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Abstract. Mobile devices have become an important part of our every-
day life, harvesting more and more confidential user information. Their
portable nature and the great exposure to security attacks, however, call
out for stronger authentication mechanisms than simple password-based
identification. Biometric authentication techniques have shown potential
in this context. Unfortunately, prior approaches are either excessively
prone to forgery or have too low accuracy to foster widespread adoption.

In this paper, we propose sensor-enhanced keystroke dynamics, a
new biometric mechanism to authenticate users typing on mobile de-
vices. The key idea is to characterize the typing behavior of the user via
unique sensor features and rely on standard machine learning techniques
to perform user authentication. To demonstrate the effectiveness of our
approach, we implemented an Android prototype system termed Unagi.
Our implementation supports several feature extraction and detection
algorithms for evaluation and comparison purposes. Experimental re-
sults demonstrate that sensor-enhanced keystroke dynamics can improve
the accuracy of recent gestured-based authentication mechanisms (i.e.,
EER>0.5%) by one order of magnitude, and the accuracy of traditional
keystroke dynamics (i.e., EER>7%) by two orders of magnitude.

1 Introduction

Recent years have witnessed the blossom of the mobile computing era, with a
sharp increase in the number of handheld devices and mobile users. According
to [1], the number of mobile-connected devices exceeded the number of people
on earth at the end of 2013, with projections indicating a steady increase in
the next few years. The pervasive nature of these devices and their increasingly
enhanced computing power and storage capacity has created opportunities for
many growingly popular mobile services, ranging from email and photo sharing
to financial services such as e-commerce and mobile banking.

As our everyday reliance on mobile services increases, so does the amount of
sensitive information harvested in handheld devices, such as passwords and credit
card numbers. Adequately protecting such private data from unauthorized access
is an increasingly pressing concern, also given the small and portable nature of
mobile devices and their great exposure to prying eyes. For instance, smartphone



theft affected 1.6 million devices in 2012 in the U.S. alone [3]—with the majority
of finders [2] attempting to access private user data.

Unfortunately, traditional password-based (or PIN- or pattern-based) au-
thentication schemes commonly used on mobile devices have a number of weak-
nesses that can inadvertently expose the user to security breaches. First, they are
susceptible to guessing attacks, with as many as 91% of the passwords found in
the top 1000 list [9], a problem exacerbated by the constrained nature of mobile
devices that encourages users to select simpler and weaker passwords. Second,
they are susceptible to smudge attacks, where attackers infer passwords from
the finger smudges left on the touch screen [5]. Finally, they are susceptible to
shoulder-surfing attacks [54], where attackers rely on direct observation to steal
passwords in a public setting. Recent attacks have also become automated and
more sophisticated, with attackers stealing passwords using low-end cameras and
fingertip motion analysis through repeated reflections [58].

Interestingly, studies have shown that users are generally favorable to alter-
native authentication mechanisms [15], which has spurred research on biometric
authentication for mobile devices. Several schemes have been proposed in recent
years, such as identifying users based on their gaits [37], shake motions [43],
phone-to-ear gestures [16], touch gestures [18,19,33,39,51], or keystroke dynam-
ics [23,55,56].

While these approaches have shown potential, they generally yield unac-
ceptably low accuracy to foster widespread adoption. In fact, the equal error
rates (EERs) of such approaches are typically greater than 5% or even 10%.
A notable exception is given by recent work on touch gesture-based authenti-
cation [51], which reported EERs of as low as 0.5% using a fine-grained stroke
characterization strategy. Gesture-based schemes, however, have been shown ex-
tremely vulnerable to simple statistical attacks. While relying only on general
population statistics, such attacks can easily yield a substantial EER increase
(between +35.14% and +44.07%) [50]. Keystroke dynamics [29], in contrast,
has been shown robust against human [28] and synthetic [53] attacks—although
more recent studies seem to suggest a small EER increase (between +3.8% and
+7.6%) [49]–and attacks that have been shown to yield substantial EER in-
creases are only possible with access to the set of the victim’s typing patterns ob-
tained from an implanted keylogger [38,45]. Unfortunately, traditional keystroke
dynamics techniques are also plagued by low accuracy (EER>7%) [23,28].

In this paper, we present sensor-enhanced keystroke dynamics, a new au-
thentication mechanism for sensor-equipped mobile devices with a touch screen
and a software keyboard. The key idea is to combine the traditional timing-
based characterization adopted in keystroke dynamics with movement sensors
information that reflects the unique typing behavior of each user, while relying
on standard machine learning techniques to perform authentication. The richer
feature set aims to substantially improve the accuracy of prior approaches and
also enhance the robustness against human or synthetic attacks. Unlike prior at-
tempts to enrich keystroke dynamics with nonconventional features [47,55], our
feature extraction strategy relies on timing-agnostic metrics computed over a



sliding window to describe a given sensor-sampled distribution. This strategy is
crucial to perform high-accuracy user identification, outperforming all the prior
biometric authentication mechanisms for mobile devices.

