
SEVENTH FRAMEWORK PROGRAMME
Information & Communication Technologies

Trustworthy ICT

NETWORK OF EXCELLENCE

A European Network of Excellence in Managing Threats and
Vulnerabilities in the Future Internet: Europe for the World †

Deliverable D5.1: Survey of Research and Data
Collection Initiatives in Malware and Fraud

Abstract: This deliverable presents a survey of research works and data
collection initiatives in the areas of malware detection and analysis and on-
line fraud.

Contractual Date of Delivery May 2011
Actual Date of Delivery June 2011
Deliverable Dissemination
Level

Public

Editor Paolo Milani Comparetti
Contributors TU WIEN

EURECOM
POLIMI
FORTH

† The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257007.

The SysSec consortium consists of:

FORTH-ICS Coordinator Greece
Politecnico Di Milano Principal Contractor Italy
Vrije Universiteit Amsterdam Principal Contractor The Netherlands
Institut Eurécom Principal Contractor France
IPP-BAS Principal Contractor Bulgaria
Technical University of Vienna Principal Contractor Austria
Chalmers University Principal Contractor Sweden
TUBITAK-UEKAE Principal Contractor Turkey

www.syssec-project.eu 2 June 8, 2011

Contents

1 Introduction 7

2 Honeypots 9
2.1 Introduction . 9
2.2 Comparison framework . 10
2.3 Related work . 12

2.3.1 Low-interaction honeypots 12
2.3.2 Medium-interaction honeypots 15
2.3.3 High-interaction Honeypot 18
2.3.4 Client-side honeypots 21
2.3.5 Honeypot Architectures 24
2.3.6 Research papers . 35

2.4 Comparison . 40
2.5 Summary and concluding remarks 43

3 Malware 45
3.1 Introduction . 45
3.2 Sandboxing . 46

3.2.1 Anubis . 47
3.2.2 CWSandbox . 48
3.2.3 Related Projects . 49

3.3 Post Processing Data . 50
3.4 Sharing Data . 51

3.4.1 Virustotal . 52
3.4.2 Predict . 52
3.4.3 WOMBAT - WAPI . 53

3.5 Conclusion . 55

3

4 Online Fraud 57
4.1 Introduction . 57
4.2 Phishing and Spam Enable Frauds 59

4.2.1 Beyond Email Spamming and Phishing 60
4.2.2 Automated Social Engineering Techniques 60

4.3 Fraud 2.0 . 63
4.3.1 From Hit Inflation to Advertisement Fraud 63
4.3.2 Rogue Software and Scareware 64

4.4 Other and Upcoming Frauds 64
4.5 Lack of Research Data Collection Initiatives 65

5 Network 67
5.1 Botnet Detection . 67
5.2 Worm Detection . 71
5.3 Malware Detection Through DNS Analysis 73

5.3.1 Identifying Malicious Domains 74

www.syssec-project.eu 4 June 8, 2011

List of Figures

2.1 Architecture of honeyd. 13
2.2 Architecture of Nepenthes. 16
2.3 Architecture of Collapsar . 44

3.1 The WOMBAT project . 54
3.2 The WOMBAT API (WAPI) . 55

4.1 The big picture of a modern fraud scheme explained through
the case study of Zeus (source: FBI). 58

5.1 Exposure Online Service . 75

5

LIST OF FIGURES

www.syssec-project.eu 6 June 8, 2011

1
Introduction

This deliverable provides an overview of existing research in the areas of
malware and fraud. However, rather than attempting to cover all relevant
research on malicious activity on the internet (which would be a daunting
task), this document is narrowly focused on discussing approaches to data
collection, data sharing, and data-driven research in malware and fraud. In
the context of systems security, an experimental approach based on collect-
ing and analyzing real-world data is a relatively recent development. This
is in part because of the difficulty of obtaining meaningful, representative
datasets on malicious activity and because of the legal and ethical obstacles
to sharing data. Despite these difficulties, over the last decade a signifi-
cant body of work has accumulated that raises to the challenge of collecting
and analyzing real data; Testing and evaluating detection and analysis tech-
niques against a signifcant and representative selection of real threats has
become a “best practice” for systems security research.

In recent years, several SysSec partners have contributed to this shift
towards empirical, data-driven systems security research with their work
within the WOMBAT EU project. In addition to performing research and
developing novel techniques for collecting and analyzing data on malware
and fraud, the WOMBAT project proposed and implemented a practical ap-
proach for sharing data between security researchers. At the conclusion
of the WOMBAT project, the partners organized the first BADGERS work-
shop [44], which solicited contributions from security researchers to dis-
cuss datasets, data collection, data sharing and data analysis for security
research, not only from a technical perspective but also from a legal point
of view. The success of this workshop emphasized the complexity of these
problems and the interest for these topics in the systems security community.

The topic of data-driven security research has also been discussed within
the SysSec project, and specifically within the Malware and Fraud Work-
ing Group. While several SysSec partners are continuing, in the footsteps

7

CHAPTER 1. INTRODUCTION

of WOMBAT, to work on advancing data-driven systems security research,
the SysSec Malware and Fraud Working Group has also been discussing
the limits of this approach. For our medium-term research roadmap, we
are interested on the one hand on understanding and improving upon the
limitations and “blind spots” of the security data that is currently available
to researchers. On the other hand, we would like to understand how to
overcome the more fundamental limitations of data-driven security research
when facing hard-to-observe phenomena, such as targeted attacks.

This deliverable provides an overview of the state of the art in research
and data collection activities in malware and fraud. Chapter 2 provides
related work on honeypots, including traditional server honeypots as well
as more recent client-side honeypot technology. Chapter 3 provides an
overview of malware analysis platforms, and analysis techniques that can
be employed on the analysis artefacts they produce. Chapter 4 discusses re-
search that aims to understand the underground economy of internet crime
by measuring online fraud from technical and economics perspectives. Fi-
nally, Chapter 5 discusses research on detecting network worms and botnets
by observing the network traffic they generate.

www.syssec-project.eu 8 June 8, 2011

2
Honeypots

Honeypots, as they were proposed originally, are instrumented systems that
monitor an unused portion of IP address space with the sole purpose of
trapping attackers. They have proven themselves to be a valuable tool for
capturing and analyzing both known and unknown attacks. Security re-
searchers and large anti-virus companies use them to collect malware sam-
ples and acquire information of the nature and purpose of cyberattacks. A
number of design approaches have been proposed. Most fundamental trade-
offs among these designs have to deal with the interactivity of a honeypot,
its instrumentation level and finally its detectability. The purpose of this
work is to provide a detailed review of existing honeypot systems and tech-
nologies, compare their characteristics and present the most outstanding
papers in the area of honeypots.

2.1 Introduction

Worms, viruses, trojans, keyloggers, malware in general, are a constant
threat to the Internet. Day by day, more instances and variants of malware
appear, discouraging people from using Internet at its full potential. To com-
bat malicious software, several approaches have been proposed, each one
followed by hundreds of implementations, products and research papers.
Examples are firewalls, intrusion detection systems, anti-virus products and
honeypots. Honeypots are the most recent development in the area of net-
work defense. Honeypots are a valuable tool for gathering and analyzing
information considering cyber-attacks. We cannot argue that honeypot tech-
nology can solely defeat all existing and future threats, but it is widely used
as a large information source for malware activities. In conjuction with
other approaches, honeypots can greatly help towards effective large-scale
defense mechanisms.

9

CHAPTER 2. HONEYPOTS

A formal definition of a honeypot is a “trap set to detect, deflect or in
some manner counteract attempts at unauthorized use of information sys-
tems”1. Practically, honeypots are computer systems set up to lure attackers.
They are non-production systems, which means machines that do not belong
to any user or run publicly available services. Instead, in most cases, they
passively wait for attackers to attack them. By default, all traffic destined
to honeypots is malicious or unauthorized as it shouldn’t exist in the first
place. Honeypots can also assume other forms, like files, database records,
IP addresses or e-mails. In this report, we will focus on honeypots that listen
to unused IP addresses.

Several honeypot designs have been proposed. The two main axes on
which a honeypot is designed is the level of interactivity with the attackers
and the side we want to protect. Concerning the level of interactivity, hon-
eypots can either do simple service emulation (low-interaction), more ad-
vanced emulation (medium-interaction) or run real services (high-interaction).
As far as the second axis is concerned, we can categorize honeypots as
server-side and client-side. Most honeypots protect the server side but client-
side honeypots follow a different approach. Instead of waiting to be at-
tacked, they search for attackers. We further explore design requirements
and tradeoffs in Section 2.2.

2.2 Comparison framework

To classify the surveyed systems we use the following properties and fea-
tures as axes of a comparison framework.

• Realism: The role of honeypots is to interact with attackers and con-
vince them that they are attacking a real system. A honeypot should be
as realistic as possible both in terms of what services it runs and what
responses it sends back to attackers. Using simple emulation scripts or
unrealistic profiles of running services (e.g. emulate all possible ser-
vices in a single honeypot) can result in getting the honeypots into the
attackers’ blacklist.

There are three levels of interaction that determine how realistic a
honeypot can be. Low-interaction honeypots provide the minimum
level of interaction. They run scripts that emulate several services.
Emulation scripts are not as accurate as the real service but in some
cases they have proved to be enough to attract automated attacking
tools. Furthermore, low-interaction honeypots run in a raw fashion,
that is they emulate the network stack. Medium-interaction honey-
pots also use emulation scripts but are more resistant to fingerprinting

1 http://en.wikipedia.org/wiki/Honeypot %28computing%29

www.syssec-project.eu 10 June 8, 2011

2.2. COMPARISON FRAMEWORK

attacks as they do not handle the network stack on their own. High-
interaction honeypots provide the maximum level of realism as they
run real services.

• Scalability: Honeypots are often used to monitor portions of unused
IP address space and respond to attackers. The size of the monitored
IP address space may span from a few to several thousands addresses.
The latter case could easily result in hundreds or even thousands of
connection requests per second. In cases where the size of the mon-
itored address space is not fixed, it is important for a honeypot sys-
tem to be able to scale and continue to respond in a timely fashion
to incoming requests as more addresses are added to the monitored
address space.

• Instrumentation level: In its simplest form, a honeypot can run ser-
vices and receive attacks without any instrumentation. However, tak-
ing that approach can tell us who attacked the honeypot and what
service she targeted but not any further information for the vulnera-
bility that was exploited. Instrumentation enables honeypots to have
full control over the running services, detect when an attack is tak-
ing place (and even stop it before it infects the honeypot) and gather
information about the disclosed vulnerability which can be used to
generate protective filters.

• Exposure: A major concern with honeypots is that they may get in-
fected as they are attack targets. While for low- and medium-interaction
honeypots this is not the case, high-interactions are likely to get com-
promised and try to infect other hosts. The level of exposure is a
significant design property. Several approaches run the services in-
side virtual machines and once they are infected, the virtual machine
reboots from a clean state. Other approaches control the infection
through specialized gateways at the edge of the honeypot subnet that
either block attack traffic, perform traffic shaping or reflect the traf-
fic to internal hosts. Finally, another solution is to fully instrument
the services and prevent the infection at the moment the vulnerable
service is getting exploited.

• Direction: Originally, honeypots were designed to lure and analyze at-
tacks directed to servers. However, over the recent years, client-driven
attacks have been extremely popular and effective. In order to cope
with this problem, client-side honeypots follow a different approach.
While server-side honeypots wait passively to get attacked, client-side
crawl various communication channels, such as the Web or IRC, to
locate malware sources and botnets.

www.syssec-project.eu 11 June 8, 2011

CHAPTER 2. HONEYPOTS

• Ease of installation and maintenance: The installation and config-
uration of a honeypot is a manual procedure that requires significant
human effort. A honeypot system should relieve administrators from
major overheads and run with little maintenance overhead. As there
are few solutions for auto-configuration and auto-recovery, a honey-
pot must minimize the downtime and effort required to keep all its
services running and ensure it is not compromised.

• Detectability: As any defense system, honeypots must be undetectable.
For systems like firewalls or intrusion detection systems, which do not
interact with attackers, detectability is rarely an issue. However, as
honeypots respond to malicious activities they are vulnerable to be de-
tected and thus blacklisted. Earlier implementations of honeypot sys-
tems were trivially discovered using TCP/IP fingerprinting techniques.
Virtual machines are also identifiable using a number of techniques,
like device probing or timing attacks. Apart from the technical aspect,
honeypot configuration is also a point that can reveal the location of a
honeypot. Having thousands of ports open on a single host or running
unrealistic services (e.g. honeypots running Unix SSH daemon while
production network is a Windows dominated environment) can raise
suspicions to attackers.

2.3 Related work

In this Section we present the related work in the area of honeypots and
we structure it as follows. First, we present server-side honeypot systems
based on their interactivity level; low-interaction (Section 2.3.1), medium-
interaction (Section 2.3.2) and high-interaction (Section 2.3.3). Second,
we present an overview of client-side honeypots in Section 2.3.4. Opposed
to the the previous three categories, client-side honeypots present different
properties and form a special category. Our overview continues with a pre-
sentation of most well-known and widely used architectures that are based
on the honeypot tools and systems we describe in Sections 2.3.1, 2.3.2, 2.3.3
and 2.3.4. Finally, in Section 2.3.6 we present research papers that study
honeypot performance and detectability issues.

2.3.1 Low-interaction honeypots

A low-interaction honeypot tries to emulate real services and features of
operating systems, usually through specialized components. The emula-
tion components are designed to mimic real software but their scope is lim-
ited. The main advantage of low-interaction honeypots is that they are very
lightweight processes and their emulated services are unlike to be infected
as they are usually scripts or responders that imitate real responses. Their

www.syssec-project.eu 12 June 8, 2011

2.3. RELATED WORK

Routing

Packet Dispatcher

ICMP TCP UDP

Services

Personality Engine

Network

Incoming taffic

Outgoing taffic

Figure 2.1: Architecture of honeyd. Green (solid) lines indicate how incom-
ing traffic is handled. The routing process sends the packets to the packet
dispatcher which decides on which handler to deliver the packet to based
on the protocol. Handlers send the traffic to specific services based on the
destination port. The responses from the services (red dotted lines) are sent
back to the routing process, which consults the personality engine before
injecting them to the network.

main disadvantage is that emulation is inaccurate and can only detect pre-
viously known attacks.

2.3.1.1 Honeyd

The most popular low-interaction honeypot is honeyd [144] . Honeyd is in
fact a framework for building honeypots. Honeyd is able to create arbitrarily
large virtual networks. In order to achieve this, honeyd comes with a num-
ber of modules that respond to ARP requests to claim addresses, request
addresses from DHCP servers and finally components that emulate latency
and loss characteristics of the network. A virtual topology created with hon-
eyd is configurable. The user can define the range of IP address space that
will be handled by honeyd, the number and type of virtual hosts and their
communication characteristics. An example of honeyd configuration is as
follows

set windows personality "Windows XP Home Edition Service Pack 2"

add windows TCP port 80 "scripts/web.sh"

www.syssec-project.eu 13 June 8, 2011

CHAPTER 2. HONEYPOTS

bind 10.1.0.2 windows

In the example above, honeyd will claim that in the IP address 10.1.0.2,
a machine running Windows XP Service Pack 2 exists. Additionally, this vir-
tual host will have port 80 open and the port will be handled by the “web.sh”
script. All emulation is done through scripts, usually written in the Perl lan-
guage. A very interesting property of honeyd is its ability to imitate network
stacks of various operating systems. Honeyd does not bind to any sockets;
instead it performs network stack emulation, thus it is highly scalable and
can listen to arbitrarily large address spaces. Network stack emulation is
more advanced than simply maintaining state for each connection. As the
implementation of network protocols do not confront to standards, each
operating system’s network stack fills certain fields in their own way, for ex-
ample the IP identification number or TCP timestamps. Honeyd maintains
a database of network stack characteristics, originally created by p0f[19]
tool. These profiles are called personalities. When it needs to respond on
behalf of a virtual host that “runs” Windows XP SP2, the database is advised
and packets are formed in such a way to resemble those sent by a normal
SP2 operating system. This property makes the virtual honeypot resilient to
remote OS detection scans, like the ones performed by nmap[18] tool. The
architecture of Honeyd is shown at Figure 2.1. Once a packet is received, it
passes through the packet dispatcher. The dispatcher sends the packet to the
appropriate services based on the configuration. Before the response from
the service is sent to the network, the personality and configuration engines
are invoked to determine the appropriate transfer protocol characteristics.

2.3.1.2 Honeytrap

Honeytrap[7], developed by TillmanWerner, is a remarkable low-interaction
honeypot for its smart interaction capabilities. Differently from other ap-
proaches, Honeytrap is not bound a priori to a set of ports. It takes advan-
tage of sniffers or user-space hooks in the netfilter library to detect incoming
connections and bind consequently to the required socket. Each inbound
connection can be handled according to 4 different operation modes:

• Service emulation. It is possible to take advantage of responder plug-
ins similarly to what happens with honeyd.

• Mirror mode. When enabling mirror mode for a given port, every
packet sent by an attacker to that port is simply mirrored back to the
attacker. This mode is very functional, and is based on the assumption
that, in case of a self-propagating worm, the attacker must be exposed
to the same vulnerability that he is trying to exploit.

www.syssec-project.eu 14 June 8, 2011

2.3. RELATED WORK

• Proxy mode. Honeytrap allows to proxy all the packets directed to a
port or set of ports to another host, such as a high interaction honey-
pot.

• Ignore mode. Used to disable TCP ports that should not be handled
by honeytrap.

Honeytrap takes advantage of a set of plugins to exploit the information
collected by the network interaction. The ability of these plugins to handle
network attacks can be assimilated to a best effort service. For instance, if an
HTTP URL appears in the network stream, honeytrap will try to download
the file located at that URL. If the HTTP URL is not directly present in the
network stream, but is embedded within an obfuscated shellcode, honeytrap
will not be able to detect it or download it. Thus, Honeytrap view on the
network attacks is thus not uniform, but heavily depends on their structure
and their complexity.

2.3.1.3 LaBrea

LaBrea[8] is a program that listens to an unused IP address space and an-
swers connection attempts in such way that attackers at the other end get
stuck. The original purpose of this tool was to slow down scanning from
machines infected by the CodeRed worm. LaBrea claims unused IP address
space by responding to ARP requests that remain unanswered (similar to
farpd). When a SYN packet is destined for the claimed IP addresses, a SYN-
ACK that tarpits the connection attempt is sent back. LaBrea also tries to
mimic normal machines but in a limited fashion, e.g. it can respond to ping
and send RST to SYN-ACK.

2.3.2 Medium-interaction honeypots

Medium-interaction honeypots also emulate services but, unlike low-interaction
honeypots, they do not manage network stacks and protocols themselves.
Instead, they bind to sockets and let the operating system do the connection
management. In contrast to systems like honeyd, which implement network
stacks and protocols, they focus more on the application-level emulation
part. The most-well known medium-interaction honeypot is nepenthes.

2.3.2.1 Nepenthes

The nepenthes platform[16] is a system that was designed to automatically
collect malware2. Its functionality is based on five types of modules: vulner-
ability, shellcode parsing, fetching, logging and submission modules. Vul-
nerability modules emulate the vulnerable services, like a DCOM service or

2Historically, nepenthes is the evolution of mwcollect platform

www.syssec-project.eu 15 June 8, 2011

CHAPTER 2. HONEYPOTS

nepenthes core

TCP/
445

TCP/80 TCP/...

vuln-lsass vuln-dcom vuln-...

shellcode handler

download-http download-ftp download-...

submit module

} Vulnerability handlers

} Download handlers

} Malware payload extracted

} Malicious URLs extracted

} Exploit

submit-xmlrpcsubmit-norman

logging modules

} Incoming traffic

} Downloaded binary

Figure 2.2: The architecture of Nepenthes. Incoming traffic is handed over
to the appropriate vulnerability handler based on the destination port. Vul-
nerability handlers extract the expoit and invoke the shellcode manager.
The shellcode manager emulates the shellcode and extracts the URLs it con-
tains. The URLs are given to download handlers who actually download
the malicious binary. Downloaded binaries are either stored locally or/and
submitted to a central repository.

a WINS server. Shellcode parsing modules analyze the payload received by
vulnerability modules and try to extract information about the propagating
malware. If such information is found, fetch modules download the mal-
ware from the designated destination and finally the malware is submitted
to a central service (disk, database, anti-virus company) through the submis-
sion modules. The whole process is logged by the logging modules. For the
time being, only sixteen vulnerability modules have been implemented for
well-known exploits, like buffer overflow in Microsoft RPC services, buffer
overruns in SQL server 2000 and exploits in the LSASS service. Nepenthes
was originally designed to capture malware that spreads automatically, like
Blaster or Slammer worms who were targeting hosts blindly.

The host running nepenthes listens to several ports on one or more black
IP addresses. The assignment of these addresses to this host and creation of
virtual interfaces in order to have multiple IP addresses to a single interface
must be done by the administrator manually. As the host running nepenthes
listens to many open ports, it is vulnerable to detection. The workflow of
Nepenthes is shown in Figure 2.2. After a connection is established to one of
the open ports, the payload of the packets of this connection is handled by

www.syssec-project.eu 16 June 8, 2011

2.3. RELATED WORK

the appropriate module. The main restriction here is that for each open port
we can only have one vulnerability module. This means that for example we
cannot emulate vulnerabilities for both Apache and IIS simultaneously. Vul-
nerability modules do not provide full service emulation but only emulate
the necessary parts of the vulnerable service. When the exploitation attempt
has arrived, the shellcode parsing modules analyze the received payload. In
most cases, this parsing involves an XOR decoding of the shellcode and then
some pattern matching is applied, like searching for URLs or strings like
“CreateProcess”. If a URL is detected, fetch modules download the malware
from the remote location. These modules implement HTTP, FTP, TFTP and
IRC-based downloads. However, a shellcode parser can be more compli-
cated. Some malware can, for example, open command shells and wait for
commands or bind to sockets. Shell emulation modules of nepenthes pro-
vide command emulation for the virtual shells. Most shell commands are
trivial, like echo or START directives.

The Nepenthes platform has evolved to a distributed network of sensors.
Institutions and organizations participate in the mwcollect alliance, where
all binaries captured are submitted to a central repository, accessible to all
members of the alliance.

2.3.2.2 Multipot

Multipot[14] is a medium-interaction honeypot for the Windows platforms.
Multipot follows the same design as nepenthes. It emulates six vulnera-
bilities (among them the well-known MyDoom[15] and Beagle[3]). When
multipot receives a shellcode, five shellcode handlers try to emulate it. Most
common handlers are: recv cmd for shellcodes that bind cmd to a port and
receive commands, recv file for shellcodes that open a port and receive
a file and finally generic url that performs XOR decryption and extracts
HTTP, FTP, TFTP and echo strings. If a location is detected, the malware is
downloaded. Multipot sets a maximum download size limit of 3 Megabytes
to avoid malware that try to exhaust disk space.

