS7 telecommunication network, and therefore we had to rely on a third
party commercial service [2] to query this information.

A detailed description of how HLR lookups are performed can be found
in [14]. The basic idea is to contact the homing operator of a phone number
pretending to be interested in initiating either an SMS or a voice call (e.g.,
by sending a MAP SEND ROUTING INFORMATION message). At this point, the
homing operator of the subscriber number checks the status of the mobile
number and returns the details.

By performing an HLR lookup periodically for a given mobile phone
number, we can get insight on the evolution of it’s network status. Such
status information can be used to draw conclusions about activities related
to a mobile phone number. We describe the use and results of this technique
in Section 4.2.5.

4.2.3 Fraud business models

In this section we summarize some of the fraud business models we ob-
served in this work. Such models were identified using information from
various sources (e.g., forums, and abused users complaints) as well as the
observations we made while analyzing our datasets. While some of those
business models are known, many were not well identified or were lacking
empirical evidence.

www.syssec-project.eu 70 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

4.2.3.1 Premium Phone Numbers

Premium phone numbers can be categorized as follows:

National Short Premium numbers can provide high profit but are difficult
to set up. However, some third party businesses offer simple point-and-click
interfaces to register and configure such services.

National Premium numbers can provide moderate to high profit, with
low operational costs, and quick set up.

International Premium numbers are complex to set up and have high
operational costs. Moreover, they are blocked by some telecom operators.

UK Personal Numbering Services UK’s number ranges 070/075/076 are
associated with the so called personal numbers allocations [19]. We detail
this specific category in the next section.

4.2.3.2 UK Personal Numbering Services

Personal Numbering Services (PRS) (also known as international call for-
warding services [44, 1]) are premium numbers commonly used in informa-
tion services or hospital lines. However, these numbers are often abused
by fraudsters as part of scams or by deceiving a victim to call a number
that charges higher cost than expected. As mentioned in 4.2.2, there were
34,424 unique phone numbers in UK range of 07x PRS numbers, which were
consistent with the allocation range of UK operators [20].

Many telecom operators, some of which are only virtual operators, offer
the possibility to register such numbers online. These are often offered for
free: the price of communications is shared between the registrant and the
operator (often retaining between 30% and 50%). In addition to this, oper-
ators can forward incoming calls to international phone numbers. This can
be used as anonymization service to hide the actual geographic location of
the scammer.

An interesting observation is that certain operators are used more often
than others to register scam numbers. Figure 4.1 shows the distribution
of phone numbers used by scammers among the providers. We observe
that, in our dataset, the top 4 operators (out of 88) provide more than
90% of fraud-related UK PRS numbers. In one case, fraud-related numbers
represent almost 5% of an operator allocated numbers range.

By manually comparing those and other six operators [16], we found
that scammers preferred operators that:

• Have an online registration and configuration service.

www.syssec-project.eu 71 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

Figure 4.1: UK 07x fraud-share and fraud-vs-range allocation ratio.

• Provide an API to automate the registration process.

• Offer cheap or free international call forwarding.

• Offer a cash back program to pay the registrant for each incoming call.

Indeed, these features are appealing to scammers and, in general, cyber-
criminals that perform illegal activities.

4.2.4 Criminals Behind the Phone

In this section, we used the SCAM dataset to evaluate the use of phone
numbers to identify criminals, study their behavior, and unfold the structure
and the size of their networks. Scammers are known to provide real phone
numbers, at which they can be reached by their victims. Therefore, this
dataset is less polluted with fake or spoofed numbers, which makes our
results and conclusions more reliable.

4.2.4.1 The SCAM Dataset

The SCAM dataset covers the period from January 2009 to August 2012
(with the exception of August 2011, which is missing from our dataset [1]).
For 16% of the phone numbers, we have the original email that was used to
perpetrate the scam. These emails are classified in 10 categories, three of
which cover over 90% of the data: general scam (62%), fake lottery (25%)
and next of kin (inheritance) (8%).

A first look at the relation between phone numbers and scam categories
shows that scams are not evenly distributed geographically. As shown in

www.syssec-project.eu 72 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

Figure 4.2: Scam email category preferences by phone number country
codes.

Figure 4.2, certain types of scams rely mainly on African numbers (e.g., new
partner, orphan scams), while others (e.g., fake lottery, dying merchant, next
of kin scams) are almost always perpetrated by hiding behind a UK personal
number.

4.2.4.2 Scam Communities

We first aimed at establishing relationships between phone numbers and
email addresses used by scammers.

For this, we built a graph where the nodes represent either a phone num-
ber or an email address (that is used as point of contact in a scam message).
The edges connecting the two types of nodes indicate that the owner of the
address used that phone number in one of her scam emails. The initial graph
has 34,740 nodes and 27,409 edges – 66% of nodes are emails and 34% are
phone numbers. We then removed the smallest subgraphs (below 20 nodes)
as they are less representative. We obtained 3,681 nodes (10.6%) and 4,360
edges (16%), consisting of 699 nodes as phone numbers and 2,982 nodes as
email addresses. Globally, we identified 102 communities and 79 subgraphs.

The graph, a portion of which is shown in Figure 4.3, shows some inter-
esting relationships. First, scammers seem to reuse a given email address
to send scam messages, each message containing different phone numbers.
Second, a given phone number seems to be reused in multiple scam mes-
sages or in combination with multiple different email addresses.

In particular, we observe that 37% of the phone numbers were reused
by more than one scammer. Most of the largest nodes are white (phone

www.syssec-project.eu 73 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

Figure 4.3: Visual relationships between phone numbers (white nodes) and
email addresses (black nodes) that are used as point of contact in scam
messages. The size of nodes is proportional to the number of edges.

numbers) and surrounded by several small black nodes (email addresses).
This suggests that phone numbers play an important role in the activities of
scammers. The set of phone numbers used by scammers in their campaigns
is less diverse than the email addresses. In fact, email addresses are easily
blacklisted and accounts are blocked when their connection with criminal
activities is discovered. Also, while email addresses are virtually free, phone
numbers are usually not. This forces the scammers to continually register
fresh emails for new scam campaigns. Our analysis shows that phone num-
bers used in scams are more stable than emails and tend to be reused over
time.

By looking at the smallest subgraphs, we notice that most of them con-
tain phone numbers registered in a single country (76%), or a country com-
bined with UK premium numbers (10%), originating mostly from UK, Benin
or Nigeria. This indicates that most of the scammers work alone, or in small

www.syssec-project.eu 74 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

Figure 4.4: Top 8 largest communities in SCAM dataset, ordered by decreas-
ing size from left to right.

Table 4.1: Count of SCAM phone numbers encountered in 2009-2011,
reused in 2012. Includes all types of numbers.

Encounter year Total numbers Reused in 2012 %

2009 20,517 829 4%
2010 26,785 1,922 7%
2011 23,450 3,795 16%

groups located in a particular country. Figure 4.5 shows a real example of
how scammers used four Spanish mobile phone numbers in the same cam-
paign. All the email addresses are small variations of the same person’s
name, probably a character that the scammers tried to impersonate.

Looking at the largest communities - densely connected sets of nodes -
we see that some groups are geographically distributed over several coun-
tries. For example, Figure 4.4 shows how the eight largest communities
are organized. All these communities rely on UK premium numbers (for at
least 29% of their phone numbers) and on numbers from Nigerian opera-
tors. Also, these communities use cellphone numbers in several European
and African countries.

www.syssec-project.eu 75 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

Figure 4.5: Example of links between phone numbers and email addresses.

4.2.4.3 Reusing Phone Numbers

We further tackle the question of reused phone numbers from a different
angle. By looking at the SCAM dataset, which contains information on when
these phone numbers have been used by the scammers (year and month),
we understand that several of them were reused over long time periods.

Table 4.1 shows that 4% of the numbers that were in use in 2009 are
still active in 2012. Figure 4.6 shows that as the period of time gets longer
the amount of numbers being reused grows, from 21% (1 month) to 34% (3
months), and 48% over a year. In addition, a group of 307 phone numbers
reappears yearly from 2009 to 2012. These figures do not include a detailed
analysis of numbers reuse split by their type (e.g., UK PRS, mobile).

4.2.4.4 Discussion

The relationship between phone numbers and email addresses suggests two
interesting findings. First, phones are more stable than emails and they
are reused for longer periods. Therefore, phone numbers may constitute a
better detection feature for the discussed threat categories. Second, even
though the majority of scammers seem to operate in small groups, few com-
munities appear to be spread over multiple countries.

However, this analysis alone is not enough to draw complete conclu-
sions. For instance, we are still unsure how common is the phone num-
ber reuse habbit: given that 48% of phone numbers are reused within 12
months, does it mean that the remaining ones are discarded or does it mean
that they are simply not reported by the website? Moreover, the fact that
phones registered in different countries are used in conjunction with the

www.syssec-project.eu 76 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

Figure 4.6: Accumulated shares of reused cellphones of scammers over time.

same email address might be the consequence of individuals owning mul-
tiple SIM cards (e.g., collected when traveling abroad). In the next sec-
tion, we introduce a dynamic phone analysis technique that helps answering
these questions.

4.2.5 Dynamic Analysis of Scam Phone Numbers

In order to understand the organization and the dynamics behind the scam
communities identified in the previous sections, we performed periodic HLR
lookups (Section 4.2.2) of the mobile phone numbers extracted previously.
With this experiment, we aim at understanding how often mobile numbers
are used in other countries (i.e., roaming) and over time.

Table 4.2: Mobile phone network status query results on 2012/08/02

Status 2012/01-06 % 2012/07 %

On the network 3,122 73% 984 84%
Replied with error 416 10% 67 6%
Turned off 734 17% 127 11%
Roaming 6 0.14% 3 0.26%

As we discussed previously, UK premium numbers (PRS) are often used
by scammers to redirect calls, hiding the final call destination. We therefore
had to exclude this category. We are left with 32,820 unique non-UK-PRS
numbers out of which 29,685 are mobile phone numbers. Moreover, old
numbers may be taken offline or assigned to a different customer. There-

www.syssec-project.eu 77 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

fore, we eventually selected the 1,333 phone numbers that were collected
recently (July-August 2012).

