
Prudent Practices for Designing Malware Experiments: Status Quo and Outlook

Christian Rossow∗‡, Christian J. Dietrich∗, Chris Grier†§, Christian Kreibich†§,

Vern Paxson†§, Norbert Pohlmann∗, Herbert Bos‡, Maarten van Steen‡

∗ Institute for Internet Security, Gelsenkirchen

{rossow,dietrich,pohlmann}@internet-sicherheit.de
§ University of California, Berkeley

† International Computer Science Institute, Berkeley

grier@icsi.berkeley.edu,{christian,vern}@icir.org
‡ VU University Amsterdam, The Network Institute

{herbertb,steen}@cs.vu.nl

Abstract—Malware researchers rely on the observation of
malicious code in execution to collect datasets for a wide array
of experiments, including generation of detection models, study
of longitudinal behavior, and validation of prior research. For
such research to reflect prudent science, the work needs to
address a number of concerns relating to the correct and
representative use of the datasets, presentation of methodology
in a fashion sufficiently transparent to enable reproducibility,
and due consideration of the need not to harm others.

In this paper we study the methodological rigor and
prudence in 36 academic publications from 2006–2011 that
rely on malware execution. 40% of these papers appeared
in the 6 highest-ranked academic security conferences. We
find frequent shortcomings, including problematic assumptions
regarding the use of execution-driven datasets (25% of the
papers), absence of description of security precautions taken
during experiments (71% of the articles), and oftentimes insuf-
ficient description of the experimental setup. Deficiencies occur
in top-tier venues and elsewhere alike, highlighting a need for
the community to improve its handling of malware datasets. In
the hope of aiding authors, reviewers, and readers, we frame
guidelines regarding transparency, realism, correctness, and
safety for collecting and using malware datasets.

I. INTRODUCTION

Observing the host- or network-level behavior of mal-

ware as it executes constitutes an essential technique for

researchers seeking to understand malicious code. Dynamic

malware analysis systems like Anubis [8], CWSandbox [50]

and others [16, 22, 27, 36, 42] have proven invaluable in

generating ground truth characterizations of malware be-

havior. The anti-malware community regularly applies these

ground truths in scientific experiments, for example to evalu-

ate malware detection technologies [2, 10, 17, 19, 24, 26, 30,

33, 44, 48, 52–54], to disseminate the results of large-scale

malware experiments [6, 11, 42], to identify new groups of

malware [2, 5, 38, 41], or as training datasets for machine

learning approaches [20, 34, 35, 38, 40, 41, 47, 55]. However,

while analysis of malware execution clearly holds impor-

tance for the community, the data collection and subsequent

analysis processes face numerous potential pitfalls.

In this paper we explore issues relating to prudent experi-

mental evaluation for projects that use malware-execution

datasets. Our interest in the topic arose while analyzing

malware and researching detection approaches ourselves,

during which we discovered that well-working lab experi-

ments could perform much worse in real-world evaluations.

Investigating these difficulties led us to identify and explore

the pitfalls that caused them. For example, we observed that

even a slight artifact in a malware dataset can inadvertently

lead to unforeseen performance degradation in practice.

Thus, we highlight that performing prudent experiments

involving such malware analysis is harder than it seems.

Related to this, we have found that the research community’s

efforts (including ours) frequently fall short of fully address-

ing existing pitfalls. Some of the shortcomings have to do

with presentation of scientific work, i.e., authors remaining

silent about information that they could likely add with ease.

Other problems, however, go more deeply, and bring into

question the basic representativeness of experimental results.

As in any science, it is desirable for our community

to ensure we undertake prudent experimental evaluations.

We define experiments reported in our paper as prudent if

they are are correct, realistic, transparent, and do not harm

others. Such prudence provides a foundation for the reader

to objectively judge an experiment’s results, and only well-

framed experiments enable comparison with related work.

As we will see, however, experiments in our community’s

publications could oftentimes be improved in terms of trans-

parency, e.g., by adding and explaining simple but important

aspects of the experiment setup. These additions render the

papers more understandable, and enable others to reproduce

results. Otherwise, the community finds itself at risk of

failing to enable sound confirmation of previous results.

In addition, we find that published work frequently lacks

sufficient consideration of experimental design and empirical

assessment to enable translation from proposed method-

ologies to viable, practical solutions. In the worst case,

papers can validate techniques with experimental results

that suggest the authors have solved a given problem, but

2012 IEEE Symposium on Security and Privacy

© 2012, Christian Rossow. Under license to IEEE.
DOI 10.1109/SP.2012.14

65

 0

 2

 4

 6

 8

 10

 12

2006 2007 2008 2009 2010 2011

of

 s
ur

ve
ye

d
pa

pe
rs

Year of publication

Figure 1: Surveyed papers using malware execution, per year.

the solution will prove inadequate in real use. In contrast,

well-designed experiments significantly raise the quality of

science. Consequently, we argue that it is important to

have guidelines regarding both experimental design and

presentation of research results.

We aim in this work to frame a set of guidelines for

describing and designing experiments that incorporate such

prudence, hoping to provide touchstones not only for au-

thors, but also for reviewers and readers of papers based

on analysis of malware execution. To do so, we define goals

that we regard as vital for prudent malware experimentation:

transparency, realism, correctness, and safety. We then

translate these goals to guidelines that researchers in our

field can use.

We apply these guidelines to 36 recent papers that make

use of malware execution data, 40% from top-tier venues

such as ACM CCS, IEEE S&P, NDSS and USENIX Se-

curity, to demonstrate the importance of considering the

criteria. Figure 1 shows the number of papers we reviewed

by publishing year, indicating that usage of such datasets has

steadily increased. Table II (on page 6) lists the full set of

papers. We find that almost all of the surveyed papers would

have significantly benefited from considering the guidelines

we frame, indicating, we argue, a clear need for more

emphasis on rigor in methodology and presentation in the

subfield. We also back up our assessment of the significance

of some of these concerns by a set of conceptually simple

experiments performed using publicly available datasets.

We acknowledge that fully following the proposed guide-

lines can be difficult in certain cases, and indeed this

paper comes up short in some of these regards itself. For

example, we do not fully transparently detail our survey

datasets, as we thought that doing so might prove more of

a distraction from our overall themes than a benefit. Still,

the proposed guidelines can—when applicable—help with

working towards scientifically rigorous experiments when

using malware datasets.

To summarize our contributions:

• We identify potential pitfalls when designing experi-

ments based on malware execution, and estimate the

impact of these pitfalls in a few experiments.

• We devise guidelines to help with designing and pre-

senting scientifically rigorous experiments.

• Our survey of 36 papers shows that our community

could better address a number of shortcomings in typ-

ical malware datasets by adhering to these guidelines.

• We show that, contrary to our expectations, most of

the problems occur equally in publications in top-tier

research conferences and in less prominent venues.

II. DESIGNING PRUDENT EXPERIMENTS

We begin by discussing characteristics important for pru-

dent experimentation with malware datasets. In formulating

these criteria, we draw inspiration from extensive experience

with malware analysis and malware detection, as well as

from lessons we have learned when trying to assess papers

in the field and—in some cases—reproducing their results.

We emphasize that our goal is not to criticize malware

execution studies in general. Instead, we highlight pitfalls

when using malware datasets, and suggest guidelines how

to devise prudent experiments with such datasets.

We group the pitfalls that arise when relying on data

gathered from malware execution into four categories. Need-

less to say, compiling correct datasets forms a crucial part

of any experiment. We further experienced how difficult

it proves to ensure realism in malware execution exper-

iments. In addition, we must provide transparency when

detailing the experiments to render them both repeatable

and comprehensible. Moreover, we believe that legal and

ethical considerations mandate discussion of how conduct

such experiments safely, mitigating harm to others. For each

of these four “cornerstones of prudent experimentation”, we

now outline more specific aspects and describe guidelines

to ensure prudence. As we will show later, the following

guidelines can be used by our community to overcome

common shortcomings in existing experiments.

A. Correct Datasets

1) Check if goodware samples should be removed

from datasets. Whereas goodware (legitimate soft-

ware) has to be present for example in experiments

to measure false alarms, it is typically not desirable to

have goodware samples in datasets to estimate false

negative rates. However, malware execution systems

open to public sample submission lack control over

whether specimens submitted to the system in fact

consist of malware; the behavior of such samples

remains initially unknown rather than malicious per

se. (We explore this concern as one of our illustrative

experiments in § V-B.) We advocate that researchers

use sources of malware specimens gathered via means

that avoid the possible presence of goodware; explic-

itly remove goodware samples from their datasets;

66

or compile sample subsets based on malware family

labels.