2.3.2.3 Billy Goat

Billy Goat[101] is a honeypot developed by IBM Zurich Research Labs that
focuses on the detection of worm outbreaks in enterprise environments. It is
thus called by the authors Worm Detection System (WDS) in opposition to
classical Intrusion Detection Systems. Billy Goat automatically binds itself to
any unused IP address in a company network, and aims at quickly detecting
and identifying the infected machines and retrieve information on the type
of activity being performed.

In order to gather as much information as possible on the kind of ac-
tivity observed by the sensors, Billy Goat employes responders that emulate

www.syssec-project.eu 17 June 8, 2011

CHAPTER 2. HONEYPOTS

the application level protocol conversation. While the general responder
architecture is very similar to that employed by Honeyd, Billy Goat takes
advantage of a solution for the emulation of SMB protocols, that consists
in taking advantage of a hardened version of the open-source implementa-
tion of the protocol[22]. Such an implementation is derived from the work
done by Overton[136], that takes advantage of a similar technique to col-
lect worms trying to propagate through open SMB shares. This choice puts
Billy Goat in a hybrid position between low and high interaction techniques,
since it offers to attacking clients the real protocol implementation, even if
hardened to reduce security risks. The increased level of interaction of this
technique has allowed interesting analyses such as the work done by Zuru-
tuza in [180].

2.3.3 High-interaction Honeypot

High-interaction honeypots, unlike the two previous categories, do not em-
ulate services. On the contrary, they run services in their native environ-
ment. This allows the maximum interactivity with attackers as vulnerabil-
ities are not emulated but actually exploited. Recent advances in virtual-
ization allows the creation of scalable and secure high-interaction honey-
pots. Operating systems of honeypots are running inside a virtual machine,
like VMware[34], Qemu[21] and Xen[59]. This choice was made for two
reasons. First, we can run multiple virtual machines in a single physical
machine. Thus, we can run hundreds of high-interaction honeypots with
a limited number of physical machines. Second, as high-interaction hon-
eypots are vulnerable to being compromised, virtual machines can act as a
containment environment. Once the vulnerability is exploited, the honey-
pot can be used as an attack platform to propagate worms or launch DoS
attacks. Instrumented versions of virtual machines can be used as a con-
tainment mechanism to prevent vulnerabilities from being exploited and in
parallel maintain the highest level of interaction.

In this Section, we will describe three high-interaction honeypots, both
based on virtual machine technology.

2.3.3.1 Minos

Minos[74] is a microarchitecture that implements Biba’s low water-mark
integrity policy[66] on individual words of data. Minos stops attacks that
corrupt control data to hijack program control low. Control data is any data
that is loaded into the program counter on control-low transfer, or any data
used to calculate such data. The basic idea of Minos is to track the integrity
of all data and protect control by checking this integrity when a program
uses the data for control transfer

www.syssec-project.eu 18 June 8, 2011

2.3. RELATED WORK

Minos requires only a modicum of changes to the architecture, very few
changes to the operating system, no binary rewriting, and no need to specify
or mine policies for individual programs. In Minos, every 32-bit word of
memory is augmented with a single integrity bit at the physical memory
level and the same for the general-purpose registers. This integrity bit is
set by the kernel when the kernel writes data into a user process memory
space. Minos’s threat model thus assumes that the kernel is trusted, and
cannot itself be compromised. The integrity is set to either “low” or “high”
based upon the trust the kernel has for the data being used as control data.
Biba’s low water-mark integrity policy is applied by the hardware as the
process moves data and uses it for operations. If data with “low” integrity is
going to be executed, then an attack is taking place.

Minos was emulated on the Bochs Pentium emulator. The software Mi-
nos emulator is able to execute 10 million instructions per second on a Pen-
tium 4 running at 2.8GHz. The emulated Minos architecture runs for nearly
two years without any false positives. Furthermore, various exploits have
been launched against Minos to check his detection capabilities. These at-
tacks tried to exploit various types of vulnerabilities such as format string,
heap globbing, buffer overflow, integer overflow, heap corruption and dou-
ble free()’s. All attacks were caught by Minos.

2.3.3.2 Argos

Argos[142] is a containment environment for worms and manual system
compromises. It is actually an extended version of the Qemu emulator that
tracks whether data coming from the network is used as jump targets, func-
tion addresses or instructions. To identify such activities, Argos performs
dynamic taint analysis[133] (memory tainting). Memory tainting is the pro-
cess where unsafe data that resides in the main memory or the registers are
tagged. All data coming from the network is marked as tainted because
by default they are considered as unsafe. Tainted data is tracked during
execution. For example, if we have an add operation between a tainted reg-
ister and an untainted one, the result of the addition will be tainted. Before
data enters the Argos emulator, it is recorded in a network trace. As Ar-
gos has control of all operations that happen in the guest OS3, it can detect
whenever tainted data is tried to be executed or are used as jump targets,
e.g. override function pointers. When tainted data are tried to be executed,
an alarm is raised and the attack is logged. This log contains information
about the attack and specifically registers, physical memory blocks and the
network trace. This information is given as input to the signature genera-
tion component, which basically correlates information between the mem-
ory dump and the network trace using two approaches. The first one locates

3In virtual machine terminology, guest OS is the operating system running inside the
virtual machine while host OS is the operating system that runs the virtual machine software

www.syssec-project.eu 19 June 8, 2011

CHAPTER 2. HONEYPOTS

the longest common sub-sequence between the memory footprint and the
network trace. The second one, called CREST, finds the memory location
that allowed the attacker to take control of the system. This memory loca-
tion is found using the physical memory origin and value of EIP register, that
is the instruction pointer register. The value of EIP register is located inside
the trace and then trace is extended to the left and right. The extension
stops when different bytes are encountered. The resulting byte sequence,
along with protocol and port number, is used as a signature. For both ap-
proaches, a network trace is useless if data in it is encrypted, for example it
is a HTTPS connection. Latest advances of Argos allow it to correlate mem-
ory dump with unencrypted data, as Argos comes with modified versions
of secure socket libraries for some guest operating systems. The signature
generation time is linear to the size of the network trace and generated sig-
natures did not produce false positives for DEFCON and home-grown traces
(traces collected at the site of authors).

The basic advantage of Argos is that it is able to detect without false pos-
itives that an automated attack is taking place, regardless of the application
under attack or the attacks level of polymorphism. The major drawback of
the Argos approach is the performance overhead. An application running
in the Argos environment is 20 to 30 times slower than running in its na-
tive environment. A large part of this overhead is due to the underlying
Qemu[21] emulation. The rest of the overhead is due to memory tainting
and tracking of tainted data. However, as honeypots receive significantly
less traffic than production systems, their overhead may be acceptable for
some cases.

2.3.3.3 Practical Taint-Based Protection using Demand Emulation

The concept of building a honeypot that is robust against being compro-
mised using memory tainting is also presented in [96]. Unlike other tainting-
based approaches, like Argos, that run exclusively inside an emulated envi-
ronment,the technique of this work switches between virtualized and em-
ulated execution. The reason for this switching is primarily performance.
The proposed approach is based on the Xen[59] virtual machine monitor
that runs a protected operating system within a virtual machine. Xen pro-
vides a virtualized environment on top of which operating systems can run
with very high performance. The containment of the approach is done as
follows. When the processor accesses tainted data, Xen switches the vir-
tual machine from the virtual CPU to an emulated processor. The emulated
processor runs as user-space application in a separate control virtual ma-
chine, referred as ControlVM. The emulator tracks the propagation of the
tainted data throughout the system and when no tainted data is accessed,
Xen switches the virtual machine back to virtualized execution. The tracking
of tainted data is extended to handle disk operations and not only memory

www.syssec-project.eu 20 June 8, 2011

2.3. RELATED WORK

and registers. As the proposed approach runs in an emulated environment
only when needed, the performance of the approach makes it very attrac-
tive. While a fully emulated system that performs tainting runs 88 to 170
times slower, the proposed approach runs 1.2 to 3.7 times slower. The per-
formance benchmark was performed using the LMbench suite[11], which
measures time for well-known system calls.

2.3.3.4 HoneySpot

HoneySpot is an architecture designed by the Spanish Honeynet Projet (SHP)
that aims at monitoring the attacker’s activities in wireless networks [145].
The paper describes several approaches when designing a wireless honey-
pot. Basically, the design depends on the goals of these kind of experiments.
Is it for monitoring dedicated wireless attacks, or, is it for monitoring at-
tacks where wireless technologies are used as a transport protocol for these
attacks? This has tremendous impacts on the architecture design. The pro-
posed architecture is composed of several modules. The Wireless Access
Point module that will provide the attacker with wireless connectivity. The
Wireless Client module that will simulate client activity on the wireless hon-
eypot fooling the wireless hacker and giving enough information in order to
launch wireless attacks (such as guessing a WEP key). The Wireless Monitor
module that will collect wireless traffic listening for wireless attacks (like
a wireless intrusion detection system). The Wireless Data Analysis module
that will take care of all reported data by the Wireless Monitor module. Fi-
nally, the Wired Infrastructure module that will simulate a real-world wired
network with Internet access or emulated network and services.

2.3.4 Client-side honeypots

Recently, we have observed exploits that target client applications and es-
pecially web browsers. The WMF and JPEG vulnerabilities ([13],[12]) have
shown how the Internet Explorer browser can be compromised and exe-
cute arbitrary code on the victim’s side. Instead of waiting passively for
the attackers to contact them, as we have seen so far, client-side honeypots
try to spot locations where malicious content is hosted. Although they are
not passive systems, they are still characterized as honeypots as they are
non-production systems. Client-side honeypots try to cover the gap of clas-
sic detection techniques. According to [32], only 1.5% of IDS signatures
are based on client-side attacks, although the number of client-based vul-
nerabilities increases over time. In this Section strider honeymonkeys and
honeyclient, the most popular client-side honeypots, are presented.

www.syssec-project.eu 21 June 8, 2011

CHAPTER 2. HONEYPOTS

2.3.4.1 Strider HoneyMonkeys

Strider Honeymonkeys system[169] uses monkey programs that attempt to
mimic human web browsing. A monkey program runs within virtual ma-
chines with OS’s of various patch levels. The exploit detection system of
honeymonkeys has three stages. In the first stage, each honeymonkey visits
N URLs simultaneously within an unpatched virtual machine. If an exploit
is detected then the one-URL-per-VM mode is enabled. In that mode, each
one of the N suspects runs in a separate virtual machine in order to deter-
mine which ones are exploit URLs. In Stage 2, HoneyMonkeys scan detected
exploit-URLs and perform recursive redirection analysis to identify all web
pages involved in exploit activities and to determine their relationships. In
Stage 3, HoneyMonkeys continuously scan Stage-2 detected exploit-URLs
using (nearly) fully patched VMs in order to detect attacks exploiting the
latest vulnerabilities. The exploit detection is based on a non-signature ap-
proach. Each URL is visited in a separate browser instance. Then, honey-
monkey waits for a few minutes to allow downloading of any code. Since
the honeymonkey is not instructed to click on any dialog box to permit soft-
ware installation, any executable files or registry entries created outside the
browser sandbox indicate an exploit. This approach allows the detection of
0-day exploits. During the first month of honeymonkey deployment, 752
unique URLs were hosting malicious pages, while a malicious web-site was
performing zero-day exploits.

2.3.4.2 HoneyClient

HoneyClient[6] is a honeypot system designed to proactively detect client-
side exploits. It runs on Windows platforms and drives Internet Explorer
through two Perl scripts. The first script acts as a proxy, while the seconds
performs integrity checking. Internet Explorer is set to have as proxy the
script. After each crawl is finished, files and registry are checked. In case
a change is detected, file and registry key value changes as well registry
key additions or/and deletions are logged. The idea of HoneyClient is not
restricted to Web crawling. It can be extended to other protocols, like P2P,
IRC and instant messaging clients.

2.3.4.3 Capture

Capture[4] is a high-interaction client honeypot that tries to find malicious
servers on the network following a similar approach with HoneyMonkeys.
It consists of two main components, Capture Server and Capture Client.
The primary purpose of the Capture Server is to control numerous Capture
clients to interact with web servers. It allows to start and stop clients, in-
struct clients to interact with a web server retrieving a specified URI, and

www.syssec-project.eu 22 June 8, 2011

2.3. RELATED WORK

aggregating the classifications of the Capture clients regards the web server
they have interacted with. The server provides this functionality in a script-
ing fashion. The URIs are distributed to the client in a round robin fashion.

Capture clients accept the commands of the server so as to know when
to start and stop themselves and which URI to visit. A Capture client runs
inside a virtual machine and interacts with a web server, monitoring its
state for changes on the file system, registry, and processes that are running.
Since some events occur during normal operation (e.g. writing files to the
web browser cache), exclusion lists allow to ignore certain type of events. If
changes are detected that are not part of the exclusion list, the client makes
a malicious classification of the web server and sends this information to the
Capture server. Since the state of the Capture client has been changed, the
Capture client resets its state to a clean state before it retrieves new instruc-
tions from the Capture server. In case no state changes are detected, the
Capture client retrieves new instructions from the Capture server without
resetting its state. Capture allows to automatically collect network traces
and downloaded malware files when a malicious server is encountered.

2.3.4.4 Shelia

Shelia[24] is a high-interaction client-side honeypot that tries to locate mal-
ware sources by inspecting the mail of the user and more specifically her
spam messages. Shelia is implemented for Windows platforms and currently
works with the Outlook Express mailer. Spam messages can contain all kind
of information. They can include various types of attachments, URLs for
malicious websites or even HTML code that can lead to infection.

The architecture of Shelia includes two main components. The first one
is the client emulator which is responsible for identifying all the attachments
and URLs received by email and to invoke the proper application to handle
these attachments/URLs. The second one is the attack detector. The attack
detector has a process monitor engine that monitors the client’s actions and
applies the containment strategy if required. The detector also determines
if an action taken by a client is illegal. All attack information is logged by
the attack log engine. Shelia monitors the processes and generates alerts
when the process attempts to execute an invalid operation (i.e., execute a
call to change the registry, create files, or attempt specific network oper-
ations) from a memory area that is not supposed to be executable code.
The process monitoring is performed by hooking Win32 API calls, such as
CreateProcessA, CreateThread, LoadLibraryA etc. The containment strategy
followed by Shelia may allow the attack to run until it downloads the mal-
ware, which is then captured and stored in a specific directory. However,
the downloaded malware is never executed.

www.syssec-project.eu 23 June 8, 2011

CHAPTER 2. HONEYPOTS

2.3.5 Honeypot Architectures

2.3.5.1 Collapsar

Collapsar[102] proposes a decentralized architecture composed of a large
number of honeypots deployed in different network domains. This approach
tries to address the problem that centralized honeypot farm have limited
view of Internet activity. The core idea of Collapsar is to deploy traffic redi-
rectors in multiple network domains and examine the redirected traffic in a
centralized farm of honeypots. This approach has the benefit that we can
deploy honeypots in many networks without the need of honeypot experts
on each network. All the processing and detection logic will be done in the
centralized honeypot farm, also referred as Collapsar center.

An overview of the Collapsar architecture is shown at Figure 2.3. The
Collapsar architecture has three parts. The first part is the traffic redirec-
tor. The traffic captures all packets and afterwards filters them, according
to rules specified by the network administrator. All packets that pass the
filter are encapsulated and sent to the Collapsar center. The redirection can
be done either through the Generic Routing Encapsulation (GRE) tunnel-
ing mechanism of a router or using an end-system-based approach. The
redirector is implemented as a virtual machine running an extended version
of User-Mode Linux[31] (UML), using libpcap,libnet and specialized kernel
modules.

The second part is the front-end of the Collapsar center. It receives en-
capsulated packets from redirectors, decapsulates them and dispatches them
to honeypots of the Collapsar center. It also takes responses from honeypots
and forwards them to the originating redirectors. Upon receipt, redirectors
will inject the responses into their network. In that way, an attacker has the
sense that communicates with a host in the network of the redirector but
in reality she communicates with the Collapsar center. However, the front-
end does more than packet dispatching. Its role is extended to assure that
traffic from honeypots will not attack other hosts on the Internet. To pre-
vent such malicious activities, introduces three assurance models: logging,
tarpiting and correlation. The logging module is embedded in the honey-
pots guest OS as well as log storage in the physical machines host OS in
order to be invisible to the attacker. The tarpiting module throttles outgoing
traffic from honeypots by limiting the transmission rate and also scrutinizes
outgoing traffic based on known attack signatures. Snort-inline performs
this task. Snort-inline is a modified version of Snort[25], a very popular
intrusion detection system. While Snort is a system that passively monitors
traffic, Snort-inline intercepts traffic and prevents malicious traffic from be-
ing delivered to the protected network. The correlation module is able to
detect network scanning by correlating traffic from honeypots that logically
belong to different production networks.

www.syssec-project.eu 24 June 8, 2011

2.3. RELATED WORK

The last part of the architecture is the Collapsar center. The center is a
farm of high-interaction honeypots. Honeypots run services inside a virtual
machine and have the same network configuration as other hosts in the pro-
duction network, that is the hosts running the redirectors. Virtual machines
used are VMware and UML, with UML being more preferable due to the fact
that it is open-source and allows better customization, especially to network
virtualization issues.

We can identify two major drawbacks in the approach proposed by Col-
lapsar. The first one is that redirectors need a dedicated machine that com-
municates with a predefined set of front-ends, imposing administrative over-
head for the maintenance of the redirector. Furthermore, it implies a level
of trust between the redirectors and the Collapsar center Once the iden-
tity of front-ends is known, they are susceptible to direct attacks and then
redirectors become useless. The second drawback is that traffic redirection
adds almost double latency, according to paper measurements, that helps
attackers to identify redirectors, e.g. by correlating response times from the
redirector and other machines in its production network.

2.3.5.2 NoAH

The NoAH project[17] follows an approach similar to the Collapsar archi-
tecture. Since centralized honeypot farms provide a limited view of Internet
activity, the NoAH project also introduces mechanisms for deploying decen-
tralized honeypots. The NoAH architecture is composed of two parts. The
first part is the NoAH center that consists of multiple honeypot farms. Hon-
eypot farms run high-interaction honeypots based on the Argos software.
The Argos system has two major benefits: a) it allows the detection of both
known and unknown (0-day) attacks and b) once the attack is detected, the
faulty process is stopped by Argos. Thus, honeypot farms cannot infect other
Internet hosts as vulnerable processes are stopped immediately when they
are exploited. The second part of the NoAH architecture is the traffic for-
warder called Honey@home. Unlike to the Collapsar approach, where traf-
fic redirectors are dedicated machines or GRE-enabled routers, the NoAH
architecture follows a more deployable approach. The honey@home soft-
ware is an end-system approach. It is a lightweight tool that runs in both
Windows and Unix operating systems but does not need a dedicated ma-
chine or any specialized configuration. It silently runs in the background
and claims IP addresses either through DHCP service or statically (arbitrar-
ily large number of IP addresses), if the user configures it so. All traffic di-
rected to the claimed IP addresses is encapsulated and sent to NoAH center.
Responses from NoAH center are sent back to honey@home client, which in-
jects them back to the attacker. Similar to Collapsar, the attacker thinks she
communicates with the honey@home client but she is logically connected
to a honeypot of the NoAH center. The honey@home client can also pene-

www.syssec-project.eu 25 June 8, 2011

CHAPTER 2. HONEYPOTS

trate NAT environments, if the NAT router has UPnP enabled. In that case,
several ports are temporarily forwarded to honey@home clients as long as
they are running.

The major difference between honey@home and Collapsar redirectors is
that the first protects the identity of both clients and honeypots. To achieve
this, honey@home clients communicate with honeypot farms through Tor[79].
Tor is an anonymization network that is consisted of several hundreds of
routers that perform onion routing. The Tor network supports both client
and server anonymity by offering the so-called hidden services. The client
only knows a pseudonym of the server, for example xyz.tor. When the client
tries to connect to that pseudonym, the Tor network sends to both client and
server a rendez-vous point. This point is a Tor router. When both client and
server have connected to the rendezvous point, their connections are linked
and form a full path but both of them only know that they are connected
to the rendezvous point. By protecting both client and honeypot anonymity,
the NoAH architecture is not vulnerable to direct attacks. However, as also
in the NoAH approach traffic is forwarded, clients can be identified by la-
tency measurements. However, the identity of honeypots will remain secret,
even if most of Tor routers are compromised.

2.3.5.3 Potemkin

Honeypot farms usually require a large number of physical machines in or-
der to run a few tens of virtual machines. Virtual machines in fact consume a
large amount of physical memory and processing power and it is hard to run
more than ten in the same physical machine. The Potemkin approach[168]
proposes an architecture that overcomes this problem and improves honey-
pot scalability. The Potemkin architecture is based on two key observations.
The first one is that most of a honeypots processor cycles are wasted idling,
as they usually wait for an adversary to connect to them. The second one is
that, even when serving a request, most of a honeypots memory is also idle.

On each physical machine, a virtual machine monitor (VMM) is run-
ning. When a packet arrives for a new IP address, the VMM spawns a new
virtual machine. In this way, we have a virtual machine running only when
needed, that is on a per-request basis. However, spawning a new VM for
each request is an expensive operation. To reduce this overhead, the flash
cloning technique is used in the Potemkin architecture. After the boot of the
first VM instance, a snapshot of this environment is taken. This snapshot is
then used to derive subsequent VM images. The process responsible for VM
cloning is the cloning manager. It instructs Xen to create a VM based on the
reference snapshot. After the VM is created and successfully resumed, the
clone manager instructs the guest operating system to change its IP address
based on the destination address of the request. During the cloning pro-
cess the VMM stores packets destined for the VM. After cloning is finished,

www.syssec-project.eu 26 June 8, 2011

2.3. RELATED WORK

packets are flushed to the VM. Per-request VM cloning solves the problem
of wasted processor time spent by a honeypot on waiting for requests. To
overcome the problem of large memory consumption, the delta virtualiza-
tion technique is used. The notion behind delta virtualization is that most of
the memory pages among VMs are common, for example pages of operating
system, and thus can be shared. This technique follows the copy-on-write
approach for pages that need to be changed by a VM.