We verified that the selected two months period is representative of the
general picture. To verify this, we performed a lookup on August 2nd, 2012
and compared the phone numbers reported in month of July 2012 with
the phone numbers reported between January 2012 and June 2012. Ta-
ble 4.2 shows that the population of mobile phones that were either reach-
able, roaming, or turned off is comparable in the two datasets, but more
recently used phone numbers are more likely to be online at the time of our
HLR query. This supports the fact that after a certain amount of time some
phone numbers might be either discarded or replaced. Interestingly, very
few numbers (only 9 in fact) were roaming in a foreign country. A first con-
sideration is that mobile phone numbers are normally operated by criminals
residing within their own countries, and not used while abroad or roaming.

Figure 4.7: Mobile phone numbers sorted by frequency of OK status.

That is, our first experiment consisted of doing HLR lookups for the
dataset of 1,333 recently used mobile numbers. We did queries every three
days and for a period of two months. In order to appropriately choose this
query window, we looked at how often the network status of a phone num-
ber is updated on average. A phone number first gets registered on the
network and the HLR is updated instantly. When a phone gets turned off,
the status is not updated, by default, but only when a call is received. By
using one of our personal phone numbers, we determined the delay in a
status change (e.g., from OK to OFF) as being 30 hours. Thus, a three days
window seemed to be appropriate for our analysis.

By looking at changes in the network status attribute, we noticed that
about half of the numbers have a constant OK status. This shows that scam-
mers use phone numbers for long time periods by keeping them online most

www.syssec-project.eu 78 September 23, 2013

4.2. LESSONS LEARNED FROM ANALYZING THE NIGERIAN SCAM

of the time. It also means that they rarely switch to new phone numbers.
In fact, only 97 phones appeared to be unregistered from the network for
a long time (status Absent Subscriber). The overall distribution of the
phone availability on the network is drawn in Figure 4.7. The average
scammer keeps the phone switched ON most of the time and only 89 num-
bers were OFF more than 75% of the time. This appears to be in-line with
the business model since scammers are interested in being reached by their
victims.

Finally, according to the roaming status attribute, only 50 phones were
used in a different country during our evaluation (i.e., roaming). The exact
roaming locations are summarized in Figure 4.8. The Figure clearly shows
two clusters – one in Africa and one in Europe – with a small intersection of
the two. Nigeria is still a key country for this type of business, with about
80% of the roaming belonging to it. This again supports our hypothesis that
distributed groups exist and that they operate coordinated and collabora-
tively from multiple countries.

Figure 4.8: Mobile phones roaming per country. The arrow goes from the
originating country to the roaming country. Edge labels indicate the number
of roaming phones. The size of the node reflects the number of roaming
phones in that country.

We then looked at the mobile operators, in order to evaluate if some of
them are preferred over others. We analyzed the market share of the ma-
jor four countries, which contain more than 700 numbers related to scam
activities: Nigeria, Benin, South Africa and Senegal. Figure 4.9 shows the
difference in distribution between the market share of each operator and the

www.syssec-project.eu 79 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

Figure 4.9: Distribution of mobile phone operators in Top 4 leading coun-
tries - market share vs. scam share.

www.syssec-project.eu 80 September 23, 2013

4.3. AUTOMATED COLLECTION AND ANALYSIS OF DATA ON PHONE
PHISHING

“scam share” between criminals (dataset from December 2009 to December
2011). We can see that some operators seem to be less preferred by scam-
mers (e.g., Cell-C in South Africa, Teracel in Benin), while others are clearly
favored (e.g., GloBenin in Benin). The reason behind this might be due
to pricing (e.g., for international calls) or stricter registration policies (e.g.,
strict ID checks). Like with UK PRS numbers we compared market-share
and fraud-share of mobile network operators, however we did not notice
any discrepancy between the two.

4.3 Automated collection and analysis of data on phone
phishing

Phishers nowadays rely on a variety of channels, ranging from old-fashioned
emails to instant messages, social networks, and the phone system (with
both calls and text messages), with the goal of reaching more victims. As
a consequence, modern phishing became a multi-faceted, even more perva-
sive threat that is inherently more difficult to study than traditional, email-
based phishing.

In a previous work [84] we analyzed this type of scams, based on a se-
lection of about 400 user-submitted reports, including the caller identifier
(e.g., source phone number), (parts of) the transcribed conversation, gen-
eral subject of the conversation, and spoken language. Besides confirming
that vishing was popular in the U.S. at that time, our experience suggests
that phishers rely on automated responders, and not only on live calls, with
the goal of reaching a broader spectrum of victims. Reports were filed be-
tween 2009 and 2010 through a publicly-available web site where anyone
can submit anonymous reports of vishing.

The system described in [84] focuses solely on vishing and, in addi-
tion, it has two main limitations. First, we trust submitters and, second,
the effectiveness of vishing attacks could not be determined (evidently, peo-
ple reporting suspicious calls are less prone to falling prey to them). To
overcome these limitations, we propose to correlate the evidence on vishing
scams with other forms of phishing. To this end, the new approach is to
collect suspicious emails from spam-traps, instant messages from dedicated
honeypots (e.g., based on myMSNhoneypot [30]) and content published by
spammers on social networks (leveraging the @spamdetector service [116]).
Our approach is content-driven. In particular, the first goal is to thoroughly
quantify the popularity of voice-based scams. Secondly, we want to under-
stand whether there are relationships between voice-based campaigns and
text-based campaigns. Third, we strive to recognize evidence that suggest
the use of social engineering techniques.

www.syssec-project.eu 81 September 23, 2013

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

Phisher

PHONE

EMAIL

IM

SOCIAL
NETWORK

text
voice

text

text

text

CALLER

ISPs,
honeypots

myMSN
honeypot

CRAWLER

emails

messages

messages

URLs
keywords

phone numbers

text to speech

RECORDER
voice

"Hi, I received your email..."

inbound calls

outbound calls extract URLs and
phone numbers

"Hi, Bob's speaking"

"Get my pics here..."

"Cheap online store..."

"Important business..."

phone numbers

external
analyzers

URLs

Channels Modules

Figure 4.10: Overview of the dataflow of our collection system.

4.3.1 System overview

Our system has four modules, each tackling a different aspect of phishing.
The phone module is an automated phone bot that places outbound calls,
receives inbound ones, and records resulting conversations. The email mod-
ule is a spam bot that receives spam and phishing email messages, and IM
module is an instant messaging honeypot that collects unsolicited chat mes-
sages. The social network module will be implemented as a web crawler
that to monitor suspicious accounts, known for sending spam (according to
@spamdetector).

4.3.1.1 Text processing and correlation

The collected corpus (e.g., body of email messages, transcribed phone con-
versations, instant messages) is stored and analyzed using simple natural
language processing techniques to extract popular sentences and words.
Specifically, the stemming algorithm described in [99] is first applied to
reduce words to stems. Secondly, stop words such as “the”, “an”, “this” are
removed.

Regular expressions are then used to extract (possibly new) phone num-
bers and URLs. The former, core part of our approach, are sent to the phone
module, while the latter will be shared for external analysis. Numbers, URLs
and popular stems are used as a preliminary set of features to correlate
messages across channels and find groups of different campaigns. Since
shortened URLs are often used to evade filters (or simply to trick users),
these are first resolved with the long-shore.com API, a service that mimics
a real browser and records the redirection chain from a short URL to the
target URL. Instead of the URL itself, the whole chain is retained and used
as a similarity feature: it is indeed common for spammers to use multiple

www.syssec-project.eu 82 September 23, 2013

long-shore.com

4.3. AUTOMATED COLLECTION AND ANALYSIS OF DATA ON PHONE
PHISHING

redirections to the same phishing site, to increase the lifespan of their cam-
paigns.

4.3.1.2 Phone channel

The core of our collection system is divided into two sub-modules, both
based on Asterisk. The caller sub-module periodically calls a feed of num-
bers. Whenever someone answers, a pre-recorded prompt mimics a hypo-
thetical victim, supposedly tricked by the reverse vishing scam (e.g., “Hi,
this is Bob, I received your email and I am curious to know more about it”)
and waits for 30 seconds. The resulting audio is recorded along with simple
metadata such as date, time, and number. The recorder module is leveraged
to answer inbound calls on a series of decoy numbers that we plan to make
available deliberately on social network profiles, blog posts and forums.

Audio recorded from both inbound and outbound calls is retained in a
database, and is transcribed using the Sphinx speech-to-text engine. The
resulting text, if any, is then processed as described above.

4.3.1.3 Email channel

This module is implemented as a distributed client, meant to be deployed
at ISPs and other institutions (e.g., universities and research centers). The
client analyzes spam databases and collects emails that are likely to contain
a phone number. At the moment, attachments that may contain scanned
documents (used by scammers that attempt to evade basic filters) are not
considered. Found messages are sent back to a bot, publicly reachable via
SMTP at bot@phonephishing.info. Contributors are invited to submit sus-
picious emails directly to this address.

4.3.1.4 Instant messaging channel

This module is implemented as a set of instant messaging accounts (i.e.,
Yahoo! Messenger, Windows Live Messenger and Google Talk), all registered
on myMSNhoneypot, a honeypot that monitors such accounts for any activity.
Since the accounts all have empty buddy lists, any message or friendship
request received on those accounts is considered as malicious. Only instant
messages that contain phone numbers are retained.

4.3.2 Collected data

The email module has been tested for 2 months. To bootstrap the system,
we gathered data from the email module and from phonephishing.info. We
selected 551 vishing reports out from about a thousand of reports submitted
by users in the first two years of activity. Discarded reports are mostly about

www.syssec-project.eu 83 September 23, 2013

mailto:bot@phonephishing.info
phonephishing.info

CHAPTER 4. THE ROLE OF PHONE NUMBERS IN UNDERSTANDING
CYBER-CRIME SCHEMES

telemarketing calls. This may appear a limited amount of data, but it must
be considered that people typically do not voluntarily give out information,
especially when falling victims. Nevertheless, this module collected 532
unique numbers. We observed that a good share of the vishers resort to
automated responders. In such calls, popular terms such as “press”, “credit”,
“account”, are more frequent on automated calls with respect to calls made
by live operators.

The email module has been processing spam emails provided from an
ISP located in Southern California. In less than one month, the system
selected 16,750 emails containing at least one telephone number, which
amount to the 0.047% of the total number of spam emails collected by the
ISP. Overall, this module collected 152 unique phone numbers as the time
of writing.

With the support of a large telecommunication provider, the phone mod-
ule is being deployed on a number of DSL lines to begin calling our initial
list of 685 numbers.

