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Abstract—Intrusion detection, traffic classification, and other
network monitoring applications need to analyze the captured
traffic beyond the network layer to allow for connection-oriented
analysis, and achieve resilience to evasion attempts based on
TCP segmentation. Existing network traffic capture frameworks,
however, provide applications with raw packets and leave com-
plex operations like flow tracking and TCP stream reassembly
to application developers. This gap, between what applications
need and what systems provide, leads to increased application
complexity, longer development time, and most importantly,
reduced performance due to excessive data copies between the
packet capture subsystem and the stream processing module.

This paper presents the Stream capture library (Scap), a
network monitoring framework built from the ground up for
stream-oriented traffic processing. Based on a kernel module
that directly handles flow tracking and TCP stream reassembly,
Scap delivers to user-level applications flow-level statistics and
reassembled streams by minimizing data movement operations
and discarding uninteresting traffic at early stages, while it
inherently supports parallel processing on multi-core architec-
tures, and uses advanced capabilities of modern network cards.
Our experimental evaluation shows that Scap can capture all
streams for traffic rates two times higher than other stream
reassembly libraries. Finally, we present the implementation
and performance evaluation of four popular network traffic

monitoring applications built on top of Scap.

Index Terms—Traffic Monitoring; Stream Reassembly; Packet
Capture; Packet Filtering; Overload Control; Performance

I. INTRODUCTION

Passive network monitoring is an indispensable mechanism

for increasing the security and understanding the performance

of modern networks. For example, Network-level Intrusion

Detection Systems (NIDS) inspect network traffic to detect

attacks [1], [2] and pinpoint compromised computers [3], [4].

Similarly, traffic classification tools inspect network traffic to

identify different communication patterns and spot potentially

undesirable traffic [5], [6]. To make meaningful decisions,

these monitoring applications need to analyze network traffic

at the transport layer and above. For instance, NIDS recon-

struct transport-layer streams to detect attack vectors that span

multiple packets, and avoid evasion attacks [7]–[10].

Unfortunately, there is a gap between monitoring appli-

cations and underlying traffic capture tools: Applications

increasingly need to reason about higher-level entities and
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constructs such as TCP flows, HTTP headers, SQL arguments,

email messages, and so on, while traffic capture frameworks

still operate at the lowest possible level: they provide the raw—

possibly duplicate, out-of-order, or overlapping—and in some

cases even irrelevant packets that reach the monitoring inter-

face [11]–[13]. Upon receiving the captured packets at user

space, monitoring applications usually perform TCP stream

reassembly using existing libraries [14] or custom stream re-

construction engines [1], [2]. This results in additional memory

copy operations for extracting the payloads of TCP segments

and merging them into larger “chunks” in contiguous memory.

Moreover, this misses several optimization opportunities, such

as the early discarding of uninteresting packets before system

resources are spent to move them to user level, and assigning

different priorities to transport-layer flows so that they can be

handled appropriately at lower system layers.

To bridge this gap and address the above concerns, we

present the Stream capture library (Scap): a unified passive

network monitoring framework built around the abstraction

of the Stream, which is elevated into a first-class object

handled by user applications. Designed from the beginning

for stream-oriented network monitoring, Scap (i) provides

the high-level functionality needed by network monitoring

applications, and (ii) implements this functionality at the most

appropriate place: at user level, at kernel level, or even at

the network interface card. On the contrary, existing TCP

stream reassembly implementations are confined, by design,

to operate at user level and, therefore, are deprived from a

rich variety of efficient implementation options.

To enable aggressive optimizations, we introduce the notion

of stream capture: that is, we elevate the Stream into a

first-class object that is captured by Scap and handled by

user applications. Although previous work treats TCP stream

reassembly as a necessary evil [15], used mostly to avoid eva-

sion attacks against intrusion detection and other monitoring

systems, we view streams—not packets—as the fundamental

abstraction that should be exported to network monitoring

applications, and as the right vehicle for the monitoring system

to implement aggressive optimizations all the way down to the

operating system kernel and network interface card.

To reduce the overhead of unneeded packets, Scap intro-

duces the notion of subzero packet copy. Inspired by zero-copy

approaches that avoid copying packets from one main memory

location to another, Scap not only avoids redundant packet

copies, but also avoids bringing some packets in main memory



in the first place. We show several cases of applications that are

simply not interested in some packets, such as the tails of large

flows [16]–[20]. Subzero packet copy identifies these packets

and does not bring them in main memory at all: they are

dropped by the network interface card (NIC) before reaching

the main memory.
To accommodate heavy loads, Scap introduces the notion

of prioritized packet loss (PPL). Under heavy load, traditional

monitoring systems usually drop arriving packets in a random

way, severely affecting any following stream reassembly pro-

cess. However, these dropped packets and affected streams

may be important for the monitoring application, as they may

contain an attack or other critical information. Even carefully

provisioned systems that are capable of handling full line-rate

traffic can be overloaded, e.g., by a sophisticated attacker that

sends adversarial traffic to exploit an algorithmic complexity

vulnerability and intentionally overload the system [21], [22].

Scap allows applications to (i) define different priorities for

different streams and (ii) configure threshold mechanisms that

give priority to new and small streams, as opposed to heavy

tails of long-running data transfers.
Scap provides a flexible and expressive Application Pro-

gramming Interface (API) that allows programmers to con-

figure all aspects of the stream capture process, perform

complex per-stream processing, and gather per-flow statistics

with a few lines of code. Our design introduces two novel

features: (i) it enables the early discarding of uninteresting

traffic, such as the tails of long-lived connections that belong

to large file transfers, and (ii) it offers more control for

tolerating packet loss under high load through stream priorities

and best-effort reassembly. Scap also avoids the overhead

of extra memory copies by optimally placing TCP segments

into stream-specific memory regions, and supports multi-core

systems and network adapters with receive-side scaling [23]

for transparent parallelization of stream processing.
We have evaluated Scap in a 10GbE environment using real

traffic and show that it outperforms existing alternatives like

Libnids [14] and Snort’s stream reassembly [1]. Our results

demonstrate that Scap can capture and deliver at user level all

streams with low CPU utilization for rates up to 5.5 Gbit/s

using a single core, while Libnids and Snort start dropping

packets at 2.5 Gbit/s due to high CPU utilization for stream

reassembly at user level. A more detailed evaluation of Scap

can be found in our previous work [24].
We have implemented four popular network monitoring

applications on top of Scap: (i) flow export, (ii) NIDS signature

matching, (ii) Layer-7 traffic classification, and (iv) HTTP pro-

tocol parsing and analysis. All these applications require flow

tracking, and most of them also require stream reassembly and

protocol normalization to be accurate. Thus, they can signifi-

cantly benefit from the features and performance optimizations

offered by Scap. We present in detail the implementation and

performance characteristics of these applications using Scap.
In summary, the main contributions of this paper are:

• We identify a semantic gap: modern network monitoring

applications need to operate at the transport layer and

beyond, while existing monitoring systems operate at the

network layer. To bridge this gap and enable aggressive

optimizations, we introduce the notion of stream capture

based on the fundamental abstraction of the Stream.

• We introduce subzero packet copy, a technique that takes

advantage of filtering capabilities of commodity NICs

to not only avoid copying uninteresting packets across

different memory areas, but to avoid bringing them in

main memory altogether.

• We introduce prioritized packet loss, a technique that

enables graceful adaptation to overload conditions by

dropping packets of lower priority streams, and favoring

packets that belong to recent and shorter streams.

• We describe the design and implementation of Scap,

a framework that incorporates the above features in a

kernel-level, multicore-aware subsystem, and provides a

flexible and expressive API for building stream-oriented

network monitoring applications.

• We experimentally evaluate Scap and demonstrate that it

can capture and deliver transport-layer streams for traffic

rates two times higher than previous approaches.

• We present the implementation and evaluation of four

real-world network monitoring applications using Scap.