2.3.5.4 Leurre.com

Leurre.com[9] is a distributed honeypot environment that operates a broad
network of honeypots covering around 30 countries. Honeypots run a mod-
ified version of honeyd and emulate three different operating systems; two
from the Windows family (98 and NT server) and Redhat 7.3. Traffic and se-
curity logs are retrieved daily and stored into a centralized database. Apart
from logs, raw traffic is also analyzed, mainly to derive information about
attackers and specifically IP geographical location, DNS names, OS finger-
printing and TCP stream analysis. In the Leurre.com terminology, a single
host running the modified honeyd is called a platform. As honeyd emulates
three operating systems, each platform needs 3 dark IP addresses to listen
to. These IP addresses are consecutive and each emulated OS is assigned to
listen to one of them. The reason for listening to consecutive IP addresses
is to identify attackers that scan subnets. If all three emulated OSes are
contacted by an attacker, it is a strong indication of scanning. Participants
in the Leurre.com project need to deploy a platform and in return they are
granted access to the centralized database.

During the Leurre.com deployment, authors have gathered some inter-
esting statistics considering attack sources. Note that as the paper was writ-
ten in 2004, the statistical results may be invalid for present time. Most of
the attacks, about 80% to 95%, come from Windows machines. 35% of the
machines that launched attacks are clearly identified as personal computers.
The identification was done by checking the reverse DNS name for patterns
like “adsl” or “dialup”. Considering most targeted ports, authors found that
Windows RPC ports (135, 130 and 445) are the most popular ones.

2.3.5.5 Honeynets

A honeynet is an architecture proposal for deploying honeypots. Deployed
honeypots can be both low- and high-interaction honeypots but honeynet
architecture discusses mainly about high-interaction ones. According to the
Honeynet Project[37] architecture, honeypots live in a private subnet and
have no direct connectivity with the rest of the Internet. Their communi-
cation is controlled by a centralized component, actually the core of the
architecture, called honeywall. Honeywall performs three operations: data

www.syssec-project.eu 27 June 8, 2011

CHAPTER 2. HONEYPOTS

capture, data collection and data analysis. Data capture mechanism moni-
tors all traffic to and from the honeypots. The challenge here is that a large
portion of the traffic is over encrypted channels (SSH, SSL, etc.). To over-
come this problem, Sebek[23] was introduced to the honeynet architecture.
Sebek is a hidden kernel module that captures all host activity and sends
this activity to the honeywall. As Sebek runs in the host level, it can capture
traffic after being decrypted. Detectability of Sebek is a challenge. The at-
tacker must not be able to detect that this module is running and he must
not be able to see the traffic from the Sebek module to the honeywall. The
detectability of Sebek is studied in [80]. The data control mechanism tries to
mitigate risk from infected honeypots. As honeypots will eventually be com-
promised, they can be used for attacking other non-honeypot systems. Data
control can be performed in many ways; limiting the number of outbound
connections, removing attack vectors from outgoing traffic or limiting the
bandwidth. The removal of attack vectors is performed by Snort-inline. The
strategy followed is specified by each organization that deploys a honeynet.
Data analysis processes all the information gathered by the data capture
mechanism to collect useful statistics and attack properties. Data collection
applies to organizations that have multiple distributed honeynets. Its main
task is to gather and combine the data. The Honeynet alliance has currently
16 members, distributed in 3 continents. The honeynet community is very
active and has published several “Know your enemy” white-papers available
at project’s website4. Honeynet farms were originally used to capture and
analyze manual attacks. Recently, they have been used to track phishing
attempts and botnets.

2.3.5.6 A hybrid honeypot infrastructure

Provos et al. in [55] propose an architecture that combines the scalability of
low-interaction systems with the interactivity of high-interaction ones. The
architecture consists of three components: low-interaction (or lightweight)
honeypots, high-interaction honeypots and a command and control mech-
anism. The role of low-interaction honeypots is to filter out uninteresting
traffic. Connections that have not been established (the 3-way handshake
was not completed) or payloads that have been seen in the past are part
of the uninteresting traffic. Low-interaction honeypots maintain a cache
of payload checksums. If the payload of the first packet (after connection is
established) has not been seen in the past, it is considered as interesting. Ac-
cording to the measurements of the paper, around 95% of the packets with
payload have been observed in the past. All interesting traffic is handed off
to high-interaction honeypots. The handoff mechanism is implemented by
a specialized proxy. Once a packet is marked as interesting, the proxy estab-

4http://www.honeynet.org

www.syssec-project.eu 28 June 8, 2011

http://www.honeynet.org

2.3. RELATED WORK

lishes a connection with the back-end and replays this packet. Next packets
of the interesting connection will be forwarded to the back-end by the proxy.
The honeyd system is used as the main core of the low-interaction honey-
pots. The high-interaction honeypots run on VMware and form the back-
end of the architecture. The back-end is set up not to be able to contact
the outside world. Instead of blocking or limiting the outgoing connections,
traffic generated by these honeypots is mirrored back to other honeypots. As
long as there are uninfected machines, the infection will spread among the
honeypots, allowing the capturing of exploits and payload delivery. How-
ever, this architecture does not work for malware that downloads its code
from an external source, like a web site. To detect whether high-interaction
honeypots are infected, their network connections are monitored as well
as changes in their filesystem. The virtual machines of infected honeypots
are returned to a known good state, through the snapshot mechanism of
VMware. The command and control mechanism aggregates traffic statistics
from low-interaction honeypots and monitors the load of high-interaction
ones. It also analyzes all data from virtual machines to detect abnormal be-
havior such as worm propagation. The proposed hybrid infrastructure looks
similar to the infrastructures proposed by Collapsar and NoAH. However,
this approach focuses more on filtering the interactions before they reach
the high-interaction honeypots and additionally the backend architecture is
fundamentally different as in this approach mirroring is performed.

2.3.5.7 Shadow honeypots

Architectures presented so far use honeypots as non-production systems,
living at different network domains than production systems and listening
to unused IP address space. Shadow honeypots[46] propose a different
approach for detecting attacks that couples honeypots with production sys-
tems. The architecture consists of three components: a filtering component,
a set of anomaly detectors and shadow honeypots. The filtering component
blocks known attacks from reaching the network. Such a component can be
either a signature-based detector, like Snort, or a blacklist of known attack
sources. The array of anomaly detectors, each one running with different
settings in respect to their sensitivity and configuration parameters, is used
to classify which traffic is suspicious. The traffic that is characterized as
anomalous is forwarded to shadow honeypots. Their main role is to offload
the shadow honeypots as much as possible by forwarding them only the
traffic that may include an attack.

Shadow honeypots are cloned instances of production servers that are
heavily instrumented so as to detect attacks. Two types of shadow honey-
pots can be identified: loosely-coupled and tightly-coupled. Loosely-coupled
honeypots are deployed on the same network of the protected server, run-
ning a copy of the protected applications but in a different machine without

www.syssec-project.eu 29 June 8, 2011

CHAPTER 2. HONEYPOTS

sharing state. However, the effectiveness of loosely-coupled shadow honey-
pots is limited to static attacks that do not require to build state at the appli-
cation level. Tightly-coupled shadow honeypots run on the same machine
as the protected applications and share their state. Shadow honeypots, as
stated before, are instrumented versions of protected applications. The in-
strumentation allows the accurate detection of buffer overflow attacks and
is based on the pmalloc() concept, as described in [155]. Pmalloc() is a
replacement for malloc(), the standard memory allocation routine, and it
works as follows. Before and after an allocated memory block requested to
pmalloc(), read-only memory pages are placed. If an overflow attack is go-
ing to take place, it will try to write on the read-only pages and an exception
will be thrown. The exception is caught by the pmalloc() routine, indicating
the presence of an attack. (note: the concept of pmalloc() was extended to
include statically allocated arrays). The major drawback of this instrumen-
tation approach is the requirement for the application’s source code.

When the shadow honeypot detects an attack, it state is rolled back as it
was before the attack and the malicious content is not forwarded to the nor-
mal application. It also informs the anomaly detectors about the attack so
they can tune their detection models for better performance. If the shadow
honeypot does not detect any attack, the request is handled to the normal
application. Again, the anomaly detectors are informed that this was not
an attack so they can update their models. Shadow honeypots can be also
used to protect the client from client-side exploits, such as the buffer over-
flow in the JPEG handling routine of Internet Explorer. As an example, an
instrument copy of Mozilla Firefox can handle web requests. According to
the paper, the overhead of the instrumented version is around 20%.

2.3.5.8 Vigilante

Vigilante is an infrastructure that aims for worm containment. The archi-
tecture of Vigilante is based on the collaboration of end hosts and makes
no assumptions that collaborating hosts trust each other. The proposed ap-
proach has preferred to move from network-level to host-level in order to
eliminate problems like encrypted traffic or the lack of information about
software vulnerabilities. End hosts act as honeypots; they run instrumented
versions of software that normally wouldn’t run on the host. For exam-
ple, a host can run an instrumented version of a database, not a common
application for a normal host. The alert generation is done using two tech-
niques. The first uses non-executable pages around stack and heap pages to
detect code injection attacks. If a buffer overflow tries to write on a non-
executable page an exception is raised and caught. The second technique
is the dynamic dataflow analysis. The concept of dataflow analysis is very
similar to memory tainting. Data coming from the network is marked as
dirty and if dirty data is going to be executed or used as critical arguments

www.syssec-project.eu 30 June 8, 2011

2.3. RELATED WORK

for a function, a signal for exploit is raised. Unlike approaches described in
Section 2.3.3, which use specialized versions of virtual machines, Vigilante
uses binary rewriting at load time. Every control transfer instruction and
every data movement instruction is instrumented. A bitmap is kept to track
dirty data throughout memory, one bit for each memory page. Additionally,
information for where the dirty data came from is stored to help the analysis
and alert generation.

The contribution of Vigilante is the concept of self-certifying alerts (SCAs).
SCAs are distributed among the collaborating hosts and their novelty is that
they can be verified by recipients. This property eliminates the need for trust
between the hosts. Three types of SCAs can be identified: arbitrary execu-
tion control, arbitrary code execution and arbitrary function argument, with
each type covering a different type of vulnerability. All types of SCAs contain
some common information. This information is the identity of vulnerable
service, verification information to assist alert verification and a sequence
of messages that contain necessary data to trigger the vulnerability. Upon
received a SCA, the host uses the verification information the sequence of
messages to reproduce the vulnerability. The alert distribution is done using
the Pastry system. There was no real deployment and authors did simula-
tions to evaluate the architecture. According to their results, the generation
time of a SCA varies from 18 up to 2667 milliseconds, depending on the
worm instance, while verification time needs up to 75 milliseconds. With
a very small fraction of detectors against the total vulnerable population,
infection rate can reach up to 50%. When this fraction reaches 0.001, in-
fection rate falls to 5% and drops to nearly zero when this fraction reaches
0.01. The total population simulated was 500,000 hosts but only a subset
S was vulnerable. The choice of S was done based on real data gathered
during the worm outbreaks.

2.3.5.9 iSink

The iSink architecture[176] aims at monitoring large unused IP address
space, such as /8 networks. Although this work focuses on measuring packet
traffic, we will study its design and properties, which are related to hon-
eypot infrastructures. The design model of iSink is to respond to traffic
that goes to unused IP address space. However, as iSink deals with large
address space, a scalable architecture is needed. Authors considered four
systems that can be used as responders: Honeyd, honeynet, LaBrea and
ActiveSink. ActiveSink is a framework written by authors using the Click
router language[109]. This framework includes several responders, such
as ICMP, ARP, Web, SMTP, IRC and NetBIOS responders. Additionally, re-
sponders for MyDoom and Beagle backdoors were also implemented. Ac-
tiveSink responders are stateless, and still accurate, in order to achieve a
high degree of scalability. Even for complex protocols, it is possible to con-

www.syssec-project.eu 31 June 8, 2011

CHAPTER 2. HONEYPOTS

struct a response by looking at the last request packet. Furthermore, there
is need for interacting with the attacker up to the point where an attack is
detected. For example, if an attack is taking place on the fifth step of a very
long conversation, there is no need to emulate further than this step. The
four systems were tested along five main criteria: configurability, modular-
ity, flexibility, interactivity and scalability. Honeynet was discarded because
of low configurability and medium scalability. LaBrea, on the other hand,
has high scalability but very low configurability, modularity and flexibility.
Honeyd presents high configurability and flexibility but medium scalability.
ActiveSink, finally, is highly scalable, configurable, modular and flexible,
with only drawback depending its interactivity on responders (medium in-
teractivity according to authors). The performance of iSink architecture was
evaluated using TCP and UDP packet streams at rates up to 20,000 packets
per second. Each packet was a connection attempt. iSink didn’t suffer from
losses at any rate for both protocols. The system was also deployed in four
class B networks and one class A network. The amount of traffic received
in these networks was large. iSink node for class A network was receiving
between 4,000 and 20,000 packets per second.

2.3.5.10 Internet Motion Sensor

The Internet Motion Sensor (IMS)[51] is a Internet monitoring system cov-
ering 28 unused IP blocks, ranging from /25 to /8. The IMS architecture
consists of a set of blackhole sensors. Each sensor monitors a block of
unused IP addresses and has both an active and passive component. The
passive component is a traffic logger that records all traffic destined to the
monitored address space. The active component is a lightweight responder,
aiming at raising the level of interaction with the attacker. While UDP and
ICMP are stateless and no response is needed, TCP needs a connection to be
established until the data of the actual attack can be seen. The lightweight
responder establishes the incoming TCP connections and captures the pay-
load data. The responses are application-agnostic as they do not provide
any protocol emulation. While this may not work in all cases, it is enough
for many cases like the Blaster worm that did not wait for any application
responses. To avoid the recording of unnecessary traffic, payload caching
is used. The checksum of payload data is computed for each packet and if
it is has been seen in the past the payload data are not stored. If not, the
payload is stored along with its checksum. The observed hit rate in IMS
sensors is approximately 96%, which yields to storage savings by a factor
of two. Checksums also provide a convenient way to gather quick statis-
tics about traffic and a way to filter out traffic from other components, like
intrusion detection systems. The IMS systems tries to answer questions re-
garding worm demographics, virulence, propagation and the timescale of

www.syssec-project.eu 32 June 8, 2011

2.3. RELATED WORK

responses to attacks. The paper provides a number of traffic statistics over
a 7-day period and uses the Blaster worm as an example.

2.3.5.11 Honeystat

HoneyStat[77] is an effort to compliment global monitoring strategies and
provide an early worm detection system by inspecting local networks. Hon-
eystat proposes minimal honeypots created in an emulator and multihomed
to cover a large address space. The emulator used is the VMware GSX
server V3, which supports up to 64 isolated virtual machines on a single
hardware system. Most modern operating systems support multihoming,
which is assigning multiple IP addresses to a single network interface. Win-
dows NT allow up to 32 IP addresses while most flavors of Linux up to
65536. Each virtual machine, also called node, was configured to have
32MB RAM and 770MB virtual drive. Nodes were instrumented to capture
three types of events: memory, network and disk events. Memory events
are considered any kind of alert by buffer overflow protection software, like
StackGuard[73] or Windows logs. Each outgoing TCP SYN or UDP traf-
fic is a network event. Disk events are generated by activities that try to
write to protected file areas. Kqueue is a monitoring tool that performs
this task, although protected file areas have to be listed manually (e.g. the
c:/windows/system directory or the registry file). For each the OS and patch
level were also recorded as well as associated data, like stack state for mem-
ory events, packets for network events and delta of the file changes for disk
events.

All recorded events are forwarded to an analysis node. If the event is
a network event then the reporting honeypot is reset. This action is taken
to prevent the node from attacking other machines. Besides, by the time
a network activity is initiated, enough information has been recorded to
study the worm infection cycle. The analysis node is also responsible to
decide if some nodes should be redeployed. For example, if a worm hits
a vulnerable OS, it would make sense to redeploy some of the nodes with
the vulnerable OS to capture more events for the worm. Finally, each event
is correlated with all other events for detection of attack patterns. Event
correlation is done using logistic regression, a method which is effective for
data collected in short observation windows. Network traffic from 100 /24
darknets was used to evaluate the HoneyStat approach in terms of detection
accuracy. The logit analysis eliminates noise from generated events when
this traffic is injected to honeystat nodes and identifies correctly all worm
activities. HoneyStat evaluation, in terms of false positives, was done using
attack data from the Georgia Tech Honeynet project mixed with non-attack
background traffic. Attack data was from July 2002 to March 2004. There
are two reasons for a honeystat node to generate a false positive: a) normal
background traffic is characterized as worm and b) repeated human break-

www.syssec-project.eu 33 June 8, 2011

CHAPTER 2. HONEYPOTS

ins are identified as a worm. Honeypot events produced by nodes did not
produce any false positive. However, according to authors, the false positive
rate may be different than zero in a larger dataset.

2.3.5.12 HoneyTank

The HoneyTank project[166] aims at collecting and analyzing large amounts
of malicious traffic. The data destined for the unused IP address space of
a network are forwarded by cooperating network devices, like routers, and
captured by an IDS called ASAX (Advanced Sequential Analyzer on Unix).
The IDS emulates services on these addresses to capture data sent to ser-
vices (e.g. web-server). The architecture consists of a single sensor on
which ASAX is deployed and the cooperating devices. As the sensors are
distributed,the authors propose to use mobile IPv4 (MIPv4) to redirect the
traffic to the IDS sensor. The other alternative is to use ARP and GRE tun-
neling but GRE is not fully supported by routers. To integrate a new unused
IP address, the IDS sends a request for this address to the router for traffic
redirection.

All packets redirected to the central sensor are captured by the libpcap
library. This data is imported and analyzed by the ASAX IDS. ASAX allows
the flexible declaration of rules that are applied to the captured data. Each
rule declaration is written in the ”RUSSEL” language and is used to analyze
the captured packet and to apply actions that depend on the result of the
prior analysis. The rule declaration allows the authors to emulate the ba-
sic behavior of the TCP protocol itself and the protocols HTTP and SMTP
protocol. The advantage of the proposed approach is that no protocol state
is required, increasing the scalability of the architecture (similar to iSink
responders that are also stateless). The stateless emulation of protocols is
done by matching regular expressions. For example, if a request matches
the “GET .* HTTP/1.1” expression, a HTTP reply with code 200 is returned.
However, although the level of emulation is adequate for automated pro-
grams, a manual intrusion is able to detect that services are emulated.

Authors evaluated their approach by deploying a HoneyTank prototype
in their class B campus network. The ASAX IDS was configured to emu-
late HTTP and SMTP and to accept connections for all other TCP ports. The
port and flow length distribution were calculated. HoneyTank was deployed
for around 6 hours and all the traffic received from and sent by ASAX was
recorded to a tcpdump trace. The trace was then given as input to a Snort
system and the occurrences of the attacks were measured (20 attacks were
detected). Authors also compared HoneyTank with Darknet[76]. The SYN
packets of HoneyTank trace were given as input to the Darknet system and
the trace produced by Darknet was tested with Snort. Darknet trace con-
tained 5 out of 20 attacks, providing less visibility to attackers than Honey-
Tank.

www.syssec-project.eu 34 June 8, 2011

2.3. RELATED WORK

2.3.6 Research papers

This Section is an overview of research papers that are based on honeypot
technologies and infrastructures.

2.3.6.1 ScriptGen

By default, service emulation in honeyd is done by shell scripts, written
usually in Perl, that ship with default distribution. The original purpose of
honeyd is not to provide accurate scripts (in fact its scrips are just a proof of
concept) but rather the framework to hook advanced scripts. Towards this
direction, ScriptGen[122] is an effort to build an automated script genera-
tion tool. The input for this tool is a tcpdump trace, from which sequence of
messages is extracted. A message is defined as the application-level content
of a packet. Authors focus on TCP-based protocols only. These messages are
used to build a state machine. As the size of the state machine can become
very large, as a next step this state machine is simplified using the PI algo-
rithm, an algorithm introduced in the Protocol Informatics Project[29], and
an algorithm proposed by authors, the Region Analysis algorithm. Finally,
from the simplified state machine a honeyd script is generated. PI is an algo-
rithm that performs multiple alignments on a set of protocol samples and is
able to identify the major classes of messages. The result of the PI alignment
is given as input to the Region Analysis algorithm. The aligned sequences
produced by PI are examined in a byte per byte basis and for each byte its
type (ASCII or binary), value, variability of its values and the presence of
gaps in that byte are computed. A region is then defined as a sequence of
bytes that have the same type, have similar variability and may, or may not,
have gaps. The quality of the results of ScriptGen is limited by the num-
ber of samples we use in the state machine generation. For example, if we
use two samples, “GET /file1.html” and “GET /file2.html”, ScriptGen would
generate a state machine that is triggered by the “GET /file?.html” regular
expression. This is wrong as any other request will not be handled by the
generated state machine.

2.3.6.2 A Pointillist Approach for Comparing Honeypots

Pouget and Holz in [143] used the honeypot architecture of Leurre.com plat-
forms to compare low- and high-interaction systems. The low-interaction
honeypot setup is the same as this of a Leurre.com platform. The high-
interaction honeypot setup was the same as the low-interaction one but
instead of using modified version of honeyd, a VMware client was used. All
virtual guests had adjacent IP addresses and they were monitored for 10
continuous weeks (August to October 2004). Both setups observed around
seven thousands attacks. Attacks were classified into three types: first type

www.syssec-project.eu 35 June 8, 2011

CHAPTER 2. HONEYPOTS

(Type I) contains attacks that target a single host, Type II includes attacks
that target 2 hosts and finally Type III includes the attacks that targeted
all three hosts of the setup. Most of the attacks (around 67%) are Type I.
However, for these attacks, high-interaction setup received 40 times more
packets and this is due to the fact that they target talkative services. As low-
interaction honeypots do not emulate service in depth, they receive con-
siderably less packets. Around 4% of the attacks, targeted only 2 out of 3
systems of each setup. However, the majority of these attacks are incom-
plete Type III attacks. Concerning Type III attacks, an interesting fact is that
all IP sources were observed on both environments. Authors reached three
main conclusions. First, it is not necessary to deploy honeypots using hun-
dreds of public IP addresses in order to identify scan activities against large
block IPs. Second, low-interaction honeypots bring as much information as
high interaction ones when it comes down to global statistics on the attacks.
Finally, both interaction levels are required to build an efficient network of
distributed honeypots, using high-interaction as a means to configure low-
interaction ones.