4.3.3 Limitations and technical challenges

The main limitation of our approach lies in phone numbers collected by
user-submitted reports, that could be very well spoofed identifiers. In fact,
based on a few probing calls we placed manually, a good share of numbers
(a rough 10%) are either deactivated or non-existing; unfortunately, it is
difficult if not impossible to tell spoofed, blacklisted or deactivated numbers
apart.

The main technical challenge of our system lies in the phone module.
Specifically, even accurate speech-to-text software are far from being able of
transcribing an entire conversation. We plan to workaround this obstacle by
recognizing only a finite set of known (key)words extracted from reverse-
vishing emails.

www.syssec-project.eu 84 September 23, 2013

5
Social Network Forensics Framework

The use of online social networks and other digital communication ser-
vices has become a prevalent activity of everyday life. Unfortunately, cyber-
criminals also became involved, and now use online social networks for
fraudulent actions. As these services contain valuable information about
one’s activities, they could be used on crime investigations. In contrast
to digital forensics that have standardized toolkits and procedures for ev-
idence collection, crime investigators rely on custom techniques to acquire
evidence from social networks. Moreover, the analysis and correlation of
massive amounts of data scattered across diverse social networks is a chal-
lenging task.

In this chapter, we present a modular framework designed for assisting
forensic investigators. First, it extracts the data from a user’s social network
profiles and other online services, taking advantage of stored credentials
and session cookies. Next, it correlates user profiles across services, for pro-
viding a unified depiction of each user’s activities. Finally, the visualization
component, specifically designed for handling data representing activities
and interactions in online social networks, provides dynamic “viewpoints”
of varying granularity. The use of this framework could be deemed valu-
able towards analyzing incidents similar to “The Contact Dealer” scenario,
presented on Deliverable 4.2. In particular, the framework could visualize
connections with victims, and could potentially reveal interactions with sell-
ing parties (in cases where the Contact Dealer and selling parties exchanged
mails or Skype chats)

5.1 The need for social network investigation tools

The term online social networks (OSNs) is commonly used for referring to
services such as Facebook, Google+ and Twitter, narrowing the true extent
of digital social networks. In reality, many more services can be construed

85

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

as OSNs, as they reflect sets of people with digital interactions. Digital inter-
actions are created through the exchange of emails, VoIP calls, and a wide
range of other every-day activities among individuals of a network. Thus, in
the context of this chapter, with the term social networks we will implicitly
refer to any online service that creates clusters of people with shared activi-
ties or communication, all of which can be sources of valuable information.

As the popularity and use of online social networks has increased, these
services have become platforms for conducting nefarious activities such as
scams or clickjacking attacks. The explosive growth rate of OSNs has, ba-
sically, created the first digital generation consisting of people of all ages
and backgrounds. People are creating their digital counterparts for inter-
acting with other users, for both recreational and professional reasons, and
disclose a vast amount of personal data in an attempt to utilize these new
services to the fullest. As a connection in a social network is a represen-
tation of social interaction, it also indirectly shows a level of trust between
different individuals, in terms of the data they are willing to share with each
other. However, the lack of technical literacy among the majority of users
has resulted in a naive approach, where the caution demonstrated in social
interactions of the physical world has disappeared.

This behavior has raised the concern of the research community in terms
of user privacy. It also attracted fraudsters who found a fertile ground to
target unwitting users. A wide range of threats exist, ranging from identity
theft to monetary loss. While the amount of personal information disclosed
by users [64] or leaked by services [79, 80] is troubling, in certain cases it
can prove to have a positive “side-effect”. Law enforcement agencies have
been able to solve criminal cases after extracting the digital footprints of
users, as they contained clues that ultimately led to the discovery of the
perpetrators. Ideally, users will learn to be more privacy-aware, and limit
the visibility scope of their personal information to a well-defined set of
friends [24]. In such a scenario, when agencies lawfully acquire a suspect’s
device they will still be able to extract useful data from the accounts.

Social forensics tools aim to facilitate the discovery of this digital “trail
of breadcrumbs”, and extract data that can guide criminal investigations to-
wards uncovering crucial information. Even though a multitude of digital
forensics tools exist, they mostly focus on recovering deleted files or infor-
mation from the device’s volatile memory. The very few existing tools that
target social networks tend to be proprietary commercial solutions. Our goal
is to provide an extensive open source framework that will assist forensics
analysts in this daunting task.

We have designed and implemented our toolset with the following usage
model in mind: the authorities seize the digital devices (be it desktop, laptop

www.syssec-project.eu 86 September 23, 2013

5.1. THE NEED FOR SOCIAL NETWORK INVESTIGATION TOOLS

or just hard disk drives) of someone suspected for a crime or a fraud1 and
wish to acquire all the information regarding online activities. Social foren-
sics analysis presents three major challenges: (i) acquiring as much data as
possible from the suspect’s online accounts and relevant local artifacts, (ii)
correlating contacts across services, and (iii) visualizing this extensive col-
lection of data. Our modular framework contains components for handling
all three tasks.

The core functionality of any forensics analysis tool is the extraction
of user data. We create a series of modules, each designed for extracting
data from a specific service. When available, we take advantage of existing
public APIs. In the remaining cases, we build custom crawlers for acquiring
the data.

The correlation of users across services is a very crucial, yet challeng-
ing, aspect of our framework. Our correlation component follows a series
of techniques for mapping user accounts from different services. Using a
method we demonstrated in previous work [97], we map email addresses
extracted from the suspect’s accounts to Facebook profiles, which are the
core sources of information. We conduct a similar process in Foursquare uti-
lizing the search functionality of the official API. Furthermore, we employ
data from about.me, a social directory site where users create a profile page
with links to their social accounts, to further improve our correlation results.
Finally, we also use fuzzy matching techniques for matching user names and
email handles collected from different services.

The datasets collected during the data extraction process contain a wide
range of different types of information regarding online activities. Exist-
ing forensics-related visualization tools usually focus on the depiction of
graph-related data. However, various visualization libraries exist, and can
handle multiple types of data. As such, we build upon existing libraries and
create a visualization framework, designed specifically for visualizing data
representing user activities in online social networks and communication
services. Furthermore, the massive amount of data necessitates the cre-
ation of dynamic viewpoints of varying granularity, that will assist analysts
in surveying aggregated statistics, as well as focusing on specific users or
interactions. In summary, the contributions of this work are the following:

• We create an extensive framework for crawling a wide range of major
social and communication services that, we hope, will set the founda-
tions for the forensics community to build a complete and open source
toolset.

• We leverage the search functionalities of social networks, a social di-
rectory and fuzzy matching, to correlate users across services and pro-
vide a unified view of a user’s activities.

1For the remainder of this chapter, we will refer to this person as the suspect for reasons
of simplicity.

www.syssec-project.eu 87 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

• Our visualization framework provides perspectives of varying gran-
ularity, and enables users to dynamically shift focus to different as-
pects of user activities. This can facilitate filtering out the substantial
amount of noise data available in forensics analysis.

5.2 Social Forensics

Digital forensics analysis has been a valuable asset in solving crimes in spite
of its relatively young “age” compared to traditional forensics. Initially, the
focus was on analyzing data stored on a computer, and recovering files that
suspects had erased. However, as a result of the explosive advances of tech-
nology and its use creeping into all aspects of life, nowadays digital devices
(e.g., laptops, smartphones) contain a significant amount of data that can
assist the authorities in solving crimes.

A large amount of interaction takes place in online social networkings
services and over digital communication media such as emails, instant mes-
saging and VoIP networks. Users access information through these devices
and save entries about their appointments in digital calendars. Further-
more, a large amount of data is saved online and not on a specific device.
Thus, it is mandatory for forensics tools to extract data saved online, and
not only extract data stored locally on a device. The goal of social forensics
is to leverage social networking and communication services for extracting
as much information as possible, regarding the online activities and com-
munications of a suspect.

Multiple reports describe cases where the authorities have resorted to
social networks for acquiring information, which has ultimately led to cases
being solved (e.g., [87]). Even murder cases have been solved with the
use of clues extracted from the suspect’s digital communication and online
activities [4, 59]. A survey held in 2012, among 600 law enforcement agen-
cies from 48 states in the USA, reported that 92.4% of the agencies surveyed
online social services [12]. For 77.1% this was done as part of criminal in-
vestigations. This survey reflects the significance of the data available in
online services for assisting authorities in solving crimes. The importance
of this information was also made evident by the case of PRISM2, the elec-
tronic surveillance program operated by the United States National Security
Agency (NSA), which was just recently made known publicly [11].

It is evident that the evolution of technology, and its widespread adop-
tion in everyday life, mandates the evolution of investigating techniques as
well. Thus, there is need for an extensive toolset that can extract data from
all these services, correlate contacts and information across services, and
provide visualization of the data in a dynamic and intuitive way.

2Discussing the ethics of such a program is outside the scope of this work.

www.syssec-project.eu 88 September 23, 2013

5.3. SYSTEM IMPLEMENTATION

Evaluating the completeness of a social forensics framework is compli-
cated, due to the abundance of online services that exist (with new ones
constantly emerging), each with its own properties, layout and format. This
process is further complicated by the fact that a complete view requires data
from other accounts as well (the suspect’s contacts). Tools have to handle
the restrictions set by service APIs, anti-crawl mechanisms and account pri-
vacy settings. Additionally, social networks frequently update their public
APIs and change their layout, requiring modifications. Thus, the complete-
ness of a social forensics tool has to be evaluated based on the breadth (i.e.,
the range of different services it can process), depth (i.e., the completeness
of data) and “up-to-dateness” of the data extraction process.

Overall, our goal is to release an open source framework that targets a
wide range of the popular services and extracts as much data as possible.
Ideally, this will comprise the foundations for a large open source project
that will attract contributors from the security community. Contributors
can assist in expanding its breadth by creating modules for other services,
its depth by implementing functions for accessing data that might not be
attainable now, and keeping it up-to-date.

5.3 System Implementation

Our framework has been implemented in Python as a collection of compo-
nents. We have designed it in a modular way so it can easily be extended by
adding new modules for other social networks and services. In this section,
we provide a high-level overview of our system, describe the role of each
component, and present technical details regarding the implementation of
some of the components we have created. Figure 5.1 presents the architec-
ture of our framework and the steps that comprise the whole procedure:

1. The data collection component uses stored session cookies and user
credentials to log into the online services as the suspect.

