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Abstract—With the growing popularity of massive multiplayer
online games (MMOG), the demand to protect these games
and especially the participating players is increasing likewise.
In this paper, we discuss a sequence-based solution to protect
online games from being exploited by fully automated bots. Our
research is based on various commercial and non-commercial bot
implementations for the renowned game World of Warcraft. Our
evaluation suggests, that a sequence-based detection technique is
applicable even for mildly skilled players and effectively protects
online games from a negative impact on game economics that
causes both, grief to casual gamers and destroys game balance.
Our implementation is fit to be deployed on either client- or
server side, posing the first player-usable bot detection tool for
World of Warcraft.

I. INTRODUCTION

Online games ran through an astonishing development in the
past ten years. With November 2010, the renowned massive
multiplayer online game (MMOG) World of Warcraft hit the 12
million subscribers mark and is still gaining new users every
day [1]. Considering all major games, a total of over 21 million
people around the globe participate in multiplayer online
games [1]. At the same time, the demand to protect these
games and especially the participating players is increasing
likewise.

One major problem comes along with almost every MMOG
that exists today: Bots.
Where online games are concerned, the term bot usually
entitles a program or method that allows a user to play the
game partially or completely unattended. At first thought this
might not seem like much of a problem, but the impact of
bots on the game world and its population can be very serious.
Gold farmers, for instance, which produce in-game currency
at a far higher rate than ordinary players ever could, alter the
prices of traded goods such that casual players cannot afford
them anymore. As a result, in-game currency and items are
traded via ebay and payed for with real money. At the time
of this writing, 5.000 pieces of World of Warcraft Gold were
worth roughly 20 US Dollars. A sum that many consumers
deem worthy to make up for the additional spare time.
While automatic gathering of resources, also called farming, is
certainly one application of game bots, this particular segment
is far better covered by human players in low-wage coun-
tries [2]. Besides, participating players are only secondarily
affected by gold farmers when they experience raising prices.
Furthermore, the game company can introduce money sinks

to stabilize these effects.
A far more annoying application of bots is their deployment

as level-bots or active team members in battle groups. The
restricted action set of these programs and their inability
to properly react to its surroundings may work a dedicated
player’s last nerve. Currently, human players depend on the
game company to take care of bots flooding their servers. To
counter this issue, we propose a novel detection technique to
distinguish genuine players from game bots by comparing their
action sequences. Our contribution is threefold:

1) We discuss a detection technique which uses Levens-
htein Distances between action sequences to detect in-
game bots.

2) We implemented our detection tool on a server- and
client-side instance and an in-game, client-sided add-on
that is capable of monitoring its own event horizon.

3) We evaluated our approach based on a worst-case scena-
rio. We utilized several commercial bots, a self-written
bot and a group of human players to produce the
necessary data.

II. MOTIVATION

The motivation for using a bot is simple. It produces an
unfair advantage for the player compared to other partici-
pants. Similar to other games, combat interaction yields the
best results in World of Warcraft. Killing monsters is the
easiest way to gain experience, gold and resources. Once the
maximum level is reached, additional items can be earned
by engaging in Player versus Player (PvP) combat. This is
perilous terrain for bot programs simply because the program’s
actions (movement and action sequences) are visible to other
players of the same team. And these players usually tend to be
peeved when two players out of a ten player team are bots. It
drastically lowers the chances of winning an encounter, thus
causing grief most gamers are not willing to accept. Once
a player files a complaint, game companies do not hesitate
to suspend the account in question or ban it completely.
Unfortunately, spotting a bot based on its visible actions is
not trivial. PvP combat tends to be hectic, restricting the time
human players can spend watching teammates and judging
their actions. Even in the smallest battleground, a bot with
a decent movement- and action pattern [3], [4] is very hard
to distinguish from human players. As a result, every bot



comes with some inherent weaknesses which can be used in
a detection attempt.

A. Waypointing

Compared to a human, a gaming bot is very limited in
its capabilities to navigate the virtual environment. Modern
MMOGs provide a rich, three dimensional game world where
movement can occur in every direction. Additionally, certain
obstacles and hindrances can exist, that prevent a player from
getting there. Consequently, an implementation with random
movement patterns is not an option, because it can easily result
in a trapped character or an avatar that runs against a wall for
hours. To prevent this, a waypoint system is mandatory. The
desired path can either be recorded by the player or is shipped
with the bot program. When starting the bot, the character
traverses more or less the same path, with small variances
depending on the environment and the bots sophistication
level. This fact is actually a huge limitation because it renders
a bot detectable if the traveled path is properly analyzed[5].
In smaller environments, like battlegrounds, such a detection
technique is unfeasible due to the limited time the players
spend in the instance and the relatively small size of the
environment.