2) Balance datasets over malware families. In un-

balanced datasets, aggressively polymorphic malware

families will often unduly dominate datasets filtered

by sample-uniqueness (e.g., MD5 hashes). Authors

should discuss if such imbalances biased their exper-

iments, and, if so, balance the datasets to the degree

possible.

3) Check whether training and evaluation datasets

should have distinct families. When splitting datasets

based on sample-uniqueness, two distinct malware

samples of one family can potentially appear in

both the training and validation dataset. Appearing

in both may prove desirable for experiments that

derive generic detection models for malware families

by training on sample subsets. In contrast, authors

designing experiments to evaluate on previously un-

seen malware types should separate the sets based on

families.

4) Perform analysis with higher privileges than the

malware’s. Malware with rootkit functionality can

interfere with the OS data structures that kernel-based

sensors modify. Such malware can readily influence

monitoring components, thus authors ought to report

on the extent to which malware samples and moni-

toring mechanisms collide. For example, kernel-based

sensors could monitor whenever a malware gains equal

privileges by observing if it is loading a kernel driver.

Ideally, sensors are placed at a level where they cannot

be modified, such as monitoring system calls with a

system emulator or in a VMM.

5) Discuss and if necessary mitigate analysis artifacts

and biases. Execution environment artifacts, such as

the presence of specific strings (e.g., user names or

OS serial keys) or the software configuration of an

analysis environment, can manifest in the specifics of

the behavior recorded for a given execution. Particu-

larly when deriving models to detect malware, papers

should explain the particular facets of the execution

traces that a given model leverages. Similarly, biases

arise if the malware behavior in an analysis environ-

ment differs from that manifest in an infected real

system, for example due to containment policies.

6) Use caution when blending malware activity traces

into benign background activity. The behavior ex-

hibited by malware samples executing in dynamic

analysis environments differs in a number of ways

from that which would manifest in victim machines

in the wild. Consequently, environment-specific per-

formance aspects may poorly match those of the

background activity with which experimenters com-

bine them. The resulting idiosyncrasies may lead to

seemingly excellent evaluation results, even though

the system will perform worse in real-world settings.

Authors should consider these issues, and discuss them

explicitly if they decide to blend malicious traces with

benign background activity.

B. Transparency

1) State family names of employed malware samples.

Consistent malware naming remain a thorny issue,

but labeling the employed malware families in some

form helps the reader identify for which malware

a methodology works. As we illustrate in § V-C,

employing a large number of unique malware samples

does not imply family diversity, due to the potential

presence of binary-level polymorphism. If page-size

limitations do not allow for such verbose information,

authors can outsource this information to websites and

add references to their paper accordingly.

2) List which malware was analyzed when. To un-

derstand and repeat experiments the reader requires

a summary, perhaps provided externally to the pa-

per, that fully describes the malware samples in the

datasets. Given the ephemeral nature of some malware,

it helps to capture the dates on which a given sample

executed to put the observed behavior in context, say

of a botnet’s lifespan that went through a number of

versions or ended via a take-down effort.

3) Explain the malware sample selection. Researchers

oftentimes study only a subset of all malware spec-

imens at their disposal. For instance, for statistically

valid experiments, evaluating only a random selection

of malware samples may prove necessary. Focusing on

more recent analysis results and ignoring year-old data

may increase relevance. In either case, authors should

describe how they selected the malware subsets, and

if not obvious, discuss any potential bias this induces.

Note that random sample selections still may have im-

balances that potentially need to be further addressed

(see guideline A.2).

4) Mention the system used during execution. Mal-

ware may execute differently (if at all) across various

systems, software configurations and versions. Explicit

description of the particular system(s) used (e.g.,

“Windows XP SP3 32bit without additional software

installations”) renders experiments more transparent,

especially as presumptions about the “standard” OS

change with time. When relevant, authors should also

include version information of installed software.

5) Describe the network connectivity of the analy-

sis environment. Malware families assign different

roles of activity depending on a system’s connectivity,

which can significantly influence the recorded behav-

ior. For example, in the Waledac botnet [46], PCs

connected via NAT primarily sent spam, while systems

with public IP addresses acted as fast-flux “repeaters”.

67

6) Analyze the reasons for false positives and false

negatives. False classification rates alone provide little

clarification regarding a system’s performance. To

reveal fully the limitations and potential of a given ap-

proach in other environments, we advocate thoughtful

exploration of what led to the observed errors. Sommer

and Paxson explored this particular issue in the context

of anomaly detection systems [43].

7) Analyze the nature/diversity of true positives. Sim-

ilarly, true positive rates alone often do not adequately

reflect the potential of a methodology [43]. For exam-

ple, a malware detector flagging hundreds of infected

hosts may sound promising, but not if it detects only a

single malware family or leverages an environmental

artifact. Papers should evaluate the diversity manifest

in correct detections to understand to what degree a

system has general discriminative power.

C. Realism

1) Evaluate relevant malware families. Using signifi-

cant numbers of popular malware families bolsters the

impact of experiments. Given the ongoing evolution of

malware, exclusively using older or sinkholed speci-

mens can undermine relevance.

2) Perform real-world evaluations. We define a real-

world experiment as an evaluation scenario that incor-

porates the behavior of a significant number of hosts

in active use by people other than the authors. Real-

world experiments play a vital role in evaluating the

gap between a method and its application in practice.

3) Exercise caution generalizing from a single OS

version, such as Windows XP. For example, by

limiting analysis to a single OS version, experiments

may fail with malware families that solely run or

exhibit different behavior on disregarded OS versions.

For studies that strive to develop results that generalize

across OS versions, papers should consider to what

degree we can generalize results based on one specific

OS version.

4) Choose appropriate malware stimuli. Malware

classes such as keyloggers require triggering by spe-

cific stimuli such as keypresses or user interaction in

general. In addition, malware often expose additional

behavior when allowed to execute for more than a

short period [42]. Authors should therefore describe

why the analysis duration they chose suffices for their

experiments. Experiments focusing on the initializa-

tion behavior of malware presumably require shorter

runtimes than experiments that aim to detect damage

functionality such as DoS attacks.

5) Consider allowing Internet access to malware.

Deferring legal and ethical considerations for a mo-

ment, we argue that experiments become significantly

more realistic if the malware has Internet access.

Malware often requires connectivity to communicate

with command-and-control (C&C) servers and thus

to expose its malicious behavior. In exceptional cases

where experiments in simulated Internet environments

are appropriate, authors need to describe the resulting

limitations.

D. Safety

1) Deploy and describe containment policies. Well-

designed containment policies facilitate realistic exper-

iments while mitigating the potential harm malware

causes to others over time. Experiments should at a

minimum employ basic containment policies such as

redirecting spam and infection attempts, and identi-

fying and suppressing DoS attacks. Authors should

discuss the containment policies and their implications

on the fidelity of the experiments. Ideally, authors

also monitor and discuss security breaches in their

containment.

III. METHODOLOGY FOR ASSESSING THE GUIDELINES

The previous section described guidelines for designing

and presenting scientifically prudent malware-driven experi-

ments. As an approach to verify if our guidelines are in fact

useful, we analyzed in which cases they would have sig-

nificantly improved experiments in existing literature. This

section describes our methodology for surveying relevant

publications with criteria derived from our guidelines.

A. Assessment Criteria

Initially, we establish a set of criteria for assessing the

degree to which experiments presented in our community

adhere to our guidelines. We aim to frame these assessments

with considerations of the constraints the reviewer of

a paper generally faces, because we ultimately wish to

gauge how well the subfield develops its research output.

Consequently, we decided not to attempt to review source

code or specific datasets, and refrained from contacting

individual authors to clarify details of the presented ap-

proaches. Instead, our goal is to assess the prudence of

experiments given all the information available in a paper

or its referenced related work, but no more. We employed

these constraints since they in fact reflect the situation that

a reviewer faces. A reviewer typically is not supposed to

clarify missing details with the authors (and in the case of

double-blind submissions, lacks the means to do so). That

said, we advocate that readers facing different constraints

should contact authors to clarify lacking details whenever

possible.