2.3.6.3 Configuration of Dark Addresses

Honeypot networks are usually setup based on manual and ad-hoc config-
urations. However, such configurations do not lead to good visibility and
are vulnerable to discovery. A typical example is when the production net-
work consists of Linux workstations whose SSH service is attacked, while
honeypots of the same domain emulate services like Microsoft SQL server.
Taking into account the huge diversity in network and host configurations
and the fact that vulnerabilities increase year by year, the task of config-
uring honeypots becomes even harder. Sinha et al. in [157] address this
problem and propose an automated technique to generate honeynet config-
urations. Authors examined four configurations. First one was the one used
by the Internet Motion Sensor project, where incoming connections are ac-
cepted but no application-level response is provided (All TCP Responder).
The second one was the default configuration of Honeyd (Generic Honeyd)
and the third one was random combinations of chosen OSes and services
created by RandomNet[158] (Random Honeyd). The last configuration was
the default one of Nepenthes system. The configurations were compared
against the top 10 open TCP ports of an academic /16 network. All con-
figurations failed to capture attacks on several ports that were attacked on
the production environment and at the same time made certain ports, like
TCP port 139 (Microsoft RPC service), appear more important than others.
Such behavior does not only affect the visibility of honeypots but also allows
attacker to identify them.

Authors used a simple methodology to show that the configurations
mentioned before expose honeypots to detection. They constructed a set

www.syssec-project.eu 36 June 8, 2011

2.3. RELATED WORK

of tests to make profiles for each host. These tests included checking ambi-
guities in implementation of TCP software (tcp test), identification of a web
server and its configuration (http test) and finally a scan to TCP ports 1 to
1024 to discover open ones (ports test). Hosts are grouped by test values
and then subnet is compared against the network as a whole for the values
of the test. Then values of the test are aggregated and values of next test are
compared. This process iterates over the determined test order until the last
test. Tests are ordered by increasing entropy. To identify anomalies in a test,
authors use z-statistics. The subnets with the highest anomaly score ideally
should be the honeynets. Their methodology was evaluated by embedding
different honeynet configurations into six networks, two of which were aca-
demic network and the rest four were web-server farms. The honeynet con-
figurations were created using all four approaches (generic honeyd, random
honeyd, all TCP responder and Nepenthes). Results yielded that it is easy
to discover honeynets created by all four configurations, although someone
would expect that configurations like Generic Honeyd and Nepenthes would
be more resilient to identification.

The automated creation of configurations is a challenging task due to
two main reasons. The first one is that there is a variation in the threat
landscape. Ports that are frequently attacked in one month, may be rarely
contacted the next month and vice versa. Authors confirm this variation
by observing data collected over a 5-month period. The second one is the
heterogeneity in operating systems and services. By examining 5512 hosts,
352 unique TCP stack implementation were found, 1237 hosts were run-
ning 241 different version of web servers. The proposed technique is based
on profiling the existing network and generating configuration according
to the extracted profiles. The profiles proportionally represent the network
and are individually consistent. Individually consistency guarantees that a
honeypot will not have an unrealistic profile and that it will match a live
host. To achieve proportionality, real hosts are sampled using stratified sam-
pling. Stratified sampling involves separating the population and allocating
the size to be sampled proportionally at each point in the hierarchy. Ad-
ditionally, weights in the values of some tests are supported. That means
that if a port is preferred open than closed, a host with that port open will
replace a host with that port closed during the profile extraction. Honeynets
with configurations created by that process were embedded in the same five
networks mentioned before. Results show that honeynets provide better vis-
ibility into vulnerable population. The distribution of services and operating
systems is close to the vulnerable population. Furthermore, honeynet con-
figurations are more resistant to fingerprinting when configured to use the
authors’ approach.

www.syssec-project.eu 37 June 8, 2011

CHAPTER 2. HONEYPOTS

2.3.6.4 Data Reduction for the Scalable Automated Analysis of Dis-
tributed Darknet Traffic

M. Bailey et al. in [53] examine the properties of darknets in order to deter-
mine the effectiveness of building hybrid honeypot systems, e.g. systems
that combine monitoring of unused address space with honeypot farms.
Their goal is to analyze darknet traffic and filter out redundant traffic that
will impose unnecessary overhead to honeypot farms. They try to identify
threat characteristics that will enable them to limit the number of connec-
tions that reach honeypots. Their measurements and analysis was done over
60 darknets in 30 organizations, a monitored space of 17 million addresses.
The dark address space was monitored using the Internet Motion Sensor
architecture presented in Section 2.3.5.10. The 14 IMS sensors monitored
networks with variable size, ranging from /25 up to /17, over a period of
10 days (mid-August 2004). Initially, the source IP addresses were evalu-
ated. The observed distribution showed that 90% of the packets were sent
from less than 10% of source IP addresses. Secondly, the destination port
distribution was examined. 90% of the packets target less than 1% of the
destination ports. However, as the cross product of unique source IP ad-
dresses and total destination port is large, the top 10% source IP addresses
were evaluated separately in terms of the destination port they contact and
unique payloads they send. Over 55% of these IP addresses contacted a
single destination port, 90% contacted less than six while 99% contacted
less than ten. In terms of the paylod they send, 30% of addresses send only
one payload, 70% send two or less and 92% of addresses send less than ten
payloads.

The authors evaluated three methods of source-based filtering previously
reported in [138]: source-connection, source-port and source-payload. In
source-connection filtering, N connections from a single source are recorded,
and all subsequent traffic from that source is ignored. In source-port filter-
ing, N connections are maintained for every source and destination port
pair. In source-payload filtering, the first N payloads sent by a source are
used to define all future behavior by that source. The average reduction
due to these three methods for N=1 was ranging from 86% up to 97%, but
there were huge variations over time. In some time periods the reduction
was dropped down to 47% and the main reason behind that behavior is that
there is little overlap across subnets. Any additional darknet block added
for monitoring will bring its own sensor-specific events. Based on that two
observations, authors constructed a new filtering mechanism. The author’s
approach examines the distribution of unique IP addresses to a specific port.

Every hour, each darknet is queried for the number of unique source IP
addresses that have contacted it with destination port x. For each hour, the
number of unique source IP addresses contacting destination port x at each
darknet is added up. This data is scanned over, one hour at a time, com-

www.syssec-project.eu 38 June 8, 2011

2.3. RELATED WORK

paring the average (per hour) over the event window (last event window
hours) to the average over the history window (last event window product
the history factor) hours. If the ratio of event window average to history
average is greater than the event threshold, an event is generated. These
events are then filtered based on whether they are global or local, via the
coverage threshold. The coverage threshold defines the number of darknets
that would have generated an event individually for a threat. Their alert
mechanism was able to identify such as a MYSQL worm, WINS and Veritas
Backup Agent vulnerabilities, along with most major events that took place
during the 4-month deployment phase of the technique.

2.3.6.5 Detectability of honeypots

Detectability of honeypots is an interesting research area. Nevertheless, we
can only find a limited number of works in this area. In the article pub-
lished in [2], three techniques were introduced to detect three subsystems
of honeypots. The first one detects Sebek, the kernel module used in hon-
eynets for logging host activities. Sebek hides itself from the kernel module
list and this is done by a module called cleaner. After cleaner runs, the
lsmod command does not provide any visual output that a module is run-
ning. However, information still remains in /dev/kmem and a simple grep
of “insmod sebek S.data” reveals the existence of Sebek. The second tech-
nique introduces a way to detect honeyd. The idea is based on the fact
that by default honeyd resets the connections it cannot handle. Even when
the SYN packet is malformed, the honeyd will respond with reset. A ran-
dom scanning tool was used to identify honeyd systems by looking at the
resets at random ports. The last technique identifies if an operating system
runs inside VMware. As VMware is commonly used in the setup of honey-
pots, malware may use the technique to detect it runs on a honeypot or to
prevent itself from being executed inside a virtual guest. The idea is very
simple; the device names of virtual guest OS reveal the existence of VMware
: “Model Number: VMware Virtual IDE CDROM Drive”. Although this can
be fixed, scanning of the devices reveals even more information as VMware
does not return all necessary information. Similar detection techniques can
be applied to other virtual machines or emulators such as Qemu and Bochs.

Detection techniques against Honeynets, and especially Sebek, are also
described in [81]. The first technique checks if network is congested due
to Sebek. As Sebek client sends a packet to Sebek server for each read()
operation, if one can call read() thousands times per second, this leads to
network congestion. The detection is as follows. A local host is ping()’ed.
Local host can be reached within a millisecond and this time is recorded.
After the first ping, a second one is sent but now a dd operation runs in the
background. According to measurements, the response time changed from
0.7 milliseconds to nearly 5 seconds. The second proposed approach is to

www.syssec-project.eu 39 June 8, 2011

CHAPTER 2. HONEYPOTS

check the system call table and observe the difference between the addresses
of sys read and sys write. As sys write is successor of sys read in the sys-
tem call table, these two functions originally have a few kilobytes distance.
When Sebek overwrites the sys read pointer, this distance increases to tens
of megabytes. Authors also propose a technique to detect the presence of
honeywall. As honeywall by default limits the number of connections to
15 per day, it is trivial to detect if the 16th connection is dropped or not,
provided that connections target a known destination host. Additionally,
an attacker can send packets that match snort inline signature (snort inline
runs in the honeywall) to a machine it controls and then check if this packet
was rewritten according to the matching signature.

2.4 Comparison

In this Section we make a comparison of the different honeypot types. We
have selected the tools that are widely deployed. The comparison axes have
been extensively described in Section 2.2. A summary of the comparison is
shown in Table 2.1.

All low-interaction honeypots present a low level of realism as they em-
ulate services using scripts, which do not implement all protocol seman-
tics. Although they are highly scalable, they are also highly detectable as
the incomplete implementation of their service emulation can reveal their
role. The exception is LaBrea but we should bear in mind that the origi-
nal purpose of LaBrea is to stale connections by attackers. Low-interaction
honeypots do not suffer from the danger of being compromised as they per-
form emulation and not real services that are vulnerable to attack vectors.
We have not marked the exposure level to zero as all machines connected
to the Internet can be compromised or the emulation software may also
be vulnerable (e.g. their packet processing routines can be overflown). To
the best of our knowledge no vulnerabilities have been reported up to date
for all three low-interaction honeypots shown in Table 2.2. Concerning the
ease of installation, Honeyd presents a medium degree as the initial con-
figuration overhead is significant. Automated tools however help towards
this direction. The other two tools, LaBrea and Honeytrap, have minimal
configuration settings to be set up.

Medium-interaction honeypots present a better level of realism as they
are not vulnerable to network fingerprinting and use more advanced emu-
lation services. Billy Goat in fact does not use emulation but a hardened
version of the SMB protocol. However, we include it in the category of
medium-interaction honeypots as it does not run any other service and its
basic operation is similar to the one of Honeyd. Nepenthes, on the other
side, uses emulation scripts for various services which makes it vulnerable
to fingerprinting. The scalability of both tools is medium as they can bind

www.syssec-project.eu 40 June 8, 2011

2.4. COMPARISON

only to few addresses per physical machine (recall that they do not perform
raw operation to monitor and handle traffic and that separates them from
low-interaction honeypots).

Argos and Minos share the same basic principle so most of the char-
acteristics match. Both tools present low scalability as their processing and
memory overhead allows to run only a few instances (no more than 3-4) per
physical machine. High-interaction honeypots present the maximum level
of realism as they run full services in their native operating system. How-
ever, the high level of instrumentation eliminates most of the exposure risks.
Both approaches detect the attack before it launches so no malicious code
will run inside the virtual machine to perform the detection and the node
compromise. Honeynets follow a different approach. By not performing
instrumentation, it becomes vulnerable to being compromised. Their scala-
bility is poor as each physical machine can monitor one or few IP addresses
(per interface). Honeynets are also vulnerable to detection, mainly due to
their Sebek module that monitors the kernel activities. The documentation
and wide community of Honeynets makes the installation of a honeynet an
easy process.

All implementations of client-side honeypots share some common char-
acteristics. First of all, due to their nature, they have low chances to get
detected as they behave as normal browsers that surf the World Wide Web.
The chance to blacklist the IP address range of a client-side honeypot is also
minimal as it is hard to distinguish them from normal crawlers and bots
or they might use proxies. Second, as all approaches run real browsers in
their native environment, they provide the highest level of realism. Further-
more, they have plugins enabled (e.g. Flash and Java) so they can detect
third-parties vulnerabilities. A recent example was the vulnerability in Flash
applications[1]. A client-side honeypot is able to detect all these pages that
try to infect users through a Flash applet. The instrumentation level dif-
fers per approach. Finally, they all follow the same instrumentation pattern,
monitoring the filesystem and registry for changes. The scalability of client-
side honeypots varies. As client-side honeypots act like crawlers, they are
demanding in terms of bandwidth and physical machines. As the space of
web pages is enormous, tens of machines and several hundreds of Mbps
are needed to crawl the web at a pace of thousands of pages per second.
The extra security components needed by HoneyClient makes it less scal-
able than the other two. Concerning the ease of installation, Capture and
HoneyClient have an extensive documentation that helps the process. As
Strider Honeymonkeys is a proprietary project, we could not have an idea
of how easy it is to install it. We intentionally left the Shelia tool out as it is
an offline processing tool for inspecting spam e-mail for malicious URLs and
attachments.

www.syssec-project.eu 41 June 8, 2011

CHAPTER 2. HONEYPOTS

N
am

e
Si

de
R

ea
lis

m
Sc

al
ab

ili
ty

In
st

ru
m

en
ta

ti
on

Ex
po

su
re

In
st

al
la

ti
on

ea
se

D
et

ec
ta

bi
lit

y
H

on
ey

d
Se

rv
er

Lo
w

H
ig

h
N

on
e

Lo
w

M
ed

iu
m

H
ig

h
La

br
ea

Se
rv

er
Lo

w
H

ig
h

N
on

e
Lo

w
H

ig
h

Lo
w

H
on

ey
tr

ap
Se

rv
er

Lo
w

H
ig

h
N

on
e

Lo
w

H
ig

h
H

ig
h

B
ill

y
G

oa
t

Se
rv

er
M

ed
iu

m
M

ed
iu

m
Lo

w
Lo

w
H

ig
h

Lo
w

N
ep

en
th

es
Se

rv
er

M
ed

iu
m

M
ed

iu
m

N
on

e
Lo

w
H

ig
h

H
ig

h
A

rg
os

Se
rv

er
H

ig
h

Lo
w

Fu
ll

Lo
w

M
ed

iu
m

Lo
w

M
in

os
Se

rv
er

H
ig

h
Lo

w
Fu

ll
Lo

w
n/

a
Lo

w
H

on
ey

ne
ts

Se
rv

er
H

ig
h

Lo
w

Lo
w

H
ig

h
H

ig
h

H
ig

h
St

ri
de

r
H

on
ey

M
on

ke
ys

C
lie

nt
H

ig
h

M
ed

iu
m

H
ig

h
Lo

w
n/

a
Lo

w
H

on
ey

C
lie

nt
C

lie
nt

H
ig

h
Lo

w
M

ed
iu

m
Lo

w
H

ig
h

Lo
w

C
ap

tu
re

C
lie

nt
H

ig
h

M
ed

iu
m

M
ed

iu
m

Lo
w

H
ig

h
Lo

w
Sh

el
ia

C
lie

nt
n/

a
Lo

w
M

ed
iu

m
Lo

w
M

ed
iu

m
n/

a

Ta
bl

e
2.

1:
A

co
m

pa
ri

so
n

ov
er

vi
ew

of
se

rv
er

-s
id

e
an

d
cl

ie
nt

-s
id

e
ho

ne
yp

ot
s

www.syssec-project.eu 42 June 8, 2011

2.5. SUMMARY AND CONCLUDING REMARKS

2.5 Summary and concluding remarks

Honeypot technology is a powerful addition to the set of existing defense
mechanisms. Honeypots provide an abundance of information in terms of
attack context, malware executables, triggered exploits and attack behav-
ior. An advantage of honeypots is that they are even capable of capturing
previously unknown attacks (0-day). Their main disadvantage is that they
are still demanding in terms of resources, provided we want a good level of
attack detection and containment, and difficult to configure and maintain.

In this review, we presented all four types of honeypots; most well-
known low-, medium-, high- and client-side honeypots were described and
their advantages and drawbacks were highlighted. Based on honeypots, a
number of architectures have been proposed. Collapsar, Potemkin, Leurre.com,
honeynets, Vigilante, shadow honeypots are only some architecture exam-
ples. We cannot argue that a single architecture is sufficient to address
the problem of cyberattacks, however a combination of them will yield a
more complete and coherent solution. Apart from architectures, a number
of research works were presented. These works focused on comparing the
efficiency of honeypots, their detectability against various types of discovery
attacks and finally their configurability. While efficiency, performance and
configurability issues are partially addressed, the detectability of honeypots
still remains an open research issue.

Concluding, honeypot technology is a very interesting research with lots
of research issues remaining open. Our hands-on experience with honeypots
has shown that they are able to catch more attack information than we can
handle and the lack of automated tasks have made them a rigid solution.
Over the last few years, however, security researchers, ISPs and CERTs de-
ploy honeypots in their effort to understand and prevent cyberattacks. This
increasing trend reveals that although honeypot technology is not chrono-
logically recent, it plays an important role and attracts many experts. We
expect to see more honeypot-related works in the near future.

www.syssec-project.eu 43 June 8, 2011

CHAPTER 2. HONEYPOTS

Server Redirector Server Redirector

Front-end

Attacker

Production network Production network

VM-based honeypot

Management Station Correlation Engine

Collapsar Center

Figure 2.3: Architecture of Collapsar

www.syssec-project.eu 44 June 8, 2011

3
Malware

The term Malware (Malicious software) comprises a relatively broad spec-
trum of software. Per definition it refers to a software designed to secretly
access a computer system without the owner’s informed consent. The ex-
pression itself is a general term and describes a wide variety of program
code.

Honeypots, as they were described in the previous section, strictly aim
at gathering executables for further analysis. Therefore, these mechanisms
are one of the first entry points when collection data about malicious soft-
ware. As soon as a collected malware sample is being analyzed, however,
the honeypot-domain is left. How the result of such an analysis is used,
strongly depends on its purpose. Antivirus companies, for instance, usually
follow a different agenda than researchers.

In this Section, a description of existing methods and implementations
to share data and analysis results between different frameworks and tools is
given.

3.1 Introduction

The Internet has become a very important aspect of our lives. Undoubt-
edly, Internet applications are the most dominant way to provide access to
online services today. Every day, millions of users purchase items, transfer
money, retrieve information and communicate over the Internet. Although it
is convenient for many users because it provides anytime, anywhere access
to information and services, at the same time, it has also become a prime
target for miscreants who attack unsuspecting Internet users with the aim
of making an easy profit. The last years have shown a significant increase in
the number of Internet-based attacks, highlighting the importance of tech-
niques and tools for increasing the security of the Internet. For example,
online banking web sites all over the world are frequent targets of scam-

45

CHAPTER 3. MALWARE

ming attempts and there has also been extensive press coverage of recent
security incidences involving the loss of sensitive credit card information be-
longing to millions of customers. Most of these attacks are enabled by some
sort of malware deployed at the enduser. In almost all cases without the
user’s knowledge.

Defensive techniques to protect machines from a malware infection often
rely on signature-based approaches. Virus scanners, for example, are only as
effective as the underlying methodology to create the signatures for recently
encountered malware. It is quite obvious that the quality of such a scanner
highly depends on

a) the amount, coverage and speed with which new malware samples
are gathered. So called 0-day malware, which entitles previously un-
seen exploit code, must be analyzed as soon as possible, to be able to
distribute the corresponding signatures to the users

b) the quality of the analysis result. The better a new sample can be as-
sessed automatically, the faster an update for virus definition databases
can be shipped.

When talking about Virus scanners, this usually means that a company is
dealing with the process of gathering samples, analyzing them and dis-
tributing updates to their customers. However, the same problem applies
to researches and the academia as well. Ideally, a researcher would want to
operate on a very rich dataset with detailed analysis results, no time delay
on occuring 0-days and real-time processing of new samples.

In reality, researchers try to focus on a very specific problem like enhanc-
ing honeypots, finding new ways to analyze samples or clustering the results
for a better view. As a result, they often lack the resources to properly tackle
related but equally important tasks. The logical solution is, to share data
between interested parties. In addition to the technical questions, there are
organizational means that need to be in place to allow people to cooperate.

In the following, some of the most important means to analyze malware
binaries and how they produce, share and evaluate their data will be dis-
cussed.

3.2 Sandboxing

Studies of binary analysis framework have shown, that a static code anal-
ysis is always limited in its overall efficiency and effectiveness. Therefore,
dynamic code analysis frameworks that are based on sandboxing techniques
are the tools of choice when it comes to automatically assess a binary’s be-
haviour. Sandboxing refers to executing arbitrary code in a closed, virtual
environment and monitoring its behaviour. Implementations based on this

www.syssec-project.eu 46 June 8, 2011

3.2. SANDBOXING

technique can produce very good results and are not prone to various ob-
fuscation techniques and self modifying code.

One possible limitation of this approach, however, is that malware may
attempt to evade analysis by detecting the sandbox environment and refus-
ing to perform its malicious functionality [119, 151, 146, 137, 86, 87, 63].
Therefore, this approach may have to be complemented with techniques
aimed at detecting and circumventing sandbox evasion attempts [70, 58,
103, 104].

3.2.1 Anubis

Anubis [62, 64], which is an implementation of such an approach based on
the virtualization environment Qemu [21], provides insights into common
malware behaviors. Qemu is a fast PC emulator that properly handles self-
modifying code. To achieve high execution speed, Qemu employs an emu-
lation technique called dynamic translation. Dynamic translation works in
terms of basic blocks, where a basic block is a sequence of one or more in-
structions that ends with a jump instruction or an instruction modifying the
static CPU state in a way that cannot be deduced at translation time. The
idea is to first translate a basic block, then execute it, and finally translate
the next basic block (if a translation of this block is not already available).
The reason is that it is more efficient to translate several instructions at once
rather than only a single one. Of course, Qemu could not be used without
modification. First, it had to be transformed from a stand-alone executable
into a Windows shared library (DLL), whose exported functions can be used
by Anubis. Second, Qemu’s translation process was modified such that a
callback routine into the analysis framework is invoked before every basic
block that is executed on the virtual processor. This allows to tightly monitor
the process under analysis. Before a dynamic analysis run is performed, the
modified PC emulator boots from a virtual hard disk, which has Windows
XP (currently with Service Pack 2) installed. The lengthy Windows boot-
process is avoided by starting Qemu from a snapshot, which represents the
state of the PC system after the operating system has started.