The rest of the paper is organized as follows: in Section II

we present the design and basic features of Scap, while

in Section III we outline the main Scap API calls. Then,

Section IV describes the high-level architecture of Scap, and

Section V discusses implementation details. In Section VI we

experimentally evaluate the performance of Scap, comparing

with existing libraries while replaying real network traffic cap-

tured in the wild. In Section VII we present the implementation

and performance of four real-world network traffic analysis

applications using the Scap framework. Finally, Section VIII

summarizes related work, and Section IX concludes the paper.

II. DESIGN AND FEATURES

A. Subzero-Copy Packet Transfer

Several network monitoring applications [16]–[20] need to

analyze only the first bytes of each connection, especially

under high traffic load. In this way, they analyze the more

useful (for them) part of each stream and discard a significant

percentage of the total traffic [17]. For such applications, Scap

has incorporated the use of a cutoff threshold that truncates

streams to a user-specified size, and discards the rest of the

stream (and the respective packets) within the OS kernel or

even the NIC, avoiding unnecessary data transfers to user

space. Applications can dynamically adjust the cutoff size per

stream, allowing for greater flexibility.

Besides a stream cutoff size, monitoring applications may

need to efficiently discard other types of less interesting traffic.

Many applications often use BPF filters [12] to define which

streams they want to process, while discarding the rest. In case

of an overload, applications may want to discard traffic from

low priority streams or define a stream overload cutoff [18],

[19]. Also, depending on the application, packets belonging to

non-established TCP connections or duplicate packets may be

discarded. In all such cases, Scap can discard the appropriate

packets at an early stage within the kernel, while in many

cases packets can be discarded even earlier at the NIC.



To achieve this, Scap capitalizes on modern network in-

terfaces that provide filtering facilities directly in hardware.

For example, Intel’s 82599 10G interface [25] supports up

to 8K perfect match and 32K signature (hash-based) Flow

Director filters (FDIR). These filters can be added and removed

dynamically, within no more than 10 microseconds, and can

match a packet’s source and destination IP addresses, source

and destination port numbers, protocol, and a flexible 2-byte

tuple anywhere within the first 64 bytes of the packet. Packets

that match an FDIR filter are directed to the hardware queue

specified by the filter. If this hardware queue is not used by the

system, the packets will be just dropped at the NIC layer, and

they will never be copied to the system’s main memory [26].

When available, Scap uses FDIR filters to implement all

above types of early packet discarding, otherwise packets are

discarded within the OS kernel.

B. Prioritized Packet Loss

Scap introduces Prioritized Packet Loss (PPL) to enable

the system to invest its resources effectively during overloads.

This is necessary because sudden traffic bursts or overload

conditions may force the packet capturing subsystem to fill

up its buffers and start dropping packets in a haphazard

manner. Even worse, attackers may intentionally overload

the monitoring system while an attack is in progress so as to

evade detection. Previous research has shown that being able

to handle different flows [21], [27], [28], or different parts of

each flow [18], [19], in different ways can enable the system to

invest its resources more effectively and significantly improve

detection accuracy. PPL enables user applications to define

the priority of each stream so that under overload conditions

packets from low-priority streams are the first to go. User

applications can also define a threshold for the maximum

stream size under overload (overload cutoff ). Then, packets

exceeding beyond this threshold are the ones to be dropped.

As long as the percentage of used memory is below a

user-defined threshold, called base threshold, PPL drops

no packets. When, however, used memory exceeds the

base threshold, PPL kicks in: it first divides the mem-

ory above base threshold into n (equal to the number of

used priorities) regions using n + 1 equally spaced water-

marks (i.e., watermark0, watermark1, ..., watermarkn),

where watermark0 = base threshold and watermarkn =

memory size. When a packet belonging to a stream with

the ith priority level arrives, PPL checks the percentage of

memory used by Scap at that time. If it is above watermarki ,

the packet is dropped. Otherwise, if the percentage of used

memory is between watermarki and watermarki−1, PPL

makes use of the overload cutoff (if it has been defined).

Then, if the packet is located in its stream beyond the

overload cutoff byte, it is dropped. This way, high-priority,

newly created, and short streams will be accommodated with

higher probability.

C. Flexible Stream Reassembly

To support monitoring at the transport layer, Scap provides

different modes of TCP stream reassembly. The two main

objectives of stream reassembly in Scap are: (i) to pro-

vide transport-layer reassembled chunks in continuous mem-

ory regions, and (ii) to perform protocol normalization [8],

[29]. Scap currently supports two TCP stream reassembly

modes: SCAP_TCP_STRICT and SCAP_TCP_FAST. In the

strict mode, streams are reassembled according to existing

guidelines [7], [29], offering protection against evasion at-

tempts based on IP/TCP fragmentation. In the fast mode,

streams are reassembled in a best-effort way, offering resilience

against packet loss caused in case of overloads. In this mode,

Scap follows the semantics of the strict mode as closely as

possible, e.g., by handling TCP retransmissions, out-of-order

packets, and overlapping segments. To accommodate for lost

segments, however, stream data is written without waiting for

the correct next sequence number to arrive. In that case, Scap

sets a flag to report that errors occurred during reassembly.

Moreover, Scap supports different reassembly policies, e.g.,

according to different operating systems. Scap applications can

set a different reassembly policy per stream. This is motivated

by previous works, which have shown that the reconstructed

data stream in a NIDS may differ from the actual data stream

observed at the destination, due to disparities in different TCP

implementations, e.g., when handling overlapping segments.

Attackers may exploit such differences to evade detection [9].

Scap also supports UDP: a UDP stream is the concatenation

of the packet payloads of a given UDP flow. For other

protocols without sequenced delivery, Scap returns each packet

for processing without any reassembly.

D. Parallel Processing and Locality

Scap has inherent support for multi-core systems, hiding

from the programmer the complexity of creating and managing

multiple processes or threads. This is achieved by transpar-

ently creating a number of worker threads for user-level stream

processing (typically) equal to the number of the available

cores. Scap also dedicates a kernel thread on each core for

handling packet reception and stream reassembly. Each stream

is assigned to one pair of kernel and worker threads running

on the same core, reducing this way context switches, cache

misses [30], [31], and inter-thread synchronization operations.

The kernel and worker threads on each core communicate

through shared memory and events: a new event for a stream

is created by the kernel thread and is handled by the worker

thread using a user-defined callback function for stream pro-

cessing.

To balance the network traffic load across multiple NIC

queues and cores, Scap uses both static hash-based approaches,

such as Receive Side Scaling (RSS) [23], and dynamic load

balancing approaches, such as flow director filters (FDIR) [25].

This provides resiliency against short-term load imbalances

that could adversely affect application performance.

E. Performance Optimizations

In case that multiple applications running on the same host

monitor the same traffic, Scap provides all of them with a

shared copy of each stream. Thus, stream reassembly is per-

formed only once within the kernel, instead of multiple times



Table I
DATA FIELDS OF THE STREAM_T STREAM DESCRIPTOR.

Data field Description

stream_hdr hdr; Stream header

uint32_t src_ip, dst_ip; Source/Destination IP address

uint16_t src_port, dst_port; Source/Destination port

uint8_t protocol; Protocol

uint8_t direction; Stream direction

stream_stats stats; Stream statistics

struct timeval start, end; Beggining/end time

uint64_t bytes, Total bytes,

bytes_dropped, dropped bytes,

bytes_discarded, discarded bytes,

bytes_captured; captured bytes

uint32_t pkts, Total packets,

pkts_dropped, dropped packets,

pkts_discarded, discarded packets,

pkts_captured; captured packets

Other fields

uint8_t status; Stream status

uint8_t error; Error flags

char *data; Pointer to last chunk’s data

int data_len; Data length of the last chunk

stream_t *opposite; Stream in the opposite direction

int cutoff; Stream’s cutoff

int priority; Stream’s priority

int chunk_size; Stream’s chunk size

int chunks; Stream’s total chunks

int processing_time; Stream’s processing time

void *user_state; User state

for each user-level application. If applications have different

configurations, e.g., for stream size cutoff or BPF filters, Scap

takes a best effort approach to satisfy all requirements.