Table I lists the guideline criteria we used to evaluate

the papers. We translate each aspect addressed in § II into

at least one concrete check that we can perform when

68

CRITERION GDL. IMP. DESCRIPTION

Correct Datasets

Removed goodware A.1) � Removed legitimate binaries from datasets
Avoided overlays A.6) � Avoided comparison of execution output with real system output
Balanced families A.2) �� Training datasets balanced in terms of malware families, not individual specimens
Separated datasets A.3) �� Appropriately separated training and evaluation datasets based on families
Mitigated artifacts/biases A.5) �� Discussed and if necessary mitigated analysis artifacts or biases
Higher privileges A.4) �� Performed analysis with higher privileges than the malware

Transparency

Interpreted FPs B.6) � Analyzed when and why the evaluation produced false positives
Interpreted FNs B.6) � Analyzed when and why the evaluation produced false negatives
Interpreted TPs B.7) � Analyzed the nature/diversity of true positives
Listed malware families B.2) �� Listed the family names of the malware samples
Identified environment B.4) �� Named or described the execution environment
Mentioned OS B.4) �� Mentioned the operating system used during execution analysis
Described naming B.1) �� Described the methodology of how malware family names were determined
Described sampling B.3) � Mentioned the malware sample selection mechanism
Listed malware B.1) � Listed which malware was when analyzed
Described NAT B.5) � Described whether NAT was used or not
Mentioned trace duration C.4) � Described for how long malware traces were recorded.

Realism

Removed moot samples C.1) � Explicitly removed outdated or sinkholed samples from dataset
Real-world FP exp. C.2) � Performed real-world evaluation measuring wrong alarms/classifications
Real-world TP exp. C.2) � Performed real-world evaluation measuring true positives
Used many families C.1) � Evaluated against a significant number of malware families
Allowed Internet C.5) �� Allowed Internet access to malware samples
Added user interaction C.4) � Explicitly employed user interaction to trigger malware behavior
Used multiple OSes C.3) � Analyzed malware on multiple operating systems

Safety

Deployed containment D.1) � Deployed containment policies to mitigate attacks during malware execution

Table I: List of guideline criteria assessed during our survey. The second column denotes the guidelines from which we derived this
criterion. The third column denotes the importance that we devote to this subject: � is a must, �� should be done, and � is nice to have.

reading a given paper.1 We defined the assessment criteria

in an objective manner such that each item can be answered

without ambiguity. We also assign a three-level qualitative

importance rating to each check, based on our experience

with malware execution analysis. Later on, this rating allows

us to weigh the interpretation of the survey results according

to the criteria’s criticality levels.

For an informal assessment of our approach, we asked the

authors of two papers to apply our criteria.2 The researchers

were asked if the criteria were applicable, and if so, if the

criteria were met in their own work. During this calibration

process, we broadened the check to determine coverage of

false positives and false negatives, to allow us to perform a

generic assessment. In addition, as we will discuss later, we

realized that not all criteria can be applied to all papers.

B. Surveyed Publications

We assessed each of the guideline criteria against the 36

scientific contributions (“papers”) in Table II. We obtained

1Although the guideline “Choose appropriate malware stimuli” is in the
Realism section, we added the criterion “Mentioned trace duration” (as one
possible criterion for this guideline) to the Transparency category.

2One of these is a coauthor of this paper, too. However, he undertook
applying the criteria prior to obtaining any knowledge of the separate
assessment of his paper made as part of our survey.

this list of papers by systematically going through all of

the proceedings of the top-6 computer- and network-security

conferences from 2006–2011. 3 We added a paper to our list

if any of its experiments make use of PC malware execution-

driven datasets. We then also added an arbitrary selection

of relevant papers from other, less-prestigious venues, such

that in total about two fifth (39%) of the 36 surveyed papers

were taken from the top-6 security conferences. As Figure 1

shows, we see increasing use of malware execution during

recent years.

The surveyed papers use malware datasets for diverse

purposes. A significant number used dynamic analysis re-

sults as input for a training process of malware detec-

tion methods. For example, Botzilla [40] and Wurzinger

3We determined the top-6 conferences based on three conference-
ranking websites: (1) Microsoft Academic Search - Top Conferences
in Security & Privacy (http://academic.research.microsoft.com/RankList?
entitytype=3&topdomainid=2&subdomainid=2), (2) Guofei Gu’s Com-
puter Security Conference Ranking and Statistic (http://faculty.cs.tamu.
edu/guofei/sec conf stat.htm), and (3) Jianying Zhou’s Top Crypto and
Security Conferences Ranking (http://icsd.i2r.a-star.edu.sg/staff/jianying/
conference-ranking.html). As all rankings agreed on the top 6, we chose
those as constituting top-tier conferences: ACM CCS, IEEE S&P, NDSS,
USENIX Security, and two conferences (Crypto and Eurocrypt) without
publications in our focus. We defined this list of top-venues prior to
assembling the list of papers in our survey.

69

AUTHORS VENUE TOP TITLE

1 Lanzi et al. [30] ACM CCS 2010 � AccessMiner: Using System-Centric Models for Malware Protection
2 Morales et al. [35] IEEE SecureComm 2010 Analyzing and Exploiting Network Behaviors of Malware
3 Rieck et al. [41] Journal of Comp. Sec. Automatic Analysis of Malware Behavior using Machine Learning
4 Bailey et al. [2] RAID 2007 Automated Classification and Analysis of Internet Malware
5 Wurzinger et al. [51] ESORICS 2009 Automatically Generating Models for Botnet Detection
6 Bayer et al. [6] USENIX LEET 2009 A View on Current Malware Behaviors
7 Perdisci et al. [38] NSDI 2010 Behavioral Clustering of HTTP-Based Malware and Signature Generation [...]
8 Kirda et al. [24] USENIX Security 2006 � Behavior-based spyware detection
9 Jang et al. [21] ACM CCS 2011 � BitShred: Feature Hashing Malware for Scalable Triage and Semantic Analysis

10 Zhang et al. [54] ASIACCS 2011 Boosting the Scalability of Botnet Detection Using Adaptive Traffic Sampling
11 Gu et al. [17] USENIX Security 2008 � BotMiner: Clustering Analysis of Network Traffic for [...] Botnet Detection
12 Strayer et al. [48] Adv. in Info. Sec. 2008 Botnet Detection Based on Network Behavior
13 Gu et al. [19] NDSS 2008 � BotSniffer: Detecting Botnet C&C Channels in Network Traffic
14 Bowen et al. [10] RAID 2010 BotSwindler: Tamper Resistant Injection of Believable Decoys [...]
15 Liu et al. [33] ISC 2008 BotTracer : Execution-based Bot-like Malware Detection
16 Rieck et al. [40] ACM SAC 2010 Botzilla: Detecting the ”Phoning Home” of Malicious Software
17 Stinson et al. [44] DIMVA 2007 Characterizing Bots’ Remote Control Behavior
18 Lindorfer et al. [32] RAID 2011 Detecting Environment-Sensitive Malware
19 Gu et al. [18] USENIX Security 2007 � Detecting Malware Infection Through IDS-Driven Dialog Correlation
20 Caballero et al. [12] ACM CCS 2009 � Dispatcher: Enabling Active Botnet Infiltration [...]
21 Kolbitsch et al. [25] USENIX Security 2009 � Effective and Efficient Malware Detection at the End Host
22 Balzarotti et al. [3] NDSS 2010 � Efficient Detection of Split Personalities in Malware
23 Stone-Gross et al. [47] ACSAC 2009 FIRE: FInding Rogue nEtworks
24 Bayer et al. [7] ACM SAC 2010 Improving the Efficiency of Dynamic Malware Analysis
25 Kolbitsch et al. [26] IEEE S&P 2010 � Inspector Gadget: Automated Extraction of Proprietary Gadgets [...]
26 Jacob et al. [20] USENIX Security 2011 � JACKSTRAWS: Picking Command and Control Connections from Bot Traffic
27 Rieck et al. [39] DIMVA 2008 Learning and Classification of Malware Behavior
28 Caballero et al. [11] USENIX Security 2011 � Measuring Pay-per-Install: The Commoditization of Malware Distribution
29 Yu et al. [53] Journal of Networks 2010 Online Botnet Detection Based on Incremental Discrete Fourier Transform
30 Comparetti et al. [15] IEEE S&P 2009 � Prospex: Protocol Specification Extraction
31 Rossow et al. [42] BADGERS 2011 Sandnet: Network Traffic Analysis of Malicious Software
32 Bayer et al. [5] NDSS 2009 � Scalable, Behavior-Based Malware Clustering
33 Barford et al. [4] USENIX HotBots 2007 Toward Botnet Mesocosms
34 Yen et al. [52] DIMVA 2008 Traffic Aggregation for Malware Detection
35 Zhu et al. [55] SecureComm 2009 Using Failure Information Analysis to Detect Enterprise Zombies
36 Livadas et al. [34] IEEE LCN 2006 Using Machine Learning Techniques to Identify Botnet Traffic

Table II: List of surveyed papers ordered by title. We shorten some titles with “[...]” due to space limitations.

et al. [51] use malicious network traffic to automatically

generate payload signatures of malware. Similarly, Perdisci

et al. [38] propose a methodology to derive signatures

from malicious HTTP request patterns. Livadas et al. [34]

identify IRC-based C&C channels by applying machine-

learning techniques to malware execution results. Zhu et

al. [55] train SVMs to model the abnormally high network

failure rates of malware. Morales et al. [35] manually derive

characteristics from malware observed during execution to

create detection signatures. Malheur [39, 41] can cluster and

classify malware based on ordered behavioral instructions

as observed in CWSandbox. Kolbitsch et al. [25] present a

host-based malware detection mechanism relying on system

call slices as observed in Anubis.