When Anubis receives new samples, Anubis executes the binary and
monitors the invocation of important system and Windows API calls, records
the network traffic, and tracks data flows. This provides a comprehensive
view of malicious activity that is typically not possible when monitoring
network traffic alone. Anubis receives malware samples through a pub-
lic web interface and a number of feeds from security organizations and
anti-malware companies. These samples are collected by honeypots, web
crawlers, spam traps, and by security analysts from infected machines. Thus,
they represent a comprehensive and diverse mix of malware found in the
wild. The system has been live for a period of about four years. During this
time, Anubis has analyzed several million unique binaries (based on their

www.syssec-project.eu 47 June 8, 2011

CHAPTER 3. MALWARE

MD5 hashes). Given that processing each malware program is a time con-
suming task that can take up to several minutes, this amounts to more than
hundreds of CPU years worth of analysis. When compiling statistics about
the behaviors of malicious code, one has to consider that certain malware
families make use of polymorphism. Since samples are identified based on
their MD5 hashes, this means that any malware collection typically contains
more samples of polymorphicmalware programs than of non-polymorphic
families. Unfortunately, this might skew the results so that the behavior (or
certain actions) of a single, polymorphic family can completely dominate
the statistics. To compensate for this, it analyzes behaviors not only based
on individual samples in the database but also based on malware families
(clusters).

For each submitted malware sample, an Analysis report is generated and
can be accessed publicly. Such a report consists of the following information:

1. General information. This section contains information about TTAn-
alyze’s invocation, the command line arguments, and some general
information about the test subject (e.g., size, exit code, time to per-
form analysis).

2. File activity. This section covers the activity of the test subject (i.e.,
which files were created, modified,).

3. Registry activity. In this section, all modifications made to the Win-
dows registry and all registry values that have been read by the test
subject are described.

4. Service activity. This section documents all interaction between the
test subject and the Windows Service Manager. If the test subject starts
or stops a Windows service, for example, this information is listed
here.

5. Process activity. In this section, information about the creation or ter-
mination of processes (and threads) as well as interprocess communi-
cation can be found.

6. Network activity. This section provides a link to a log that contains all
network traffic sent or received by the test subject.

Once reduced to this human-readable list of modifications caused by an
executable on the underlying system, the evaluation is complete and can
be used for further processing. Another implementation of this sandboxing-
technique is called CWSandbox.

3.2.2 CWSandbox

CWSandbox [173] is a malware analysis tool that fulfills the criteria of au-
tomation, effectiveness, and correctness for the Win32 family of operating

www.syssec-project.eu 48 June 8, 2011

3.2. SANDBOXING

systems. It uses API hooking and dynamic linked library (DLL) injection
techniques to implement the necessary rootkit functionality to avoid de-
tection by the malware. Comparable to Anubis, CWSandbox is capable of
tracing the most important system calls and generate a report that describes

* the files the malware sample created or modified;

* the changes the malware sample performed on the Windows registry;

* which DLLs the malware loaded before execution;

* which virtual memory areas it accessed;

* the processes that it created;

* the network connections it opened and the information it sent; and

* other information, such as the malwares access to pro- tected storage
areas, installed services, or kernel drivers.

With the API hooking and DLL code injection as the underlying methods,
CWSandbox is capable of automatically analyzing a malware sample. This
system outputs a behavior-based analysis; that is, it executes the malware
binary in a controlled environment so that all relevant function calls to the
Windows API can be observed, and a high-level summarized report from
the monitored API calls can be generated. The report provides data for each
process and its associated actions, one subsection for all accesses to the file
system and another for all network operations, for example. One the fo-
cuses is on bot analysis, so a considerable effort is spent on extracting and
evaluating the network connection data. After it analyzes the API calls’ pa-
rameters, the sand- box routes them back to their original API functions.
Therefore, it doesn’t block the malware from integrating itself into the tar-
get operating system by copying itself to the Windows system directory, for
example, or adding new registry keys. To enable fast automated analysis,
the CWSandbox is executed in a virtual environment so that the system can
easily return to a clean state after completing the analysis process.

3.2.3 Related Projects

Other than the previously mentioned examples, several tools exist for auto-
matically analyzing malicious software behaviors. The Norman SandBox[28],
for example simulates an entire computer and a connected network by reim-
plementing the core Windows system and executing the malware binary
within the simulated environment. It’s also possible to execute the malware
binary with a live Internet connection. The companys Web site features im-
plementation details, a description of the underlying technology, and a live
demo. Such environments are mostly transparent to the malware, which

www.syssec-project.eu 49 June 8, 2011

CHAPTER 3. MALWARE

can’t detect that they’re being executed within a simulated environment.
Yet, simulations dont let the malware processes interfere with, infect, or
modify other running processes because no other processes run within the
simulation. A different approach is Chas Tomlin’s Litterbox [10], in which
malware is executed on a real Windows system, rather than a simulated
or emulated one. After 60 seconds of execution, the host machine is re-
booted and forced to boot from a Linux image. After booting Linux, Litter-
box mounts the Windows partition and extracts the Windows registry and
complete file list; the Windows partition reverts back to its initial clean state.
Litterbox focuses on network activity, so it makes several dispositions of the
simulated network. During malware execution, the Windows host connects
to a virtual Internet with an IRC server running, which answers positively
to all incoming IRC connection requests. The tool captures all packets to
examine all other network traffic afterwards.

The Reusable Unknown Malware Analysis Net [30] takes a similar ap-
proach. Galen Hunt and Doug Brubacher introduced Detours[99], a library
for instrumenting arbitrary Windows functions.

There are, of course, several other related project involving sandboxing
techniques to monitor malware behaviour. Most of them, however, function
based on the same principles mentioned here. The next section will describe
how the gathered information and data about the executables is used for
further analysis.

3.3 Post Processing Data

Once, a decent amount of information about a code binary is available, it can
be used for further investigation. Running the malware, for instance, does
usually not suffice to deduce the malware family a certain sample belongs to.
Instead, the available data must first be post-processed, where its behavior
can be assessed based on the gained knowledge.

Otherwise, the analyst dealing with the evaluation is facing thousands of
reports every day that need to be examined. Thus, there is a need to priori-
tize these reports and guide an analyst in the selection of those samples that
require most attention. One approach to process reports is to cluster them
into sets of malware that exhibit similar behavior. The ability to automat-
ically and effectively cluster analyzed malware samples into families with
similar characteristics is beneficial for the following reasons: First, every
time a new malware sample is found in the wild, an analyst can quickly de-
termine whether it is a new malware instance or a variant of a well-known
family. Moreover, given sets of malware samples that belong to different
malware families, it becomes significantly easier to derive generalized signa-
tures, implement removal procedures, and create new mitigation strategies
that work for a whole class of programs.

www.syssec-project.eu 50 June 8, 2011

3.4. SHARING DATA

Grouping individual malware samples into malware families is an idea
proposed by several authors [54, 90, 98, 110, 121]. The main problem of
these approaches is, that they generally do not scale well and are slow for
the size of malware sets that anti-malware companies are confronted with.
To tackle this problem, scalable and precise malware clustering techniques
are being developed and implemented [61]. These techniques are based on
a dynamic analysis system that monitors the execution of a malware sam-
ple in a controlled environment. Unlike systems that operate directly on
low-level data such as system call traces, they enrich and generalize the
collected data and summarize the behavior of a malware sample in a be-
havioral profile. These profiles express malware behavior in terms of oper-
ating system (OS) objects and OS operations. Moreover, profiles capture a
more detailed view of network activity and the ways in which a malware
program uses input from the environment. This allows these systems to
recognize similar behaviors among samples whose low-level traces appear
very different. Finally, the analyzed samples are clustered according to their
behavioral profile.

After this post-processing step, the information is ready to be shared
with interesting parties. At this point, the arguments mentioned in 3 are
gaining momentum again. In the end, the sharing policy can decide if an
organization is rated as black- or whitehat.

3.4 Sharing Data

With an available dataset about a multitude of malicious code sample, one
would think that sharing this information among interested parties is of the
utmost importance for everyone involved. Unfortunately, the solution is not
as simple as providing a publicly available service which is free for every-
one to access. The main difficulties when sharing data from an automatic
malware analysis system are the following:

• Who do i share my information with? Allowing an unrestricted ac-
cess to malware analysis results will sooner or later attract malware
writers. As they are constantly pressured to develop new methods to
avoid AV detection, a public environment to test their newest evasion
technique is more than welcome.

• Who is allowed to submit new samples? Apart from the blackhat-
whitehat problem, dynamic analysis of unknown binaries is always a
costly endeavor. Ressources are limited and have to be split to make
sure that 0-day malware is processed in a timely manner while still
making sure that submissions are not rejected because of a ressource
bottleneck

www.syssec-project.eu 51 June 8, 2011

CHAPTER 3. MALWARE

• A common interface has to be found to allow all interested parties
a (possibly secured) interaction with the underlying database, or to
accumulate multiple reports into a single one.

Several different approaches exists, some of them varying even in their fun-
damental approach. Some of them are listed in the following Sections.

3.4.1 Virustotal

Virus Total [33] is a perfect example of an approach to bring together knowl-
edge produced by various sources. It is a service developed by Hispasec
Sistemas that analyzes suspicious files and URLs enabling the identification
of viruses, worms, trojans and other kinds of malicious content detected by
antivirus engines and web analysis toolbars.

In its core, Virus Total is a large-scale malware scanner which runs a
multitude of AV solutions to test a binary or a URL for malicious activities.
Here, the arguments mentioned in the previous section apply. A counter-
argument is, however, that the built-in API functionality also enables AV
companies and security researchers to automatically harvest data and use it
to improve security for their end-users. Still, potential miscreants can use
it to check if they are successfully avoiding most common AV scanners and
malware detection techniques.

3.4.2 Predict

PREDICT [20], the Protected Repository for the Defense of Infrastructure
Against Cyber Threats, is a community of producers of security-relevant net-
work operations data and researchers in networking and information secu-
rity. Through a centralized repository, it provides developers and evaluators
with regularly updated network operations data relevant to cyber defense
technology development. Initiated by the US Department of Homeland Se-
curity (DHS), Predict was established as a repository for current computer
and network operational data.

Network-related Datasets are made available to qualified cyber defense
researchers to help them create and develop new models, technologies, and
products to assess cyber threats to the country’s computing infrastructure
and increase their security capabilities. To ensure that business intelligence
and individual privacy are not compromised by sharing these datasets, Pre-
dict has established a data sharing protocol. Key elements of the protocol
are:

• Access requirements are established through data sensitivity assess-
ments.

• Access permission is granted after review and approval by indepen-
dent experts and data provider(s).

www.syssec-project.eu 52 June 8, 2011

3.4. SHARING DATA

• Data usage is subject to legally binding terms and conditions.

Researchers use the Predict data catalog to determine the most applica-
ble dataset for their research and apply for access to the dataset(s). Infor-
mation on the type of data, time frame for the data snapshot, requirements
and restrictions for using the data, as well as criteria for transmission, are
provided for each dataset. Multiple datasets may be requested as part of a
dataset application. In the case of multiple requests, all requirements for
all datasets must be met. Applications will be reviewed by the PREDICT
Application Review Board.

Data Providers use the PREDICT portal to upload and register new datasets
or retire existing datasets. They specify conditions under which researchers
can use their datasets and provide the documents necessary for Researchers
to gain approval to use their data. Data Providers also use the portal to
monitor who has requested their datasets and communicate their decisions
on whether to allow them to be used.

To finally gain access to data, users must be registered users and must
submit an application for access to specific datasets. They must also agree to
the conditions of use specified for the datasets they request, and they must
specify the research they will be conducting using the requested datasets.
All applications for datasets are reviewed by the Application Review Board.
This way, the members try to ensure that only approved individuals gain
access to the sensitive information provided by these datasets.

3.4.3 WOMBAT - WAPI

A similar approach is implemented by WAPI, the API is being developed
in line with the EU Project Wombat(Worldwide Observatory of Malicious
Behaviors and Attack Threats) [35].

The general idea here is, to tackle privacy and confidentiality issues
which limit the sharing of information between sources. These limitations
have prevented the emergence of an open standard investigation framework
for consistent and systematic malware analysis. Rather than just sharing
data among participants, the project aims at providing new means to under-
stand the existing and emerging threats to the Internet infrastructure and
the services this infrastructure supports.

The WOMBAT project is organized around the following activities:

• Real-time gathering of a diverse set of security-related raw data. WOM-
BAT takes advantage of existing data collection efforts undertaken by
its partners and collaborating organizations.

• Data enrichement by means of various analysis techniques. WOMBAT
formalizes threat context information.

www.syssec-project.eu 53 June 8, 2011

CHAPTER 3. MALWARE

Figure 3.1: The WOMBAT project

• Threat analysis. WOMBAT builds upon the information correlation
expertise of its partners to provide root cause analysis.

The key features of the project are depicted in Figure 3.1
The acquired knowledge is shared with all interested security actors

(ISPs, CERTs, security vendors, etc.), enabling them to make sound secu-
rity investment decisions and to focus on the most dangerous activities first.
Special care will also be devoted to impact the level of confidence of the
European citizens in the net economy by leveraging security awareness in
Europe thanks to the gained expertise.

To enable all participants a convenient integration of both, their avail-
able datasets and the tools to use them, the Wombat API (WAPI) was de-
vised.

The WAPI provides a set of primitives to offer to clients an object-oriented
view of any given dataset. All the primitives are based on the concept of ob-
jects. An object is identified univocally by a type (e.g. ”malware”, ”event”,
”source”) and by an identifier. The identifier is an opaque identifier that is
used to identify the object in your dataset. For instance, a malware sample
might be identified by its MD5 hash, but it could also be identified by an
opaque ID that corresponds to the primary key used inside your dataset.
This flexibility ensures, that all datasets, independent from their content,
can be mapped to a globally valid data structure.

WAPI features an implementation of available datasets via various meth-
ods. Once, all participants linked their datasets, they can be accessed and
used for further processing. Figure 3.2 shows a screenshot of the WAPI
when its connected to all available data sources.

www.syssec-project.eu 54 June 8, 2011

3.5. CONCLUSION

Figure 3.2: The WOMBAT API (WAPI)

3.5 Conclusion

Today, malware analysis is in a very advanced state. While certainly not
perfect in certain respects, it provides valuable information for security re-
searchers and AV companies alike. Whats missing is a reliable, secure and
feasible way to relay this information to interested parties, while keeping
it from people with malicious intend at the same time. The initiatives pre-
sented in this chapter aim to solve this problem on different levels, starting
from a free-for-all approach to the point of serious identity checks.

In the end, the fundamental consensus is, that it is an imperative require-
ment to share malware-related information an accumulate gained knowl-
edge to create comprehensive datasets for both, security researchers and AV
companies alike.

www.syssec-project.eu 55 June 8, 2011

CHAPTER 3. MALWARE

www.syssec-project.eu 56 June 8, 2011

4
Online Fraud

The term online fraud or internet fraud comprises all sorts of illicit practices
carried out to conduct fraudulent transactions (e.g., earning money illicitly)
through the abuse of Internet services such as web services, websites, chat
rooms, forums, or online auction sites with. These practices are manifested
in several different ways including, among others, the following famous
schemes: stock market manipulation schemes, automotive selling scams,
counterfeit postal money orders fraud, shipping scams, “work-at-home” of-
fers, dating fraud, and, to some extent, credit card theft and card skimming.
All these practices participate to some extent to online fraudulent activities.

Online fraud itself is “enabled” by other malicious practices such as
phishing, spamming, malware and rogue software campaigns. Fortunately,
online fraud is somewhat mitigated by countermeasures such as phishing
detection and spam filtering, and can be effectively combated by tangential
approaches that aim to break the vicious circle (see for example Figure 4.1)
at its source (e.g., malware detection to contain infections, web application
protection to prevent the miscreants from compromising a website to install
malicious scripts and other drive-by-download threats, such that visitors will
fall victims).

In this section we describe the online fraud landscape. First, in Sec-
tion 4.2 we explain the new forms of phishing, along with social engineer-
ing, and how they contribute to online fraud practices. Then, in Section 4.3
we describe upcoming threats such as click fraud, advertisement fraud, and
other “Web 2.0”-style fraud schemes for which only mitigation countermea-
sures exist.

4.1 Introduction

The explosion of online social networks confirms that people tend to move
their social interactions (e.g., status updates, instant messaging) into cy-

57

CHAPTER 4. ONLINE FRAUD

Figure 4.1: The big picture of a modern fraud scheme explained through
the case study of Zeus (source: FBI).

berspace, and to increasingly make use of new communication opportuni-
ties. For example, services such as voice over IP (e.g., Skype) are extremely
popular. Unfortunately, online trust relationships are fertile lands for fraud.
We can observe the aforementioned shift in phishing and related scams.
Phishers nowadays rely on a variety of channels, ranging from old-fashioned
emails to instant messages, social networks, and the phone system (with
both calls and text messages), with the goal of reaching more victims. As
a consequence, modern phishing is a multi-faceted, even more pervasive
threat that is inherently more difficult to study than traditional, email-based
phishing.

Cyber criminals have gathered together and established a flourishing
underground economy, which operates on public communication servers

www.syssec-project.eu 58 June 8, 2011

4.2. PHISHING AND SPAM ENABLE FRAUDS

(e.g., IRC, forums) and actively violate the laws of several nations and the
rights of individuals [38]. Modern cyber criminals are well-organized and
profit-driven, as opposed to the reputation-driven underground which was
prevalent years ago [75, 129, 69]. Evidence about such shift is available
today to researchers. For example Fallmann et al. in [83] describe a system
which automatically monitors underground marketplaces (e.g., forums, IRC
channels), to collect precious information about how the cyber criminals
exchange information and goods. Another study along this line, which has
helped substantially at understanding the economy of spam as a fraudu-
lent activity has been presented by Stone-Gross et al. in [161], where they
analyze a spam campaign from the perspective of a botnet that they have
managed to take over; they estimate that the revenue of the spam cam-
paign made with the Cutwail botnet is between between 1.7 and 4.2 million
dollars over one year.

4.2 Phishing and Spam Enable Frauds

Phishing is perhaps the major “technology” employed by cyber criminals
to conduct fraud (e.g., stealing money, reselling credentials on the black
market). Phishing is the practice of eliciting a person’s confidential informa-
tion such as name, date of birth or credit card details. Typically, the phish-
ers combine some technologies and simple social engineering stratagems to
persuade the victims into voluntarily disclose sensitive data. Phishing based
on spam email is certainly the most popular form, for which no definitive
countermeasures exist. However, researchers have been recently leverag-
ing vantage observation points (e.g., by infiltrating into botnets [160, 71])
for tracking the origins of and the economical driving spam and phishing
campaigns.

In [125] the authors use various data sets to analyze aspects of the
modus operandi of phishers. They examine the anatomy of phishing URLs
and domains, they analyze the lifecycle of domains and hosting machines,
and propose heuristics to filter phishing-related emails and to identify sus-
picious domain registrations.

In [115, 116] the authors infiltrated the Storm botnet and analyzed ten
months of spam campaigns conducted through it. They analyzed the raw
templates of spam campaigns (identifying over 90 different campaign types,
targeting over 630 million different email addresses and using more than
90,000 spamming zombies). They classified the topics of campaigns, ob-
served their temporal behavior, and studied evasion techniques. But more
importantly, they made significant, data driven observations on the mar-
keting strategies employed by spammers. A similar approach has also been
proposed as a way to improve spam filtering [141]

www.syssec-project.eu 59 June 8, 2011

CHAPTER 4. ONLINE FRAUD

4.2.1 Beyond Email Spamming and Phishing

The miscreants are obviously aware of the increased knowledge that re-
searchers have accumulated in recent years to fight email spam and other
related practices. During the past five years, however, the blackhats have
begun to leverage alternative spreading channels such as instant messag-
ing [112, 82], forums, blogs and even short text messages on mobile phones [97,
153].

4.2.1.1 Online Social Networks

In [154] the authors investigate and compare automated tools used to spam
forums, in particular XRumer, a widely used example. They find that the
software has been designed to get around many practices used by forums to
distinguish humans from bots, while keeping the spammer anonymous.

Grier et al. analyzed spam messages on Twitter. Although their work [92]
is restricted to Twitter, they were among the first who analyzed spamming
activities on social networks. Stringhini et al. developed a system, described
along with their findings in [163], to automatically detect spammers on
Twitter and Facebook. Gao et al. in [89] have instead focused on Facebook
wall posts: they analyzed the activity of about 3.5 million users and de-
tected approximately 200,000 rogue posts (out of 187 million posts) with
embedded URLs driving users to malicious or spam content.

4.2.1.2 Instant Messaging

Back in 2005 Yahoo!’s free instant messaging service was confirmed by Ya-
hoo! of being targeted by phishers to steal usernames, passwords and other
personal information, via social engineering-based scams [112]. Attackers
were spreading messages containing a link to a fake web site that looked like
an official Yahoo! site and asks the user to log in by entering their Yahoo! ID
and password. A similar attack has been reported one year later [82]. Anto-
natos et al. in [48] have recently deployed a multi-protocol instant message
honeypot that they used to conduct a thorough research that assessed the
extents of this threat. From over six thousand contacts, they received mes-
sages worth 50 to 110 malicious URLs per day: 93 percent of the identified
IM phishing domains were not recorded by popular blacklist mechanisms.

4.2.2 Automated Social Engineering Techniques

As a part of their modern arsenal, the miscreants have learned to stream-
line their campaigns also by leveraging automated social engineering at-
tacks over several communication channels, with the goal of expanding their
“business” beyond email users. These “new” flavors of online fraud resemble

www.syssec-project.eu 60 June 8, 2011

4.2. PHISHING AND SPAM ENABLE FRAUDS

traditional a-lá-Mitnick scams, which are based on pure social engineering
techniques and, despite their effectiveness, they are relatively slow. To make
this a viable business, modern scammers have begun to take advantage of
the customers’ familiarity with “new technologies” such as Internet-based
telephony, text-messages, and automated telephone services. Another ex-
ample is the use of instant messaging (e.g., Windows Live Messenger, Skype,
FaceBook chat), which involves some form of conversation with computer
programs that leverages natural language processing and artificial intelli-
gence techniques to mimic a real person. For example, in [120] the authors
raise the concern that automated social engineering is a serious information
security threat to human communications on the Internet, because the at-
tacks can easily scale to a large number of victims. They were indeed able to
implement with success a new attack that instruments human conversations
(e.g., online chats) for social engineering, or spamming. They managed
to fool current detection mechanisms, and achieved a link click rate up to
76.1%. Like many other classes of attacks, large-scale social engineering
attacks are also facilitated by the availability of software toolkits that can
automate many of the steps required for such an attack, such as the freely
available Social Engineer Toolkit [26]. For instance, this toolkit includes a
“site cloning” module that is able to automatically create a replica of a tar-
get website for the purpose of phishing, and an “infectious media” module
that can be used to prepare removable media that will infect a computer it
is inserted into by taking advantage of autorun functionality.