B. Sequencing

Just like the waypoint system, an element every bot has
in common is the reaction to certain events. The main goal
still is to kill enemies within the game. The decision which
spells to launch or which skills to use to successfully reach
this goal is again pre-defined in the bot’s configuration. We
entitle the sum of all abilities used from the point where an
enemy is engaged until the enemy (or the own character) dies,
as a combat sequence. A side-effect of the fixed configuration
is, that these sequences are always very similar. Compared to a
human player, the bot can make no, or very restricted choices
based on the game environment. As a result, the abilities used
to kill a single enemy in the game will always be very similar.
This is even more blatant in PvP combat, where players use a
very large variety of different skills in various combinations to
thwart their enemy. Here we attach our detection algorithm and
implement a behavior-based analysis of the player’s actions.

III. RELATED WORK

The two previously mentioned weaknesses are the basis
for most research conducted in this area. In [6] [7], for
instance, a system is introduced which aims to detect bots
by tracking their path information and trajectory respectively.
Although desigend as a general-purpose solution for all kinds
of games, it is ultimately restricted to a very narrow category
of fast-paced action games, where turning the avatar with the
keyboard is not an option.

In [8] [9], the authors propose the use of captchas that
automated scripts cannot solve. The same principle is of course
possible in MMOGs. The analogy would be a maze, where an
avatar had to find the exit or overcome certain obstacles. Such
an approach would certainly work but the number of players

that decide to quit because they were unexpectedly trapped
inside a maze while in the middle of PvP combat is one of
many reasons why no game company would even consider
such a method. In comparison, our approach is completely
transparent to the end-user and has no influence at all on the
gaming experience of an individual player and can be deployed
at the server- or client side.

The most closely related paper is introduced by Kuan-
Ta Chen et al. [10]. There, the authors utilize a traffic-
analysis approach to identify bots for the game ”Ragnarök
Online”. A major drawback of the proposed method lies in
the fact that it is custom-made for that game. The authors
try to distinguish traffic generated by the official game client
from traffic generated by standalone bot programs through
statistical analysis of packet transfer properties. Unfortunately,
this approach does not work on modern games, as they mostly
implement largely ping-independent command queueing on
the client-side. This fact also renders the method described
in [11] ineffective, where the timing of keystrokes is used to
distinguish between humans and bots.

A more general view on security in online games is presen-
ted by Greg Hoglund and Gary McGraw [12]. In their book,
they cover a wide section of game security topics, ranging
from the legal issues over bug exploits and hacking game
clients to writing bots. Although the book provides a good
introduction into several gaming security areas, it concentrates
mostly on the attacker’s point of view and does not provide
concrete solutions on how to detect or prevent botting.

Another piece of related work was done by Jeff Yan et
al. [13], where the most important cheating methods were
analyzed and categorized. This work can be seen as the
theoretical foundation of our system. In the end, a bot is just
another form of cheating. In [14] the concept was extended
and a detection approach for aiming bots was introduced.
Other than bots in MMOG’s, aimbots are deployed in games
where heightened reaction is of advantage, like in first person
shooters for example. Time is not a factor for queue-based
games, however. Even with a 200ms delay, those games are
designed to work without any drawbacks.

Finally, path-based detection was discussed in [5], which
represents the complementary research to this paper.

IV. DETECTION APPROACH

Our approach is based on the combat sequence each avatar
produces when engaging an enemy. For each fight, a list
of actions is extracted. The difference between subsequent
combat sequences is measured in terms of their levenshtein
distance [15]. Killing each monster with the same combination
of skills would therefore result in a distance of 0. We calculate
the similarity value vi for a particular combat sequence ci
following the formula

vi =

∑i−1
j=(i−k) dlevenshtein(ci, cj)

k
,

with d being the levenshtein edit distance. This method takes
an interval of size k before the combat sequence in question



and averages the levenshtein distances to the current one (i).
Our final goal was, to detect all tested game bots and

successfully distinguish them from humans playing the game.
Our implementation is designed to operate on both, the game
client itself, or the server where the data is actually processed.
The major difference when operating on the client-side lies
in the event horizon. The visible surroundings to a specific
player are always limited to a globe encircling the avatar. This
limitation is necessary to restrict the amount of data that has
to be transferred from the server to the game client. In the
special case of battlegrounds, the event horizon includes the
whole instance making them an ideal target for client-side bot
detection.