In addition, we have surveyed papers that used malware

execution solely to evaluate methodologies. Most of these

papers leverage malware traces to measure true positive

rates of malware detection mechanisms [10, 17–19, 24, 30,

33, 44, 48, 52–54]. Typically, the authors executed malware

samples in a contained environment and used the recorded

behavior as ground truth for malicious behavior, either

via network traces (for assessing network-based IDSs) or

via host behavior such as system call traces (for system-

level approaches). Similarly, researchers have used malware

execution traces for evaluating methodologies to understand

protocol semantics [12, 15], to extract isolated code parts

from malware binaries [26], to detect if malware evades

contained environments [3], or to improve the efficiency of

dynamic analysis [7].

A third group of papers used malware traces to obtain

a better understanding of malware behavior. For example,

JACKSTRAWS [20] leverages Anubis to identify botnet

C&C channels. Similarly, FIRE [47] identifies rogue net-

works by analyzing malware communication endpoints. Ca-

ballero et al. [11] execute malware to measure the commodi-

tization of pay-per-install networks. DISARM [32] measures

how different malware behaves in virtualized environments

compared to Anubis. Bayer et al. [5] and Jang et al. [21]

present efficient clustering techniques for malware behavior.

Bailey et al. [2] label malware based on its behavior over

time. Finally, Bayer et al. [6] and Rossow et al. [42] analyze

the behavioral profiles of malware samples as observed in

Anubis and Sandnet.

70

C. Survey Methodology

To ensure consistency and accuracy in our survey results,

two of our authors conducted an initial survey of the full

set of papers. Employing a fixed pair of reviewers helps to

ensure that all papers received the same interpretation of the

guideline criteria. When the two reviewers did not agree, a

third author decided on the specific case. In general, if in

doubt or when encountering vague decisions, we classified

the paper as conforming with the guideline (“benefit of the

doubt”). Note that our assessments of the papers contain

considerably more detail than the simple statistic summaries

presented here. If a paper lacked detail regarding experi-

mental methodology, we further reviewed other papers or

technical reports describing the particular malware execution

environment. We mark criteria results as “unknown” if after

doing so the experimental setup remained unclear.

We carefully defined subsets of applicable papers for all

criteria. For instance, executions of malware recompiled to

control network access do not require containment policies.

Similarly, analyzing the diversity of false positives only

applies to methodologies that have false positives, while

removing goodware samples only matters when relying on

unfiltered datasets with unknown (rather than guaranteed

malicious) binaries. Also, removing outdated or sinkholed

samples might not apply if the authors manually assembled

their datasets. Balancing malware families is applicable only

for papers that use datasets in classification experiments

and if authors average classification performances over the

(imbalanced) malware samples. Moreover, we see a need to

separate datasets in terms of families only if authors suggest

that a methodology performs well on previously unseen mal-

ware types. We further define real-world experiments to be

applicable only for malware detection methodologies. These

examples show that building subsets of applicable papers

is vital to avoid skew in our survey results. Consequently,

we note for all criteria the number of papers to which we

deemed they applied.

We also sometimes found it necessary to interpret criteria

selectively to papers. For example, whereas true-positive

analysis is well-defined for assessing malware detection

approaches, we needed to consider how to translate the

term to other methodologies (e.g., malware clustering or

protocol extraction). Doing so enabled us to survey as many

applicable papers as possible, while keeping the criteria

fairly generic and manageable. In the case of malware

clustering techniques, we translated recall and precision

to true positive and false positive rate, respectively. This

highlights the difficulty of arriving at an agreed-upon set of

guidelines for designing prudent experiments.

IV. SURVEY OBSERVATIONS

We divide our survey interpretation into three parts. First,

in a per-guideline analysis, we discuss to which extent

specific guidelines were met. The subsequent per-paper

analysis assesses whether only a small fraction of all papers

accounts for the results, or if our findings hold more gen-

erally across all of the papers. Finally, a top-venue analysis

details how papers appearing in more competitive research

venues (as previously defined) compare with those appearing

in other venues.

A. Per-Guideline Analysis

Table III lists the results of our assessment methodology

ordered by theme and importance. The second major column

includes statistics on all surveyed papers, while the third

major column represents data from publication at top-tier

venues only. App specifies the number of papers for which

the criterion applied. OK states the proportion of those

applicable papers that adhered to the guideline, whereas

Ukwn specifies the proportion for which we could not assess

the guideline due to lack of experimental description.

1) Correctness: In this section we highlight instances of

criteria that potentially call into question the basic correct-

ness of a paper’s results.

In five cases, we find papers that mix behavioral traces

taken from malware execution with traces from real systems.

We find it difficult to gauge the degree of realism in such

practices, since malware behavior recorded in an execution

environment may deviate from the behavior exhibited on

systems infected in the wild. For instance, Celik et al. [13]

have pointed out that time-sensitive features such as frames

per hour exhibit great sensitivity to the local network’s

bandwidth and connectivity latency; blending malware flows

into other traces thus requires great care in order to avoid

unnatural heterogeneity in those features. Another difference

is generally the lack of user interaction in malware execution

traces, which typically exists in real system traces. Conse-

quently, we argue that researchers should not base real-world

evaluations on mixed (overlay) datasets. On the positive side,

two papers avoided overlay datasets and instead deployed

sensors to large networks for real-world evaluations [38, 40].

In two papers, the authors present new findings on mal-

ware behavior derived from datasets of public dynamic

analysis environments, but did not remove goodware from

such datasets. Another two malware detection papers include

potentially biased false negative experiments, as the datasets

used for these false negative evaluations presumably contain

goodware samples. We illustrate in § V-B that a significant

ratio of samples submitted to public execution environments

consists of goodware. Other than these four papers, all others

filtered malware samples using anti-virus labels. However,

no author discussed removing outdated or sinkholed mal-

ware families from the datasets, which has significantly side-

effects in at least one such case.

Summarizing, at least nine (25%) distinct papers appear to

suffer from clearly significant problems relating to our three

most basic correctness criteria. In addition, observing the

range of further potential pitfalls and the survey results, we

71

ALL TOP-VENUE
CRITERION IMP. PAPERS PAPERS DESCRIPTION

Correctness App Ukwn OK App Ukwn OK

Removed goodware � 9 0% 44% 4 0% 50% More than half potentially include experiments with goodware samples in the
datasets. In these cases, authors seem to have mistakenly presumed binaries from
public binary execution environments as malicious.

Avoided overlays � 7 0% 29% 4 0% 0% Five of the seven papers that perform real-world experiments to measure true
positives merged traces from execution environments into real-world ones.

Balanced families �� 13 0% 54% 2 0% 50% Only half of the papers considered balancing training datasets based on malware
families rather than individual specimens, possibly biasing the detection models
or testing datasets towards polymorphic families.

Separated datasets �� 8 0% 0% 1 0% 0% No paper discussed issues regarding separating training and testing datasets
in terms of malware families. This may invalidate experiments testing if a
methodology is generic.

Mitigated artifacts/biases �� 36 0% 28% 14 0% 50% Less than a third discussed or removed artifacts/biases from the datasets. If
present, such artifacts/biases could significantly influence experimental validity;
only real-world assessment can prove otherwise.

Higher Privileges �� 36 6% 75% 14 0% 86% The quarter of papers that use data recorded at a privilege level equal to that of
the malware execution risk increased evasion.

Transparency App Ukwn OK App Ukwn OK

Interpreted FPs � 25 n/a 64% 9 n/a 89% Of the papers that present false positive rates, a third lacks details beyond the
plain numbers.

Interpreted FNs � 21 n/a 48% 7 n/a 57% In more than half of the cases, readers have to speculate why false negatives
occur.