4.2.2.1 VoIP and Other Voice Media

The criminals are also resorting to the telephone channel to achieve the
same objectives of traditional e-mail phishing. This practice is referred
to as vishing (VoIP phishing, or, in its most generic meaning, voice phish-
ing) [135]. More precisely, vishing is the activity of systematically defraud-
ing account holders using social engineering over the telephone system.
Real-world episodes from the past have extensively proven how successful
live telephone calls can be [127]. A live conversation gives the victim less
chances to think through what is happening and what he is required to do.
This does not happen normally with email-based phishing because emails
have to be read through. Similarly to phishing, the goal of vishing is to elic-
iting a person’s confidential information, although it emerged from [123]
that most of the times these “vishers” attempt to elicit credit card informa-
tion, with the goal of stealing money directly from the victims. In other
similar, voice-based scams, the victims are lured with some excuses to wire
money directly to the miscreants. Unfortunately, vishing is inherently more
difficult to analyze as opposed to traditional, e-mail phishing. In fact, col-
lecting e-mails suspected of phishing is relatively easy. For instance, from a
purely technical perspective, e-mails can be intercepted, dispatched, filtered,

www.syssec-project.eu 61 June 8, 2011

CHAPTER 4. ONLINE FRAUD

stored and so forth. Vishing was popular in the U.S. in 2006–2009 [100],
and is now slowly gaining ground in Europe. Notably, an experiment con-
ducted in 2010 by the United Nations Interregional Crime and Justice Research
Institute revealed that the 25.9% of Italians (on a sample comprising 800
randomly-selected citizens) were successfully tricked by phone scammers.
In [123] the authors analyzed this type of scams, based on a selection of
about 400 user-submitted reports, including the caller identifier (e.g., source
phone number), (parts of) the transcribed conversation, general subject of
the conversation, and spoken language. Besides confirming that vishing was
popular in the U.S. at that time, the preliminary results suggests that phish-
ers rely on automated responders, and not only on live calls, with the goal
of reaching a broader spectrum of victims. Reports were filed between 2009
and 2010 through http://phonephishing.info, a publicly-available website
where anyone can submit anonymous reports of vishing: given the difficulty
of gathering evidence for studying this phenomenon, this website allows
users to report suspicious phone calls, completely anonymously. Along this
line, the authors have recently proposed in [124] a data collection system
to capture different aspects of phishing campaigns, with a particular focus
on the emerging use of the voice channel. In fact, another more recent type
of scam that involves voice communication is what can be referred to as “re-
verse vishing”: Instead of calling the victims directly, the cyber criminals run
phishing campaigns with emails that claim some interesting business offers
for which telephone contact is provided. The general approach proposed
in [124] to study this phenomenon is to record inbound calls received on
decoy phone lines, place outbound calls to the same caller identifiers (when
available) and also to telephone numbers obtained from different sources.
Specifically, their system analyzes instant messages (e.g., automated social
engineering attempts) and suspicious emails (e.g., spam, phishing), and ex-
tracts telephone numbers, URLs and popular words from the content. In
addition, users can voluntarily submit voice phishing (vishing) attempts
through the existing public website. Extracted telephone numbers, URLs
and popular words are then correlated to attempt to recognize campaigns
by means of cross-channel relationships between messages.

In addition to the abuse of the voice channel for luring victims, the
telephone system, and in particular VoIP infrastructures, can be exploited
to keep telephone devices busy, hindering legitimate callers from gaining
access. This kind of attack—demonstrated in its most stealthy variant by
Kapravelos et al. in [105]—is very concerning, as several online banking
transactions are carried out over the phone, or involve outbound verifica-
tion steps that require the initiator to call or receive a call from a number
for completing, for example, a wire transfer.

The countermeasures against this emerging threat are limited to a small
number of approaches. For example, in [175] the authors proposed a sys-
tem to mitigate the threat posed by malicious SMS [153, 97] received by

www.syssec-project.eu 62 June 8, 2011

http://phonephishing.info

4.3. FRAUD 2.0

customers via anomaly detection techniques. A recent research shows that
it is possible to determine whether a caller (e.g., a scammer) is using VoIP
or not [56]; this result may stimulate further research toward devising ef-
fective detection systems against attacks that target VoIP and other voice
media. However, we notice a complete lack of definitive countermeasures.

4.3 Fraud 2.0

In this section we describe upcoming threats such as click fraud, adver-
tisement fraud, and other “Web 2.0”-style fraud schemes. We also survey
the existing mitigation approaches, which are unfortunately far from being
definitive countermeasures.

4.3.1 From Hit Inflation to Advertisement Fraud

The idea of artificially inflating the “hits” of a web object has been at least
as old as the association of value to hits. In fact, the seminal paper on hit
inflation [49] describes how an attack allows the referrer to transform every
visit by a user on any site that is collaborating with the referrer into a click
through to the target.

Of course, this became more and more relevant as “clicks” transformed
into “money” in the modern Internet economy. After about ten years, re-
searchers came up with detection schemes to detect hit inflation [126, 178].

Click fraud, however, still exists and is a major threat. The miscreants for
instance turned clickjacking into a tool for generating revenue. Clickjacking
refers to a set of techniques used to “steal” clicks from the users without
their consent. In other words, with clickjacking the attacker “tricks the user”
into unwillingly clicking on one or more links. In [27, 5] clickjacking is
demonstrated on Twitter, but many other websites are also vulnerable to
this threat [152].

The fast way to monetize clickjacking is tricking users into initiating
money transfers, clicking on banner ads to generate revenue (“advertise-
ment click fraud” [88, 130]), or, in general, into performing any action that
can be triggered by a mouse click [57].

Economic models have been developed to estimate the impact of click
frauds in general [118], as well as the impact of advertisement frauds specif-
ically [118, 130].

Prevention is possible through anomaly detection [57], but unfortu-
nately a recent study demonstrated that modern clickbots (i.e., malware
specialized for conducting click fraud) adopt quite sophisticated evasion
techniques [84].

www.syssec-project.eu 63 June 8, 2011

CHAPTER 4. ONLINE FRAUD

4.3.2 Rogue Software and Scareware

Scareware is a class of software that usually has no malicious payload and
thus fly under the malware detectors’ radar. The purpose of scareware is
to earn money directly from the users, by convincing them via social engi-
neering that their computer has been somehow infected or compromised,
so that to ease the task of selling them a (fake) cleaning software. In some
cases, scareware is combined with malware infection to actually bring the
system in unstable states, such that victims are forced to purchase the ad-
vertised software to unlock their computers. This type of software is also
known as “rogue antivirus” or “fake antivirus”. The miscreants also came up
with “affiliate programs” that pay people to resell worthless or rogue soft-
ware [113]. In 2009, reports have estimated that one of the most active
affiliates of TrafficConverter.biz (one of such affiliate programs) has earned
up 330,000 dollars per month in commissions. The spread of scareware is
partly being driven by search engine poisoning techniques, used to direct
surfers to sites peddling scareware.

The problem of rogue software was identified first in a Microsoft Re-
search paper [134] by O’Dea H., who examined the shifts in the rogue land-
scape and compared their evolution to that of other types of malware. Rajab
et al. in [148] present their study on rogue antivirus from the perspective
of Google. Over a 13 month period discovered over 11,000 domains in-
volved in fake antivirus distribution, out of 240 million web pages collected
by Google’s malware detection infrastructure. The authors show that the
fake antivirus threat is rising both absolutely and relative to other forms of
web-based malware. Cova et al. in [72] report the results of a broad study
on this threat. They were able to track 372,096 victims over a period of 2
months: In the worst-case scenario, the authors estimate that the gross in-
come is about 21,000 to 35,000 dollars. Recent studies have also analyzed
and modeled the economic system that lies behind the rogue-antivirus phe-
nomenon [159].

4.4 Other and Upcoming Frauds

Emerging technologies such as electronic-payment services, electronic and
mobile commerce, cyber-payment, mobile banking and pay-as-you-go insur-
ance services are opening up new avenues for criminals to commit computer-
related financial fraud and online abuse. For example, card skimming, ATM
and physical credit card fraud, despite not strictly related to “internet fraud”
(and thus, for instance, not displayed in the vicious cycle depicted in Fig-
ure 4.1), have a significant role in frauds.

www.syssec-project.eu 64 June 8, 2011

4.5. LACK OF RESEARCH DATA COLLECTION INITIATIVES

Multiple attacks have also been developed against contactless payment
systems [107], which are of growing importance and deployment (not just
in mobility cards, but also for real payment applications).

Another direction is the one shown in [179], which demonstrates the
practical feasibility of attacking the billing scheme employed by SIP-based
VoIP systems, resulting in charges on calls the subscribers are not respon-
sible for, or in overcharges on VoIP calls the subscribers have made. Also,
Avoine G. in [50] describes a protocol by which two parties can place free
telephone calls without being noticed. In light of these attacks—combined
with the widespread of VoIP telephony, we believe that the cybercriminals
can effectively employ such tool to earn money illicitly.

4.5 Lack of Research Data Collection Initiatives

From all the researches that we have reviewed in this chapter it emerges
that, although it is possible to collect evidence about online fraud, automat-
ing the collection of this type of data is inherently a difficult task. In fact,
we have seen that authors have resorted to very different methods to collect
data for the purpose of each research. This suggest the need for collabora-
tion and data-sharing efforts toward the creation of centralized repositories
of structured and unstructured evidence about these threats.

There are, however, a number of non-research initiatives that strive to
collect evidence about online fraud directly from the end-users (i.e., the vic-
tims), although collecting data directly from the crowds may suffer from
skews caused by the most active submitters, as noticed in [128] in the
case of phishing. In particular, they have studied the PhishTank database—
the most famous initiative to collect user-submitted phishing emails—and
showed that the activity of the users follow a power low distribution. There
are also other examples of such data collection and sharing initiatives, along
the line of IPInfoDB, which offer a free and publicly available fraud detection
verification procedure to check whether an online ecommerce transaction,
for instance, involves a credit card suspected of fraudulent activity; it is not
clear, however, what are the feeds of their database. Another notable ex-
ample is the spamdetector service, developed by the authors of [163] along
with a Twitter API available at http://twitter.com/#!/spamdetector: Users
who want to report or check whether a certain Twitter account is sending
out spam can contact the automated bot via Twitter messages.

www.syssec-project.eu 65 June 8, 2011

http://twitter.com/#!/spamdetector

CHAPTER 4. ONLINE FRAUD

www.syssec-project.eu 66 June 8, 2011

5
Network

Previous Chapters of this Deliverable already focused on network-related
data collection initiatives. For example, Honeypots are one of the most
well known and largely adopted technique to collect data related to attacks
against a network. Similar considerations can be made for Online Fraud
that, as the name said, is related to “online” phenomena.

This Chapter focus on three main topics related to network collection
in malware and fraud that were not discussed in the previous sections. In
particular, it presents an overview of past research in the areas of botnet and
worm detection, and on DNS analysis for detecting domain used in malicious
activities. The focus of this survey is on the collected datasets that were used
by the authors to test and evaluate the proposed techniques.

5.1 Botnet Detection

Bots are a popular tool of choice for criminals. A bot is a type of mal-
ware that is written with the intent of compromising and taking control of
hosts on the Internet. It is typically installed on the victim’s computer by
either exploiting a software vulnerability in the web browser or the oper-
ating system, or by using social engineering techniques to trick the victim
into installing the bot herself. Compared to other types of malware, the dis-
tinguishing characteristic of a bot is its ability to establish a command and
control (C&C) channel that allows an attacker to remotely control or update
a compromised machine. A number of bot-infected machines that are com-
bined under the control of a single, malicious entity (called the botmaster)
are referred to as a botnet. Such botnets are often abused as platforms to
launch denial of service attacks, to send spam mails, to collect private user
data, or to host scam pages.

67

CHAPTER 5. NETWORK

Horizontal Correlation

A number of botnet detection systems perform horizontal correlation on
network data. That is, these systems attempt to find similarities between
the network-level behavior of hosts. The assumption is that similar traffic
patterns indicate that the corresponding hosts are members of the same
botnet, receiving the same commands and reacting in lockstep. While initial
detection proposals [95, 106] relied on some protocol-specific knowledge
about the command and control channel, subsequent techniques [93, 149]
removed this shortcoming.

BotSniffer [95] looks for infected hosts displaying spatial-temporal sim-
ilarity in their network activities. For the paper’s experiments, the authors
used multiple network traces captured from their university campus net-
work (GaTech). Among those, eight were just port 6667 IRC traffic captured
in 2005, 2006, and 2007. Each IRC trace lasted from several days to sev-
eral months. The total duration of these traces was about 189 days. The
other five traces were complete packet captures of all network traffic. Two
of them were collected in 2004, each lasting about ten minutes. The other
three were captured in May and December 2007, each lasting 1 to 5 hours.
The primary purpose of using these traces was to test the false positive rate
of BotSniffer.

The authors also obtained several real-world IRC-based botnet C&C traces
from several different sources. One was captured using an honeypot in June
2006. This trace contained about eight hours of traffic (mainly IRC). The
IRC channel had broadcast on and they could observe the messages sent
from other bots in the channel. Additionally, they also obtained two bot-
net IRC logs (not network traces) recorded by an IRC tracker in 2006. In
these logs, there were two distinct IRC servers, so there were two different
botnets.

In addition to these IRC botnet traces, they modified the source codes of
three common bots (Rbot, Spybot, Sdbot) and created their version of bina-
ries (so that the bots would only connect to their controlled IRC server). The
authors set up a virtual network environment using VMware and launched
the modified bots in several Windows XP/2K virtual machines. They in-
structed the bots to connect our controlled C&C server and captured the
traces in the virtual network. For Rbot, they used five Windows XP vir-
tual machines to generate the trace. For Spybot and Sdbot, they used four
clients.

Karasaridis et. al. [106] use primarily transport layer flow summary data
for identification of botnet controllers. In comparison to packet-level anal-
ysis, flow data reduces some privacy protection concerns. Flow data also
significant reduces the amount of data to process, which makes it practical
to transport data to a central location for cross-correlation. The implemen-
tation is scalable to large networks in comparison to packet-level analysis

www.syssec-project.eu 68 June 8, 2011

5.1. BOTNET DETECTION

since nearly all network devices can generate at least sampled flow data
without significant performance impact or modification. In their applica-
tion, the authors have invested in the capability to generate unsampled data
in select portions of the network to complement more sparsely sampled flow
data across a large Tier 1 ISP network. The implementation collects many
billions of flow records each day for security analysis in addition to botnet
identification processing. Flow records contain summary information about
sessions between a single source address/port (sip/sport) and a destination
address/port (dip/dport) using a given protocol. A single flow record con-
tains the number of packets, bytes, and an OR function of the flags used (if
TCP is the transport layer protocol), the start and end time of the session
and the transport layer protocol used. Flow record data are collected from
a large number of geographically and end-point diverse circuits to a central
processing facility where they can be filtered, processed, and correlated.

BotMiner [93] tries to group host based on their destination and connec-
tion statistics and on a number of suspicious activities (e.g., network scans,
download of binaries, and SPAM). The authors set up traffic monitors to
work on a span port mirroring a backbone router at the campus network
of the College of Computing at Georgia Tech. The traffic rate was typically
around 200Mbps-300Mbps at daytime. They ran the monitors for a 10-day
period in late 2007. A random sampling of the network trace showed that
the traffic was very diverse, containing many normal application protocols,
such as HTTP, SMTP, POP, FTP, SSH, NetBios, DNS, SNMP, IM (e.g., ICQ,
AIM), P2P (e.g., Gnutella, Edonkey, bittorrent), and IRC. This served as a
good background to test the false positives and detection performance on a
normal network with rich application protocols.

For the paper, the authors also collected a total of eight different botnets
covering IRC, HTTP, and P2P traffic. They re-used two IRC and two HTTP
botnet traces introduced in previous research [95], i.e., V-Spybot, V-Sdbot,
B-HTTP-I, and B-HTTP-II. In short, V-Spybot and V-Sdbot were generated by
executing modified bot code (Spybot and Sdbot) in a fully controlled virtual
network. The experiments included four Windows XP/2K IRC bot clients,
and last several minutes. The clients communicated with a controlled server
and executed the received commands (e.g., spam). In B-HTTP-I, the bot con-
tacted the server periodically (about every five minutes) and the whole trace
lasted for about 3.6 hours. B-HTTP-II had a more stealthy C&C communica-
tion where the bot waits a random time between zero to ten minutes before
it visited the server, and the whole trace lasted for 19 hours. In addition,
the paper also used a new IRC botnet trace that lasted for a longer time (a
whole day), generated using modified Rbot source code. This also was gen-
erated in a controlled virtual network with four Windows clients and one
IRC server.

Finally, they also obtained two real-world network traces. The first was
an IRC-based botnet C&C trace that was captured in the wild in 2004. The

www.syssec-project.eu 69 June 8, 2011

CHAPTER 5. NETWORK

trace contained about 7-minute IRC C&C communications, and has hun-
dreds of bots connected to the IRC C&C server. The second was a trace con-
taining two P2P botnets, Nugache and Storm. The trace lasts for a whole
day, and there are 82 Nugache bots and 13 Storm bots in the trace. It was
captured from a group of honeypots running in the wild in late 2007.

Vertical Correlation

The main limitation of systems that perform horizontal correlation is that
they usually need to observe multiple bots of the same botnet to spot behav-
ioral similarities.

A second line of research explored instead vertical correlation, a concept
that describes techniques to detect individual bot-infected machines. One
system, called Rishi [91], attempts to detect bots based on the structure of
nicknames in IRC traffic. Other techniques [68, 162] aim to identify suspi-
cious IRC connections based on traffic properties. In all cases, the detection
approaches focus specifically on botnets that use IRC for their command
and control. The most advanced system is BotHunter [94], which correlates
the output of three IDS sensors – Snort [150], a payload anomaly detector,
and a scan detection engine. For their experiments, the authors adopted a
VMware-based honeynet deployed at SRI for a three-weeks period between
March and April 2007. They also tested BotHunter for five months in their
university network on a link that exhibited typical diurnal behavior and a
sustained peak traffic of over 100 Mbps during the day.

Wurzinger et. al. [174] performs vertical correlation as well. They
present a system that aims to detect bots, independent of any prior infor-
mation about the command and control channels or propagation vectors,
and without requiring multiple infections for correlation. The system relies
on detection models that target the characteristic behavior of every bot, the
fact that it receives commands from the botmaster to which it responds in
a specific way. A key feature is that these detection models are generated
automatically. To this end, the system observes the network traffic that is
generated by actual bot instances in a controlled environment. The 416
different bot samples were obtained through Anubis [60]. The collection
period was more than 8 months. All bot samples were executed in the envi-
ronment, each producing a traffic trace with a length of five days. In these
traffic traces, they first identify points in time that likely correspond to re-
sponse activity. Then, they extract the corresponding commands that trigger
these activities.

When recording bot traffic traces, it was difficult to predict the required
amount of time to obtain a representative collection of bot commands and
according responses, since it depends on the degree and kind of activity of
the botmaster during the observation period. In their experiments, they de-
cided to aim for a capture period of five days. This ensures that they have a

www.syssec-project.eu 70 June 8, 2011

5.2. WORM DETECTION

good chance of observing a large variety of different commands. However,
most bots receive (common) commands after a short time, often within min-
utes. Thus, they can start to produce a first set of detection models quickly.
Then, they wait for several days to capture less frequent commands as well.

Because of the long runtime of the bots as well as our desire to collect
as many traces as possible, an important goal when designing the execution
environment was to support as many parallel bot instances as possible. They
set up a VMware environment on a server with two Intel Xeon 1.86GHz Quad-
core processors, 8 GB of memory, and 300 GB of Raid5 disk space. Each VM
is running a fully-patched instance of Windows XP with service pack 2, and
is able to run with as little as 64 MB main memory. Using this setup, they
are able to simultaneously run up to 50 virtual machine instances on their
server.

Each of the guest virtual machines is assigned a static, public IP address,
and infected with one bot. All network traffic is captured on the host. Since
there are no other applications that run and generate network traffic, the
bot accounts for all observed network traffic under its host VM’s IP address.
Of course, a bot requires Internet connectivity, so that it can connect to
the command and control infrastructure and receive commands from the
botmaster. However, at the same time, they do not wish the bots that they
are analyzing to engage in serious and destructive malicious activity such
as denial of service attacks. Thus, they had a firewall that rate-limits all
outbound network traffic. After each five days capturing period, all VMs are
deleted and recreated in a clean state, before the next set of bot samples is
executed.

The fact that they use VMware to execute bots could be considered a
potential limitation. It is well-known that VMware is easy to fingerprint, and
they are aware that a bot could detect their system. However, the problem
of VMware detection is not a conceptual limitation of their approach.

5.2 Worm Detection

Network worms are malicious programs that spread automatically across
networks by exploiting vulnerabilities that affect a large number of hosts.
Because of the speed at which worms spread to large computer populations,
countermeasures based on human reaction time are not feasible.

A number of approaches have been proposed that aim to detect worms
based on network traffic anomalies. One key observation was that scan-
ning worms, which attempt to locate potential victims by sending probing
packets to random targets, exhibit a behavior that is quite different from
most legitimate applications. Most prominently, this behavior manifests it-
self as a large number of (often failed) connection attempts [167, 170]. The
first work did not collect any realworld additional data, while the second

www.syssec-project.eu 71 June 8, 2011

CHAPTER 5. NETWORK

one was tested on hour-long traces of packet header collected at the access
link at the Lawrence Berkeley National Laboratory. This gigabit/sec link
connects the Laboratory’s 6,000 hosts to the Internet. The link sustains an
average of about 50-100 Mbps and 8-15K packets/sec over the course of a
day, which includes roughly 20M externally-initiated connection attempts
(most reflecting ambient scanning from worms and other automated mal-
ware) and roughly 2M internally-initiated connections.

Other detection techniques based on traffic anomalies check for a large
number of connections without previous DNS requests [172], or a large
number of received ICMP unreachable messages [65].

In addition, there are techniques to identify worms by monitoring traffic
sent to dark spaces, which are unused IP address ranges [52], or honeypots
[78]. Distributed approaches, like the ones of Bailey et al [52] and Rajab et
al. [147] rely on the aggregated information extracted from a distributed set
of sensors. In the Rajab’s paper, the authors tested their approach using traf-
fic traces from over 1.5 billion suspicious connection attempts observed by
more than 1600 intrusion detection systems dispersed across the Internet.

Following a different approach, Kruegel et al. [117] present a technique
based on the structural analysis of binary code. Their solution allows one
to identify structural similarities between different worm mutations. The
approach is based on the analysis of a worm’s control flow graph and in-
troduces an original graph coloring technique that supports a more precise
characterization of the worms structure. The proposed technique was eval-
uated on a dataset consisting of 35.7 Gigabyte of network traffic collected
over 9 days on the local network of the Distributed Systems Group at the
Technical University of Vienna. This evaluation set contained 661,528 total
network streams and was verified to be free of known attacks.