Contribution. The contribution of this paper is threefold:

– First, we introduce sensor-enhanced keystroke dynamics, a new technique to
authenticate users typing on a mobile device via keystroke timings—akin
to traditional keystroke dynamics—and movement sensor information—i.e.,
information from accelerometer and gyroscope.

– Second, we implemented Unagi, a fixed-text authentication system based
on sensor-enhanced keystroke dynamics for Android. While sensor-enhanced
keystroke dynamics can be also used in free-text authentication scenarios, our
focus is on fixed-text—and thus static—authentication here. Unagi supports
several feature extraction and detection algorithms for evaluation purposes.

– Third, we ran a thorough evaluation of the proposed approach. In particular,
we gathered data from 20 test subjects to evaluate and compare our tech-
niques with prior work. Our experiments show that: (i) keystroke-induced
movement sensor data are much more effective than keystroke timings in
accurately identifying users; (ii) sensor-enhanced keystroke dynamics signifi-
cantly improves the accuracy of state-of-the-art gesture-based authentication
mechanisms for mobile devices (EER>0.5%) and of standard keystroke dy-
namics (EER>7%) by up to one and two orders of magnitude, respectively;
(iii) our best-detector/password accuracy is sufficiently high (EER=0.08%)
to enable the practical deployment of our techniques.

Organization. The remainder of this paper is structured as follows. Section 2
provides background information on keystroke and sensor dynamics. Section 3
and 4 outline the components of Unagi and present sensor-enhanced keystroke
dynamics. Section 5 evaluates and compares our techniques with prior work.
Finally, Section 6 surveys related work and Section 7 concludes the paper.

2 Background

This section briefly introduces the key concepts used in our techniques.

Keystroke dynamics

Authentication schemes based on keystroke dynamics consider timing informa-
tion associated to key-press events to characterize the behavior of users and
identify distinguishing biometric features. Authentication can be performed via
fixed-text analysis (i.e., with the user typing some predetermined text) [7,13,20,
25, 28, 31, 32, 36, 42, 46] or via free-text analysis (i.e., with the user typing freely
on the keyboard) [14, 41]. Keystroke dynamics techniques have been explored
for a broad range of devices, equipped with either hardware [26, 29] or software



(also called “soft”) keyboards [56]—with recent work on mobile devices largely
falling into the latter category [23,55,56].

While different classes of keyboards (i.e., hardware vs. software, numeric vs.
alphabetic, etc.) typically yield very different typing characteristics and behav-
ioral patterns, the key-press events considered for analysis are common to all
the standard keystroke dynamics techniques: (i) the key-down (KD) event, i.e.,
the event associated to the user pressing a given key; (ii) the key-up (KU) event,
i.e., the event associated to the user releasing a given key. Most feature selection
strategies described in the literature [28] consider one or more possible keystroke
timings associated to consecutive key-press events, e.g., KD-KU time and KD-KD
time (Figure 1). Such features are then processed by a supervised detection
algorithm to identify and authenticate users.
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Fig. 1. Keystroke timings commonly used in keystroke dynamics techniques. The figure
exemplifies the relevant keystroke events for a simple “A-B-C” sequence.

Sensor dynamics

Modern mobile devices are equipped with a number of sensors that can be man-
aged by mobile applications. The Android API, in particular, allows applications
to control several different sensors, including: accelerometer, gyroscope, temper-
ature, air pressure, gravity, light, magnetic, proximity, humidity, microphone,
and camera. Our focus here is on movement sensors, that is accelerometer and
gyroscope. The accelerometer measures the acceleration of the mobile device on
the X (lateral), Y (longitudinal), and Z (vertical) axes. Applications can period-
ically sample acceleration values reported by the accelerometer. The gyroscope,
in turn, measures the orientation of the device around each of the three physical
axes. Applications can periodically sample orientation (angle), rate of rotation
(rad/s), and rotation vector (the orientation of the device as a combination of
an angle and an axis) values reported by the gyroscope.

Accelerometer and gyroscope have been extensively used in behavioral user
characterization applications, as demonstrated in prior work on sensor-based
keystroke [6, 10, 40, 44, 59] or location [22] inference. These techniques have suc-
cessfully exploited the idea that sensor dynamics can provide very relevant in-
formation to accurately recognize the actions performed by the user on a mobile
device. As an example, Figure 2 reports a sampled gyroscope distribution (y-
axis) recorded with the user concurrently typing on a soft keyboard. As the figure
suggests, the sensor-sampled distribution is “perturbed” in a systematic way ev-
ery time the user issues a key-press event. Exploiting the interactions between



key-press events and the resulting “perturbations” induced on sensor-sampled
data forms the basis for our authentication techniques.
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Fig. 2. Sample sensor-sampled distribution (Gyroscope, y-axis).