Performing stream reassembly in the kernel also offers

significant advantages in terms of cache locality. Existing

user-level TCP stream reassembly implementations receive

packets of different flows highly interleaved, which results in

poor cache locality [32]. In contrast, Scap provides user-level

applications with reassembled streams instead of randomly

interleaved packets, allowing for improved memory locality

and reduced cache misses.

III. SCAP API

Scap is based around the abstraction of the stream: a

reconstructed session between two endpoints defined by a

5-tuple (protocol, source and destination IP address, source

and destination port). Applications receive a unique stream

descriptor stream_t for each new stream, which can be used

to access all information, data, and statistics about a stream,

and is provided as a parameter to all stream manipulation

functions. Table I presents the main stream_t fields and

Table II lists the main functions provided by the Scap API.

A. Initialization

An Scap program begins with the creation of an Scap socket

using scap_create(), which specifies the interface to be

monitored. Programmers can also specify various properties,

such as the memory size of the buffer for storing stream

data, the stream reassembly mode, and whether the application

needs to receive the individual packets of each stream. Upon

successful creation, the returned scap_t descriptor is used for

all subsequent configuration operations. These include setting

a BPF filter [12] to receive a subset of the traffic, cutoff values

for different stream classes or stream directions, the number

of worker threads for balancing stream processing among

the available cores, the chunk size, the overlap size between

subsequent chunks, and an optional timeout for delivering

the next chunk. The overlap argument is used when some

of the last bytes of the previous chunk are also needed in

the beginning of the next chunk, e.g., for matching patterns

that might span consecutive chunks. The flush_timeout

parameter can be used to deliver for processing a chunk

smaller than the chunk size after this timeout passes, in case

a user needs to ensure timely processing.

B. Stream Processing

Scap allows programmers to write and register callback

functions for three different types of events: stream creation,

the availability of new stream data, and stream termination.

When a stream is created or terminated, or when enough data

has been captured for a stream’s chunk processing, a new event

is triggered and the respective callback is executed. Each

callback function takes as a single argument a stream_t

descriptor sd, which corresponds to the stream that triggered

the event. As shown in Table I, this descriptor provides access

to detailed information about the stream, such as the stream’s

IP addresses, port numbers, protocol, and direction, as well

as useful statistics such as byte and packet counters for all,

dropped, discarded, and captured packets, and the timestamps

of the first and last packet of the stream. Among the rest

of the fields, the sd->status field indicates whether the

stream is active or closed (by TCP FIN/RST or by inactivity

timeout), or if its stream cutoff has been exceeded, and the

sd->error field indicates stream reassembly errors, such

as incomplete TCP handshakes or invalid sequence numbers.

Other properties include a stream’s cutoff, priority, and chunk

size, while there is also a pointer to the stream_t of the

opposite direction. The user_state field can be used by the

application to store any per-stream state, as needed.

The stream processing callback can access the last chunk’s

data and its size through the sd->data and sd->data_len

fields. In case no more data is needed, scap_dis-

card_stream() can notify the Scap core to stop collecting

data for that stream. Chunks can be efficiently merged with

following ones using scap_ keep_chunk(). In the next

invocation, the callback will receive a larger chunk consisting

of both the previous and the new one. Through the stream

descriptor, applications can set a stream’s priority, cutoff, and

other parameters such as the chunk size, overlap size, flush

timeout, and reassembly mode.

In case they are needed by an application, individual pack-

ets can be delivered using scap_next_stream_packet().

Packet delivery is based on the chunk’s data and metadata kept

by Scap’s packet capture subsystem for each packet. Based

on this metadata, even reordered, duplicate, or packets with

overlapping sequence numbers can be delivered in the same



Table II
THE MAIN FUNCTIONS OF THE SCAP API.

Scap Function Prototype Description

scap_t *scap_create(const char *device, int memory_size, Creates an Scap socket

int reassembly_mode, int need_pkts)

int scap_set_filter(scap_t *sc, char *bpf_filter) Applies a BPF filter to an Scap socket

int scap_set_cutoff(scap_t *sc, int cutoff) Changes the default stream cutoff value

int scap_add_cutoff_direction(scap_t *sc, int cutoff, int direction) Sets a different cutoff value for each direction

int scap_add_cutoff_class(scap_t *sc, int cutoff, char* bpf_filter) Sets a different cutoff value for a subset of the traffic

int scap_set_worker_threads(scap_t *sc, int thread_num) Sets the number of threads for stream processing

int scap_set_parameter(scap_t *sc, int parameter, int value) Changes defaults: inactivity timeout, chunk size,

overlap size, flush timeout, base threshold, overload cutoff

int scap_dispatch_creation(scap_t *sc, Registers a callback routine for handling stream

void (*handler)(stream_t *sd)) creation events

int scap_dispatch_data(scap_t *sc, Registers a callback routine for processing newly

void (*handler)(stream_t *sd)) arriving stream data

int scap_dispatch_termination(scap_t *sc, Registers a callback routine for handling stream

void (*handler)(stream_t *sd)) termination events

int scap_start_capture(scap_t *sc) Begins stream processing

void scap_discard_stream(scap_t *sc, stream_t *sd) Discards the rest of a stream’s traffic

int scap_set_stream_cutoff(scap_t *sc, stream_t sd, int cutoff) Sets the cutoff value of a stream

int scap_set_stream_priority(scap_t *sc, stream_t *sd, int priority) Sets the priority of a stream

int scap_set_stream_parameter(scap_t *sc, stream_t *sd, Sets a stream’s parameter: inactivity timeout, chunk size,

int parameter, int value) overlap size, flush timeout, reassembly mode

int scap_keep_stream_chunk(scap_t *sc, stream_t *sd) Keeps the last chunk of a stream in memory

char *scap_next_stream_packet(stream_t *sd, struct scap_pkthdr *h) Returns the next packet of a stream

int scap_get_stats(scap_t *sc, scap_stats_t *stats) Reads overall statistics for all streams seen so far

void scap_close(scap_t *sc) Closes an Scap socket

order as captured. This allows Scap to support packet-based

processing along with stream-based processing, e.g., to allow

the detection of TCP attacks such as ACK splitting [33]. The

only difference between Scap’s packet delivery and packet-

based capture systems is that packets from the same stream

are processed together. As an added benefit, such flow-based

packet reordering has been found to significantly improve

cache locality [32].
The stream’s processing time and the total number

of processed chunks are available through the

sd->processing_time and sd->chunks fields. This

enables the identification of streams that are being processed

with very low rates and delay the system, e.g., due to

algorithmic complexity attacks [21], [22]. Upon the detection

of such a stream, the application can handle it appropriately,

e.g., by discarding it or reducing its priority, to ensure that

adversarial traffic will not affect the correct operation of the

application.

IV. ARCHITECTURE

A. Kernel-level and User-level Support

Scap consists of two main components: a loadable kernel

module and a user-level API stub, as shown in Figure 1.

Applications communicate through the Scap API stub with

the kernel module to configure the capture process and re-

ceive monitoring data. Configuration parameters are passed

to the kernel through the Scap socket interface. Accesses to

stream_t records, events, and actual stream data are handled

through shared memory. For user-level stream processing, the

stub receives events from the kernel module and calls the

respective callback function for each event.

The overall operation of the Scap kernel module is depicted

in Figure 2. Its core is a software interrupt handler that receives

packets from the network device. For each packet, it locates the

respective stream_t record through a hash table and updates

all relevant fields (stream_t handling). If a packet belongs

to a new stream, a new stream_t record is created and added

into the hash table. Then, it extracts the actual data from each

TCP segment by removing the protocol headers, and stores

it in the appropriate memory page, depending on the stream

in which it belongs (memory management). Whenever a new

stream is created or terminated, or a sufficient amount of data

has been gathered, the kernel module generates a respective

event and enqueues it to an event queue (event creation).