2. Each crawling component extracts as much data possible from each
service that the user has an account for.

3. All extracted data is saved into a MySQL database.

4. The account correlator component:

(a) Pulls the account information of the suspect’s contacts from the
database.

(b) Uses several techniques for correlating the accounts, some of
which leverage online services.

5. The data visualization component fetches data from the database asyn-
chronously and dynamically presents the viewpoints requested.

www.syssec-project.eu 89 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

Social Forensics

390 Friends
512 Messages
234 Likes
27 Photos

...

C
raw

ling C
om

ponent

Youtube Crawler

Gmail Crawler

Twitter Crawler

Facebook Crawler

……

Services

C
orrelator

Fuzzy
Matching

About.me

Facebook

(1)

(2)

(3)

(4_a)

(4_b)

(5)

Foursquare

Figure 5.1: The architecture of our framework which is comprised of three
major components.

5.3.1 Usage Scenario

We implemented our framework with the following usage scenario in mind.
The forensics analysis investigator has acquired the suspect’s digital device
(or hard disk and connected it to a computer) and connected it to the In-
ternet, since the data extraction and correlation components must connect
to online services. Nonetheless, even though we have developed our sys-
tem as a social forensics framework, it can also be useful in other situations.
For example, users that want a unified view of their online activity history,
with statistics regarding specific activities and per-user interactions, can also
utilize our system.

An important design aspect of our system, was to make its execution
as simple as possible. Ideally, the analyst would need only to execute a
program and everything else would be done automatically. However, due
to the requirement of authenticating the crawling modules that use public
APIs with the social networks through OAuth, a small amount of manual
intervention is needed. Specifically, after the system logs into a service,
the investigator is prompted to authorize the crawling component for the
suspect’s profile (by simply clicking a button).

After the authorization phase, everything else is completed automati-
cally. The framework installs a MySQL database and creates a series of
tables for storing all the information from the suspect’s accounts. The li-
braries required by the the crawling component, for example fbconsole [54]
and Tweepy [18], are downloaded and installed automatically. The libraries
for the visualization component are included within the web application.

www.syssec-project.eu 90 September 23, 2013

5.3. SYSTEM IMPLEMENTATION

5.3.2 Data collection components

Depending on the targeted service, the corresponding crawling component
attempts to extract as much information as possible. In the case of online
social services we leverage existing public APIs, if available. Otherwise we
create custom crawlers for extracting the data. Here we provide technical
details for certain modules.

Log-in process. Our tool uses the credentials saved in the browser’s
password manager or existing session cookies, to log into the targeted ser-
vices as the suspect. Alternatively, the analyst can manually add the sus-
pect’s credentials in a configuration file, when no other method of logging
in is available for a service.

The password managers of Chrome and Firefox utilize a SQLite database
as their password manager back-end. Some browsers, like Firefox, retain
this database encrypted using a “master password”. On the contrary, the
Chrome browser does not employ any encryption mechanisms, thus, storing
the credentials in plaintext. We implemented a custom password extractor
that locates Chrome’s SQLite password file in the filesystem, and extracts
credentials belonging to social networks and relevant services.

Browser session cookies are also stored in SQLite databases found lo-
cally in the filesystem. The same process is followed to extract session cook-
ies.

Facebook. Once logged in, a custom application is installed in the
suspect’s profile, so the data can be retrieved through Facebook’s Graph
API [55]. This application has access to all resources available in the pro-
file. After installation, our system leverages the Facebook Query Language
(FQL) to extract the data from the user profiles [53]. FQL provides an SQL-
like interface for querying user data, and can evaluate multiple queries in
a single API call through FQL multiquery requests. Queries are packed as a
JSON-encoded dictionary and sent as a single request. The response includes
a similar dictionary with the respective results.

Twitter. In order for us to use the Twitter API, similar steps are fol-
lowed. An application that has full access to the profile data has to be
installed in the suspect’s profile. Twitter poses an extra overhead during the
crawling phase, due to its rate-limiting policy. Requests are performed with
10-second intervals, for avoiding potential rate-limiting issues. Protected
accounts (whose information is only available to followers) are collected
with the highest priority. Next, we focus on accounts with small volumes of
data, i.e., those with the smallest volume of tweets.

Google+. We utilize the official Google Plus API [8] for extracting the
data. Through this API and the OAuth authentication method, we are able to
extract all the public information from the users’ profiles, and the contacts
from public circles. The information also includes the name of the city where

www.syssec-project.eu 91 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

the user resides. We rely on the Google Geocoding API [10] for converting
the city to a pair of geographical coordinates.

Foursquare. Our crawling component is built upon a Python wrap-
per [7] for the official Foursquare API [6]. After the OAuth authentication is
completed and an authorization token is acquired, the crawler extracts the
data through API calls that return the data formated as JSON objects.

5.3.3 Account correlation component

This component has a very important role. As our goal is to collect data
from a multitude of online services, we require a method for correlating the
suspect’s contacts across services. Several separate modules comprise the
component, each leveraging a different service or technique.

Facebook. in previous work [97] we demonstrated how Facebook can
be leveraged as an oracle for mapping a user’s email address to his online
account. We follow this technique for mapping all email addresses of users,
that have correspondence with the suspect to their Facebook accounts (if
they have created one with that email address). While a user can change the
privacy settings to be removed from such searches, it is enabled by default
and too complex for average users to disable.

Foursquare. The official API contains a call that searches for Foursquare
accounts based on different types of information and can, thus, also be used
as an oracle for correlating user accounts. Specifically, the API call takes
as a parameter any one of the following pieces of information and returns
the relevant Foursquare account (if it exists): Facebook ID, Twitter handle,
email address, name, phone number. Thus, apart from locating a user’s
Foursquare account, we can also associate disjoint pieces of information we
have collected from other services.

About.me. This site offers a platform for users, where they can create
a personal page that contains links to their accounts on popular social net-
working services. Using the names extracted in previous steps, we search
for about.me profiles with the same name and extract the links to their pro-
files on social services. We then attempt to verify that the account belongs
to the same user by comparing the account IDs to any we have correlated
previously.

First we leverage the website’s search functionality for locating the sus-
pect’s contacts that have an about.me profile. As the search query results are
dynamically rendered through Ajax requests, we scrape the results through
PhantomJS [15], a headless webkit that also offers a Javascript API. Af-
ter obtaining the user profiles, we extract the available links towards social
network profiles. Each link to a specific <network> is accessible through a
unique URL3.

3http://about.me/content/<username>/<network>

www.syssec-project.eu 92 September 23, 2013

http://about.me/content/<username>/<network>

5.3. SYSTEM IMPLEMENTATION

Fuzzy matching. Several of the services we extract data from don’t pro-
vide the email addresses of the account’s contacts, which would allow us to
deterministically correlate user accounts across services. To overcome this,
we compare user names across services and match them based on similarity.
While this method follows a “fuzzy” approach, we are able to obtain results,
as users tend to reuse user names across services, or simple variations of
them. For example, a user with a Facebook profile under the name “John
Doe” might have an email address handle “john doe”, “johndoe80” etc.
This module also creates synthetic email addresses using certain variations
of the user name (e.g “john doe”, “doe john”) along with the most com-
mon email providers (namely “gmail.com”, “yahoo.com”, “hotmail.com”,
“windowslive.com”, “msn.com”) and passes them to the other modules.

User input. While the above methods yield results, nonetheless, certain
accounts may not be correlated with others belonging to the same user. This
could be due to users creating multiple accounts under completely different
user names. As this correlation can provide invaluable information during
the visual inspection of the data by analysts, our visualization component
enables the manual correlation of accounts. Specifically, the user can cor-
relate an account from one service with accounts from other services. That
information is saved, and the dynamic perspectives will reflect the new as-
sociations. Similarly, the user can remove any erroneous correlations made
during the automatic correlation procedure by the fuzzy matching module

5.3.4 Visualization components

Our goal is to develop a modern visualization platform that will offer a wide
variety of graphic data representations, while remaining portable. This led
us to create it as a web application. The front-end is designed to run on the
same machine where the data is kept.

The vast amount of data mandated the use of an asynchronous, event-
driven model for the front-end, where data is fetched upon request. The
front-end is built upon AJAX requests using the jQuery framework [13] for
data retrieval and manipulation.

The ever-growing need for complex data visualization has lead to the
release of powerful frameworks. D3.js [3] is a JavaScript visualization li-
brary capable of rendering a variety of schematics such as Graph layouts
and Calendar Views among others. This framework is used for the majority
of visualizations incorporated in the front-end. Moreover, we leverage the
Google Maps JavaScript API [9] to render location-based information, when
available, on a map.

www.syssec-project.eu 93 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

5.4 Data Collection

In this section we present a list of the services from which we collect user
data, as well as a description of the types of information acquired. For every
online social network, we also collect any information that is reachable for
every one of the suspect’s contacts.

Facebook. This is the main source of information, as it is the most pop-
ular online social network, and users tend to reveal a large amount of per-
sonal information on it. Our crawling component extracts any of the follow-
ing information that exists:

• Personal information: this may include current location, hometown,
education and work information.

• Contact list: apart from the list of the suspect’s contacts, we also collect
any custom lists and the contacts contained in each list.

• Status updates and any links contained.

• Chat logs along with timestamps for each message.

• Photos: links to the photos and information regarding photo albums,
photo timestamps and tagged users.

• Videos uploaded by the suspect, and videos he has been tagged in.

• Check-ins: the places the suspect has checked into, the timestamp and
the data and coordinates of the place, along with tagged users.

• Likes: activities and articles the suspect has liked.

• Shares: pages the suspect has shared.

• Fan pages (also checks if the user is an administrator of the page).

• Events and the information of the users that participated.

• Groups the suspect is a member of, and the information of the other
members.

• Notifications the suspect has received.

• User notes.

• Contact information: we also collect all of the aforementioned data
from the contacts that is viewable through the suspect’s account (e.g.,
a contact’s chat messages are not viewable.)

Twitter. We first collect the account’s information and contact list. That
includes the accounts the suspect follows as well as those following the sus-
pect. We also collect the suspect’s tweets as well as any tweets re-tweeted,
and all available metadata (e.g. timestamps, location).