3 Overview

Sensor-enhanced keystroke dynamics combines features from traditional key-
stroke dynamics techniques with features from prior sensor dynamics techniques,
leveraging the unique synergies between these two classes of features on modern
mobile devices. Our key intuition is to associate sensor-related data to a sequence
of key-press events to improve the accuracy and robustness offered by traditional
keystroke dynamics techniques. Unagi leverages this intuition to implement a
fixed-text authentication system for Android. Our current prototype is based
on a modified version of the stock Android keyboard and a number of support
modules that implement our sensor-enhanced keystroke dynamics techniques for
authentication purposes. Figure 3 presents the high-level architecture of Unagi.

During an authentication session (i.e., either for training or testing purposes),
the user is requested to enter a fixed-text password, which is immediately pro-
cessed by our authentication system for analysis. As the user interacts with
the system, Unagi intercepts (and records) all the generated key-press events
and periodically samples movement sensor data from the accelerometer and the
gyroscope. For this purpose, Unagi relies on the following Android sensor sam-
pling interfaces: TYPE LINEAR ACCELERATION and TYPE GYROSCOPE. Unagi col-
lects sensor values at a high sampling frequency (i.e., 17Hz). This is accomplished
by specifying the SENSOR DELAY FASTEST flag at sensor listener registration time.

As shown in Figure 3, all the data collected from key-press events and sensor-
sampled values are processed by Unagi’s feature extraction module, which trans-
lates all the previously recorded events into features suitable for our detection
algorithms. In particular, the training module processes all the features gathered
during a training sessions to build—or update, in case of repetitions—a sensor-
enhanced keystroke dynamics profile associated to a given user. The detection
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Fig. 3. Overview of Unagi.

module, in turn, matches the features gathered during a testing session against
all the known user profiles to authenticate legitimate users (or detect impostors).

4 Sensor-enhanced Keystroke Dynamics

This section details the design of our solution, with the fundamental steps re-
quired to implement a detector based on sensor-enhanced keystroke dynamics.

Data collection

Sensor-enhanced keystroke dynamics requires different (but complementary) stra-
tegies to collect keystroke and sensor data. In particular, keystroke data are
gathered as a sequence of timestamps for KD and KU events. Movement sensor
data, in turn, are gathered by sampling three different distributions from the ac-
celerometer (i.e., one distribution for each acceleration axis), and three different
distributions from the orientation sensors (i.e., one for each orientation axis).

The recorded KD and KU events provide timing information only for the keys
of interest. In detail, to prevent noisy measurements resulting from rarely issued
key sequences, our current implementation records events only for alphanumeric
characters and ignores events for all the other characters (e.g., “return” key).
Sensor distributions are sampled using instantaneous sensor values provided by
the Android API. A timestamp is associated to every given sample collected. For
our purposes, we consider only key events issued by the user typing a predeter-
mined password. For sensor data, we consider only samples in the time interval
between 100ms before the first KD event and 100ms after the last KU event.



Feature extraction

There are several possible strategies to extract relevant features from sensor
data. As an example, Conti et al. [16] used a DTW algorithm to find similarities
between two data sets. Other techniques [6, 44], rely on statistical analysis to
extract relevant features from sensor data. Unagi follows the latter approach,
with features computed from a given fully typed word—or for different parts of
the word—using a sliding window of predetermined size over the recorded KD
and KU events. In particular, Unagi associates features to individual unigraphs,
digraphs, trigraphs, etc. (i.e., sequences of one, two, or three characters, respec-
tively [32]). Hereafter, we use the more general term n-graph to refer to a sliding
window of n characters defined over KD and KU events. Our notion of n-graph is
similar to the one of n-gram in [8], but, in contrast to the original n-gram defi-
nition, we also allow nondiscrete groupings, considering, for example, 0.5 -graph
intervals, as shown in Figure 4. As depicted in the figure, we allow a 0.5 -graph
interval to start either on a given KD event and end on the next KU event, or
start on a KD event and end on the next KU event, indiscriminately. We compute
features for all the possible n-graphs using a predetermined step S (S = 0.5).
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Fig. 4. Examples of n-graphs of different sizes associated to keystroke events.

To select the most relevant features from the sampled sensor distributions,
we rely on standard statistical metrics, a strategy inspired by existing password
inference techniques [44]. In particular, Unagi considers the following features:
root mean square, minimal and maximal value, number of local maxima and
minima, mean delta (mean absolute difference between two consecutive samples),
sum of positive values, sum of negative values, mean value, mean value during
KU and KD events, and standard deviation.