Interpreted TPs � 30 n/a 60% 11 n/a 55% Two out of five applicable papers do not interpret true positives. This omission
can hide vital information on the basis and diversity of classifications.

Listed malware families �� 36 n/a 81% 14 n/a 86% Most papers adequately name the malware families in their datasets. Seven
papers rely on high numbers of distinct samples instead, hiding on which families
experiments are based.

Identified environment �� 36 n/a 81% 14 n/a 79% A minority of papers fail to name or describe the execution environment used
to capture malware traces used during experiments.

Mentioned OS �� 36 n/a 64% 14 n/a 64% A third do not mention the OS used during their experiments.

Described naming �� 32 n/a 50% 12 n/a 58% Only half described how the family labels for malware samples were obtained.

Describe sampling � 16 n/a 81% 5 n/a 60% A fifth of the papers using bulks of malware samples do not motivate how
the subsets from all available reports of a dynamic analysis environment were
chosen.

Listed malware � 36 n/a 11% 14 n/a 7% Almost all papers lack details on which particular malware samples (e.g., distinct
MD5 hashes) were analyzed.

Described NAT � 30 n/a 10% 11 n/a 9% Only three papers mention whether the execution environment used NAT or if
the infected machine was assigned a public IP addresses.

Mentioned trace duration � 36 n/a 64% 14 n/a 57% A third do not mention for how long malware executed when capturing traces.

Realism App Ukwn OK App Ukwn OK

Removed moot samples � 16 0% 0% 5 0% 0% No paper discussed excluding execution of outdated malware binaries or those
with sinkholed communications. As we illustrate in § V-D, such traces can make
up a significant fraction of recorded malware behavior.

Real-world FP exp. � 20 0% 50% 6 0% 67% Only half of the malware detection papers include real-world false positive
experiments, vital for prudently evaluating the overhead of wrong alarms.

Real-world TP exp. � 20 0% 35% 6 0% 67% Most of the malware detection papers lack real-world true positive experiments.

Used many families � 36 1/8/745 14 1/8/745 Minimum/median/maximum number of malware families used in experiments.

Allowed Internet �� 36 6% 75% 14 0% 79% A fifth of the papers either simulated the Internet or modified bot source code
to run without it, raising concerns of the realism of experiments.

Added user interaction � 36 0% 3% 14 0% 0% In only one case the authors explicitly deployed sophisticated user interactions
to trigger certain malware behavior. The lack of such mention in other papers
may indicate that experiments lack user-triggered behaviors such as keylogging.

Used multiple OSes � 36 22% 19% 14 21% 29% Only about a fifth seemed to deploy their experiments on multiple OSes.

Safety App Ukwn OK App Ukwn OK

Deployed containment � 28 71% 21% 11 64% 27% The majority of papers did not explicitly mention containment policies, and 77%
lack a policy description. This compromises transparency, and hinders readers
to judge if authors gave sufficient consideration to mitigating malware attacks.

Table III: Overview and short interpretation of survey results.

72

speculate that more papers may suffer from other significant

biases. For example, in another 15 cases, the authors did

not explicitly discuss the presence/absence of sinkholed

or inactive malware samples. In addition, three malware

detection papers do not name malware families, but instead

use a diverse set of malware binaries during experiments. We

illustrate in § V-C that such datasets are typically biased and

potentially miss significant numbers of malware families. We

further observed seven papers with experiments based on

machine learning that did not employ cross-validation and

thus potentially failed to generalize the evaluation to other

datasets. To name good examples, the authors in [25, 32, 39,

41] chose a subset of malware families and balanced the

number of samples per family prior to the training process.

Similarly, we observed authors performing cross-validation

to avoid overfitting detection models [30, 39, 41, 51].

Lastly, nearly all of the papers omitted discussion of

possible biases introduced by malware execution, such as

malware behavior that significantly differs if binaries execute

in a virtual machine [3, 32]. Typically, further artifacts or

biases, for example, due to containment policies exist when

executing malware as illustrated in § V-E. We highlight the

importance of real-world scenarios, as they favor method-

ologies which evaluate against realistic and correct datasets.

2) Transparency: We observed two basic problems re-

garding transparent experiment descriptions in our commu-

nity. First, descriptions of experimental setups lack sufficient

detail to ensure repeatability. For example, 20% of the papers

do not name or describe the execution environment. For

a third of the papers it remains unclear on which OS the

authors tested the proposed approach, and about a fifth do

not name the malware families contained in the datasets.

Consequently, in the majority of cases the reader cannot

adequately understand the experimental setup, nor can fellow

researchers hope to repeat the experiments. In addition, 75%

do not describe containment policies.

Second, we find the majority of papers incompletely

describe experimental results. That is, papers frequently fail

to interpret the numeric results they present, though doing

so is vital for effectively understanding the import of the

findings. Consider the simple case of presenting detection

rates. In which exact cases do false positives occur? Why

do some malware families raise false negatives while others

do not? Do the true positives cover sufficient behavioral

diversity?

3) Realism: Our survey reveals that only a minority of

papers includes real-world evaluations, and very few papers

offer significant sample sizes (e.g., in numbers of hosts)

for such experiments. The lack of real-world experiments

makes it hard to judge whether a proposed methodology

will also work in practice. We find that authors who do run

real-world experiments often use locally accessible networks

(e.g., a university campus, or a research lab). Doing so

does not constitute a problem per se, but authors often base

such experiments on the untenable assumption that these

environments do not contain malware activity. In eight cases,

authors used university networks for a false positive analysis

only, although their methodology should also detect malware

in such traces.

We noted a further eight papers that model malicious

behavior on malware samples controlled by the authors

themselves. Without justification, it seems unlikely that such

malware samples behave similarly to the same samples

when infecting victim machines in the wild. The malware

execution environment may introduce further biases, e.g. via

author-controlled servers that may exhibit unrealistically

deterministic communication patterns. All of these cases

lack representative real-world evaluations, which could have

potentially offset these criteria.

We find that the typical paper evaluates its methodology

against eight (median) distinct malware families, and five

(14%) evaluated using only a single family. Similarly, two

thirds of the surveyed malware detection methodologies

evaluated against eight or fewer families. There may be a

good reason for not taking into account further families, e.g.,

if no other malware families are applicable for a specific

experiment. In general, however, we find it difficult to gauge

whether such experiments provide statistically sound results

that can generalize.

4) Safety: Most papers did not deploy or adequately de-

scribe containment. More than two thirds (71%) completely

omit treatment of any containment potentially used during

the experiments. The reasons for this may be that authors

rely on referencing to technical reports for details on their

containment solution. We found, however, that only few such

reports detail the containment policies in place. Two papers

state that the authors explicitly refrained from deploying

containment policies.

B. Per-Paper Analysis

The preceding discussion has shown the high potential of

our guidelines for improving specific prudence criteria. As a

next step, we analyze how many papers can in total benefit

from significant improvements.

To do so, Figure 2 details how many of the most important

criteria (� in Table I)4 a paper violated. The fewer criteria

a paper met, the more its experiments could have been

improved by using our guidelines. The figure shows that

only a single paper fulfilled all of the applicable guidelines.

More than half (58%) of the papers violate three or more

criteria. In general, the plot shows a correlation between the

number of violated criteria and the number of applicable

criteria. This means that our guidelines become increasingly

important when designing more complex experiments.

We then separate the results into presentation and safety

issues (middle graph) and incorrect or unrealistic exper-

4We note that we devised the importance ranking prior to conducting the
analyses in this section.

73

Figure 2: Guideline violations related to applicable criteria, separated into (1) all 10 most important criteria (left), (2) transparency/safety
(middle), and (3) correctness/realism (right). Each dot represents one paper, darker dots cover more papers.

iments (right graph). We find that lacking transparency

and safety constitutes a problem in half of the cases.

Far more papers (92%) have deficiencies in establishing

correct datasets and realistic experiments. Note that this

does not imply that the experiments suffer from heavy

flaws. It does flag, however, that many papers remain silent

about important experimental descriptions. In addition, this

analysis shows that experiments in applicable papers could

be significantly improved in terms of correct datasets and

realistic experiments.

In some cases, malware datasets were reused in related

papers (such as [21]), often inheriting problems from the

original experiments. In such cases, issues are mostly with

the original paper. However, we knowingly did not remove

such papers, as we wanted to survey the use instead of the

creation of malware datasets.