Foursquare. We collect the suspect’s check-ins along with the corre-
sponding metadata. Specifically, we collect the timestamp, the venue’s name,

www.syssec-project.eu 94 September 23, 2013

5.5. ACTIVITY VISUALIZATION

VenueID, and location coordinates. We also collect the list of friends, and
any links to their profiles on other networks. Unfortunately, due to limits set
by the API and website, we can only retrieve the last 100 check-ins of the
suspect’s friends.

Skype. We first collect the list of contacts and their disclosed informa-
tion (which may include location, gender, date of birth). Then we extract
the history of chat logs and relevant metadata, as well as call history (and
duration) and file exchanges. We also attempt to retrieve any exchanged
files that are still located on the hard drive.

Gmail. We collect all emails exchanged with the suspect, and extract the
email addresses and any names associated with those addresses. For each
email we also collect the relevant metadata.

Google. We access the suspect’s account in Google and extract the rel-
evant information from Google calendar and Google Docs. Specifically, we
collect all calendar entries (which may contain a location, a description,
and other users attending), and download documents accessible (we also
retrieve information about which other contacts have access to the docu-
ments).

Google+. We first collect the suspect’s contacts contained in the various
“circles” (i.e. contact groups), and the suspect’s activities; posts, comments,
shares, and “+1”s (similar to likes in Facebook). We extract publicly avail-
able data from the accounts of the contacts, as well as any accounts that
have commented on the suspect’s profile (even if they are not part of one of
his circles).

Youtube. We first collect the suspect’s information. Then we extract the
history of watched videos, and channel subscriptions, playlists, uploaded
videos and their comments and favorited videos.

Dropbox. We first locate the Dropbox folder, depending on the suspect’s
operating system, by retrieving the information from the application data.
Then, by traversing the Dropbox directory tree, we extract all the files with
their corresponding metadata. We also keep the application data that can
be used for other aspects of forensic analysis [5].

5.5 Activity Visualization

In this section we describe the various methods for visualizing our collected
data. The plethora of services that can be used by suspects require a group-
ing of this disjoint information into a unified set, where actions across ser-
vices are correlated (e.g. what type of communication does the suspect have
with user X from all services). Furthermore, the abundance of available in-
formation necessitates the ability to shift focus to specific activities (e.g.,
status updates on Facebook), and interactions (e.g., users with the largest
amount of shared activities with the suspect). Thus, we provide the analyst

www.syssec-project.eu 95 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

(a) User granularity (b) Service granularity

Figure 5.2: Two elements from the aggregated statistics perspective.
We provide details regarding the most interesting activities, at a user-
granularity and service-level granularity.

with dynamic “perspectives” of varying granularity, with aggregated corre-
lations as well as fine-grained views of the collected data. We have several
viewpoints for creating the different perspectives.

Aggregated. Here we present aggregated statistics regarding the most
interesting activities from all the services. With one glance, the analyst can
see which services the suspect mainly uses, and what data is available. In
Figures 5.2(a) and 5.2(b) we see an example screenshot regarding some of
the aggregated statistics presented in this viewpoint. Specifically, we can
see the most important types of data across services and a more detailed
description of activities per service, respectively.

Service. Here we focus on a specific service, and present aggregate
statistics regarding the users activities. A list presents the contacts that have
had the most communication with the suspect. Next, as shown in Figure 5.3,
we depict the structure of the social graph and the interconnections between
all contacts. The node’s size is based on the number of connections the con-
tact has. Thus, the analyst can immediately recognize heavily connected
users or outliers. The graph can plot contacts of a specific service as shown
here, or a combined view of all services where the contact’s of each service
have a common color. Each graph node represents a user, and when clicked
presents the contact’s name and photo. Furthermore, a contact search func-
tion dynamically detects and highlights nodes in the graph, allowing inves-
tigators to quickly identify contacts of interest inside the graph.

www.syssec-project.eu 96 September 23, 2013

5.5. ACTIVITY VISUALIZATION

Figure 5.3: An example plot of the suspect’s social graph. The suspect is
depicted with the green node. The size of a node is defined by its degree of
connectivity. Edges toward the suspect’s node are grey, while edges between
contacts are blue.

In Figure 5.4 we present a screenshot of a graph that visualizes the total
communication between suspect and online contacts. The amount of shared
activity defines the width of the connector. This enables the users with
the most communication to be easily identified and scrutinized. When the
connector is clicked, a window presents all the shared activities.

User. A very important viewpoint is that which focuses on a specific user.
Once the analyst has identified online contacts that might be of interest, he
can use one of two perspectives. First, one can select the contact and be
redirected to an aggregated statistics viewpoint, containing all information
available regarding the actions of that contact across all services (based on
the number of accounts that have been associated during the correlation
phase). Second, the analyst can choose to focus only on the shared activi-
ties the contact has with the suspect across all services. That includes, chat
messages, emails sent, wall posts, shared photos, etc. The coarse-grained
perspective presents aggregated statistics, while the more fine-grained per-
spective allows to focus on a specific type of activity. In both viewpoints, the
investigator can ultimately view all individual activity and communication
resources, e.g., exchanged messages, pages “liked”, or Skype calls. Further-
more, the viewpoints can be dynamically configured to visualize data from
one or all services.

Timestamp. A very important factor for visualizing relevant data, is
that of time. Every perspective contains a color-coded calendar depicting
the amount of activity a user has conducted on a specific date. We show a

www.syssec-project.eu 97 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

Figure 5.4: This graph plots the overall communication between the suspect
and his contacts. This visualization facilitates the recognition of important
contacts, as the volume of communication determines the width of the con-
nection between suspect and contact.

segment of an example calendar in Figure 5.5, where blank squares depict
days where the user did not send or receive any emails, while the red square
depicts a day with a large volume of exchanged emails. However, the analyst
might wish to focus on the activities of the suspect during a specific time
period which is of interest. As such, certain viewpoints can dynamically
change and allow one to focus on a specific time window.

Content. A word cloud provides the analyst with a quick view of the
most common words contained in the suspect’s communication, which can
be across services or focused on a specific service or user. Thus, recurring
motives and topics can easily be spotted. In the case of Twitter, we also
create a word cloud with the hashtags (i.e., topics) of the suspect’s tweets
as we show in Figure 5.6. This can also reveal subjects that the suspect
tends to follow or comment on (e.g. politics, religion) and can be relevant
to the analyst’s investigation. Clicking on one of the terms will fetch all the
messages, emails, tweets or posts containing the term.

Location. A very important piece of information is the suspect’s location.
Using information from the suspect’s check-ins and residence we plot a map
with the locations he has visited, and also visually annotate the amount of
times each location has been visited. Furthermore, the analyst can also de-
fine a time window, within which all of the suspect’s activities are correlated
with that location. For example, with a time window of one hour, by click-
ing on the location marker, a window will inform of all the activities (e.g.

www.syssec-project.eu 98 September 23, 2013

5.5. ACTIVITY VISUALIZATION

Figure 5.5: Extract of the calendar element, depicting the email exchange
activity of the suspect over a period of five months.

Figure 5.6: The word cloud shows the words most frequently contained in
the suspect’s communications. Here we see an example created from a user’s
Twitter hashtags (topics).

chat, Skype calls) the suspect conducted up to one hour after the check-in.
Thus, the analyst can associate important activities to specific locations or
even search for patterns of activities at certain locations.

In Figure 5.7(a) we can see an example screenshot showing the aggre-
gated check-ins at a city-level granularity. Figure 5.7(b) depicts a closer
view of a specific region, with the information window for a specific check-
in. The window presents the name of the venue, the check-in timestamp
and a series of activities that have been completed within a one-hour time
window. All elements are click-able for presenting the resources of interest.

Furthermore, as a specific period might be of interest, we can plot the
check-ins conducted during a specific period of time. Also, the investigator
can select a contact, a distance X and a time duration T , and the map
presents any check-ins that the suspect and the contact conducted with a
time difference up to T at venues that have a maximum distance of X.

Photographs. A valuable resource of information in criminal investiga-
tions are photos found in social networks, as demonstrated in the case of the

www.syssec-project.eu 99 September 23, 2013

CHAPTER 5. SOCIAL NETWORK FORENSICS FRAMEWORK

(a) Aggregated view (b) Close-up view

Figure 5.7: Two views of the map plotting the suspect’s check-ins. (a) An
aggregated city-level view. (b) The details of a specific check-in and the
associated activities.

Vancouver riots [87], where vandals were identified through photos posted
in social networks. The investigator can select to view all the photos col-
lected from the suspect’s profiles. Any available user tag information is also
presented, and statistics show the contacts with the most common photos
with the suspect (based on tag information).

www.syssec-project.eu 100 September 23, 2013

6
Conclusions and future works

In this deliverable, we reported on several recent research directions and on
the state of the art in the analysis of Internet-related fraud activities.

We started by analyzing, in Chapter 2, the complex phenomenon of In-
ternet banking and credit card fraud, the current approaches to perform
anomaly detection and fraud analysis. We identified several shortcomings
and research directions which the partners may wish to investigate in the
remainder of the project.

In Chapter 3 we discussed the specific sub-threat of information stealing
trojans, and we reported on two approaches we developed to analyze them.

P2P Zeus is a significant evolution of earlier Zeus variants. Compared
to traditional centralized versions of Zeus, P2P Zeus is much more resilient
against takedown attempts. Potential countermeasures against P2P Zeus
are complicated by its application of RSA-2048 signatures to mission criti-
cal messages, and rogue bot insertion is complicated by the Zeus message
encryption mechanism which makes the use of random bot identifiers im-
possible. Poisoning attempts are forced to use widely distributed IPs due
to a per-bot IP filter which only allows a single IP per /20 subnet. The
network’s resilience against takedown efforts is further increased by its use
of a Domain Generation Algorithm backup channel, and by an automatic
blacklisting mechanism. P2P Zeus demonstrates that modern P2P botnets
represent a new level of botnet resilience, previously unseen in centralized
botnets.

Additionally, we presented Zarathustra, an automated system to observe
on the client side the activity of banking trojans that perform WebInjects.
Zarathustra generates signatures of the DOM differences by comparing web
pages as they are rendered in an instrumented browser running on clean
and infected virtual machines. It first builds a model of legitimate differ-
ences, and then builds a signature of the modifications introduced by the
malware sample. Our system has the advantage of requiring no reverse-

101

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

engineering effort: The only requirement is a binary sample of the mal-
ware. Signature generation is completely automated and independent from
the malware family. In this sense it is a major improvement over the current
state of the art.