Unlike movement sensor features, extracting features associated to keystroke
events is fairly established in the keystroke dynamics literature. Early keystroke
dynamics techniques consider only the time interval between KU and KD events,
i.e., KU-KU time, while more recent studies [4,28] demonstrate the importance of
adding additional features, such as KD-KD time. Similar to [28], Unagi associates
features to all the possible time intervals defined over KD and KU events, that is
KD-KU time, KU-KD time, KD-KD time, and KU-KU time.



Detection

The output of the feature extraction phase is a vector containing all the features
considered: keystroke timings and n-graphs-associated sensor statistical metrics.
Common machine learning practices dictate normalizing such a vector so that
the value ranges for all its elements are comparable [57]. Normalization ensures
that the maximum and minimum values for each element are constant across
all the vectors and all other values are linearly distributed. Such labeled feature
vectors are suitable for standard supervised machine learning algorithms [57].

In detail, our problem can be addressed by standard threshold-based binary
classification algorithms, a comparison of which can be found in [29]. The cur-
rent Unagi implementation supports one-class SVM, Naive Bayes, k -nearest
neighbors (kNN), and the “mean algorithm”. The latter is similar to kNN, but
compares the test samples against the mean training sample—instead of all the
training samples. Similar to [29], Unagi considers the following distance metrics:
Euclidean, Euclidean normed, Manhattan, Manhattan scaled, Mahalanobis. We
also experimented with our own weighted metrics, where the weights represent
the “importance” of a given feature in the vector:

– Euclidean Weighted : ew(p, q) =

√√√√√ n∑
i=1

w2
i (pi−qi)2

n∑
i=1

w2
i

.

– Euclidean Normed Weighted : enw(p, q) = ew(p,q)
‖p‖2‖q‖2

.

– Manhattan Weighted : mw(p, q) =

n∑
i=1

wi|pi−qi|
n∑

i=1
wi

.

– Manhattan Scaled Weighted : msw(p, q) =

n∑
i=1

wi|pi−qi|
ai

n∑
i=1

wi

.

For two vectors p and q and a vector of weights w, we denote its elements by
pi, qi and wi (1 ≤ i ≤ n, where n is the size of the vectors). Vector a represents
the mean absolute deviation of each feature in the training vectors, while ‖v‖2
denotes the second norm of the vector v.

Since our preliminary tests revealed poor accuracy for SVM, Naive Bayes, and
Mahalanobis distance-based algorithms, we decided to ignore such algorithms in
further experiments. Our analysis also showed that k = 1 is the optimal param-
eter for kNN, a configuration which we adopted throughout all our experiments.

Testing

To test our classifiers, we use the leave-one-out cross-validation—an instance
of k -fold cross-validation with k set to the number of samples for a specific
user. This testing strategy performs particularly well when the training data are
small [57], a scenario which reflects our dataset of approximately 40 samples per



user. In the testing phase, we evaluate the accuracy for each user separately and
aggregate the results only at the end of the process. Classification thresholds
are chosen separately for each user based on the training data, a strategy which
drastically improves the final accuracy. For each user, we perform the following
steps. The training data for one user is derived from the set of all his samples
except for a predetermined sample z. The testing data are derived from the set
containing the sample z. Samples from all other users are considered impostors
samples. Accuracy is computed for each user and all the possible values of z.

On average, each classifier is tested on 370 valid user samples and 130,000
impostor user samples, while trained using only valid user training samples.

5 Evaluation

In this section, we report on the experimental evaluation of our solution, starting
with the description of the experimental setup and the error metrics considered.

Experimental setup

For our experiments, we gathered samples from a number of test subjects typ-
ing predetermined passwords. To directly compare our results with prior work in
the area—which generally evaluated accuracy in a similar controlled setting—we
conducted our experiments with the subjects seated typing on a mobile device,
allowing all the interested students in our department (20) to participate in the
experiment and negotiate the number of password repetitions (40) in advance.
For our experiments, we used a Samsung Nexus S with a soft keyboard in land-
scape mode, resulting in a 17Hz sensor sampling frequency for each axis.

We evaluated Unagi with two passwords, i.e., internet and satellite,
negotiated in number, length, and type in advance with the test subjects. This
strategy was sought to obtain the best usability-accuracy tradeoff possible and
prevent measurement bias. During the experiments, we allowed each typing error
to invalidate the current sample and request the subject to produce a new sample.