A. Implementation

We decided to use the logging facility World of
Warcraft provides to gather the data. This logging facility
is primarily designed to enable backtracking through fight
sequences. It is heavily used by large player communities
to decipher who messed up a fight in dungeons where 40
people are playing in a single raid group. A nice side-effect
of this logging facility is, that it keeps track of other player’s
actions as well. Therefore, it is also possible to simply follow
a character and record the produced combat sequence to find
out if a bot is playing. For the server-side, it was simply a
matter of logging the actions caused by a single character
and, therefore, not a challenging task.

We implemented this tool in C# using Visual Studio 2008.
It parses combat logs produced by World of Warcraft and
generates a list of combat sequences for oneself and each
surrounding player. Furthermore, it is important to add the
right elements to a combat sequence, since it forms the
necessary alphabet to operate on. It is also the main reason,
why generic approaches for anomaly- or cheat-detection
cannot cope with the speed and quality of today’s game bots.
It requires a deeper understanding of the game dynamics,
which is usually only attained by either game developers or
long-term players.

B. Evaluation

Our baseline consists of a a set of combat sequences pro-
duced by bots and human players. In total, the recorded data
comprises 485.761 combat actions, whereof 266.318 (55%)
were produced by bots. The human traces were collected by
a total of 41 individuals over a period of several weeks.
The bot traces were produced by our self-written program
(AltNav), MMOMimic[3], FairPlay[4] and ZoloFighter[16].
During the evaluation phase, we used the bot trace with the
highest variance and the human trace with the lowest variance
in combat routines with the only restriction that they have
to be of the same class (e.g. Fighter, Mage, etc..). Character
classes exhibited different combat schemes, depending on the
variety of skills available to them. Therefore, comparing them
to each other is not feasible.

To get comparable results, we executed the following steps:
• We modified each bot to include conditional actions

based on player health, pet health, encountered mob
etc. The goal was to make the bot behave as much as
a human player as possible. It should be noted here,
that the majority of bots do not use such a high level
of randomization by default. They mostly incorporate a
single fight sequence which is simply repeated until either
the target or the player dies. For the evaluation we always
used the most diverse bot result.

• After recording the bot’s actions, we switched over to a
human player with the directive to kill the same monsters
and traverse the same route.

• The levenshtein distance was calculated for each combat
sequence.

• The result graph was generated to visualize the distances
and decide which detection metric to apply, respectively,
which evaluation strategy is the most promising.
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Fig. 1. Concrete levenshtein, k=1, average=10

Figure 1 shows a result plot for a hunter played by both,
a human and a bot. The trace shows 90 minutes of actual
(human) gameplay which resulted in more than 120 distinct
combat sequences. Therefore, the time interval between each
combat sequence is 45 seconds. The recording shows non-PvP
action which happens at a far lower pace than battlegrounds.
Here, k was set to 1, thus, only the directly preceding combat
sequence was taken into account. For the average curve, 10
concrete distances were considered. This figure clearly shows
the different styles of a bot compared to the human player.
For this type of interaction, the human player acts within
a levensthein distance interval of [4, 12] with an average of
slightly above 8, while the bot acts in an interval of [0, 7]
with an average of around 3. Although feasible, a drawback
of this method is that once a bot knows how it is calculated, the
metric can be dodged by alternating between two completely
different combat sequences, which in turn results in very high
values. As a countermeasure, we took the minimum levenshtein
distance for a certain interval k. The exact values vi are
processed as

vi = min(dlevenshtein(ci, cj)) ∀{j|k ≤ j < i; jεN},



with N being the overall amount of combat sequences that
have to be evaluated, and k the range again. Figure 2 shows
the same sample as before, with the values calculated by this
new method. Whenever a combat sequence is repeated within
the interval k, it causes the value to be zero. With this formula,
lower discrete and averaged values can be expected for humans
and bots. Here though, the bot causes a certain amount of zero-
passes, a human player does not, which is a good beginning
for a detection metric.
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Detection metric
In our first approach, we used the number of subsequent zero-
passes caused by the player as an evaluation metric. Whenever
more than four subsequent values were at zero, an alert was
raised, and the player was identified as a bot. With this method,
we were able to detect all bots and all players from our test
set reliably. During the evaluation, however, a human, playing
a Mage, caused one or sometimes even two zero-passes. A
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more passive player would certainly be able to cause several
zero-passes in a row and, therefore, cause a false positive. A
solution to this problem is, to extend the above formula to:

vi = min(dlevenshtein(ci, cj)) ∀{j|j 6= i; jεNk}.