Our evaluation of Zarathustra against 213 real, live URLs of banking
websites and 56 distinct samples of ZeuS shows that, in all the cases, our
system extracted all the injections correctly. The low rate of false positives
(1.0%) were caused by legitimate differences in the original web pages. We
have developed specific heuristics, which can be safely enabled under realis-
tic conditions, that can further reduce such false positives to zero. Zarathus-
tra scales well, and can generate fingerprints for 1 URL in less than 3 seconds
on average even on our modest infrastructure.

Although simple, our approach has the great advantage of being com-
pletely agnostic with respect to the source of the differences: As long as the
manipulated data is observable, our approach can be generalized to create
further “difference modeling” techniques that can be used to characterize
the activity of an information stealer from other observation points.

In Chapter 4 we analyzed the role of phone numbers in cyber-crime
schemes.

First, using nigerian scams as a case study, we collected a number of
datasets and designed a technique to identify and extract phone numbers
out of them. A first result is that extracting phone numbers from unstruc-
tured text is challenging and inaccurate with current tools.

We then focused on analyzing the role of phone numbers in scam re-
lated frauds. We identified different groups, created strong links between
apparently unrelated actors and analyzed their geographic distributions.

While a phone number appears to be a weak metric for identifying spam
messages, on scams messages it proved to be a good identification mecha-
nism when compared to email addresses. We showed that this may be help-
ful in analyzing scammers operations, possibly supporting investigations in
order to reduce future scam messages. The reuse of phone numbers is vi-
tal in certain business models where trust must be established over a long
period of time (e.g., wire funds transfer fraud). For other business models,
changing the phone numbers for cyber criminals might be more vital for
their untraceability. One option is to change the SIM cards, but it requires
operational risks (e.g., ID checks) and other overheads. Another option is
to use virtual mobile numbers (VMN). VMNs are most inviting, with com-
petitive or free pricing, laxed ID checks, and most importantly with remote
operation and high-level API automation.

We discussed common business models found during our experiments.
Our results show that a restricted number of mobile operators are used to
deliver the majority of fraud related numbers. This suggests that some op-
erators are preferred over others by fraudsters.

www.syssec-project.eu 102 September 23, 2013

We are now developing a data collection system to capture different as-
pects of phishing campaigns, with a particular focus on the emerging use of
the voice channel. The general approach is to record inbound calls received
on decoy phone lines, place outbound calls to the same caller identifiers
(when available) and also to telephone numbers obtained from different
sources. Specifically, our system analyzes instant messages (e.g., automated
social engineering attempts) and suspicious emails (e.g., spam, phishing),
and extracts telephone numbers, URLs and popular words from the content.
In addition, users can voluntarily submit voice phishing (vishing) attempts
through a public website. Extracted telephone numbers, URLs and popular
words will be correlated to recognize campaigns by means of cross-channel
relationships between messages.

Finally, in Chapter 5 we addressed the growing importance of data found
in online social network profiles for solving criminal investigations, and pre-
sented a modular framework that targets popular online social networks,
and consists of components that perform three distinct tasks. First, all data
that is reachable from the suspect’s profiles is extracted, including the ac-
tivities of contacts. Second, the contact profiles from different services are
correlated, for creating abstracted profiles that contain a user’s activities
regardless the service of origin. Lastly, our visualization framework pro-
vides perspectives that focus on different types of data, and can dynamically
change their level of granularity, shifting from aggregated statistics to de-
tailed information. Nonetheless, the continuous evolution of these services
requires a dedicated community for expanding and maintaining a complete
toolset. Our goal is to release our framework and hope it will attract the
collaboration of other members of the community, for maintaining a com-
plete and up-to-date social forensics framework. An example where this
framework can be utilized is the “The Contact Dealer” scenario, described
on Deliverable 4.2. The framework can be used to track actions of the sus-
pect and shed light to interactions with malevolent parties.

www.syssec-project.eu 103 September 23, 2013

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

www.syssec-project.eu 104 September 23, 2013

Bibliography

[1] 419 Scam Fraud Directory. http://www.419scam.org/419-by-phone.htm.

[2] Bulk SMS services and HLR lookups. http://routomessaging.com/.

[3] D3.js - Data-Driven Documents. http://d3js.org.

[4] Department of Law, State of New Jersey. Melanie McGuire found guilty of murder in
2004. http://www.nj.gov/oag/newsreleases07/pr20070423a.html.

[5] Forensic focus: Dropbox forensics. www.forensicfocus.com/Content/pid=
429/page=2/#database.

[6] Foursquare API Endpoints. https://developer.foursquare.com/docs/.

[7] Foursquare wrapper. https://github.com/mLewisLogic/foursquare.

[8] Google+ API. https://developers.google.com/+/api/.

[9] Google Developers - Google Maps JavaScript API v3. https://developers.
google.com/maps/documentation/javascript/.

[10] Google Geocoding API. https://developers.google.com/maps/
documentation/geocoding/.

[11] The guardian: NSA prism program taps in to user data of apple, google
and others. http://www.guardian.co.uk/world/2013/jun/06/
us-tech-giants-nsa-data.

[12] IACP center for social media, 2012 survey results. http://www.
iacpsocialmedia.org/Resources/Publications/2012SurveyResults.
aspx.

[13] jQuery. http://jquery.com.

[14] Locating mobile phones. http://events.ccc.de/congress/2008/Fahrplan/
attachments/1262_25c3-locating-mobile-phones.pdf.

[15] PhantomJS: Headless WebKit with JavaScript API. http://phantomjs.org/.

[16] Premium Rate Services Network Operators Contact. http://www.phonepayplus.
org.uk/For-Business/Setting-up-a-premium-rate-service/
Network-operator-contacts.aspx.

[17] The Koobface malware gang exposed. http://www.sophos.com/medialibrary/
PDFs/other/sophoskoobfacearticle_rev_na.pdf.

105

http://www.419scam.org/419-by-phone.htm
http://routomessaging.com/
http://d3js.org
http://www.nj.gov/oag/newsreleases07/pr20070423a.html
www.forensicfocus.com/Content/pid=429/page=2/#database
www.forensicfocus.com/Content/pid=429/page=2/#database
https://developer.foursquare.com/docs/
https://github.com/mLewisLogic/foursquare
https://developers.google.com/+/api/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data
http://www.iacpsocialmedia.org/Resources/Publications/2012SurveyResults.aspx
http://www.iacpsocialmedia.org/Resources/Publications/2012SurveyResults.aspx
http://www.iacpsocialmedia.org/Resources/Publications/2012SurveyResults.aspx
http://jquery.com
http://events.ccc.de/congress/2008/Fahrplan/attachments/1262_25c3-locating-mobile-phones.pdf
http://events.ccc.de/congress/2008/Fahrplan/attachments/1262_25c3-locating-mobile-phones.pdf
http://phantomjs.org/
http://www.phonepayplus.org.uk/For-Business/Setting-up-a-premium-rate-service/Network-operator-contacts.aspx
http://www.phonepayplus.org.uk/For-Business/Setting-up-a-premium-rate-service/Network-operator-contacts.aspx
http://www.phonepayplus.org.uk/For-Business/Setting-up-a-premium-rate-service/Network-operator-contacts.aspx
http://www.sophos.com/medialibrary/PDFs/other/sophoskoobfacearticle_rev_na.pdf
http://www.sophos.com/medialibrary/PDFs/other/sophoskoobfacearticle_rev_na.pdf

BIBLIOGRAPHY

[18] tweepy. https://github.com/tweepy/tweepy.

[19] UK Ofcom Numbering Site. http://www.ofcom.org.uk/static/numbering/
index.htm.

[20] UK Phone Info Codes Allocations Lookup. http://www.ukphoneinfo.com/s7_
code_allocations.php?GNG=70.

[21] Worldwide National Numbering Plans Collection. http://bsmilano.it/.

[22] Reversal and Analysis of Zeus and SpyEye Banking Trojans. Technical report, IOAc-
tive, 2012.

[23] State and trends of the “russian” digital crime market 2011. Technical report, Group
IB, 2012.

[24] F. Adu-Oppong, C. K. Gardiner, A. Kapadia, and P. P. Tsang. Social circles: Tackling
privacy in social networks. In Symposium on Usable Privacy and Security (SOUPS),
2008.

[25] V. Aggelis. Offline Internet Banking Fraud Detection. In ARES, pages 904–905. IEEE
Computer Society, 2006.

[26] E. Aleskerov, B. Freisleben, and B. Rao. CARDWATCH: a neural network based
database mining system for credit card fraud detection. In Computational Intelligence
for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997, pages
220–226, 1997.

[27] R. Anderson. Security Engineering. John Wiley & Sons, 2008.

[28] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering Points To
Identify the Clustering Structure. In Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’99), pages 49–60, Philadelphia, PA, 1999.

[29] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and
D. Dagon. From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Mal-
ware. In Proceedings of the 21st USENIX Security Symposium, Bellevue, WA, USA,
2012.

[30] S. Antonatos, I. Polakis, T. Petsas, and E. P. Markatos. A systematic characterization
of im threats using honeypots. In NDSS, 2010.

[31] AV-Test.org. http://www.av-test.org/en/statistics/malware/.

[32] E. L. Barse, H. Kvarnström, and E. Jonsson. Synthesizing Test Data for Fraud Detec-
tion Systems. In ACSAC, pages 384–394. IEEE Computer Society, 2003.

[33] S. D. Bay and M. J. Pazzani. Detecting Group Differences: Mining Contrast Sets. Data
Mining and Knowledge Discovery, 5(3):213–246, July 2001.

[34] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, and
L. Wang. On the Analysis of the Zeus Botnet Crimeware Toolkit. In Proceedings of
the 8th Annual Conference on Privacy, Security and Trust, Ottawa, Ontario, Canada,
August 2010.

[35] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, and
L. Wang. On the analysis of the zeus botnet crimeware toolkit. In Privacy Security
and Trust, pages 31–38. IEEE, 2010.

[36] R. Bolton and D. Hand. Peer group analysis. Technical report, Imperial College, 2001.

[37] R. J. Bolton and David. Statistical fraud detection: A review. Statistical Science, 17,
2002.