We evaluated our techniques in three different configurations: keystroke tim-
ings only, sensor data only, and combination thereof. For our sensor data analy-
sis, we considered different n-graphs: 1 -, 1.5 -, 2 -, 2.5 -, 3 -, 3.5 -, 4 -, and 4.5 -n-
graphs. For each choice of n, we considered all the possible combinations with
step S=0.5 (i.e., a distinct n-graph starting at every 0.5 step). For our keystroke
timing analysis, we first considered all the possible combinations of KD and KU
events—0.5 -graphs and 1 -graphs with step S=0.5. To compare sensor data and
keystroke timing results, we also evaluated longer n-graphs (1.5 -, 2 -, 2.5 -, 3 -,
3.5 -, 4 -, and 4.5 -n-graphs). To compute our weighted distances, we relied on
the weights derived by SVM feature ranking based on the training data.

In order to compare different authentication systems, we need a consistent
way to measure accuracy. Two standard error metrics used in the literature [28]
are FAR (false acceptance rate), which indicates the fraction of impostor access
attempts identified as valid users, and FRR (false rejection rate), which indicates



the fraction of valid user attempts identified as impostors. FAR and FRR are
strictly correlated and can be controlled by a threshold, which establishes the
conservativeness of the approach and affects FAR and FRR in opposite ways.
To obtain a single value summarizing the accuracy of a system, prior approaches
described in the literature [28] typically relied on the EER (equal error rate),
which is defined as the value of FAR (or FRR) when FAR and FRR are
identical (with the threshold tuned accordingly). We considered only EERs to
measure the accuracy of our techniques in our evaluation.

Accuracy

Figure 5 depicts the accuracy of our techniques for different n-graph sizes, con-
sidering only keystroke timings (and no sensor data) and the minimum EER
found across all our detection algorithms. From the figure, we can observe that
increasing the n-graph size has a negative impact on the accuracy. This be-
havior confirms the importance of using a fine-grained feature characterization
strategy for keystroke timings. In addition, we obtained the most accurate re-
sults when using only 0.5 -graphs (KU-KD time and KD-KU time), a result which
contradicts some of the analyses reported in prior studies in the area [4]. This
suggests that traditional feature selection strategies for keystroke dynamics may
have to be carefully redesigned for touch screen devices. In addition, results for
the internet password revealed slightly better results. This suggests that the
choice of the password may affect the final accuracy in nontrivial ways. Fur-
ther investigation is necessary to predict the quality of a particular password for
keystroke or sensor dynamics purposes.

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

10,00%

0.5-graph 0.5-graph &
1.0-graph

1.5-graph &
0.5-graph &
1.0-graph

2.0-graph &
0.5-graph &
1.0-graph

2.5-graph &
0.5-graph &
1.0-graph

3.0-graph &
0.5-graph &
1.0-graph

3.5-graph &
0.5-graph &
1.0-graph

4.0-graph &
0.5-graph &
1.0-graph

4.5-graph &
0.5-graph &
1.0-graph

E
E

R

internet (min) satellite (min)

Fig. 5. Accuracy (EER) for varying n-graph sizes (keystroke timings only).

Figure 6 depicts the accuracy of our techniques for different n-graph sizes,
considering only sensor data and the minimum EER found across all our detec-
tion algorithms. As shown in the figure, the accuracy improves—although at a
slow pace—with the n-graph size. This behavior demonstrates that, in contrast
to keystroke timings, a coarser-grained feature characterization strategy is more
effective for sensor data. We believe this result stems from statistical analysis
providing more stable and accurate results on a larger amount of data.
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Fig. 6. Accuracy (EER) for varying n-graph sizes (sensor data only).

Figure 7 depicts the accuracy of our techniques for the different detection
algorithms considered. As shown in the figure, we found “kNN (k = 1) Manhat-
tan weighted” and “kNN (k = 1) Manhattan scaled weighted” to be the best
performing algorithms, with the former resulting in the lowest (0.08%) EER
using only sensor data. In addition, the figure shows that algorithms based on
weighted distances outperformed unweighted ones in almost all cases.
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Fig. 7. Accuracy (EER) for the different detection algorithms considered.

Another concern we wish to address is how the sensor sampling frequency
impacts the accuracy of our authentication techniques. To this end, we repeated
our experiments for different values of the sampling frequency. The results are
reported in Figure 8. As shown in the figure, decreasing the sampling frequency
even by a factor of 2 does not significantly lower the accuracy. Reasonably low
frequencies are instead sufficient to achieve accurate results. This is encouraging
and suggests that sensor-enhanced keystroke dynamics could provide high ac-
curacy even for low-end devices. In addition, in fixed-text analyses, sensors are
used only for short time intervals, with minimal impact on battery usage. Finally,
the trend depicted in the figure seems to suggest that increasing the sampling



frequency further (i.e., higher than 17Hz) does not lead to significant accuracy
benefits. More sophisticated sensor-based devices, however, may provide more
accurate results. Note that the empirical evidence presented here is based on
statistical analysis and should not be regarded as conclusive in the general case.
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Finally, Table 1 reports the most relevant sensor-related features according to
the weights computed by SVM feature ranking for our weighted distance metrics.
The weights are averaged over the two passwords and obtained using whole-word
analysis and only sensor data. Our results show that the Z axis is less relevant
than the other axes and that the accelerometer is much more relevant than the
gyroscope. Interestingly, this also suggests that sensor-enhanced keystroke dy-
namics requires different feature selection strategies than prior machine learning
techniques that relied on sensor data to perform side channel attacks [10,40].