B. Parallel Packet and Stream Processing

To scale performance, Scap uses all available cores in the

system. To efficiently utilize multi-core architectures, modern

network interfaces can distribute incoming packets to multi-

ple hardware receive queues. To balance the network traffic

load across the available queues and cores, Scap uses both

RSS [23], which uses a hash function based on packets’

5-tuple, and dynamic load balancing, using flow director

filters [25], to deal with short-term load imbalance. To map the

two different streams of each bi-directional TCP connection

to the same core, we modify the RSS seeds as proposed by

Woo and Park [34].
Each core runs a separate instance of the NIC driver and

Scap kernel module to handle interrupts and packets from

the respective hardware queue. Thus, each Scap instance

running on each core receives a different subset of network

streams, as shown in Figure 1, effectively distributing the

stream reassembly process across all available cores. To match

the level of parallelism provided by the Scap kernel module,

Scap’s user-level stub creates as many worker threads as the

available cores, hiding from the programmer the complexity
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of creating and managing multiple processes or threads. Each

worker thread processes the streams delivered to its core by

its kernel-level counterpart. This collocation of user-level and

kernel-level threads that work on the same data maximizes

locality of reference and cache affinity, reducing this way

context switches, cache misses [30], [31], and inter-thread

synchronization. Each worker thread polls a separate event

queue for events created by the kernel Scap thread running

on the same core, and calls the respective callback function

registered by the application to process each event.

V. IMPLEMENTATION

A. Scap Kernel Module

The Scap kernel module implements a new network protocol

for receiving packets from network devices, and a new socket

class, PF_SCAP, for communication between the Scap stub and

the kernel module. Packets are transferred to memory through

DMA and are scheduled for processing within the software

interrupt handler—Scap’s protocol handler in our case.

B. Fast TCP Reassembly

For each packet, the Scap kernel module finds and updates

its respective stream_t record, or creates a new one. For

fast lookup, we use a hash table by randomly choosing a

hash function during initialization. Based on the transport-

layer protocol headers, Scap extracts the packet’s data and

writes it directly to the current memory offset indicated in the

stream_t record. Packets belonging to streams that exceed

their cutoff value, as well as duplicate or overlapping TCP

segments, are discarded immediately by the Scap kernel mod-

ule without unnecessarily spending further CPU and memory

resources on them. Streams can expire explicitly (e.g., via TCP

FIN/RST), or implicitly, due to an inactivity timeout. For the

latter, Scap maintains an access list with the active streams

sorted by their last access time. Upon packet reception, the

respective stream_t record is simply placed at the beginning

of the access list, to keep it sorted. Periodically, starting from

the end of the list, the kernel module compares the last access

time of each stream with the current time, and expires all

streams for which no packet was received within a specified

period by creating stream termination events.

C. Memory Management

Reassembled streams are stored in a large memory buffer

allocated by the kernel module and mapped in user level by

the Scap stub. The size of this buffer is given as an argument

(buffer_len) to scap_create(). The kernel module allo-

cates the respective memory pages during initialization, and it

is responsible for managing the usage of this memory among

the several active streams. For each stream, a contiguous

memory block is allocated (by our own memory allocator)

according to the stream’s chunk size. When this block fills

up, the chunk is delivered for processing (by creating a

respective event) and a new block is allocated for the next

chunk. The Scap stub has access to this block through memory

mapping, so an offset is enough for locating each stored

chunk. To avoid dynamic allocation overhead, a large number

of stream_t records are pre-allocated during initialization,

and are memory-mapped by the Scap stub. More records are

allocated dynamically as needed, in case of a large number

of active streams. Thus, the number of streams that can be

tracked concurrently is not limited by Scap.

D. Event Creation

A new event is triggered on stream creation, stream termina-

tion, and whenever stream data is available for processing. A

data event can be triggered for one of the following reasons:

(i) a memory chunk fills up, (ii) a flush timeout is passed,

(iii) a cutoff value is exceeded, or (iv) a stream is terminated.

When a stream’s cutoff threshold is reached, Scap creates a

final data processing event for its last chunk. However, its

stream_t record remains in the hash table and in the access

list, so that monitoring continues throughout its whole lifetime.

This is required for gathering flow statistics and generating the

appropriate termination event.

To avoid contention when the Scap kernel module runs in

parallel across several cores, each core inserts events in a

separate queue. When a new event is added into a queue,

the sk_data_ready() function is called to wake up the

corresponding worker thread, which calls poll() whenever

its event queue is empty. Along with each event, the Scap stub

receives and forwards to the user-level application a pointer

to the respective stream_t record. To avoid race conditions



between the Scap kernel module and the application, Scap

maintains a second instance of each stream_t record. The

first copy is updated within the kernel, while the second is

read by the user-level application. The kernel module updates

the necessary fields of the second stream_t instance right

before a new event for this stream is enqueued.

E. Hardware Filters

Packets taking part in the TCP three-way handshake are

always captured. When the cutoff threshold is triggered for a

stream, Scap adds dynamically the necessary FDIR filters to

drop at the NIC layer all subsequent packets belonging to that

stream. Note that although packets are dropped before they

reach main memory, Scap needs to know when a stream ends.

For this reason, we add filters to drop only packets that contain

actual data segments, and still allow Scap to receive TCP RST

or FIN packets that may terminate a stream.
This is achieved using the flexible 2-byte tuple option of

FDIR filters. We have modified the NIC driver to allow for

matching the offset, reserved, and TCP flags 2-byte tuple in

the TCP header. Using this option, we add two filters for each

stream: the first matches and drops TCP packets for which only

the ACK flag is set, and the second matches and drops TCP

packets for which only the ACK and PSH flags are set. The

rest of the filter fields are based on each stream’s 5-tuple. Thus,

only TCP packets with RST or FIN flag will be forwarded to

the Scap kernel module for stream termination.
Streams may also be terminated due to an inactivity timeout.

For this reason Scap associates a timeout with each filter, and

keeps a list of all filters sorted by their timeout values. An

FDIR filter is removed (i) when a TCP RST or FIN packet

arrives for a given stream, or (ii) when the timeout associated

with a filter expires. Note that in the second case the stream

may still be active, so if a packet of this stream arrives upon the

removal of its filter, Scap will immediately re-install the filter.

This is because the cutoff of this stream has been exceeded and

the stream is still active. To handle long running streams, re-

installed filters get a timeout twice as large as before. In this

way, long-running flows will only be evicted a logarithmic

number of times. If there is no space left on the NIC to

accommodate a new filter, a filter with a small timeout is

evicted, as it does not correspond to a long-lived stream.
Scap needs to provide accurate flow statistics upon the

termination of streams that exceeded their cutoff, even if most

of their packets were discarded at the NIC. Unfortunately,

existing NICs provide only aggregate statistics for packets

across all filters—not per filter. However, Scap is able to

estimate accurate per-flow statistics, such as flow size and flow

duration, based on the TCP sequence numbers of the RST/FIN

packets. Also, by removing the NIC filters when their timeout

expires, Scap receives packets from these streams periodically

and updates their statistics.
Our implementation is based on the Intel 82599 NIC [25],

which supports RSS and flow director filters. Similarly to

this card, most modern 10GbE NICs such as Solarflare [35],

SMC [36], Chelsio [37], and Myricom [38], also support RSS

and filtering capabilities, so Scap can be effectively used with

these NICs as well.

F. Handling Multiple Applications

Multiple applications can use Scap concurrently on the same

machine. Given that monitoring applications require only read

access to the stream data, there is room for stream sharing to

avoid multiple copies. To this end, all Scap sockets share a

single memory buffer for stream data and stream_t records.