C. Top-Venue Analysis

We now ask ourselves if experiments presented at top-

tier conferences appear to be more prudent than others. To

measure this, Figure 3 compares results for the ten most

important guidelines (� in Table I). We do not observe

any obvious prudence tendency towards top-tier conferences

or other venues. The first strong difference regards the

prevalence of real-world experiments: while more papers

presented at top-tier venues include real-world scenarios,

authors base these on potentially skewed overlay datasets

(e.g., mixing malware traces in real traces). Second, we

observed more papers interpreting false positives at top-

tier conferences than at other venues. However, while the

number and ratios of violations slightly differ across the

criteria, the violations generally remain comparable. We

therefore conclude that research published in top-tier confer-

ences would equally benefit from our guidelines as papers

presented at other venues. Thus, these shortcomings appear

endemic to our field, rather than emerging as a property of

less stringent peer review or the quality of submitted works.

V. EXPERIMENTS

We now conduct four experiments that test four hypothe-

ses we mentioned in previous sections. In particular, we will

analyze the presence of (1) goodware, (2) malware family

imbalances, (3) inactive and sinkholed samples, and (4) arti-

facts in malware datasets taken from contained environments

that accept public submissions. Similar datasets were used

in many surveyed experiments, raising the significance of

understanding pitfalls with using such datasets. As we will

show, our illustrative experiments underline the importance

of proper experiment design and careful use of malware

datasets. At the same time, these experiments show how

we can partially mitigate some of the associated concerns.

A. Experimental Setup

We conducted all malware execution experiments in Sand-

net [42], using a Windows XP SP3 32bit virtual machine

connected to the Internet via NAT. We deploy containment

policies that redirect harmful traffic (e.g., spam, infections)

to local honeypots. We further limit the number of concur-

rent connections and the network bandwidth to mitigate DoS

activities. An in-path honeywall NIDS watched for security

breaches during our experiments. Other protocols (e.g., IRC,

DNS or HTTP) were allowed to enable C&C communica-

tion. The biases affecting the following experiments due to

containment should thus remain limited. We did not deploy

user interaction during our experiments. As Windows XP

malware was most prevalent among the surveyed papers, we

did not deploy other OS versions during dynamic analysis.

We base experiments V-B and V-C on 44,958 MD5

distinct malware samples and a diverse set of more than

100 malware families. We (gratefully) received these sam-

ples as a snapshot of samples submitted to a large public

dynamic analysis environment during Jan.1–30, 2011. The

74

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

No con-
tainment

Few
families

With
goodware

Moot
samples

Overlay
datasets

No real-world
TP experim.

No real-world
FP experim.

Lack FP
interpretation

Lack FN
interpretation

Lack TP
interpretation

 0

 5

 10

 15

 20

 25

 30

R
at

io
 v

io
la

te
d/

ap
pl

ic
ab

le
 in

 %

vi

ol
at

io
ns

% of violations at top-tier venues (left axis)
% of violations at other venues (left axis)

of violations at top-tier venues (right axis)
of violations at other venues (right axis)

Figure 3: Violations at top-tier venues compared with other venues.

samples originated from a diverse set of contributors, in-

cluding security companies, honeypot infrastructures, and

spamtraps. To analyze the dynamic malware behavior in

experiments V-E and V-D, we randomly chose 10,670 of

these 44,958 samples. We executed this subset of samples

and recorded the malware’s network traces at the Internet

gateway. An execution typically lasts for at least one hour,

but for reasons of scale we stopped execution if malware

did not show network activity in the first 15 minutes. The

reader can find the data regarding execution date, trace

duration, MD5 hashes, and family names of the malware

samples used in the experiments at our website.5 As we

use the following experiments to measure the presence of

imbalances, goodware, sinkholing and artifacts, we explicitly

did not clean up our dataset in this regard.

B. Legitimate Samples Under Analysis

Experiments that erroneously consider legitimate soft-

ware samples as malware suffer from bias. For example,

when evaluating detection accuracies, legitimate software

may cause false positives. Similarly, surveys of malicious

behavior will exhibit bias if the underlying dataset contains

legitimate software. Thus, in this experiment, we test our

hypothesis that goodware is significantly present in public

dynamic analysis systems’ datasets.

To give lower bounds for the ratio of goodware, we

queried the MD5 hash sum of all 44,958 binaries in two

whitelists during the first week in November 2011. First, we

query Shadowserver.org’s bin-test [49] for known software.

Second, we consulted Bit9 Fileadvisor [9], a file reputation

mechanism also used by anti-spam vendors. bin-test revealed

176 (0.4%) goodware samples. The Bit9 Fileadvisor rec-

ognized 2,025 (4.5%) samples. In combination, both lists

revealed 2,027 unique binaries as potentially being benign.

As Bit9 also includes malicious software in their database,

5See http://christian-rossow.de/publications/datasets/ieee12.htm

we inspected a small sample of the 2,027 known binaries

to estimate the ratio of goodware in the hits. In particular,

we manually analyzed a subset of 100 randomly selected

matches and found 78 to be legitimate software. Similarly,

we cross-checked the 2,027 binaries via VirusTotal and

found that 67.5% did not register any anti-virus detection.

Estimating more conservatively, we use the minimum ratio

of goodware samples (67.5%) to extrapolate the number of

goodware samples within the 2,027 “whitelisted” samples.

This translates to a lower bound of 1,366 (3.0%) goodware

samples in our total dataset. We can also approximate an

upper bound estimate regarding the prevalence of non-

malicious samples by observing that 33% of the samples

that were scanned by VirusTotal were not detected by

any of the 44 vendors listed at VirusTotal. We therefore

conclude that the ratio of legitimate binaries (3.0%–33%)

may significantly bias experiments.

C. Distribution of Malware Families

In this experiment we test our hypothesis stating that

polymorphic malware manifests in an unduly large pro-

portion in randomly collected sets of malware samples.

We used the VirusTotal labels obtained in Experiment V-B

and counted the occurrences of malware families for each

anti-virus vendor. To obtain the malware family names,

we parsed the naming schemes of three anti-virus vendors

(Avira, Kaspersky and Symantec) commonly used by our

community to assign malware labels.

The CDF in Figure 4 shows the relationship of malware

families to prevalences of families in our dataset. Ideally,

a multi-family malware corpus stems from a uniform dis-

tribution, i.e., each malware family contributes the same

number of samples. In our dataset, randomly collected from

a large public dynamic analysis environment, we find this

goal clearly violated: some malware families far dominate

others. For example, when relying on Kaspersky, almost

80% of the malware samples belong to merely 10% of the

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 (

ra
tio

 o
f s

am
pl

es
)

ratio of malware families according to AV label

Avira
Symantec
Kaspersky

uniform distribution
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 (

ra
tio

 o
f s

am
pl

es
)

ratio of malware families according to AV label

Figure 4: Family imbalances in randomly chosen malware samples.

families. In the worst case, this would mean that experiments

performing well with 4/5’s of the samples may not work with

90% of the remaining malware families. In summary, unless

researchers take corresponding precautions, polymorphic

malware families can disproportionately dominate randomly

drawn corpora of malware samples.

D. Inactive or Sinkholed Samples

The identification of correctly functioning malware sam-

ples poses one of the major challenges of automated dy-

namic analysis. Large fractions of analyzed samples do

not exhibit any behavior [42]. Further complicating things,

even if network communication manifests, it remains unclear

whether it constitutes successful operation and representative

behavior. During recent years, Shadowserver.org, Spamhaus,

and other individuals/organizations have exercised take-

overs of botnet infrastructure or botnet-employed domains.

Such achievements can have the significant side effect

of perturbing empirical measurement: takedowns introduce

“unnatural” activity in collected datasets [23].

To assess the magnitude of these issues, we analyzed

which of the 10,670 executed samples showed network

activity, but apparently failed to bootstrap malicious ac-

tivities. We used Avira to identify the malware families.

Only 4,235 (39.7%) of the 10,670 samples showed any

network activity. Of these samples, we found that of the 22

families with at least 5 distinct samples showing any HTTP

activity, 14 (63%) included samples that only had failing

HTTP communication (HTTP response codes 4XX/5XX).

Similarly, of the most prevalent 33 families that used DNS,

eight (24%) contained samples that did not have any other

communication than the (typically failed) DNS lookups. We

observed such inactive samples to be more prevalent in

some families (e.g., Hupigon 85%, Buzus 75%), while other

families (e.g., Allaple 0%) were less affected.

Next, we tried to quantify the effects of sinkholed malware

infrastructure. We contacted various security organizations

to obtain information about sinkholed C&C servers. These

contacts enabled us to obtain sinkholing patterns of four

different organizations operating sinkholing infrastructure.