Nk has to be chosen such, that it covers the desired time-
frame. In Figure 3, it was set to 40, resulting in effectively

30 minutes of played time. The result of the formula is, that
a zero value is produced whenever the same combat sequence
is repeated within this time-frame. Other than before, we now
count the zero-passes of the averaged curve. This method
has a much higher accuracy rating, because the variance a
human introduces, causes at least one unique combat sequence
out of 10. The threshold for this method was set to four
subsequent zero passes for the average curve. For a bot to
be detected as such, it has to produce 14 non-unique combat
sequences within the given time frame. This threshold is
admittedly low, but during the evaluation process, it showed
that especially players new to the game, use a limited amount
of their abilities at the beginning. With these settings, we were
still able to detect all available bot traces reliably. In a PvP
environment, we had far less problems to identify bots. Even
with the first introduced detection approach, the intervals the
characters usually operated in, were between [6, 20] with an
average of over 14, while the bot acted in an interval of [0, 4].
PvP gameplay has the property to be highly interactive. The
resulting fight sequences have a high variance because human
enemies have a broader reaction spectrum than computer-
controlled ones, resulting in a heightened demand of proper
reactions. The bot, on the other hand, executes its predefined
sequence every time, regardless of its surroundings.

V. DATA COLLECTION

To produce a versatile amount of human traces and reduce
the amount of bias our sample introduces, we decided to start
our own World of Warcraft server. We used the ArcEmu server
emulation [17] to create a free World of Warcraft shard that
can be played with the most recent client without modification.
The test also provided the necessary results for a server-sided
appliance. Originally planned to produce the main evaluation
data, the experiment did not exactly yield the desired results.
After conducting the test, the reasons for its poor performance
are obvious:

• Players with a working game account want the game
to be perfect. A requirement that can never be met
with a reverse-engineered game server, where certain
functionalities are implemented based on a guess how
they might work.

• New players hardly see the reason why they should
play the game since it offers almost no interaction with
other players. Production servers hosted by Blizzard are
usually populated by 5000+ people, a number that can not
even be hoped to be achieved here. Therefore, the game
experience for new players is just like a badly maintained
single-player game.

• Hosting a free-shard for a game that must usually be paid
for, raises some legal issues. Game companies explicitly
prohibit this form of service. Therefore, the test had to
occur in a closed environment, in this case the university
campus. This, in turn, limited the number of participating
players.

• A short-term server like the one at hand, offers only
certain motivations for players. The only reason that they



actually do it is, because they get the chance to see
very expensive or hard to obtain equipment or a dungeon
which is normally unaccessible to them. In any case, the
motivation for those players to advance their characters
is very limited.

The test was conducted during a 4-week period. Before, and
during the experiment, 70 accounts were issued, from which
35 logged in to the server at least once. Player recruitment
was done via a public university forum and mailing lists with
undergraduate students. The setup was such, that the players
started with a level 84 character which they were supposed to
advance to level 85, to be able to wear the new equipment
and enter the desired dungeons. The data gathered during
the advancement period was the main point of interest. After
one month of server uptime, only 10 people really advanced
their character to level 85. Nevertheless, none of the recorded
game traces produced a false positive and therefore support
our detection approach. Setting up the starting characters, the
game environment and a stable host proved to be a time-
consuming task. During the test, many players issued requests
about missing items or functionality within the game that had
to be looked upon. All things together, it does not pay of to
gather player data by setting up a home-brew game server.
The ideal case would be having direct access to the log files
of a production server hosted by the game company to further
advance such an approach.

We actually contacted Blizzard Online Entertainment and
offered a cooperation in this regard. Unfortunately, after
overbearing the initial obstacles of not being taken serious, it
became clear that the company has no intention whatsoever,
to share any relevant information on where the actual frontier
between cheaters and game developers lies. Furthermore, our
request to share log data, or test our tool on game traces
was rejected as expected due to security and privacy concerns.

VI. CONCLUSION

In this paper, we presented a sequence-based approach
to protect current massive multiplayer online games from
being exploited by bots. The implementation is designed to
be to usable on the server side, to raise alerts for possibly
cheating players, as well as on the client-side to provide
a tool for honest players and therefore detect misbehaving
fellow participants. With our proof-of-concept implementation
for World of Warcraft , we showed that it is possible to
reliably categorize over 485.000 action sequences and tell the
difference between automated and human players.

The approach is not limited to World of Warcraft but is
feasible to every queue-based MMOG provided that the neces-
sary domain knowledge is available. While several solutions to
toughen a game against bots are thinkable, the effort to actually
implement them is rarely appointed. One reason might be
insufficient resources. After all, not every game is as successful
as World of Warcraft. Competing game developers have a
hard enough life with keeping their games free of bugs. For
the major players, however, the conclusion is a different one.

Having the resources to protect games against bots, but not
using them, either means the effects are inside their self-set
tolerance zone or wanted in some respect. In the end, a bot-
ing player still is a paying player. With our tool, the gamers
themselves are given the power to detect cheaters and report
them to the company. And user complaints are hard to ignore
for game companies.
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