As applications have different requirements, Scap tries to

combine and generalize all requirements at kernel level, and

apply application-specific configurations at user level.

G. Packet Delivery

Applications may need to receive both reassembled streams

and their individual packets, e.g., to detect TCP attacks [33].

Scap supports the delivery of the original packets if an

application indicates that it needs them. In that case, Scap

internally uses another memory-mapped buffer that contains

a record for each packet of a stream. Each record contains a

packet header with timestamp and capture length, and a pointer

to the original packet payload in the stream.

H. API Stub

When scap_start_capture() is called, each worker

thread runs an event-dispatch loop that polls its corresponding

event queue, reads the next available event, and executes the

registered callback function for the event (if any). The event

queues contain stream_t objects, which have an event field

and a pointer to the next stream_t object in the event queue.

If this pointer is NULL, then there is no event in the queue,

and the stub calls poll() to wait for future events.

VI. EXPERIMENTAL EVALUATION

A. Experimental Environment

a) The hardware: We use a testbed comprising two PCs

interconnected through a 10 GbE switch. The first, equipped

with two dual-core Intel Xeon 2.66 GHz CPUs with 4MB L2

cache, 4GB RAM, and an Intel 82599EB 10GbE NIC, is used

for traffic generation. The second, used as a monitoring sensor,

is equipped with two quad-core Intel Xeon 2.00 GHz CPUs

with 6MB L2 cache, 4GB RAM, and an Intel 82599EB 10GbE

NIC used for stream capture. Both PCs run 64-bit Ubuntu

Linux (kernel version 2.6.32).

b) The trace: We replay a one-hour long full-payload

trace captured at the access link that connects to the Internet a

University campus with thousands of hosts. The trace contains

58,714,906 packets and 1,493,032 flows, totaling more than

46GB, 95.4% of which is TCP traffic. To achieve high replay

rates (up to 6 Gbit/s) we split the trace in smaller parts of

1GB that fit into main memory, and replay each part 10 times

while the next part is being loaded in memory.

c) The parameters: We compare the following systems:

(i) Scap, (ii) Libnids v1.24 [14], and (iii) the Stream5 prepro-

cessor of Snort v2.8.3.2 [1]. Libnids and Snort rely on Libp-

cap [13], which uses the PF_PACKET socket for packet capture

on Linux. Similarly to Scap’s kernel module, the PF_PACKET

kernel module runs as a software interrupt handler that stores

incoming packets to a memory-mapped buffer, shared with
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Figure 3. Performance comparison of stream delivery for Snort, Libnids, and Scap, for varying traffic rates. We see than Scap can deliver streams to user
space without any packet loss for two times higher traffic rates that Snort and Libnids, and with significantly lower CPU utilization. The Scap software
interrupt load at high rates is higher than the other systems, because Scap process all packets with no loss at these rates, and it performs flow tracking and
stream reassembly in the kernel, at the software interrupt handler.

Libpcap’s user-level stub. In our experiments, the size of this

buffer is set to 512MB, and the buffer size for reassembled

streams is set to 1GB for Scap, Libnids, and Snort. We use a

chunk size of 16KB, the SCAP_TCP_FAST reassembly mode,

and an inactivity timeout of 10 seconds.

B. Results

We compare the performance of Scap, Snort, and Libnids

when delivering reassembled streams to user level without any

further processing. The Scap application receives all data from

all streams with no cutoff, and runs as a single thread. Snort

is configured with only the Stream5 preprocessor enabled.

Figure 3(a) shows the percentage of dropped packets as a

function of the traffic rate. Scap delivers all steams to the

user-level application without any packet loss for rates up to

5.5 Gbit/s. On the other hand, Libnids starts dropping packets

at 2.5 Gbit/s (drop rate: 1.4%) and Snort at 2.75 Gbit/s (drop

rate: 0.7%). Thus, Scap is able to deliver reassembled streams

to monitoring applications for more than two times higher

traffic rates. When the input traffic reaches 6 Gbit/s, Libnids

drops 81.2% and Snort 79.5% of the total packets received.

The reason for this performance difference lies in the extra

memory copy operations needed for stream reassembly at user

level. When a packet arrives for Libnids and Snort, the kernel

writes it in the next available location in a common ring

buffer. When performing stream reassembly, Libnids and Snort

may need to copy each packet’s payload from the ring buffer

to a memory buffer allocated specifically for this packet’s

stream. Scap avoids this extra copy operation because the

kernel module copies the packet’s data not to a common buffer,

but directly to a memory buffer allocated specifically for this

packet’s stream.

Figure 3(b) shows that the CPU utilization of the Scap user-

level application is considerably lower than the utilization of

Libnids and Snort, which at 3 Gbit/s exceeds 90%, saturating

the processor. In contrast, the CPU utilization for the Scap

application is less then 60% even for speeds up to 6 Gbit/s, as

the user application does very little work: stream reassembly is

performed by the kernel module, which increases the software

interrupt load, as we see in Figure 3(c).

When the traffic rate is less than 2.5 Gbit/s, the interrupt

load of the Scap kernel module is almost the same as for

the other two systems. However, as soon as the traffic rate

exceeds 3 Gbit/s, a rate for which both Libnids and Snort

lose packets, the software interrupt load of Scap becomes

higher. This is because Scap manages to process all packets

at these rates, while the other two systems drop most of them.

Indeed, dropped packets are not copied in the memory-mapped

buffer and are not being processed any further by the software

interrupt handler, so the software interrupt load for systems

that drop packets becomes lower. A more detailed evaluation

of Scap can be found in our previous work [24].

VII. SCAP APPLICATIONS

A. Flow Statistics Export

Our first Scap application collects and exports flow-based

statistics. Scap already gathers these statistics in its kernel

module, and stores them in the stream_t structure of each

stream. Thus, there is no need to receive any actual stream data

at user level at all. To achieve this, the stream cutoff is set to

zero, to efficiently discard all data in the kernel or NIC. All the

required statistics for each stream are retrieved upon stream

termination by registering a callback function. The following

listing shows the code of this Scap application.

1 scap_t *sc = scap_create("eth0", SCAP_DEFAULT,

2 SCAP_TCP_FAST, 0);

3 scap_set_cutoff(sc, 0);

4 scap_dispatch_termination(sc, stream_close);

5 scap_start_capture(sc);

6

7 void stream_close(stream_t *sd) {

8 export(sd->hdr.src_ip, sd->hdr.dst_ip,

9 sd->hdr.src_port, sd->hdr.dst_port,

10 sd->stats.bytes, sd->stats.pkts,

11 sd->stats.start, sd->stats.end);

12 }

In line 1 we create a new Scap socket for capturing

streams from the eth0 interface. Then, we set the stream

cutoff to zero for discarding all stream data (line 3), set the

stream_close() as a callback function to be called upon

stream termination (line 4), and finally start the capturing

process (line 5). The stream_ close() function exports

stream statistics through the sd descriptor that is passed as

its argument (lines 7–12).



Traffic rate (Gbit/s)

0 1 2 3 4 5 6

P
a
c
k
e
ts

 d
ro

p
p
e
d
 (
%)

0

20

40

60

80

100 Libnids

yaf

Scap w/o FDIR

Scap with FDIR

(a) Packet loss

Traffic rate (Gbit/s)

0 1 2 3 4 5 6

C
P

U
 u

ti
liz

a
ti
o
n
 (
%)

0

20

40

60

80

100

Libnids

yaf

Scap w/o FDIR

Scap with FDIR

(b) CPU utilization

Traffic rate (Gbit/s)

0 1 2 3 4 5 6

S
o
ft
w

a
re

 i
n
te

rr
u
p
ts

 (
%)

0

5

10

15

20

25

30 Libnids

yaf

Scap w/o FDIR

Scap with FDIR

(c) Software interrupt load

Figure 4. Performance evaluation of the Scap flow statistics export application in comparison to YAF and Libnids while varying the traffic rate.