We then searched for these patterns for sinkholed samples

among the 4,235 samples showing network activity. Most

significantly, we found that during 59 of the 394 Sality

executions (15%) and 27 of the 548 Virut executions (5%), at

least one sinkholed domain was contacted. Although we are

aware of additional malware families in our dataset to have

sinkholed domains (e.g., Renos/Artro, Gozi, TDSS, Spy-

Eye, ZeuS, Carperb, Vobfus/Changeup, Ramnit, Cycbot), we

could not spot sinkholing of these in our sample dataset.

Combining this data, this translates to the observation that at

least eleven of the 126 active families (8.7%) in our dataset

are potentially affected by sinkholing.

In summary, execution of inactive or sinkholed samples

will not yield representative activity, highlighting the need

for authors to consider and quantify their impact.

E. Artifacts

Due to the specific setups of malware execution envi-

ronments, the artifacts introduced into recorded malware

traces can be manifold. For example, network traffic contains

specific values such as the environment’s IP address or the

Windows user name. We found such easy-to-spot artifacts

widespread across many malware families. Specifically, we

analyzed which of the recorded network traces contain the

contained environment’s IP address, Windows user name,

or OS version. For instance, more than 10% of all Virut

samples that we executed transmitted the bot’s public IP

address in plaintext. Similarly, one in five Katusha samples

sent the Windows user name to the C&C server. The use of

“Windows NT 5.1.2600” as HTTP User-Agent, as for

example by Swizzor (57%) or Sality (52%), likewise occurs

frequently. These illustrative examples of payload artifacts

are incomplete, yet already more than a third (34.7%) of the

active malware families in our dataset communicated either

Sandnet’s external IP address, our VM’s MAC address, the

VM’s Windows username, or the exact Windows version

string in plaintext in at least one case.

More dangerous types of biases may hide in such datasets,

unbeknownst to researchers. For instance, methodologies

relying on time-based features should consider artifacts in-

troduced by specific network configurations, such as limited

bandwidth during malware execution. Similarly, containment

policies may bias the analysis results. For example, we

have observed spambots that cease running if a containment

policy redirects their spam delivery to a local server that

simply accepts all incoming mail.

In general, it is hard to measure the exact ratio of malware

families generating any artifact. Some artifacts, such as

limited bandwidth or particular system configurations such

as installed software, are inherent to all malware families.

Consequently, authors need to carefully consider artifacts

for each experiment. The best advice to preclude artifacts

is to either carefully and manually assemble a dataset, or to

perform representative real-world experiments.

76

VI. RELATED WORK

Prudent experiments: Kurkowski et al.’s survey [29] of

the technical quality of publications in the Mobile Ad Hoc

Networking community inspired our methodology. As their

survey’s verification strategies do not immediately apply to

our community’s work, we needed to establish our own

review criteria. Krishnamurthy and Willinger [28] have iden-

tified common methodological pitfalls in a similar fashion

to ours, but regarding the Internet measurement community.

They established a set of standard questions authors ought

to consider, and illustrate their applicability in a number of

measurement scenarios. Closer to our community, Aviv and

Haeberlen have discussed a set of challenges in evaluating

botnet detectors in trace-driven settings [1], and proposed

distributed platforms such as PlanetLab as a potential enabler

for more collaborative experimentation and evaluation in

this space. Moreover, Li et al. [31] explored difficulties

in evaluating malware clustering approaches. Supporting

our observations, they observed that using balanced and

well-designed datasets have significant effects on evaluation

results. They then show the importance of creating ground

truths in malware datasets, broaching concerns related to

some guidelines in this paper.

Perhaps most closely related to our effort is Sommer and

Paxson’s approach to explaining the gap between success in

academia and actual deployments of anomaly-based intru-

sion detection systems [43]. The authors find five reasons:

(1) a very high cost of errors; (2) lack of training data;

(3) a semantic gap between results and their operational

interpretation; (4) enormous variability in input data; and (5)

fundamental difficulties for conducting prudent evaluations.

In fact, the anomaly detection community has suffered

from these problems for decades, whereas experiments with

malware datasets are increasingly used in our community.

Consequently, our work complements theirs in that we shift

the focus from anomaly detection to malware experiments

in general.

Dynamic analysis evasion: Malware datasets typically

stem from dynamic analysis in specially prepared envi-

ronments [8, 16, 22, 36, 42, 50]. To ensure diverse datasets,

malware must not evade dynamic analysis. Others have

studied the extent to which malware can detect and evade dy-

namic analysis [14, 32, 37]. Chen et al. present a taxonomy

of dynamic analysis fingerprinting methods and perform

an analysis to which extend these are used [14]. Paleari

et al. present methods to automatically generate tests that

effectively detect a variety of CPU emulators [37]. Most

recently, Lindorfer et al. [32] analyzed how and to which

extent malware samples evade Anubis.

Survey on malware detection systems: Stinson and

Mitchell [45] presented a first approach to evaluate existing

botnet detection methodologies. They focus on possible

evasion methods by evaluating six specific botnet detec-

tion methodologies. Their survey is orthogonal to ours, as

we explore how authors design experiments with malware

datasets. Further, we provide guidelines how to define pru-

dent experiments that evaluate methodologies in absence of

any evasion techniques. In addition, we assist researchers

in designing experiments in general rather than evaluating

specific methodologies.

VII. CONCLUSION AND DISCUSSION

In this work we have devised guidelines to aid with

designing prudent malware-based experiments. We assessed

these guidelines by surveying 36 papers from our field. Our

survey identified shortcomings in most papers from both

top-tier and less prominent venues. Consequently, we argue

that our guidelines could have significantly improved the

prudence of most of the experiments we surveyed.

But what may be the reasons for our discouraging re-

sults? The observed shortcomings in experimental evaluation

likely arise from several causes. Researchers may not have

developed a methodical approach for presenting their exper-

iments, or may not see the importance of detailing various

aspects of the setup. Deadline pressures may lead to a focus

on presenting novel technical content as opposed to the

broader evaluation context. Similarly, detailed analyses of

experimental results are often not given sufficient emphasis.

In addition, page-length limits might hamper the introduc-

tion of important aspects in final copies. Finally, researchers

may simply overlook some of the presented hidden pitfalls

of using malware datasets.

Many of these issues can be addressed through devoting

more effort to presentation, as our transparency guidelines

suggest. Improving the correctness and realism of experi-

ments is harder than it seems, though. For instance, while

real-world scenarios are vital for realistic experiments, con-

ducting such experiments can prove time-consuming and

may raise significant privacy concerns for system or network

administrators. Furthermore, it is not always obvious that

certain practices can lead to incorrect datasets or lead to un-

realistic scenarios. For example, it requires great caution to

carefully think of artifacts introduced by malware execution

environments, and it is hard to understand that, for exam-

ple, experiments on overlay datasets may be biased. The

significance of imprudent experiments becomes even more

important in those instances where current practices inspire

others to perform similar experiments—a phenomenon we

observed in our survey.

We hope that the guidelines framed in this paper improve

this situation by helping to establish a common set of

criteria that can ensure prudent future experimentation with

malware datasets. While many of our guidelines are not

new, we witnessed possible improvements to experiments

for every one of the criteria. We believe this approach holds

promise both for authors, by providing a methodical means

to contemplate the prudence and transparent description of

77

their malware experiments, and for readers/reviewers, by

providing more information by which to understand and

assess such experiments.

VIII. ACKNOWLEDGMENTS

We thank our shepherd David Brumley for his support in

finalizing this paper. We also thank all anonymous reviewers

for their insightful comments. We thank all our anonymous

malware sample feeds. Moreover, we thank Robin Sommer

for his valuable discussion input. This work was supported

by the Federal Ministry of Education and Research of Ger-

many (Grant 01BY1110, MoBE), the EU “iCode” project

(funded by the Prevention, Preparedness and Consequence

Management of Terrorism and other Security-related Risks

Programme of the European Commission DG for Home

Affairs), the EU FP7-ICT-257007 SysSec project, the US

National Science Foundation (Grant 0433702) and Office of

Naval Research (Grant 20091976).

REFERENCES

[1] A. J. Aviv and A. Haeberlen. Challenges in experimenting
with botnet detection systems. In USENIX 4th CSET Work-
shop, San Francisco, CA, August 2011.

[2] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario. Automated Classification and Analysis of
Internet Malware. In 10th International Symposium on Recent
Advances in Intrusion Detection (RAID), September 2007.

[3] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda,
and G. Vigna. Efficient Detection of Split Personalities in
Malware. In 17th Annual Network and Distributed Systems
Security Symposium (NDSS), San Diego, CA, February 2010.