Finally, also traditional anomaly detection techniques have been applied
to the detection of worms. For example, Agosta et al, [45] present an adap-
tive end-host anomaly detector based on a supervised classifier that uses a
dynamic threshold value that adjusts to track the traffic.

Automatic Signatures Generation

A number of techniques have been proposed to automatically extract worms
signatures from network traffic. The first system to automatically extract sig-
natures from network traffic was Honeycomb [114], which looks for com-
mon substrings in traffic sent to a honeypot. The system was tested on an
unfiltered cable modem connection in three consecutive sessions, covering
a total period of three days.

Earlybird [156] and Autograph [108] extend Honeycomb and remove
the assumption that all analyzed traffic is malicious. Instead, these systems
can identify recurring byte strings in general network flows. Earlybird was
evaluated on the traffic flowing in and out of a Local Area Network (LAN)

www.syssec-project.eu 72 June 8, 2011

5.3. MALWARE DETECTION THROUGH DNS ANALYSIS

comprised of a total of 7 hosts. Autograph was tested on three packet traces
from the DMZs of two research labs; one from Intel Research Pittsburgh
(Pittsburgh, USA) and two from ICSI (Berkeley, USA), respectively a T1 and
100 Mbps fiber connections. All three traces contain the full payloads of all
packets. The ICSI and ICSI2 traces only contain inbound traffic to TCP port
80, and are IP-source-anonymized.

Finally, Newsome et. al. [132] presented Polygraph, a signature gener-
ation system that is able to detect polymorphic worms by monitoring the
network traffic. Polygraph generates signatures that consist of multiple dis-
joint content sub-strings. In doing so, Polygraph leverages the insight that
for a real-world exploit to function properly, multiple invariant substrings
must often be present in all variants of a payload; these substrings typi-
cally correspond to protocol framing, return addresses, and in some cases,
poorly obfuscated code. They used several network traces as input for and
to evaluate Polygraph signature generation.

For their HTTP experiments, the authors used two traces containing both
incoming and outgoing requests, taken from the perimeter of Intel Research
Pittsburgh in October of 2004. They used a 5-day trace (45,111 flows) as
their innocuous HTTP pool and a 10-day trace (125,301 flows), taken 10
days after the end of the first trace, as an evaluation trace. The evaluation
trace was used to measure the false positive rate of generated signatures. In
experiments with noisy suspicious pools, noise flows were drawn uniformly
at random from the evaluation pool. In addition, the authors also used a
24-hour DNS trace, taken from a DNS server that serves a major academic
institutional domain. In particular, the first 500,000 flows from this trace
was used as innocuous DNS pool, and the last 1,000,000 flows as evaluation
trace.

5.3 Malware Detection Through DNS Analysis

The Domain Name System (DNS) has been increasingly being used by at-
tackers to maintain and manage their malicious infrastructures. As a result,
recent research on botnet detection has proposed number of approaches that
leverage the distinguishing features between malicious and benign DNS us-
age.

The first study [171] in this direction proposed to collect real-world DNS
data for analyzing malicious behavior. The results of the passive DNS anal-
ysis showed that malicious domains that are used in Fast-Flux networks ex-
hibit behavior that is different than benign domains. Similarly, Zdrnja et
al. [177] performed passive monitoring to identify DNS anomalies. They
collected the DNS traffic of University of Auckland between 15 May 2006
and 15th of January 2007. The data consists of 260 GB of raw DNS data
(uncompressed pcap files) and 50 million DNS records in the database.

www.syssec-project.eu 73 June 8, 2011

CHAPTER 5. NETWORK

In general, botnet detection through DNS analysis follows two lines of
research: The first line of research tries to detect domains that are involved
in malicious activities. The goal is to identify infected hosts by monitor-
ing the DNS traffic. The second line of research focuses on the behaviors
of groups of machines in order to determine if they are infected (e.g., a
collection of computers always contact the same domain repeatedly).

5.3.1 Identifying Malicious Domains

To detect malicious domains, previous approaches make use of passive DNS
analysis, active DNS probing, and WHOIS [36] information. For example,
recent work by Perdisci et al. [140] performs passive DNS analysis on re-
cursive DNS traffic collected from number a number of ISP networks with
the aim of detecting malicious Fast-Flux services. Contrary to the previous
work [111, 131, 139, 165], Perdisci’s work does not rely on analyzing black-
listed domains, and domains that are extracted from spam mails.

Perdisci et al. placed two traffic sensors in front of two different RDNS
servers of a large north American Internet Ser- vice Provider (ISP). These
two sensors monitored the RDNS traffic coming from users located in the
north- eastern and north-central United States, respectively. Overall, the
sensors monitored the live RDNS traffic generated by more than 4 million
users for a period of 45 days, between March 1 and April 14, 2009. During
this period, they observed an average of about 1.3 billion DNS queries of
type A and CNAME per sensor. Overall they monitored over 2.5 billion DNS
queries per day related to hundreds of millions of distinct domain names.

Another type of study on detecting malicious domains leverages prop-
erties inherent to domain registrations and their appearance in DNS zone
files [85]. That is, they associate the registration information and DNS zone
properties of domains with the properties of known blacklisted domains for
proactive domain blacklisting. This method completely relies on historical
information. Therefore, it is not able to detect domains that do not have any
registration information and DNS zone commonalities with known black-
listed domains.

Generic Identification of Malicious Domains Using Passive DNS Moni-
toring

To date, two systems have been proposed for detecting malicious domains
using passive DNS analysis: Notos [47] and EXPOSURE [67]. Notos dynam-
ically assigns reputation scores to domain names whose maliciousness has
not been discovered yet. The premise of this system is that malicious, agile
use of DNS has unique characteristics and can be distinguished from legit-
imate, professionally provisioned DNS services. Notos uses passive DNS
query data and analyzes the network and zone features of domains. It

www.syssec-project.eu 74 June 8, 2011

5.3. MALWARE DETECTION THROUGH DNS ANALYSIS

Figure 5.1: Exposure Online Service

builds models of known legitimate domains and malicious domains, and
uses these models to compute a reputation score for a new domain indica-
tive of whether the domain is malicious or legitimate.

Notos uses the DNS traffic from two ISP-based sensors, one located on
the US east coast (Atlanta) and one located on the US west coast (San Jose).
Additionally it uses the aggregated DNS traffic from the different networks
covered by the SIE [41]. In total, the database collected 27,377,461 unique
resolutions from all these sources over a period of 68 days, from 19th of
July 2009 to 24th September 2009.

EXPOSURE [67] eliminates several shortcomings of Notos. It does not
require a wide overview of malicious activities on the Internet, a much
shorter training time, and is able to classify domains that Notos would miss-
classify. They introduce a passive DNS analysis approach and a detection
system to effectively and efficiently detect domain names that are involved
in malicious activity. They use 15 features that allow us to characterize dif-
ferent properties of DNS names and the ways that they are queried. In their
experiments, they analyzed the DNS feeds provided by SIE@ISC [41] and
the DNS traffic produced a by a network of 30000 clients.

During the two and a half month offline experimental period, EXPO-
SURE recorded and then analyzed 4.8 million distinct domain names that

www.syssec-project.eu 75 June 8, 2011

CHAPTER 5. NETWORK

were queried by real Internet users. For the real-time detection experi-
ments, they collected two-weeks of DNS data that consists of 100 million
DNS queries. Unfortunately, tracking, recording and post-processing this
volume of traffic without applying any filtering was not feasible in practice.
Hence, they reduced the volume of traffic to a more manageable size by
using two filtering policies. The goal of these policies was to eliminate as
many queries as possible that were not relevant for them. However, they
also had to make sure that they did not miss relevant, malicious domains.

The first policy they used whitelisted popular, well-known domains that
were very unlikely to be malicious. To create this whitelist, they used the
Alexa Top 1000 Global Sites [39] list. Their premise was that the most
popular 1000 websites on the Internet would not likely be associated with
domains that were involved in malicious activity. These sites typically attract
many users, and are well-maintained and monitored. Hence, a malicious
popular domain cannot hide its malicious activities for long. Therefore,
they did not record the queries targeting the domains in this whitelist. The
domains in the whitelist received 20 billion queries during two and a half
months. By applying this first filtering policy, they were able to reduce 20%
of the traffic they were observing.

The second filtering policy targeted domains that were older than one
year. The reasoning behind this policy was that many malicious domains
are disclosed after a short period of activity, and are blacklisted. As a re-
sult, some miscreants have resorted to using domain generation algorithms
(DGA) to make it more difficult for the authorities to blacklist their domains.
For example, well-known botnets such as Mebroot and Conficker [164] de-
ploy such algorithms for connecting to their command and control servers.
Typically, the domains that are generated by DGAs and registered by the at-
tackers are new domains that are at most several months old. In their data
set, they found 45.000 domains that were older than one year. These do-
mains received 40 billion queries. Hence, the second filtering policy reduced
50% of the remaining traffic, and made it manageable in practice.

Clearly, filtering out domains that do not satisfy their age requirements
could mean that they may miss malicious domains for the training that are
older than one year. However, their premise is that if a domain is older
than one year and has not been detected by any malware analysis tool, it
is not likely that the domain serves malicious activity. To verify the cor-
rectness of their assumption, they checked if they had filtered out any do-
mains that were suspected to be malicious by malware analysis tools such
as Anubis and Wepawet. Furthermore, they also queried reports produced
by Alexa [39], McAfee Site Advisor [42], Google Safe Browsing [40] and
Norton Safe Web [43]. 40 out of the 45, 000 filtered out domains (i.e., only
0.09%) were reported by these external sources to be risky or shady. They
therefore believe that their filtering policy did not miss a significant number

www.syssec-project.eu 76 June 8, 2011

5.3. MALWARE DETECTION THROUGH DNS ANALYSIS

of malicious domains because of the pre-filtering their performed during the
offline experiments.

www.syssec-project.eu 77 June 8, 2011

CHAPTER 5. NETWORK

www.syssec-project.eu 78 June 8, 2011

Bibliography

[1] Adobe flash player multimedia file remote buffer overflow vulnerability. http://
www.securityfocus.com/bid/28695.

[2] Advanced Honey Pot Identification and Exploitation. http://phrack.ru/63/
p63-0x09.txt.

[3] Beagle worm. http://www.symantec.com/security_response/writeup.
jsp?docid=2004-011815-3332-99.

[4] Capture-HPC. https://projects.honeynet.org/capture-hpc.

[5] Explaining the “don’t click” clickjacking tweetbomb.

[6] HoneyClient. http://www.honeyclient.org.

[7] Honeytrap. http://honeytrap.mwcollect.org/.

[8] LaBrea. http://labrea.sourceforge.net/labrea-info.html.

[9] Leurre.com honeypot project. http://www.leurrecom.org/.

[10] Litterbox. http://www.wiul.org.

[11] LMbench Performance Analysis Tool. http://www.bitmover.com/lmbench.

[12] Microsoft Security Bulletin MS04-028. http://www.microsoft.com/technet/
security/bulletin/MS04-028.mspx.

[13] Microsoft Security Bulletin MS06-001. http://www.microsoft.com/technet/
security/bulletin/MS06-001.mspx.

[14] Multipot. http://labs.idefense.com/files/labs/releases/previews/
multipot/index.html.

[15] MyDoom worm. http://www.symantec.com/security_response/writeup.
jsp?docid=2004-012612-5422-99.

[16] Nepenthes. http://nepenthes.mwcollect.org/.

[17] Network of Affined Honeypots (NOAH). http://www.fp6-noah.org.

[18] Nmap. http://insecure.org/nmap/.

[19] p0f. http://lcamtuf.coredump.cx/p0f.shtml.

[20] Predict. https://www.predict.org/.

79

http://www.securityfocus.com/bid/28695
http://www.securityfocus.com/bid/28695
http://phrack.ru/63/p63-0x09.txt
http://phrack.ru/63/p63-0x09.txt
http://www.symantec.com/security_response/writeup.jsp?docid=2004-011815-3332-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-011815-3332-99
https://projects.honeynet.org/capture-hpc
http://www.honeyclient.org
http://honeytrap.mwcollect.org/
http://labrea.sourceforge.net/labrea-info.html
http://www.leurrecom.org/
http://www.wiul.org
http://www.bitmover.com/lmbench
http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx
http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx
http://www.microsoft.com/technet/security/bulletin/MS06-001.mspx
http://www.microsoft.com/technet/security/bulletin/MS06-001.mspx
http://labs.idefense.com/files/labs/releases/previews/multipot/index.html
http://labs.idefense.com/files/labs/releases/previews/multipot/index.html
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99
http://nepenthes.mwcollect.org/
http://www.fp6-noah.org
http://insecure.org/nmap/
http://lcamtuf.coredump.cx/p0f.shtml
https://www.predict.org/

BIBLIOGRAPHY

[21] Qemu, open source processor emulator. http://fabrice.bellard.free.fr/
qemu/.

[22] Samba. Available online at http://www.samba.org.

[23] Sebek homepage. http://www.honeynet.org/tools/sebek/.

[24] Shelia. http://www.cs.vu.nl/~herbertb/misc/shelia/.

[25] Snort intrusion detection/prevention system. http://www.snort.org/.

[26] The social engineer toolkit. http://www.social-engineer.org.

[27] Stealing mouse clicks for banner fraud.

[28] The norman Sandbox. http://sandbox.norman.no.

[29] The Protocol Informatics Project. http://www.4tphi.net/~awalters/PI/PI.
html.

[30] The Reusable Unknown Malware Analysis Net. http://www.secureworks.com/.

[31] User-mode Linux Kernel. http://user-mode-linux.sourceforge.net/.

[32] Using honeyclients to Detect New Attacks. http://www.synacklabs.net/
honeyclient/Wang-Honeyclient-ToorCon2005.pdf.

[33] Virus Total. http://www.virustotal.com/.

[34] VMware. http://www.vmware.com.

[35] Worldwide Observatory of Malicious Behaviors and Attack Threats . http://
wombat-project.eu/.

[36] RFC1834 - Whois and Network Information Lookup Service, Whois++. http://
www.faqs.org/rfcs/rfc1834.html, 1995.

[37] Honeynet Project, Know Your Enemy: GenII Honeynets . http://www.honeynet.
org/papers/gen2/index.html, May 2005.

[38] An inquiry into the nature and causes of the wealth of internet miscreants. In Pro-
ceedings of the 14th ACM conference on Computer and communications security, CCS
’07, pages 375–388, New York, NY, USA, 2007. ACM.

[39] Alexa Web Information Company. http://www.alexa.com/topsites/, 2009.

[40] Google Safe Browsing. http://www.google.com/tools/firefox/
safebrowsing/, 2010.

[41] Internet Systems Consortium. https://sie.isc.org/, 2010.

[42] McAfee SiteAdvisor. http://www.siteadvisor.com/, 2010.

[43] Norton Safe Web. http://safeweb.norton.com/, 2010.

[44] BADGERS ’11: Proceedings of the First Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security, New York, NY, USA, 2011. ACM.

[45] J.M. Agosta, C. Diuk-Wasser, J. Chandrashekar, and C. Livadas. An adaptive anomaly
detector for worm detection. In Proceedings of the 2nd USENIX workshop on Tackling
computer systems problems with machine learning techniques, page 3. USENIX Associ-
ation, 2007.

[46] K.G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E.P. Markatos, and A.D.
Keromytis. Detecting targeted attacks using shadow honeypots. In Proceedings of the
14th Usenix Security Symposium, August 2005.

[47] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a Dynamic
Reputation System for DNS. In 19th Usenix Security Symposium, 2010.

[48] Spiros Antonatos, Iasonas Polakis, Thanasis Petsas, and Evangelos P. Markatos. A
systematic characterization of im threats using honeypots. In NDSS, 2010.

www.syssec-project.eu 80 June 8, 2011

http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/
http://www.samba.org
http://www.cs.vu.nl/~herbertb/misc/shelia/
http://www.snort.org/
http://www.social-engineer.org
http://sandbox.norman.no
http://www.4tphi.net/~awalters/PI/PI.html
http://www.4tphi.net/~awalters/PI/PI.html
http://www.secureworks.com/
http://user-mode-linux.sourceforge.net/
http://www.synacklabs.net/honeyclient/Wang-Honeyclient-ToorCon2005.pdf
http://www.synacklabs.net/honeyclient/Wang-Honeyclient-ToorCon2005.pdf
http://www.virustotal.com/
http://www.vmware.com
http://wombat-project.eu/
http://wombat-project.eu/
http://www.faqs.org/rfcs/rfc1834.html
http://www.faqs.org/rfcs/rfc1834.html
http://www.honeynet.org/papers/gen2/index.html
http://www.honeynet.org/papers/gen2/index.html
http://www.alexa.com/topsites/
http://www.google.com/tools/firefox/safebrowsing/
http://www.google.com/tools/firefox/safebrowsing/
https://sie.isc.org/
http://www.siteadvisor.com/
http://safeweb.norton.com/

BIBLIOGRAPHY

[49] Vinod Anupam, Alain Mayer, Kobbi Nissim, Benny Pinkas, and Michael K. Reiter.
On the security of pay-per-click and other web advertising schemes. Comput. Netw.,
31:1091–1100, May 1999.

[50] Gildas Avoine. Fraud within asymmetric multi-hop cellular networks. In Andrew S.
Patrick and Moti Yung, editors, Financial Cryptography, volume 3570 of Lecture Notes
in Computer Science, pages 1–15. Springer, 2005.

[51] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion Sen-
sor: A Distributed Blackhole Monitoring System. In Proceedings of The 12th Annual
Network and Distributed System Security Symposium (NDSS), February 2005.

[52] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, D. Watson, et al. The Internet Motion
Sensor: A distributed blackhole monitoring system. In Proceedings of the 12th ISOC
Symposium on Network and Distributed Systems Security (SNDSS), pages 167–179.
Citeseer, 2005.

[53] M. Bailey, E. Cooke, F. Jahanian, N. Provos, K. Rosaen, and D. Watson. Data Reduction
for the Scalable Automated Analysis of Distributed Darknet Traffic. In Proceedings of
the Internet Measurement Conference (IMC) 2005, 2005.

[54] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jaha-nian, and J. Nazario. Au-
tomated classification and analysis of internet malware. In Proceedings of the 10th
International Symposium on Recent Advances in Intrusion Detection (RAID07), 2007.

[55] Michael Bailey, Evan Cooke, David Watson, Farnam Jahanian, and Niels Provos. A hy-
brid honeypot architecture for scalable network monitoring. Technical report cse-tr-
499-04, Department of Electrical Engineering, University of Michigan, October 2004.

[56] Vijay A. Balasubramaniyan, Aamir Poonawalla, Mustaque Ahamad, Michael T.
Hunter, and Patrick Traynor. PinDr0p: using single-ended audio features to determine
call provenance. In CCS ’10: Proceedings of the 17th ACM conference on Computer and
communications security, pages 109–120, New York, NY, USA, 2010. ACM.

[57] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and Christopher
Kruegel. A solution for the automated detection of clickjacking attacks. In Proceedings
of the 5th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’10, pages 135–144, New York, NY, USA, 2010. ACM.

[58] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel, Engin
Kirda, and Giovanni Vigna. Efficient Detection of Split Personalities in Malware. In
Proceedings of the 17th Annual Network and Distributed System Security Symposium
(NDSS), 2010.

[59] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the Art of Visualization. In Proceedings of the Symposium on
Operating Systems Principles (SOSP ’03), October 2003.

[60] U. Bayer. Anubis: Analyzing Unknown Binaries. http://analysis.seclab.
tuwien.ac.at/.

[61] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and
Engin Kirda. Scalable, Behavior-Based Malware Clustering. In 16th Symposium on
Network and Distributed System Security (NDSS), 2009.

[62] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel.
Insights Into Current Malware Behavior, 2nd USENIX Workshop on Large-Scale Ex-
ploits and Emergent Threats. In 2nd USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), 2009.

[63] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel.
A View on Current Malware Behaviors. In 2nd USENIX Workshop on Large-Scale Ex-
ploits and Emergent Threats (LEET), 2009.

www.syssec-project.eu 81 June 8, 2011

http://analysis.seclab.tuwien.ac.at/
http://analysis.seclab.tuwien.ac.at/

BIBLIOGRAPHY

[64] Ulrich Bayer, Andreas Moser, Christopher Kruegel, , and Engin Kirda. Dynamic Anal-
ysis of Malicious Code. In Journal in Computer Virology, Springer Computer Science,
2009.

[65] V.H. Berk, R.S. Gray, and G. Bakos. Using sensor networks and data fusion for early
detection of active worms. In Proceedings of the SPIE AeroSense, volume 2, 2003.

[66] K.J. Biba. Integrity considerations for secure computer systems. In MITRE Technical
Report TR-3153, 1977.

[67] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE: Finding Malicious Do-
mains Using Passive DNS Analysis. In 18th Annual Network and Distributed System
Security Symposium, (NDSS 2011), San Diego, February 2011.

[68] J. Binkley and S. Singh. An Algorithm for Anomaly-based Botnet Detection. In Usenix
Steps to Reduce Unwanted Traffic on the Internet (SRUTI), 2006.

[69] Jeffrey Carr. Inside Cyber Warfare: Mapping the Cyber Underworld. O’Reilly Media,
Inc., 1st edition, 2009.

[70] Xu Chen, Jon Andersen, Z. Morley Mao, Michael Bailey, and Jose Nazario. Towards
an Understanding of Anti-Virtualization and Anti-Debugging Behavior in Modern Mal-
ware. In Proceedings of the 38th Annual IEEE International Conference on Dependable
Systems and Networks (DSN), 2008.

[71] Chia Yuan Cho, Juan Caballero, Chris Grier, Vern Paxson, and Dawn Song. Insights
from the inside: a view of botnet management from infiltration. In Proceedings of the
3rd USENIX conference on Large-scale exploits and emergent threats: botnets, spyware,
worms, and more, LEET’10, pages 2–2, Berkeley, CA, USA, 2010. USENIX Association.

[72] Marco Cova, Corrado Leita, Olivier Thonnard, Angelos D. Keromytis, and Marc Dacier.
An analysis of rogue av campaigns. In Proceedings of the 13th international conference
on Recent advances in intrusion detection, RAID’10, pages 442–463, Berlin, Heidelberg,
2010. Springer-Verlag.

[73] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. StackGuard: Automatic Adaptive Detection and Preven-
tion of Buffer-Overflow Attacks. In Proceedings of the 7th USENIX Security Conference,
pages 63–78, jan 1998.