We now evaluate the performance of this Scap flow export

application by comparing it with YAF v2.1.1 [39], a Libpcap-

based flow export tool, and with a Libnids-based program that

receives reassembled flows and exports the same flow statis-

tics. Although Scap can use all eight available cores, for a fair

comparison with the other two tools which are single-threaded,

we configure it to use a single worker thread. However, for

all tools, hardware and software interrupt handling for packet

processing in kernel takes advantage of all available cores,

utilizing the NIC’s multiple queues and RSS.

Figures 4(a), 4(b), and 4(c) present the percentage of

dropped packets, the average CPU utilization of the monitoring

application on a single core, and the software interrupt load

while varying the traffic rate from 250 Mbit/s to 6 Gbit/s.

We see that Libnids starts losing packets when the traffic rate

exceeds 2 Gbit/s. The reason can be seen in Figures 4(b)

and 4(c), where the total CPU utilization of Libnids exceeds

90% at 2.5 Gbit/s. YAF performs slightly better than Libnids,

but when the traffic reaches 4 Gbit/s, it also drives CPU

utilization to 100% and starts losing packets as well. This

is because both YAF and Libnids receive all packets captured

by Libpcap in user space and then drop them, as the packets

themselves are not needed.

Scap processes all packets even for a 6 Gbit/s load. As

shown in Figure 4(b), the CPU utilization of the Scap appli-

cation is always less than 10%, as it practically does not do

any work at all. All the work has already been done by Scap’s

kernel module. One would expect the overhead of this module

(shown in Figure 4(c)) to be relatively high. Surprisingly,

however, the software interrupt load of Scap is even lower

compared to YAF and Libnids. This is because Scap does not

copy the incoming packets around: as soon as a packet arrives,

the kernel module accesses only the needed information from

its headers, updates the respective stream t, and just drops it.

In contrast, Libnids and YAF receive all packets to user space,

resulting in much higher overhead. YAF performs better than

Libnids because it receives only the first 96 bytes of each

packet and does not perform stream reassembly.

When Scap uses FDIR filters to discard the majority of the

packets at the NIC level it achieves even better performance.

Figure 4(c) shows that the software interrupt load is signifi-

cantly lower with FDIR filters: as little as 2% for 6 Gbit/s.

Indeed, Scap with FDIR brings into main memory as little

as 3% of the total packets—just the packets involved in TCP

session creation and termination. The rest of the packets are

just not needed, and they are never brought to main memory.

B. NIDS Signature Matching

The next Scap application we implemented is a simple

signature-based network-level intrusion detection system. This

application matches simple NIDS signatures in the captured re-

assembled transport-layer streams. Signatures contain patterns

that are matched against the captured streams using the Aho-

Corasick pattern matching algorithm [40]. To match patterns

spanning multiple packets of the same connection, and avoid

evasion attempts based on TCP segmentation discrepancies,

stream reassembly and protocol normalization are needed,

respectively. Fortunately, Scap provides both of them. The

following listing shows the few lines of the code we used

to implement this application with Scap.

1 load_signatures(dfa, signatures);

2 scap_t *sc = scap_create("eth0", 512M,

3 SCAP_TCP_FAST, 0);

4 scap_set_worker_threads(sc, numCPU);

5 scap_dispatch_data(sc, stream_process);

6 scap_start_capture(sc);

7

8 void stream_process(stream_t *sd) {

9 search(dfa, sd->data, sd->data_len, MatchFound);

10 }

We begin by loading the signatures and compiling them

into a DFA for the Aho-Corasick pattern matching algorithm.

Then, we create an Scap socket without setting a cutoff,

so that all traffic is captured and processed (lines 2–3).

Then, we configure Scap to use numCPU worker threads,

each one pinned to a single CPU core (where numCPU

is the number of available CPU cores), to speed up pattern

matching with parallel stream processing. Finally, we register

stream_process() as the callback function for processing

stream chunks (line 5) and start the capturing process (line 6).

As we do not define a chunk size, the default value is used

(16KB). The stream_process() function calls search(),

which looks for the set of known signatures we added into the

DFA within the sd->data_len bytes of the stream chunk,

starting from the sd->data pointer. In case of a match, it

calls the MatchFound() function.
We evaluate the performance of this Scap NIDS application

using only one worker thread, to compare its performance

with Snort and Libnids, which are single-threaded. We do

not apply any cutoff so that all traffic is delivered to the

application. We loaded 2,120 signatures from the “web attack”

rules of the official VRT Snort rule set [41]. These signatures
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Figure 5. Performance evaluation of the Scap NIDS signature matching application in comparison to Snort and Libnids while varying the traffic rate.

resulted in 223,514 matches in our trace. We compare this

Scap application with Snort and Libnids using the same string

matching algorithm and the same set of signatures. To ensure

a fair comparison, Snort is configured only with the Stream5

preprocessor enabled, which performs transport-layer stream

reassembly, using the same set of rules, so that all tools end

up using the same automaton.

Figure 5(a) shows the percentage of dropped packets for

each application as a function of the traffic rate. We see that

Snort and Libnids process traffic rates of up to 750 Mbit/s

without dropping any packets, while the Scap application

processes up to 1 Gbit/s traffic with no packet loss with one

worker thread. The main reasons for the improved performance

of Scap are the reduced memory copies during stream reassem-

bly and the improved cache locality when grouping multiple

packets into their respective transport-layer streams. Indeed,

by reassembling packets into streams from the moment they

arrive, packets are not copied around: consecutive segments

arrive together, are stored together, and are consumed together.

In contrast, Libnids and Snort perform stream reassembly too

late: the segments have been stored in (practically) random

locations all over main memory.

Moreover, for high traffic rates, the Scap application drops

significantly fewer packets than Snort and Libnids, e.g., at

6 Gbit/s it processes three times more traffic. This behavior has

a positive effect on the number of detected attacks. As shown

in Figure 5(c), under the high load of 6 Gbit/s, Snort and

Libnids detect less than 10% of the attacks, as more than 90%

of the packets are dropped, while the Scap application detects

five times as many: 50.34% of the attacks, when 80% of

the packets were dropped. Although the percentage of missed

attacks for Snort and Libnids is proportional to the percentage

of dropped packets, the accuracy of the Scap application

is affected less by high packet loss rates. This is because

Scap under overload tends to retain more packets towards the

beginning of each stream. As we use web attack signatures,

matches are usually found within the first few bytes of HTTP

requests or responses. Also, Scap tries to deliver contiguous

chunks, which improves detection accuracy compared to the

delivery of chunks with random holes.

Figure 5(b) shows that the percentage of lost streams for

Snort and Libnids is proportional to the packet loss rate. In

contrast, the Scap application loses significantly less streams

than the corresponding packet loss ratio. Even for 81.2%

packet loss at 6 Gbit/s, only 14% of the total streams are

completely lost. This is because Libnids and Snort drop pack-

ets randomly under overload, while Scap is able to (i) assign

more memory to new or small streams, (ii) cut the long tails

of large streams, and (iii) deliver more streams intact when

the available memory is limited. Moreover, the Scap kernel

module always receives and processes all important protocol

packets, e.g., during the TCP handshake. These packets may

result in the creation of new streams, but they do not carry data

to be stored. In contrast, when a packet capture library drops

these packets, user-level stream reassembly libraries cannot

reassemble the respective streams, and completely misses

them.