[4] P. Barford and M. Blodgett. Toward Botnet Mesocosms.
In USENIX 1st Workshop on Hot Topics in Understanding
Botnets (HotBots), Cambridge, MA, April 2007.

[5] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and
E. Kirda. Scalable, Behavior-Based Malware Clustering. In
16th Annual Network & Distributed System Security Sympo-
sium (NDSS), San Diego, CA, February 2009.

[6] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel.
A View on Current Malware Behaviors. In 2nd USENIX
Workshop on Large-Scale Exploits and Emergent Threats
(LEET), Boston, MA, April 2009.

[7] U. Bayer, E. Kirda, and C. Kruegel. Improving the Efficiency
of Dynamic Malware Analysis. In 25th ACM Symposium On
Applied Computing (SAC), Sierre, Switzerland, March 2010.

[8] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool
for Analyzing Malware. In 16th Annual EICAR Conference,
Hamburg, Germany, April 2006.

[9] Bit9. FileAdvisor. http://fileadvisor.bit9.com.

[10] B. Bowen, P. Prabhu, V. Kemerlis, S. Sidiroglou,
A. Keromytis, and S. Stolfo. BotSwindler: Tamper
Resistant Injection of Believable Decoys in VM-Based Hosts
for Crimeware Detection. In 13th International Symposium
on Recent Advances in Intrusion Detection (RAID), 2010.

[11] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring
Pay-per-Install: The Commoditization of Malware Distribu-
tion. In 20th USENIX Security Symposium, August 2011.

[12] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dis-
patcher: Enabling Active Botnet Infiltration using Automatic
Protocol Reverse-Engineering. In ACM CCS, 2009.

[13] Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller. Salting
Public Traces with Attack Traffic to Test Flow Classifiers. In
USENIX 4th CSET Workshop, August 2011.

[14] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario.
Towards an Understanding of Anti-virtualization and Anti-
debugging Behavior in Modern Malware. In The 38th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks, Achorage, AK, June 2008.

[15] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda.
Prospex: Protocol Specification Extraction. IEEE S&P, 2009.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware
Analysis via Hardware Virtualization Extensions. In 15th
ACM Computer and Communications Security Conference
(CCS), Alexandria, VA, October 2008.

[17] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering Analysis of Network Traffic for Protocol- and
Structure-Independent Botnet Detection. In 17th USENIX
Security Symposium, San Jose, CA, August 2008.

[18] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
BotHunter: Detecting Malware Infection Through IDS-Driven
Dialog Correlation. In USENIX Security Symposium, 2007.

[19] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet
Command and Control Channels in Network Traffic. In 16th
Annual Network & Distributed System Security Symposium
(NDSS), San Diego, CA, February 2008.

[20] G. Jacob, R. Hund, C. Kruegel, and T. Holz. JACKSTRAWS:
Picking Command and Control Connections from Bot Traffic.
In 20th USENIX Security Symposium, August 2011.

[21] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature
hashing malware for scalable triage and semantic analysis.
In 18th ACM Conference on Computer and Communications
Security (CCS), Chicago, IL, pages 309–320, October 2011.

[22] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishna-
murthy. Studying Spamming Botnets Using Botlab. In
6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Boston, MA, April 2009.

[23] C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, and
S. Savage. The Heisenbot Uncertainty Problem: Challenges
in Separating Bots from Chaff. In USENIX LEET, 2008.

[24] E. Kirda, C. Kruegel, G. Banks, and G. Vigna. Behavior-based
Spyware Detection. In 15th USENIX Security Symposium,
Vancouver, Canada, August 2006.

[25] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and Efficient Malware
Detection at the End Host. In USENIX Security Symp., 2009.

78

[26] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector
Gadget: Automated Extraction of Proprietary Gadgets from
Malware Binaries. In 30th IEEE Symposium on Security &
Privacy, New York, USA, May 2009.

[27] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson.
GQ: Practical Containment for Measuring Modern Malware
Systems. In ACM Internet Measurement Conference, 2011.

[28] B. Krishnamurthy and W. Willinger. What are our standards
for validation of measurement-based networking research? In
ACM SIGMETRICS, June 2008.

[29] S. Kurkowski, T. Camp, and M. Colagrosso. MANET Simu-
lation Studies: The Incredibles. SIGMOBILE Mob. Comput.
Commun. Rev., 9:50–61, October 2005.

[30] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christoderescu, and
E. Kirda. AccessMiner: Using System-Centric Models for
Malware Protection. In ACM CCS, October 2010.

[31] P. Li, L. Liu, D. Gao, and M. K. Reiter. On Challenges
in Evaluating Malware Clustering. In 13th International
Symposium on Recent Advances in Intrusion Detection, 2010.

[32] M. Lindorfer, C. Kolbitsch, and P. Comparetti. Detecting
Environment-Sensitive Malware. In 14th International Sym-
posium on Recent Advances in Intrusion Detection, 2011.

[33] L. Liu, S. Chen, G. Yan, and Z. Zhang. BotTracer: Execution-
based Bot-like Malware Detection. In 11th Information
Security Conference (ISC), Teipei, Taiwan, September 2008.

[34] C. Livadas, B. Walsh, D. Lapsley, and T. Strayer. Using
Machine Learning Techniques to Identify Botnet Traffic. In
IEEE LCN, November 2006.

[35] J. A. Morales, A. Al-bataineh, S. Xu, and R. Sandhu. An-
alyzing and Exploiting Network Behaviors of Malware. In
SecureComm, 2010.

[36] Norman ASA. Norman Sandbox. http://www.norman.com/
security center/security tools/.

[37] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi.
A Fistful of Red-Pills: How to Automatically Generate Pro-
cedures to Detect CPU Emulators. In USENIX WOOT, 2009.

[38] R. Perdisci, W. Lee, and N. Feamster. Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using
Malicious Network Traces. In USENIX NSDI, 2010.

[39] K. Rieck, T. Holz, C. Willems, P. Duessel, and P. Laskov.
Learning and Classification of Malware Behavior. In DIMVA,
July 2008.

[40] K. Rieck, G. Schwenk, T. Limmer, T. Holz, and P. Laskov.
Botzilla: Detecting the Phoning Home of Malicious Software.
In 25th ACM Symposium on Applied Computing (SAC), 2010.

[41] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic
Analysis of Malware Behavior using Machine Learning. In
Journal of Computer Security, 2011.

[42] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. van Steen,
F. C. Freiling, and N. Pohlmann. Sandnet: Network Traffic
Analysis of Malicious Software. In ACM EuroSys BADGERS,
February 2011.

[43] R. Sommer and V. Paxson. Outside the Closed World: On
Using Machine Learning for Network Intrusion Detection. In
31st IEEE Symposium on Security & Privacy, May 2010.

[44] E. Stinson and J. C. Mitchell. Characterizing Bots Remote
Control Behavior. DIMVA, 2007.

[45] Stinson, Elizabeth, and Mitchell, John C. Towards Systematic
Evaluation of the Evadability of Bot / Botnet Detection
Methods. In USENIX WOOT, July 2008.

[46] B. Stock, M. Engelberth, F. C. Freiling, and T. Holz. Walow-
dac Analysis of a Peer-to-Peer Botnet. In European Confer-
ence on Computer Network Defense (EC2ND), 2009.

[47] B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and
E. Kirda. FIRE: FInding Rogue nEtworks. In 25th Annual
Computer Security Applications Conference (ACSAC), 2009.

[48] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas. Botnet
Detection Based on Network Behavior. Advances in Infor-
mation Security, 2008, 36:1–24, 2008.

[49] The Shadowserver Foundation. bin-test. http://bin-test.
shadowserver.org/.

[50] C. Willems, T. Holz, and F. Freiling. Toward Automated
Dynamic Malware Analysis Using CWSandbox. In 31st IEEE
S&P Magazine, pages 32–39, March 2007.

[51] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel,
and E. Kirda. Automatically Generating Models for Botnet
Detection. In ESORICS, September 2009.

[52] T.-f. Yen and M. K. Reiter. Traffic Aggregation for Malware
Detection. In 5th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), July 2008.

[53] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, and Y. Zhao. Online
Botnet Detection Based on Incremental Discrete Fourier
Transform. Journal of Networks, 5(5):568–576, 2010.

[54] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N. Feam-
ster. Boosting the Scalability of Botnet Detection Using
Adaptive Traffic Sampling. 6th ACM ASIACCS, 2011.

[55] Z. Zhu, V. Yegneswaran, and Y. Chen. Using Failure Informa-
tion Analysis to Detect Enterprise Zombies. In SecureComm,
September 2009.

79