[74] J.R. Crandall, F.T. Chong, and S.F. Wu. Minos: Architectural Support for Protecting
Control Data. In Transactions on Architecture and Code Optimization (TACO). Volume
3, Issue 4, December 2006.

[75] T. Cymru. The underground economy: priceless. http://www.usenix.org/
publications/login/2006-12/openpdfs/cymru.pdf, December 2006.

[76] The Team Cymru. The team cymru darknet project. June 2004.

[77] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat:
Local Worm Detection Using Honeypots. In Proceedings of the 7th International Sym-
posium on Recent Advances in Intrusion Detection (RAID), pages 39–58, October 2004.

[78] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. Honeystat:
Local worm detection using honeypots. In Recent Advances in Intrusion Detection,
pages 39–58. Springer, 2004.

[79] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion
Router. In Proceedings of the 13th Usenix Security Symposium, August 2004.

[80] M. Dornseif, T. Holz, and C. Klein. Nosebreak - attacking honeynets. In Proceedings
of the 5th IEEE Information Assurance Workshop, June 2004.

[81] M. Dornseif, T. Holz, and C.N. Klein. NoSEBrEaK - Attacking Honeynets. In Proceed-
ings of the 2004 Workshop on Information Assurance and Security, June 2004.

www.syssec-project.eu 82 June 8, 2011

http://www.usenix.org/publications/login/2006-12/openpdfs/cymru.pdf
http://www.usenix.org/publications/login/2006-12/openpdfs/cymru.pdf

BIBLIOGRAPHY

[82] Joris Evers. Phishers hijack im accounts. http://news.cnet.com/
Phishers-hijack-IM-accounts/2100-7349_3-6126367.html, October
2006.

[83] Hanno Fallmann, Gilbert Wondracek, and Christian Platzer. Covertly probing under-
ground economy marketplaces. In Proceedings of the 7th international conference on
Detection of intrusions and malware, and vulnerability assessment, DIMVA’10, pages
101–110, Berlin, Heidelberg, 2010. Springer-Verlag.

[84] Hanno Fallmann, Gilbert Wondracek, and Christian Platzer. What’s clicking what?
techniques and innovations of today’s clickbots. In Proceedings of the 8th interna-
tional conference on Detection of intrusions and malware, and vulnerability assessment,
DIMVA’11, Berlin, Heidelberg, 2011. Springer-Verlag.

[85] Mark Felegyhazi, Christian Kreibich, and Vern Paxson. On the potential of proac-
tive domain blacklisting. In Proceedings of the Third USENIX Workshop on Large-scale
Exploits and Emergent Threats (LEET), San Jose, CA, USA, April 2010.

[86] Peter Ferrie. Attacks on Virtual Machine Emulators. Technical report, Symantec Re-
search White Paper, 2006.

[87] Peter Ferrie. Attacks on More Virtual Machines, 2007.

[88] Mona Gandhi, Markus Jakobsson, and Jacob Ratkiewicz. Badvertisements: Stealthy
click-fraud with unwitting accessories. In Online Fraud, Part I Journal of Digital Foren-
sic Practice, Volume 1, Special Issue 2, page 2006, 2006.

[89] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and Ben Y. Zhao. Detect-
ing and characterizing social spam campaigns. In IMC ’10, pages 35–47, New York,
NY, USA, 2010. ACM.

[90] M. Gheorghescu. An Automated Virus Classi?cation System. In Virus Bulletin confer-
ence, 2005.

[91] J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts by IRC nickname
evaluation. In Workshop on Hot Topics in Understanding Botnets, 2007.

[92] Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. @spam: the under-
ground on 140 characters or less. In Proc. of the 17th ACM conf. on Computer and
Communications Security, CCS ’10, pages 27–37, New York, NY, USA, 2010. ACM.

[93] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of Network
Traffic for Protocol- and Structure-Independent Botnet Detection. In Usenix Security
Symposium, 2008.

[94] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detecting Mal-
ware Infection Through IDS-Driven Dialog Correlation. In 16th Usenix Security Sym-
posium, 2007.

[95] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic. In 15th Annual Network and Distributed System Security
Symposium (NDSS), 2008.

[96] A. Ho, , M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical Taint-Based
Protection using Demand Emulation. In Proceedings of the EuroSys, pages 39–58,
April 2006.

[97] Mark Hofman. There is some smishing going on in the eu. http://isc.sans.org/
diary.html?storyid=6076, March 2009.

[98] T. Holz, C. Willems, K. Rieck, P. Duessel, , and P. Laskov. Learning and Classification
of Malware Behavior. In Proceedings of the Fifth Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA 08), 2008.

www.syssec-project.eu 83 June 8, 2011

http://news.cnet.com/Phishers-hijack-IM-accounts/2100-7349_3-6126367.html
http://news.cnet.com/Phishers-hijack-IM-accounts/2100-7349_3-6126367.html
http://isc.sans.org/diary.html?storyid=6076
http://isc.sans.org/diary.html?storyid=6076

BIBLIOGRAPHY

[99] Galen Hunt and Doug Brubacher. Detours: binary interception of win32 functions.
In Proceedings of the 3rd conference on USENIX Windows NT Symposium - Volume 3,
pages 14–14, Berkeley, CA, USA, 1999. USENIX Association.

[100] Internet Identity (IID). Phishing trends report: First quarter 2010. Technical report,
2010.

[101] R. James, Z. Diego, and D. Yann. Building and deploying billy goat, a worm detection
system. In Proceedings of the 18th Annual FIRST Conference, 2006.

[102] X. Jiang and D. Xu. Collapsar: A VM-Based Architecture for Network Attack Detention
Center. In Proceedings of the 13th USENIX Security Symposium, August 2004.

[103] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant, Pongsin
Poosankam, Daniel Reynaud, and Dawn Song. Differential Slicing: Identifying Causal
Execution Differences for Security Applications. In IEEE Symposium on Security and
Privacy (2011) (to appear).

[104] Min Gyung Kang, Heng Yin, Steve Hanna, Steve McCamant, and Dawn Song. Em-
ulating Emulation-Resistant Malware. In Proceedings of the 2nd Workshop on Virtual
Machine Security (VMSec), 2009.

[105] Alexandros Kapravelos, Iasonas Polakis, Elias Athanasopoulos, Sotiris Ioannidis, and
Evangelos P. Markatos. D(e—i)aling with voip: Robust prevention of dial attacks. In
ESORICS, pages 663–678, 2010.

[106] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale Botnet Detection and Charac-
terization. In Usenix Workshop on Hot Topics in Understanding Botnets, 2007.

[107] Timo Kasper, Michael Silbermann, and Christof Paar. All you can eat or breaking a
real-world contactless payment system. In Financial Cryptography, pages 343–350,
2010.

[108] H.A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature
Detection. In 13th USENIX Security Symposium, pages 271–286, August 2004.

[109] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click modular
router. In ACM Transactions on Computer Systems 18(3), pages 263–297, August
2000.

[110] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious executables
in the wild. In J. Mach. Learn. Res,7:27212744, 2006.

[111] M. Konte, N. Feamster, and J. Jung. Dynamics of online scam hosting infrastructure.
In In Passive and Active Measurement Conference, 2009.

[112] Munir Kotadia. Phishers target yahoo instant messenger. http://www.zdnet.com.
au/news/security/soa/Phishers-target-Yahoo-Instant-Messenger/
0,130061744,139185847,00.htm, March 2005.

[113] Brian Krebs. Massive profits fueling rogue antivirus market.
MassiveProfitsFuelingRogueAntivirusMarket, March 2009.

[114] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection signatures
using honeypots. ACM SIGCOMM Computer Communication Review, 34(1):51–56,
2004.

[115] Christian Kreibich, Chris Kanich, Kirill Levchenko, Brandon Enright, Geoffrey M.
Voelker, Vern Paxson, and Stefan Savage. On the spam campaign trail. In Proceed-
ings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, pages
1:1–1:9, Berkeley, CA, USA, 2008. USENIX Association.

[116] Christian Kreibich, Chris Kanich, Kirill Levchenko, Brandon Enright, Geoffrey M.
Voelker, Vern Paxson, and Stefan Savage. Spamcraft: an inside look at spam cam-
paign orchestration. In Proceedings of the 2nd USENIX conference on Large-scale ex-
ploits and emergent threats: botnets, spyware, worms, and more, LEET’09, pages 4–4,
Berkeley, CA, USA, 2009. USENIX Association.

www.syssec-project.eu 84 June 8, 2011

http://www.zdnet.com.au/news/security/soa/Phishers-target-Yahoo-Instant-Messenger/0,130061744,139185847,00.htm
http://www.zdnet.com.au/news/security/soa/Phishers-target-Yahoo-Instant-Messenger/0,130061744,139185847,00.htm
http://www.zdnet.com.au/news/security/soa/Phishers-target-Yahoo-Instant-Messenger/0,130061744,139185847,00.htm
Massive Profits Fueling Rogue Antivirus Market

BIBLIOGRAPHY

[117] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm de-
tection using structural information of executables. In Recent Advances in Intrusion
Detection, pages 207–226. Springer, 2006.

[118] Nir Kshetri. The economics of click fraud. IEEE Security and Privacy, 8:45–53, May
2010.

[119] Boris Lau and Vanja Svajcer. Measuring virtual machine detection in malware using
DSD tracer. Journal in Computer Virology, 6(3), 2010.

[120] Tobias Lauinger, Veikko Pankakoski, Davide Balzarotti, and Engin Kirda. Honey-
bot, your man in the middle for automated social engineering. In Proceedings of
the 3rd USENIX conference on Large-scale exploits and emergent threats: botnets, spy-
ware, worms, and more, LEET’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX
Association.

[121] T. Lee and J. J. Mody. Behavioral Classifcation. In EICAR Conference, 2006.

[122] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An Automated Script Generation
Tool for Honeyd. In Proceedings of the 21st Annual Computer Security Applications
Conference (ACSAC), December 2005.

[123] Federico Maggi. Are the con artists back? a preliminary analysis of modern phone
frauds. In Proc. of the 10th IEEE Intl. Conf. on Computer and Information Technology,
pages 824–831, 2010.

[124] Federico Maggi, Alessandro Sisto, and Stefano Zanero. A social-engineering-centric
data collection initiative to study phishing. In Proceedings of the First Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS
’11, pages 107–108, New York, NY, USA, 2011. ACM.

[125] D. Kevin McGrath and Minaxi Gupta. Behind phishing: an examination of phisher
modi operandi. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats, pages 4:1–4:8, Berkeley, CA, USA, 2008. USENIX Association.

[126] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Detectives: detecting coali-
tion hit inflation attacks in advertising networks streams. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07, pages 241–250, New York,
NY, USA, 2007. ACM.

[127] Kevin D. Mitnick and William L. Simon. The Art of Deception: Controlling the Human
Element of Security. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[128] Tyler Moore and Richard Clayton. Financial cryptography and data security. chap-
ter Evaluating the Wisdom of Crowds in Assessing Phishing Websites, pages 16–30.
Springer-Verlag, Berlin, Heidelberg, 2008.

[129] Tyler Moore, Richard Clayton, and Ross Anderson. The economics of online crime.
Journal of Economic Perspectives, 23(3):3–20, 2009.

[130] Bob Mungamuru and Stephen Weis. Financial cryptography and data security. chap-
ter Competition and Fraud in Online Advertising Markets, pages 187–191. Springer-
Verlag, Berlin, Heidelberg, 2008.

[131] J. Nazario and T. Holz. As the net churns: Fast-flux botnet observations. In Interna-
tional Conference on Malicious and Unwanted Software, 2008.

[132] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures
for Polymorphic Worms. In IEEE Symposium on Security and Privacy, pages 226–241,
2005.

[133] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proceedings of the
12th Annual Network and Distributed System Security Symposium (NDSS), 2005.

www.syssec-project.eu 85 June 8, 2011

BIBLIOGRAPHY

[134] Hamish O’Dea. The modern rogue - malware with a face. In Virus Bulletin Con-
ference 2009, 2009. http://www.microsoft.com/downloads/en/details.
aspx?FamilyID=7A827FBD-C2A1-48BC-9E85-6B805D3E7E26.

[135] Gunter Ollmann. The vishing guide. Technical report, IBM, May 2007.

[136] M. Overton. Worm charming: taking smb lure to the next level. Virus Bulletin Confer-
ence, 2003.

[137] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: How to automatically generate procedures to detect CPU emula-
tors. In Proceedings of the 3rd USENIX Workshop on Offensive Technologies (WOOT),
2009.

[138] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics of
Internet background radiation. In Proceedings of the 4th ACOM SIGCOMM conference
on Internet measurement, pages 27–40, 2004.

[139] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi. Fluxor: Detecting and monitor-
ing fast-flux service networks. In Detection of Intrusions and Malware, and Vunerability
Assessment, 2008.

[140] R. Perdischi, I. Corona, D. Dagon, and W. Lee. Detecting Malicious Flux Service
Networks through Passive Analysis of Recursive DNS Traces. In 25th Annual Computer
Security Applications Conference (ACSAC), 2009.

[141] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Paxson, N. Weaver,
and S. Savage. Botnet Judo: Fighting Spam with Itself . In Proceedings of the 17th
Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, March 2010.

[142] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator for Fingerprinting
Zero-Day Attacks. In Proceedings of ACM SIGOPS Eurosys 2006, April 2006.

[143] F. Pouget and T. Holz. A pointillist approach for comparing honeypots. In Proceedings
of the Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), July 2005.

[144] Niels Provos. A virtual honeypot framework. In Proceedings of the 12th USENIX
Security Symposium, pages 1–14, August 2003.

[145] Siles R. Honeyspot: The wireless honeypot. The Spanish Honeynet Project http:
//honeynet.org.es/papers/honeyspot/HoneySpot_20071217.pdf, 2007.

[146] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting System Emula-
tors. In Information Security Conference (ISC), 2007.

[147] M.A. Rajab, F. Monrose, and A. Terzis. On the Effectiveness of Distributed Worm
Monitoring.

[148] Moheeb Abu Rajab, Lucas Ballard, Panayiotis Mavrommatis, Niels Provos, and Xin
Zhao. The nocebo effect on the web: an analysis of fake anti-virus distribution. In
Proceedings of the 3rd USENIX conference on Large-scale exploits and emergent threats:
botnets, spyware, worms, and more, LEET’10, pages 3–3, Berkeley, CA, USA, 2010.
USENIX Association.

[149] M. Reiter and T. Yen. Traffic aggregation for malware detection. In DIMVA, 2008.

[150] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In 13th Systems
Administration Conference (LISA), 1999.

[151] Joanna Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU instruc-
tion. http://invisiblethings.org/papers/redpill.html, 2004.

[152] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. Busting frame bust-
ing: a study of clickjacking vulnerabilities at popular sites. In in IEEE Oakland Web
2.0 Security and Privacy (W2SP 2010), 2010.

www.syssec-project.eu 86 June 8, 2011

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=7A827FBD-C2A1-48BC-9E85-6B805D3E7E26
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=7A827FBD-C2A1-48BC-9E85-6B805D3E7E26
http://honeynet.org.es/papers/honeyspot/HoneySpot_20071217.pdf
http://honeynet.org.es/papers/honeyspot/HoneySpot_20071217.pdf
http://invisiblethings.org/papers/redpill.html

BIBLIOGRAPHY

[153] Jimmy Shah. School of smish. http://www.avertlabs.com/research/blog/
?p=75, August 2006.

[154] Youngsang Shin, Minaxi Gupta, and Steven Myers. The nuts and bolts of a forum
spam automator. In Proceedings of the 4th USENIX conference on Large-scale exploits
and emergent threats, LEET’11, pages 3–3, Berkeley, CA, USA, 2011. USENIX Associ-
ation.

[155] S. Sidiroglou, G. Giovanidis, and A.D. Keromytis. A Dynamic Mechanism for Recov-
ering from Buffer Overflow Attacks. In Proceedings of the 8th Information Security
Conference (ISC), pages 1–15, September 2005.

[156] S. Singh, C. Estan, G. Varghese, and S. Savage. The earlybird system for real-time
detection of unknown worms. Technical report, Citeseer, 2003.

[157] S. Sinha, M. Bailey, and F. Jahanian. Shedding Light on the Configuration of Dark Ad-
dresses. In Proceedings of the 14th Network and Distributed System Security Sympoisum
(NDSS), February 2007.

[158] A.B. Smith and J.M. Fox. RandomNet. In http: // www. citi. umich. edu/ u/
provos/ honeyd/ ch01-results/ 3/ , March 2003.

[159] Brett Stone-Gross, Ryan Abman, Christopher Kruegel Richard Kemmerer, Douglas
Steigerwald, and Giovanni Vigna. The underground economy of fake antivirus soft-
ware. In WEIS, 2011.

[160] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski,
Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your botnet is my
botnet: analysis of a botnet takeover. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, pages 635–647, New York, NY, USA,
2009. ACM.

[161] Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, and Giovanni Vigna. The un-
derground economy of spam: a botmaster’s perspective of coordinating large-scale
spam campaigns. In Proceedings of the 4th USENIX conference on Large-scale exploits
and emergent threats, LEET’11, pages 4–4, Berkeley, CA, USA, 2011. USENIX Associ-
ation.

[162] W. Strayer, R. Walsh, C. Livadas, and D. Lapsley. Detecting Botnets with Tight Com-
mand and Control. In 31st IEEE Conference on Local Computer Networks (LCN), 2006.

[163] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Detecting spammers
on social networks. In Proceedings of the 26th Annual Computer Security Applications
Conference, ACSAC ’10, pages 1–9, New York, NY, USA, 2010. ACM.

[164] The Telegraph. French fighter planes grounded by computer virus. http:
//www.telegraph.co.uk/news/worldnews/europe/france/4547649/
French-fighter-planes-grounded-by-computer-virus.html, 2010.

[165] T.Holz, C. Gorecki, K. Rieck, and F.C. Freiling. Measuring and Detecting Fast-Flux
Service Networks. In Annual Network and Distributed System Security Symposium
(NDSS), 2008.

[166] N. Vanderavero, X. Brouckaert, O. Bonaventure, and B.L. Charlier. The honeytank :
a scalable approach to collect malicious internet traffic. In Proceedings of the Interna-
tional Infrastructure Survivability Workshop (IISW’04), December 2004.

[167] S. Venkataraman, D. Song, P.B. Gibbons, and A. Blum. New streaming algorithms for
fast detection of superspreaders. In Proc. NDSS, pages 149–166. Citeseer, 2005.

[168] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A.C. Snoeren, G.M. Voelker, and
S. Savage. Scalability, Fidelity and Containment in the Potemkin Virtual Honeyfarm.
In Proceedings of the ACM Symposium on Operating System Principles (SOSP), Brighton,
UK, October 2005.

www.syssec-project.eu 87 June 8, 2011

http://www.avertlabs.com/research/blog/?p=75
http://www.avertlabs.com/research/blog/?p=75
http://www.citi.umich.edu/u/provos/honeyd/ch01-results/3/
http://www.citi.umich.edu/u/provos/honeyd/ch01-results/3/
http://www.telegraph.co.uk/news/worldnews/europe/france/4547649/French-fighter-planes-grounded-by-computer-virus.html
http://www.telegraph.co.uk/news/worldnews/europe/france/4547649/French-fighter-planes-grounded-by-computer-virus.html
http://www.telegraph.co.uk/news/worldnews/europe/france/4547649/French-fighter-planes-grounded-by-computer-virus.html

BIBLIOGRAPHY

[169] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Automated
Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities. In Proceedings of the Network and Distributed System Security (NDSS)
Symposium, pages 39–58, February 2006.

[170] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms. In
Proceedings of the 13th conference on USENIX Security Symposium-Volume 13, pages
3–3. USENIX Association, 2004.

[171] F. Weimer. Passive DNS Replication. In FIRST Conference on Computer Security Inci-
dent, 2005.

[172] D. Whyte, E. Kranakis, and P. Van Oorschot. DNS-based detection of scanning worms
in an enterprise network. In Proc. of the 12th annual Network and Distributed System
Security symposium. Citeseer, 2005.

[173] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic mal-
ware analysis using cwsandbox. IEEE Security and Privacy, 5:32–39, 2007.

[174] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda. Automatically
Generating Models for Botnet Detection. In 14th European Symposium on Research in
Computer Security(ESORICS 2009), 2009.

[175] Guanhua Yan, Stephan Eidenbenz, and Emanuele Galli. Sms-watchdog: Profiling
social behaviors of sms users for anomaly detection. In RAID, pages 202–223, 2009.

[176] V. Yegneswaran, P. Barford, and D. Plonka. On the design and use of internet sinks for
network abuse monitoring. In Proceedings of the Recent Advance in Intrusion Detection
(RAID) Conference 2004, September 2004.

[177] B. Zdrnja, N. Brownlee, and D. Wessels. Passive Monitoring of DNS anomalies. In
DIMVA, 2007.

[178] Linfeng Zhang and Yong Guan. Detecting click fraud in pay-per-click streams of online
advertising networks. In Proceedings of the 2008 The 28th International Conference on
Distributed Computing Systems, ICDCS ’08, pages 77–84, Washington, DC, USA, 2008.
IEEE Computer Society.

[179] Ruishan Zhang, Xinyuan Wang, Xiaohui Yang, and Xuxian Jiang. Billing attacks on
sip-based voip systems. In Proceedings of the first USENIX workshop on Offensive Tech-
nologies, pages 4:1–4:8, Berkeley, CA, USA, 2007. USENIX Association.

[180] O. Zurutuza. Data Mining Approaches for Analysis of Worm Activity Toward Automatic
Signature Generation. PhD thesis, Mondragon University, November 2007.

www.syssec-project.eu 88 June 8, 2011

	Introduction
	Honeypots
	Introduction
	Comparison framework
	Related work
	Low-interaction honeypots
	Medium-interaction honeypots
	High-interaction Honeypot
	Client-side honeypots
	Honeypot Architectures
	Research papers

	Comparison
	Summary and concluding remarks

	Malware
	Introduction
	Sandboxing
	Anubis
	CWSandbox
	Related Projects

	Post Processing Data
	Sharing Data
	Virustotal
	Predict
	WOMBAT - WAPI

	Conclusion

	Online Fraud
	Introduction
	Phishing and Spam Enable Frauds
	Beyond Email Spamming and Phishing
	Automated Social Engineering Techniques

	Fraud 2.0
	From Hit Inflation to Advertisement Fraud
	Rogue Software and Scareware

	Other and Upcoming Frauds
	Lack of Research Data Collection Initiatives

	Network
	Botnet Detection
	Worm Detection
	Malware Detection Through DNS Analysis
	Identifying Malicious Domains