[38] A. Brabazon, J. Cahill, P. Keenan, and D. Walsh. Identifying online credit card fraud
using Artificial Immune Systems. In IEEE Congress on Evolutionary Computation,
pages 1–7. IEEE, 2010.

www.syssec-project.eu 106 September 23, 2013

https://github.com/tweepy/tweepy
http://www.ofcom.org.uk/static/numbering/index.htm
http://www.ofcom.org.uk/static/numbering/index.htm
http://www.ukphoneinfo.com/s7_code_allocations.php?GNG=70
http://www.ukphoneinfo.com/s7_code_allocations.php?GNG=70
http://bsmilano.it/

BIBLIOGRAPHY

[39] R. Brause, T. Langsdorf, and M. Hepp. Neural Data Mining for Credit Card Fraud
Detection. In ICTAI, pages 103–106, 1999.

[40] A. Buescher, F. Leder, and T. Siebert. Banksafe information stealer detection inside
the web browser. In RAID ’11, pages 262–280. Springer, 2011.

[41] A. Cansado and A. Soto. Unsupervised Anomaly Detection in Large Databases Using
Bayesian Networks. Applied Artificial Intelligence, 22(4):309–330, 2008.

[42] L. Cao, H. Zhang, Y. Zhao, D. Luo, and C. Zhang. Combined Mining: Discovering
Informative Knowledge in Complex Data. Trans. Sys. Man Cyber. Part B, 41(3):699–
712, June 2011.

[43] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41:15:1–15:58, July 2009.

[44] N. Christin, S. S. Yanagihara, and K. Kamataki. Dissecting one click frauds. CCS ’10.
ACM, 2010.

[45] D. Cook, J. Hartnett, K. Manderson, and J. Scanlan. Catching spam before it arrives:
domain specific dynamic blacklists. In Proceedings of the 2006 Australasian workshops
on Grid computing and e-research, volume 54 of ACSW Frontiers ’06, 2006.

[46] T. Cymru. the underground economy: priceless. http://www.usenix.org/
publications/login/2006-12/openpdfs/cymru.pdf, December 2006.

[47] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A Taxonomy of Botnet Structures. In Proceed-
ings of the 23rd Annual Computer Security Applications Conference, 2007.

[48] D. Dittrich and S. Dietrich. P2P as Botnet Command and Control: A Deeper Insight.
In Proceedings of the 3rd International Conference on Malicious and Unwanted Software
(MALWARE), October 2008.

[49] G. Dong, X. Zhang, L. Wong, and J. Li. CAEP: Classification by Aggregating Emerging
Patterns. In Proceedings of the Second International Conference on Discovery Science,
DS ’99, pages 30–42, London, UK, UK, 1999. Springer-Verlag.

[50] E. Edelson. The 419 scam: information warfare on the spam front and a proposal for
local filtering. Computers & Security, 22(5), 2003.

[51] A. Emigh. The crimeware landscape: Malware, phishing, identity theft and beyond.
J. Digital Forensic Practice, 1(3), 2006.

[52] E. Eskin. Anomaly Detection over Noisy Data using Learned Probability Distributions.
In Proceedings of the Seventeenth International Conference on Machine Learning, ICML
’00, pages 255–262, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[53] Facebook. Facebook Query Language (FQL) Reference. https://developers.
facebook.com/docs/reference/fql/.

[54] Facebook. fbconsole. https://github.com/facebook/fbconsole.

[55] Facebook. Graph API. https://developers.facebook.com/docs/
reference/api/.

[56] N. Falliere and E. Chien. Zeus: King of the Bots, 2009. Technical Report, Symantec.

[57] W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan. Using artificial anomalies to detect
unknown and known network intrusions. Knowl. Inf. Syst., 6(5):507–527, Sept. 2004.

[58] T. Fawcett and F. Provost. Activity Monitoring: Noticing interesting changes in be-
havior. In Proceedings on the SIGKDD International Conference on Knowledge Discovery
and Data Mining, 1999.

[59] Forbes. Solving a teen murder by following a trail of digital evi-
dence. http://www.forbes.com/sites/kashmirhill/2011/11/03/
solving-a-teen-murder-by-following-a-trail-of-digital-evidence/.

www.syssec-project.eu 107 September 23, 2013

http://www.usenix.org/publications/login/2006-12/openpdfs/cymru.pdf
http://www.usenix.org/publications/login/2006-12/openpdfs/cymru.pdf
https://developers.facebook.com/docs/reference/fql/
https://developers.facebook.com/docs/reference/fql/
https://github.com/facebook/fbconsole
https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/
http://www.forbes.com/sites/kashmirhill/2011/11/03/solving-a-teen-murder-by-following-a-trail-of-digital-evidence/
http://www.forbes.com/sites/kashmirhill/2011/11/03/solving-a-teen-murder-by-following-a-trail-of-digital-evidence/

BIBLIOGRAPHY

[60] A. K. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly and
misuse detection. In Proceedings of the 8th conference on USENIX Security Symposium
- Volume 8, SSYM’99, pages 12–12, Berkeley, CA, USA, 1999. USENIX Association.

[61] M. Goncharov. Russian underground 101. Technical report, Trend Micro Inc., 2012.

[62] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko, P. Mavrom-
matis, D. McCoy, A. Nappa, and A. Pitsillidis. Manufacturing Compromise: The Emer-
gence of Exploit-as-a-Service. In ACM conference on Computer and Communications
Security, 2012.

[63] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the underground on 140
characters or less. In Proc. of the 17th ACM conf. on Computer and Communications
Security, CCS ’10, pages 27–37, New York, NY, USA, 2010. ACM.

[64] R. Gross and A. Acquisti. Information revelation and privacy in online social net-
works. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,
WPES ’05’, pages 71–80, New York, NY, USA, 2005. ACM.

[65] J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann,
2nd edition, 2006.

[66] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern Recogn.
Lett., 24(9-10):1641–1650, June 2003.

[67] M. Heiderich, T. Frosch, and T. Holz. Iceshield: Detection and mitigation of malicious
websites with a frozen dom. In RAID ’11, pages 281–300. Springer, 2011.

[68] M. Hofman. There is some smishing going on in the eu. http://isc.sans.org/
diary.html?storyid=6076, March 2009.

[69] R. Hund, M. Hamann, and T. Holz. Towards Next-Generation Botnets. In Proceedings
of the 2008 European Conference on Computer Network Defense, 2008.

[70] M. Hypponen. Malware Goes Mobile. http://www.cs.virginia.edu/~robins/
Malware_Goes_Mobile.pdf.

[71] Internet Identity (IID). Phishing trends report: First quarter 2010. Technical report,
2010.

[72] K. Itabashi. How Trojan.Zbot.B!inf Uses the Crypto API, 2010. Tech-
nical Report, Symantec. http://www.symantec.com/connect/blogs/
how-trojanzbotbinf-uses-crypto-api.

[73] D. Iyer, A. Mohanpurkar, S. Janardhan, D. Rathod, and A. Sardeshmukh. Credit card
fraud detection using Hidden Markov Model. In Information and Communication
Technologies (WICT), 2011 World Congress on, pages 1062–1066, 2011.

[74] M. Jakobsson and Z. Ramzan. Crimeware: Understanding New Attacks and Defenses.
Symantec Press Series. Prentice Hall, 2008.

[75] L. Kharouni. Automating Online Banking Fraud. Technical report, Trend Micro Incor-
porated, 2012.

[76] D. Kirat, G. Vigna, and C. Kruegel. BareBox: efficient malware analysis on bare-
metal. In ACSAC ’11: Proceedings of the 27th Annual Computer Security Applications
Conference. ACM Request Permissions, Dec. 2011.

[77] Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P. Huang. Survey of fraud detection
techniques. In Networking, Sensing and Control, 2004 IEEE International Conference
on, volume 2, pages 749–754 Vol.2, 2004.

[78] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson, and S. Sav-
age. On the spam campaign trail. LEET’08, 2008.

www.syssec-project.eu 108 September 23, 2013

http://isc.sans.org/diary.html?storyid=6076
http://isc.sans.org/diary.html?storyid=6076
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
http://www.symantec.com/connect/blogs/how-trojanzbotbinf-uses-crypto-api
http://www.symantec.com/connect/blogs/how-trojanzbotbinf-uses-crypto-api

BIBLIOGRAPHY

[79] B. Krishnamurthy and C. E. Wills. On the Leakage of Personally Identifiable Informa-
tion via Online Social Networks. In Proceedings of the 2nd ACM Workshop on Online
Social Networks, pages 7–12, New York, NY, USA, 2009. ACM.

[80] B. Krishnamurthy and C. E. Wills. Leakage in Mobile Online Social Networks. In
Proceedings of the 3rd Workshop on Online Social Networks, June 2010.

[81] T. Lauinger, V. Pankakoski, D. Balzarotti, and E. Kirda. Honeybot, your man in the
middle for automated social engineering. In Proceedings of the 3rd USENIX confer-
ence on Large-scale exploits and emergent threats: botnets, spyware, worms, and more,
LEET’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX Association.

[82] M. Lindorfer, A. Di Federico, P. Milani Comparetti, F. Maggi, and S. Zanero. Lines of
Malicious Code: Insights Into the Malicious Software Industry. In Annual Computer
Security Applications Conference, Oct. 2012.

[83] O. B. Longe, V. Mbarika, M. Kourouma, F. Wada, and R. Isabalija. Seeing be-
yond the surface, understanding and tracking fraudulent cyber activities. CoRR,
abs/1001.1993, 2010.

[84] F. Maggi. Are the con artists back? a preliminary analysis of modern phone frauds.
In Proc. of the 10th IEEE Intl. Conf. on Computer and Information Technology, pages
824–831, 2010.

[85] F. Maggi, W. Robertson, C. Kruegel, and G. Vigna. Protecting a Moving Target: Ad-
dressing Web Application Concept Drift. In International Symposium on Recent Ad-
vances in Intrusion Detection. Springer-Verlag, Oct. 2009.

[86] L. Marinos and A. Sfakianakis. ENISA Threat Landscape. Technical report, ENISA,
Sept. 2012.

[87] Mashable. Vancouver fans riot as canucks lose stanley cup. http://mashable.
com/2011/06/15/vancouver-hockey-riot/.

[88] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information System Based
on the XOR Metric. In Revised Papers from the 1st International Workshop on Peer-to-
Peer Systems, 2002.