Mean Weight Feature Sensor Axis

128 Average value Accelerometer Y
91 Average value Accelerometer X
78 Root mean square Accelerometer X
61 Average value Accelerometer Z
38 Sum of positive values Accelerometer Y
19 Sum of positive values Accelerometer Z
16 Sum of negative values Accelerometer X
11 Root mean square Accelerometer Y
11 Root mean square Gyroscope X
11 Standard deviation Gyroscope X

Table 1. Top 10 features for movement sensors (mean SVM weights).

To summarize, across all the configurations, our best detector and password
achieved 4.97% EER using only keystroke timings and 0.08% EER using only
sensor data. Our results also show that combining sensor data and keystroke tim-
ings does not substantially improve the accuracy when compared to using only
sensor data, with only marginal (e.g., ±0.01%) variations for our best-performing
detectors—although it may improve robustness against human or synthetic at-
tacks, but further investigation is necessary to draw general conclusions.



Table 2 compares our accuracy results with prior keystroke dynamics tech-
niques. As shown in the table, accurate comparisons are not always possible,
given that some studies report only FAR/FRR and other studies rely on non-
standard experimental settings that may overestimate the final accuracy re-
ported (see “Notes” column for details). Encouragingly, prior results obtained
on mobile devices with software keyboards are comparable to ours (4.97% EER
with only keystroke timings), which confirms the soundness of our experimental
analysis. Unfortunately, we cannot directly compare our sensor-related accuracy
results with prior work, given that we are the first to explore sensor-enhanced
keystroke dynamics on mobile devices. Recent work by Tasi et al. [55] comes con-
ceptually close, investigating how to improve the accuracy of keystroke dynamics
techniques using pressure information. Their reported EER values, however, are
as high as 8.4%, with pressure information only introducing relatively small ac-
curacy improvements with respect to their keystroke timing-only configuration
(11.4% EER). In contrast, our experience with Unagi demonstrates that a care-
fully designed feature extraction strategy based on sensor-sampled distributions
can drastically improve keystroke dynamics accuracy (i.e., from 4.97% EER to
0.08% EER, with our best detector and password).

Keyboard Source Accuracy Notes

Hardware
(PC)

(Mobile device)

[25] 13.30% FRR, 0.17% FAR
[34] 1.10% FRR, 0.00% FAR Small dataset.
[42] 0.00% EER Small dataset.
[7] 4.00% FRR, 0.01% FAR Long password (683 characters).
[4] 1.45% FRR, 1.89% FAR Allows 1 authentication failure.
[26] 3.80% EER
[28] 7.10% EER

Hardware
(Mobile device)

[13] 10.40% EER
[27] 12.20% EER
[12] 13.59% EER
[24] 4.00% EER Use of artificial rhythms.
[60] 0.00% FRR, 2.00% FAR Allows 1 authentication failure.

Software
(Mobile device)

[23] 7.50% EER Allows 1 authentication failure.
[56] 5.26% FRR, 8.31% FAR
[55] 8.40% EER

Table 2. Accuracy comparison with prior keystroke dynamics techniques.

6 Related Work

In the following, we survey the most relevant techniques in the area and refer
the interested reader to more complete surveys [17].

Keystroke dynamics on hardware keyboards

Pioneering work in the area of keystroke dynamics was undertaken by Gaines et al.
in 1980 [20]. Seven secretaries typed a predetermined text and their actions an-