C. Layer-7 Traffic Classification

Next, we use Scap to implement a traffic classification

application, which aims to identify application-layer protocols

within stream payloads. Protocol normalization and stream

reassembly are essential for accurate protocol identification, as

they ensure that application-specific patterns can be matched

in stream payloads that might be spanning different TCP

segments. Also, each transport-layer stream should be assigned

one application protocol. When one stream is classified to one

protocol, the rest of the packets belonging to that stream do

not have to be inspected for protocol detection. They are just

accounted for, to compute an accurate distribution of the mon-

itored traffic to the identified application-layer protocols. Scap

is an attractive framework to build such L7 traffic classification

applications: it supports all of the above features with reduced

application code complexity and improved performance.
We based our implementation on the L7-filter library [5],

which provides a set of patterns that can be used to detect

application-layer protocols. The packets of each stream are

matched against the application-specific patterns until a match

is found. Then, the stream is marked with this application

protocol. The rest of the packets of already classified streams

are not further inspected. Instead, they are just accounted for,

by updating per-stream and per-application statistics. Flows for

which an application pattern cannot be identified are marked

as “unknown.”

Scap provides several useful features for implementing

this application and improving its performance. When a

match is found and a stream is classified, the rest of the

stream data is just discarded (at kernel or NIC level) using

scap_discard_stream(). The Scap kernel module is re-

sponsible for gathering statistics for identified flows, without
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Figure 6. Performance evaluation of an Scap L7 traffic classification application using L7-filter patterns in comparison to L7-filter on top of Libpcap and
Libnids while varying the traffic rate.

copying any stream data to user level. Furthermore, as flows

are typically classified after inspecting the first few KBs of

a stream, we can significantly improve performance using a

stream cutoff. In our Scap application, we set a cutoff of

10 MB per stream, and compared its accuracy with L7-filter

implemented over other libraries. We observed that accuracy

is not reduced, as no more protocols are detected after 10 MB

per stream, but in fact is increased due to stream reassembly

and protocol normalization, and mainly because Scap avoids

(or reduces) packet loss in high rates.

The following listing is the main part of the Scap code for

implementing traffic classification using L7-filter.

1 load_l7_patterns(dfa, l7_patterns);

2 scap_t *sc = scap_create("eth0", 512M,

3 SCAP_TCP_FAST, 0);

4 scap_set_cutoff(sc, 10485760);

5 scap_set_worker_threads(sc, numCPU);

6 scap_dispatch_data(sc, stream_process);

7 scap_dispatch_termination(sc, stream_close);

8 scap_start_capture(sc);

9

10 void stream_process(stream_t *sd) {

11 int protocol;

12 if (sd->user_state!=NULL) {

13 protocol=search(dfa, sd->data, sd->data_len);

14 if (protocol!=NO_MATCH) {

15 (int)sd->user_state=protocol;

16 scap_discard_stream(sc, sd);

17 }

18 }

19 }

20

21 void stream_close(stream_t *sd) {

22 export(sd->hdr.src_ip, sd->hdr.dst_ip,

23 sd->hdr.src_port, sd->hdr.dst_port,

24 sd->stats.bytes, sd->stats.pkts,

25 sd->stats.start, sd->stats.end,

26 sd->user_state);

27 }

We begin by loading the L7-filter patterns into a DFA

(line 1). Then, we create an Scap socket as usual (lines 2–

3) and set a cutoff of 10 MB per stream (line 4). We

configure Scap to use as many worker threads as the avail-

able CPU cores to enable parallel stream processing using

the scap_set_worker_threads() function (line 5). To

process incoming stream data chunks (of 16 KB by default) we

set the stream_process() callback (line 6), and then set the

stream_close() callback to export stream statistics along

with the application protocol on stream termination events

(line 7). Then, stream capture begins (line 8).

The stream_process() function (lines 10–19) attempts

to match a stream data chunk against the set of L7-filter

patterns (line 13) only for streams that have not been already

classified (line 12). In case of a match (lines 14–17), the

application protocol that is detected for this stream is stored

in the sd->user_state field, which is provided by Scap

for keeping application-specific state (line 15). This allows

the application to know whether a stream has been already

classified, and the protocol that was identified. Also, in case

of a match, the scap_discard_stream() function is called

to efficiently discard the data of this stream in kernel or

NIC, as it is not needed for inspection—just for accounting,

which will be handled by the Scap kernel module. Finally, the

stream_close() function (lines 21–27) exports the statistics

of each terminated stream along with the sd->user_state,

which is set to the identified application protocol for this

stream, or NULL for streams unidentified streams.

We evaluate the performance of this Scap application in

comparison to two similar applications built on top of Libpcap

and Libnids, using the same set of L7-filter patterns. The

Libpcap-based application matches these patterns in the cap-

tured packets without performing stream reassembly, as it only

supports flow tracking. We set one worker thread for Scap in

this experiment to make a fair comparison.

Figures 6(a)–6(c) show the percentage of dropped packets,

lost streams, and classified streams, respectively. We see

that L7-filter on top of Libpcap and Libnids starts loosing

packets at 1.5 Gbit/sec, while Scap starts dropping packets at

3.25 Gbit/sec, which is a 2.2 times improvement. Although

Libnids and Libpcap lose a similar percentage of streams to

their respective packet loss rates, Scap retains much more

streams: 86% of the streams are still captured by Scap at

6 Gbit/sec, despite 76% of dropped packets. At the same

rate, Libpcap tracks only 5.7% of the streams (due to a 93%

packet loss) and Libnids captures 4.3% of the total streams

(with a 95.7% packet loss). This is due to the overload control

mechanisms that Scap internally implements.

Figure 6(c) shows the percentage of streams that were

classified by L7-filter into one of the supported applications

as a function of the traffic rate. We see that at low rates (with

no packet loss), L7-filter on top of Libnids and Scap classifies

61.5% of the total streams in our trace. The rest of the streams
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Figure 7. Performance evaluation of an Scap HTTP parsing application in comparison to a Libnids HTTP parsing application while varying the traffic rate.

were reported as “unknown.” L7-filter on top of Libpcap at

low rates classifies 58% of the streams, which is 3.5% less

classified streams than L7-filter over Libnids and Scap. This

is because the Libpcap application does not perform stream

reassembly, so it misses patterns that span multiple segments

or require protocol normalization.

At higher rates, the percentage of classified streams rapidly

drops for the Libnids and Libpcap implementations. The un-

classified streams are either streams that were not classified by

L7-filter, or streams that were lost due to overload conditions.

As the traffic rate increases, the percentage of lost streams

is significantly higher, as we see in Figure 6(b). In contrast,

the Scap application retains and classifies much more streams

than the other implementations. For example, 27.7% of the

streams are classified at 6 Gbit/sec, with 76% of the packets

getting dropped. At the same rate, the Libpcap and Libnids

applications classified only 3% and 2.5% of the streams,

respectively. This is due to the intelligent overload control

provided by Scap: the first few bytes of each stream are

stored in memory with higher priority, so initial stream parts

are delivered even for very high rates. The 10 MB stream

cutoff has also a positive impact on the percentage of classified

streams at high traffic rates.

D. HTTP Parsing

The last application we implemented with Scap is an HTTP

parsing tool that analyzes all HTTP headers in HTTP requests

and responses. To be accurate, it requires to operate on the

reassembled HTTP payload. The following code listing is the

main part of this Scap application:

1 scap_t *sc = scap_create("eth0", 512M,

2 SCAP_TCP_FAST, 0);

3 scap_set_worker_threads(sc, numCPU);

4 scap_set_filter(sc, "port 80");

5 scap_dispatch_data(sc, stream_process);

6 scap_start_capture(sc);

7

8 void stream_process(stream_t *sd) {

9 int res;

10 res=HTTP_parse(sd->data, sd->data_len,

11 (HTTP_header*)sd->user_state);

12 if (res==HTTP_HEADER_INCOMPLETE)

13 scap_keep_stream_chunk(sc, sd);

14 }

We start by creating an Scap socket (lines 1–2) and starting

multiple worker threads (line 3). We do not set any stream

cutoff, as many HTTP requests and responses can be sent

through the same stream, due to persistent HTTP connections.