[89] S. Mhamane and L. Lobo. Internet banking fraud detection using HMM. In Com-
puting Communication Networking Technologies (ICCCNT), 2012 Third International
Conference on, pages 1–4, 2012.

[90] T. Minegishi and A. Niimi. Detection of Fraud Use of Credit Card by Extended VFDT
. In World Congress on Internet Security (WorldCIS), pages 152–159. IEEE, 2011.

[91] T. Moore and R. Clayton. Examining the impact of website take-down on phishing. In
the anti-phishing working groups 2nd annual eCrime researchers summit, pages 1–13,
New York, New York, USA, 2007. ACM Press.

[92] E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. Sun. The application of data mining
techniques in financial fraud detection: A classification framework and an academic
review of literature. Decision Support Systems, 50(3):559–569, 2011.

[93] K. Noto, C. Brodley, and D. Slonim. FRaC: a feature-modeling approach for
semi-supervised and unsupervised anomaly detection. Data Min. Knowl. Discov.,
25(1):109–133, July 2012.

[94] T. Ormerod. An Analysis of a Botnet Toolkit and a Framework for a Defamation
Attack. 2012.

[95] C. Phua, D. Alahakoon, and V. Lee. Minority report in fraud detection: classification
of skewed data. SIGKDD Explor. Newsl., 6(1):50–59, June 2004.

[96] C. Phua, V. C. S. Lee, K. Smith-Miles, and R. W. Gayler. A Comprehensive Survey of
Data Mining-based Fraud Detection Research. CoRR, abs/1009.6119, 2010.

www.syssec-project.eu 109 September 23, 2013

http://mashable.com/2011/06/15/vancouver-hockey-riot/
http://mashable.com/2011/06/15/vancouver-hockey-riot/

BIBLIOGRAPHY

[97] I. Polakis, G. Kontaxis, S. Antonatos, E. Gessiou, T. Petsas, and E. P. Markatos. Using
social networks to harvest email addresses. In Proceedings of the 9th Annual ACM
Workshop on Privacy in the Electronic Society (WPES), pages 11–20. ACM, 2010.

[98] C. Pollard. Telecom fraud: Telecom fraud: the cost of doing nothing just went up.
Network Security, 2005(2), Feb. 2005.

[99] M. Porter. An algorithm for suffix stripping. Program: electronic library and informa-
tion systems, 40(3):211–218, 2006.

[100] J. Quah and M. Sriganesh. Real Time Credit Card Fraud Detection using Computa-
tional Intelligence. In Neural Networks, 2007. IJCNN 2007. International Joint Con-
ference on, pages 863–868, 2007.

[101] Z. Ramzan. Phishing Attacks and Countermeasures. In P. P. Stavroulakis and
M. Stamp, editors, Handbook of Information and Communication Security, pages 433–
448. Springer, 2010.

[102] G. Recourcé. Interpreting contact details out of e-mail signature blocks. In Proceedings
of the 21st international conference companion on WWW. ACM, 2012.

[103] M. Riccardi, R. Di Pietro, and J. A. Vila. Taming Zeus by leveraging its own crypto
internals. In eCrime Researchers Summit, 2011.

[104] W. K. Robertson, F. Maggi, C. Kruegel, and G. Vigna. Effective Anomaly Detection
with Scarce Training Data. In NDSS. The Internet Society, 2010.

[105] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C. Dietrich, and
H. Bos. P2PWNED: Modeling and Evaluating the Resilience of Peer-to-Peer Botnets.
In Proceedings of the 34th IEEE Symposium on Security and Privacy, San Francisco, CA,
USA, May 2013.

[106] C. Rossow and C. J. Dietrich. ProVeX: Detecting Botnets with Encrypted Command
and Control Channels. In Proceedings of the 10th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), July 2013.

[107] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos, and
M. van Steen. Prudent Practices for Designing Malware Experiments: Status Quo and
Outlook. In IEEE Symposium on Security and Privacy. IEEE Computer Society, May
2012.

[108] K. S. and R. W.V. Online banking fraud detection based on local and global behavior.
In ICDS 2011 : The Fifth International Conference on Digital Society , pages 166–171,
2011.

[109] D. Sánchez, M. A. V. Miranda, L. Cerda, and J.-M. Serrano. Association rules applied
to credit card fraud detection. Expert Syst. Appl., 36(2):3630–3640, 2009.

[110] J. Shawe-Taylor, K. Howker, and P. Burge. Detection of fraud in mobile telecommu-
nications. Information Security Technical Report, 4(1), 1999.

[111] K. Sherly and R. Nedunchezhian. BOAT adaptive credit card fraud detection system.
In Computational Intelligence and Computing Research (ICCIC), 2010 IEEE Interna-
tional Conference on, pages 1–7, 2010.

[112] R. Sherstobitoff. Inside the World of the Citadel Trojan, 2013. Technical Report,
McAfee.

[113] N. Soltani, M. Akbari, and M. Javan. A new user-based model for credit card fraud
detection based on artificial immune system. In Artificial Intelligence and Signal Pro-
cessing (AISP), 2012 16th CSI International Symposium on, pages 029–033, 2012.

[114] A. K. Sood, R. J. Enbody, and R. Bansal. Dissecting SpyEye – Understanding the
design of third generation botnets. Computer Networks, Aug. 2012.

www.syssec-project.eu 110 September 23, 2013

BIBLIOGRAPHY

[115] F. Stajano and P. Wilson. Understanding scam victims: seven principles for systems
security. Commun. ACM, 54(3), Mar. 2011.

[116] G. Stringhini, C. Kruegel, and G. Vigna. Detecting spammers on social networks. In
Proc. of the 26th Annual Computer Security Applications Conf., ACSAC ’10, pages 1–9,
New York, NY, USA, 2010. ACM.

[117] M. Syeda, Y.-Q. Zhang, and Y. Pan. Parallel granular neural networks for fast credit
card fraud detection. In Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceedings of the 2002
IEEE International Conference on, volume 1, pages 572–577, 2002.

[118] D. Tarakanov. Ice IX: Not Cool At All, 2011. Technical Report, Kaspersky Lab. http:
//www.securelist.com/en/blog/563/Ice_IX_not_cool_at_all.

[119] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-
time url spam filtering service. In Proceedings of the 2011 IEEE Symposium on Security
and Privacy, 2011.

[120] A. van der Merwe, M. Loock, and M. Dabrowski. Characteristics and responsibili-
ties involved in a Phishing attack. In Proceedings of the 4th international symposium
on Information and communication technologies, WISICT ’05, pages 249–254. Trinity
College Dublin, 2005.

[121] L. Wang, H. Zhao, G. Dong, and J. Li. On the complexity of finding emerging patterns.
Theoretical Computer Science, 335(1):15–27, 2005. Pattern Discovery in the Post
Genome.

[122] W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen. Effective detection of sophisticated online
banking fraud on extremely imbalanced data. World Wide Web, 16(4):449–475, July
2013.

[123] J. Wyke. What is Zeus?, 2011. Technical Report, SophosLabs.

[124] W. Xu and Y. Liu. An Optimized SVM Model for Detection of Fraudulent Online Credit
Card Transactions. In Proceedings of the 2012 International Conference on Management
of e-Commerce and e-Government, ICMECG ’12, pages 14–17, Washington, DC, USA,
2012. IEEE Computer Society.

[125] X. Xu, J. Jäger, and H.-P. Kriegel. A Fast Parallel Clustering Algorithm for Large Spatial
Databases. Data Min. Knowl. Discov., 3(3):263–290, 1999.

[126] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. On-Line Unsupervised Outlier
Detection Using Finite Mixtures with Discounting Learning Algorithms. Data Min.
Knowl. Discov., 8(3):275–300, May 2004.

[127] G. Yan, S. Chen, and S. Eidenbenz. RatBot: Anti-enumeration Peer-to-Peer Botnets.
In Lecture Notes in Computer Science, vol. 7001, 2011.

[128] T.-F. Yen and M. K. Reiter. Revisiting Botnet Models and Their Implications for Take-
down Strategies. In Proceedings of the 1st Conference on Principles of Security and
Trust, 2012.

[129] Z.-H. Zhou and X.-Y. Liu. Training Cost-Sensitive Neural Networks with Methods
Addressing the Class Imbalance Problem. IEEE Trans. on Knowl. and Data Eng.,
18(1):63–77, Jan. 2006.

www.syssec-project.eu 111 September 23, 2013

http://www.securelist.com/en/blog/563/Ice_IX_not_cool_at_all
http://www.securelist.com/en/blog/563/Ice_IX_not_cool_at_all

	Introduction
	Overview of current research on online banking and payment card fraud
	Main Threats to Internet Banking
	The Anomaly and Fraud Detection Problem
	Types of Anomaly
	Approaches to Anomaly Detection

	Online Banking Fraud and Detection Systems Characteristics
	Online Banking Fraud
	Online Banking Detection Systems
	Problem of Cooperation in Fraud Detection

	State of Art in Internet Fraud Detection
	Supervised Approach
	Unsupervised Approach
	Semisupervised Approach
	Hybrid Approaches
	Biological Approaches
	Statistical Approaches
	Credit card fraud detection
	Fraud detection in online banking
	Smartsifter

	Open problems and research challenges

	Evolutions of Banking Trojans
	Zeus: the most successful example of banking trojan
	Peer to Peer Network Topology and challenges
	Structure of the Zeus P2P network
	The zeus P2P Protocol
	Communication Patterns

	Domain Name Generation Algorithm
	Algorithm Details

	Analyzing web injections
	Information-stealing Trojans: Overview and Challenges
	Overview of Zarathustra
	Implementation Details
	Post-processing Heuristics
	Experimental Evaluation
	Discussion and Limitations
	Related Work
	Future Work

	The Role of Phone Numbers in Understanding Cyber-Crime Schemes
	Problem overview and state of the art
	Lessons learned from analyzing the Nigerian scam
	Phone Numbers: Extraction and Quality
	Data Enrichment
	Fraud business models
	Criminals Behind the Phone
	Dynamic Analysis of Scam Phone Numbers

	Automated collection and analysis of data on phone phishing
	System overview
	Collected data
	Limitations and technical challenges

	Social Network Forensics Framework
	The need for social network investigation tools
	Social Forensics
	System Implementation
	Usage Scenario
	Data collection components
	Account correlation component
	Visualization components

	Data Collection
	Activity Visualization

	Conclusions and future works