alyzed using statistical analysis. The authors concluded that, using mainly di-
graph latencies, users can be distinguished according to their typing behavior.
Further experiments conducted by Leggett et al. [32] confirmed the original in-
tuitions in [20]. Joyce et al. [25] presented the first analytical keystroke dynamics
accuracy evaluation, reporting a 13.3% FRR and 0.17% FAR. De Ru et al. [46]
first proposed fuzzy classification algorithms, later also adopted by other re-
searchers. In 1997, Monrose and Rubin [41] suggested using keystroke dynamics
as a free-text authentication mechanism (amenable to continuous authentica-
tion) resulting in 90% accuracy in identifying users. The same authors reported
a 92.14% accuracy for fixed-text analysis three years later. Around that time,
Lin [34] reported much higher accuracy results (i.e., 1.1% FRR and 0% FAR)
using neural networks, although he considered only one sample per user, likely
overestimating the real accuracy. Similarly, Obaidat and Sadoun [42] reported
high accuracy results using neural networks (0% FRR and 0% FAR), but consid-
ered a very small number of impostor samples. Bergadano et al. [7], in contrast,
proposed using distance-based classification algorithms and reported 4% FRR
and 0.01% FAR. Such results, however, were obtained using a large fixed text
length (683 characters). Araujo et al. [4] first proposed combining KD-KU times
and KU-KD times with KD-KD times, reporting 1.45% FRR and 1.89% FAR,
but only when raising an alarm after two consecutive failed authentication at-
tempts. Kotani and Horii [31] built their own keyboard-equipped device to be
able to measure finger pressure while typing. The authors reported a 2.4% EER
(keystroke timings only) using statistical analysis with fuzzy logic and neural net-
works. In [26], Kang et al. suggested periodic retraining to mitigate the impact
of variations in typing patterns over time. They considered a “sliding window”
approach, where a fixed number of recent patterns were used to train a classi-
fier, ultimately reporting a 3.8% EER with their best detection algorithm. In
another direction, Killourhy and Maxion [28] analyzed the factors influencing
keystroke dynamics error rates. Using a 10-character password and statistical
analysis, they concluded that the detection algorithm, the amount of training,
and the ability to update training data have the strongest impact on the final
detection accuracy. They also found other factors such as impostor practice and
variations in the feature set to be much less relevant for the final accuracy. Their
analysis reported an accuracy of 7.1% EER for their best-performing detector—
i.e., Manhattan (scaled) algorithm. In their earlier work [29], the same authors
experimented with 51 subjects and 14 algorithms. Their earlier analysis reported
an accuracy of 9.6% EER for the same (best-performing) detector.

Keystroke dynamics on hardware keyboards for mobile devices

One of the first keystroke dynamics techniques for mobile devices was proposed
by Clarke et al. [14] on a Nokia 5510 device with a numeric keyboard. Using
neural networks, the authors reported a 11.3% EER for 4-digit password, 10.4%
for 9-digit password, and 24.5% for free text. Karatzouni and Clarke [27] reported
comparable results on similar devices (12.2% EER). Campisi et al. [12] analyzed
a typing scenario with alphabetic strings on numeric keyboards and obtained a



13.59% EER using a statistical classifier. Hwang et al. [24] reported accuracy
improvements for short PIN lengths when using artificial rhythms and tempo
cues. This strategy decreased their EERs from 13% to 4%. Zahid et al. [60]
developed a tri-mode continuous verification system. Using a fuzzy classifier and
particle swarm optimizations, they obtained a 0% FRR and 2% FAR, but only
when using multiple verification systems.

Keystroke dynamics on software keyboards for mobile devices

Saevanee and Bhattarakosol first evaluated the impact of finger pressure on
keystroke dynamics techniques for mobile devices [47], but only performed sim-
ulated experiments using a notebook touchpad. They reported a 1% EER using
a kNN algorithm and later obtained similar results using neural networks [48].
More recent studies on real mobile devices seem to suggest that pressure has a
much smaller accuracy impact in practice, ultimately resulting in a 8.4% EER
when combined with keystroke timings [55]. Huang et al. [23] first explored tra-
ditional keystroke dynamics techniques on software keyboards for mobile devices
and reported a 7.5% EER, but only when raising an alarm after 2 consecutive
failed authentication attempts. Trojahn and Ortmeier [56] extended the analy-
sis to both numeric and alphabetic passwords and both numeric and QWERTY
keyboards, reporting nontrivial variations across configurations, with FRRs and
FARs in the range of 5.26%-8.75% and 8.31%-12.13%, respectively.

Sensor-based side channel attacks

A number of studies have recently demonstrated the feasibility of side channel
attacks on mobile devices using movement sensor data. Typical attacks exploit
the intuition that statistical analysis of sensor data provides a strong characteri-
zation of a given user, an idea which we used as a foundation for sensor-enhanced
keystroke dynamics. Cai and Chen [10] presented a 70%-accuracy keylogging at-
tack on numeric touchscreen keyboards which relies solely on sensor data. In
contrast to our results, they observed that data read from the gyroscope is more
user independent than data read from the accelerometer. Miluzzo et al. [40]
relied on gyroscope and accelerometer data to infer the icon activated by the
user in iOS and reported a 90% accuracy. Owusu et al. [44], in contrast, relied
only on accelerometer data to infer complete sequences of characters. The au-
thors reported an average of 4.5 attempts to guess a 6-characters passwords.
Their probabilistic model based on statistical analysis is similar, in spirit, to our
feature extraction strategy for sensor data. Xu et al. [59] proposed TapLogger,
an accelerometer-based keylogger for numeric soft keyboards. The authors re-
ported a 97.5% accuracy for 8-digit passwords and 3 authentication attempts.
Aviv et al. [6] relied on accelerometer data and keystroke timings to infer 4-digit
PINs and unlock screen patterns. The authors reported an accuracy of 43% and
73% for the two scenarios considered (respectively), using 5 authentication at-
tempts in a controlled setting. Souya Faria and Kim [52] presented an attack
based on the analysis of mechanical vibrations inferred by accelerometer data.