Then, we set a BPF filter to process only streams with source

or destination port 80 (line 4), set the stream_process()

callback for stream data processing (line 5), and start the

stream capture (line 6). The stream_process() function

calls HTTP_parse() to process the sd->data_len cap-

tured bytes of an HTTP stream, starting from the sd->data

pointer. The decoded HTTP header values are stored in

sd->user_state (lines 10–11). If the HTTP header remains

incomplete in this stream chunk, stream_process() asks

from the Scap kernel module to keep this chunk into memory

and merge it with the subsequent chunk, until the whole

HTTP header is received, using the keep_stream_chunk()

function (line 13). This way, the whole HTTP header will end

up in contiguous memory and can then be easily processed.

We cannot discard the rest of the stream as it may contain

more HTTP requests and responses that need to be decoded.

We evaluate the performance of this Scap application when

using one worker thread, comparing with a respective program

written on top of Libnids (also single-threaded). In Figure 7(a)

we see that Libnids starts dropping packets at 2 Gbit/sec

(0.9%), while Scap drops 0.9% of the packets at 5 Gbit/sec. At

6 Gbit/sec, the Libnids application loses 80% of the packets,

77% of the HTTP streams, and 76% of the HTTP requests and

responses. In contrast, our Scap application performs much

better at 6 Gbit/sec: it drops 22.5% of the packets, 8.9% of the

HTTP streams, and 8.7% of the HTTP requests and responses.

VIII. RELATED WORK

A. Improving Packet Capture

Several techniques have been proposed to reduce the kernel

overhead and the number of memory copies for delivering

packets to the application [11], [42]–[44]. Scap can also

use such techniques to improve its performance. The main

difference, however, is that all these approaches operate at

the network layer. Thus, monitoring applications that require

transport-layer streams should implement stream reassembly,

or use a separate user-level library, resulting in reduced perfor-

mance and increased application complexity. In contrast, Scap

operates at the transport layer and directly assembles incoming



packets to streams in the kernel, offering the opportunity for a

wide variety of performance optimizations and many features.

Papadogiannakis et al. [32] show that memory access

locality in passive network monitoring applications can be

improved when reordering the packet stream based on source

and destination port numbers. Scap also improves memory

access locality and cache usage in a similar manner when

grouping packets into streams.

B. Taking Advantage of Multi-core Systems

Fusco and Deri [45] utilize the receive-side scaling feature

of modern NICs in conjunction with multi-core systems to im-

prove packet capture performance, by mapping each hardware

receive queue to one core. Sommer et al. [46] take advantage

of multi-core processors to parallelize event-based intrusion

prevention systems using multiple event queues that collect

semantically related events for in-order execution. Storing

related events in a single queue localizes memory access to

shared state by the same thread. Pesterev et al. [30] improve

TCP connection locality using the flow director filters to

optimally balance the TCP packets among the available cores.

We view these works as orthogonal to Scap: such advances in

multi-core systems can be easily used by Scap.

C. Packet Filtering

Dynamic packet filtering reduces the cost of adding and

removing filters at runtime [47]–[49]. Deri et al. [26] propose

to use the flow director filters for common filtering needs.

Other approaches allow applications to move simple tasks to

the kernel packet filter to improve performance [42], [50], [51].

Scap suggests a relatively different approach: applications

empowered with a Stream abstraction can communicate their

stream-oriented filtering and processing needs to the underly-

ing kernel module at runtime through the Scap API, to achieve

lower complexity and better performance. For instance, Scap

is able to filter packets within the kernel or at the NIC layer

based on a flow size cutoff limit, allowing to set dynamically

different cutoff values per-stream, while the existing packet

filtering systems are not able to support a similar functionality.

D. TCP Stream Reassembly

Libnids [14] is a user-level library on top of Libpcap

for TCP stream reassembly based on the emulation of a

Linux network stack. Similarly, the Stream5 [52] preprocessor,

part of Snort NIDS [1], performs TCP stream reassembly at

user level, emulating the network stacks of various operating

systems. Scap shares similar goals with Libnids and Stream5.

However, previous works treat TCP stream reassembly as a

necessity [15], mostly for the avoidance of evasion attacks

against intrusion detection systems [7], [8], [10], [29]. On

the contrary, Scap views transport-layer streams as the fun-

damental abstraction that is exported to network monitoring

applications, and as the right vehicle to implement aggressive

optimizations.
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Figure 8. Categorization of network monitoring tools and systems that support
commodity NICs.

E. Per-flow Cutoff

The Time Machine network traffic recording system [17]

exploits the heavy-tailed nature of Internet traffic to reduce

the number of packets stored on disk for retrospective analysis,

by applying a per-flow cutoff. Limiting the size of flows can

also improve the performance of intrusion detection systems

under load [18], [19], by focusing detection on the beginning

of each connection. Lin et al. [20] present a system for storing

and replaying network traffic, using an (N,M,P ) scheme to

reduce the traffic stored: they suggest to capture N bytes per

flow and then M bytes per packet for the next P packets of

the flow. Canini et al. [16] propose a similar scheme for traffic

classification, by sampling more packets from the beginning of

each flow. Scap shares a similar approach with these works, but

implements it within a general framework for fast and efficient

network traffic monitoring, using the Stream abstraction to

enable the implementation of performance improvements at

the most appropriate level. For instance, Scap implements the

per-flow cutoff inside the kernel or at the NIC layer, while

previous approaches have to implement it in user space. As a

result, they first receive all packets from kernel in user space,

and then discard those that are not needed.

F. Overload Control

Load shedding is proposed as a defense against overload

attacks in Bro [2], whereby the NIDS operator is responsible

for defining a discarding strategy. Barlet-Ros et al. [53] also

propose a load shedding technique using an on-line prediction

model for query resource requirements, so that the monitoring

system sheds load under conditions of excessive traffic using

uniform packet and flow sampling. Dreger et al. [27] deal

with packet drops due to overloads in a NIDS using load

levels, which are precompiled sets of filters that correspond

to different subsets of traffic enabled by the NIDS depending

on the workload.

G. Summary

To place our work in context, Figure 8 categorizes Scap

and related works along two dimensions: the main abstraction



provided to applications, i.e., packet, set of packets, or stream,

and the level at which this abstraction is implemented, i.e.,

user or kernel level. Traditional systems such as Libpcap [13]

use the packet as basic abstraction and are implemented in

user level. More sophisticated systems such as netmap [44],

FLAME [51], and PF RING [11] also use the packet as basic

abstraction, but are implemented in kernel and deliver better

performance. MAPI [54] and FFPF [42] use higher level

abstractions such as the set of packets. Libnids and Stream5

provide the transport-layer Stream as their basic abstraction,

but operate at user level and thus achieve poor performance

and miss several opportunities of efficiently implementing this

abstraction. We see Scap as the only system that provides a

high-level abstraction, and at the same time implements it at

the appropriate level, enabling a wide range of performance

optimizations and features.

IX. CONCLUSION

In this paper, we have identified a gap in network traffic

monitoring: applications usually need to express their mon-

itoring requirements at a high level, using context from the

transport layer or even higher, while most monitoring tools

still operate at the network layer. To bridge this gap, we have

presented the design, implementation, and evaluation of Scap,

a stream-oriented network monitoring framework that offers

an expressive API and significant performance improvements

for applications that process traffic at the transport layer and

beyond. Scap gives the stream abstraction a first-class status,

and provides an OS subsystem for capturing transport-layer

streams while minimizing data copy operations by optimally

placing network data into stream-specific memory regions.
The results of our experimental evaluation demonstrate that

Scap can deliver all streams will no packet loss for rates up

to 5.5 Gbit/s using a single core, achieving two times higher

performance than other systems. Moreover, we showed how

four popular network monitoring applications can be easily

implemented with Scap by leveraging its stream abstraction,

and how their performance is significantly improved as a

result of Scap’s stream processing features and optimizations.

As networks get increasingly faster and network monitoring

applications more sophisticated, we believe that approaches

like Scap, based on aggressive optimizations at the kernel level

or even on the NIC, will become important for improving the

overall performance of network monitoring applications.
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