The authors reported key recognition rates of 98.4% on an ATM keypad, 76.7%
on a PIN pad on a hard surface and 82.1% on a PIN pad held with one hand.

Gesture-based authentication

Guerra Casanova et al. [21] first proposed an authentication technique based on
user gestures for mobile devices. Their approach relied on accelerometer data
and reported a 2.5% EER. Similarly, Kolly et al. [30] proposed touch events
to authenticate users interacting with a mobile device. The authors reported
80% accuracy using a Naive Bayes classification algorithm based only on a few
touch events. Han et al. [22] suggested using accelerometer data to infer the
GPS coordinates of a mobile device within a 200m radius from the real location.
Frank et al. [19] presented a continuous authentication system based on 30 touch-
based gestures. Their SVM and kNN detection algorithms resulted in 0%-4%
EER depending on whether training and testing were performed during the same
user session. Liu [35] presented a detailed study on mobile device sensors and
discussed novel applications enabled by sensor data. Meng et al. [39] proposed a
post-login continuous authentication system with 0.13% FRR and 4.66% FAR.
To obtain the reported accuracy, they relied on a special glove equipped with
accelerometers and interacting with a touch screen using particular gestures.
Damopoulos et al. [17] proposed a continuous authentication system using only
touchscreen gestures. The authors reported a low 1% EER using predetermined
touch patterns. Recent proposals described in [18, 33, 51] have often reported
even lower EERs in particular scenarios, as low as 0.5% EER, in particular,
when using a fine-grained stroke characterization strategy [51]. Gesture-based
authentication schemes, however, have been already shown extremely vulnerable
to simple statistical attacks, which can easily yield substantial EER increases
while relying only on general population statistics [50].

7 Conclusion

In this paper, we presented sensor-enhanced keystroke dynamics, a new biomet-
ric authentication mechanism for mobile devices. The key intuition is to leverage
movement sensor data to strengthen the user characterization guarantees pro-
vided by traditional keystroke dynamics techniques, an idea inspired by emerging
side channel attacks on sensor-equipped mobile devices [6, 10,11,40,44,52,59].

To demonstrate the effectiveness of our approach, we implemented Unagi, an
Android prototype based on the proposed sensor-enhanced keystroke dynamics
mechanism. Unagi relies on sensor data (i.e., accelerometer and gyroscope) and
keystroke timings to implement a general-purpose fixed-text authentication sys-
tem. Unagi outperforms prior biometric techniques for mobile devices in terms
of both accuracy and robustness against attacks. In particular, we demonstrated
how a careful feature extraction strategy coupled with standard machine learning
techniques can produce a high-accuracy detector, even for relatively low sensor
sampling frequencies and short passwords. Our results confirm that movement



sensor provides extremely accurate information to characterize user behavior
and identify unique biometric features suitable for authentication purposes.

In addition, and somewhat surprisingly, our results demonstrate that the ac-
curacy yielded by sensor-based features outperforms the accuracy of standard
keystroke dynamics features (i.e., keystroke timings) by up to two orders of
magnitude (i.e., 0.08% EER vs. 4.97% EER with our best detector/password,
respectively) and that their combination provides little accuracy benefits com-
pared to a sensor-only configuration. With a EER of only 0.08% reported by the
best detector/password in our experiments, we believe ours is the first promising
attempt to fill the gap between traditional keystroke dynamics techniques and
the accuracy required in real-world authentication systems.

We are currently considering three main directions for future work. First,
we are planning to investigate techniques to further increase the accuracy of
sensor-enhanced keystroke dynamics (e.g., by using more sophisticated sensors
or detection algorithms). The gold standard is to reach a FRR of less than 1%,
with a FAR of no more than 0.001%—as specified by the European standard for
access-control systems (EN-50133-1) [29]. Second, we are planning to investigate
techniques to maximize the accuracy of sensor-enhanced keystroke dynamics in
both uncontrolled and free-text authentication scenarios, for instance by employ-
ing noise-suppression techniques to improve the quality of the sensor-sampled
distributions. Finally, we are planning to thoroughly evaluate the robustness of
sensor-enhanced keystroke dynamics against human and synthetic attacks [50].
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